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Abstract

We investigate the likelihood ratio test for a large block-diagonal covariance matrix
with an increasing number of blocks under the null hypothesis. While so far the likeli-
hood ratio statistic has only been studied for normal populations, we establish that its
asymptotic behavior is invariant under a much larger class of distributions. This implies
robustness against model misspecification, which is common in high-dimensional regimes.
Demonstrating the flexibility of our approach, we additionally establish asymptotic nor-
mality of the log-likelihood ratio test for the equality of many large sample covariance
matrices under model uncertainty. A simulation study emphasizes the usefulness of our
findings.

Keywords: block-diagonal covariance matrix, central limit theorem, equality of covariance ma-
trices, high-dimensional inference, likelihood ratio test, model misspecification, non-normal
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AMS subject classification: 62H15, 62H10

1 Introduction

Over the last decades, the availability of high-dimensional data sets across diverse disciplines
such as as bio statistics, wireless communications and finance has transformed statistical prac-
tice (see, e.g., Fan and Li (2006); Johnstone (2006) and references therein). Traditional mul-
tivariate analysis, as outlined in the text books of Anderson (1984) or Muirhead (1982), is
developed under the paradigm that the dimension is negligible compared to the sample size
and breaks down seriously if this assumption is violated. Such problems have spurred the
development of new analysis tools, that work for dimensions of the same order as and even
larger than the sample size. The literature on these topics is so large, that we can only cite
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a few illustrative examples, related to the present work: The works of Yamada et al. (2017)
and Bodnar et al. (2019) address the question whether a large covariance matrix admits a
block-diagonal structure. Tests for independence in various setting are discussed in Han et al.
(2017) and Loubaton and Rosuel (2020). Hu et al. (2017) concentrate on tests for the equality
of high-dimensional mean vectors, while He et al. (2021) take a broader perspective on high-
dimensional testing by investigating a class of U -statistics.
Turning closer to the scope of this work, the likelihood ratio method has received much at-
tention in the literature on high-dimensional statistical inference since the past decade. The
starting point for the investigating of various classical testing problems transferred to a high-
dimensional setting can be seen in the work of Jiang and Yang (2013) establishing CLTs for
the corresponding log-likelihood ratio tests, including the two main testing problems investi-
gated in this work. Jiang and Qi (2015) tried to relax the assumptions on the parameters,
while other authors extended these results in various directions. For example, Jiang and Wang
(2017) proved a moderate deviation principle for these likelihood ratio tests. More recent gen-
eralizations include the works of Qi et al. (2019); Dette and Dörnemann (2020); Guo and Qi
(2021). All of these works rely on normally distributed data and the asymptotic behavior of
these test statistics under model misspecification has received little attention in the literature
on high-dimensional statistics so far. A few works investigating likelihood ratio tests in different
settings under model uncertainty include Luo and Tsai (2012); Lemonte (2013, 2016); Strug
(2018); Ishii et al. (2021). We add to this line of literature by dropping the restrictive distribu-
tional assumption of normality. In particular, we find that the CLTs for the log-likelihood of
two specific testing problems remain still valid when only assuming moments of order (4 + δ)
for some δ > 0. Besides the theoretical importance of our findings, these results ensure more
robust statistical guarantees for practitioners as the validity of the normal assumption is not a
priori clear for high-dimensional data sets.
Interestingly, our results reveal that the limiting distribution of the log-likelihood under the null
hypothesis does not depend on specific characteristics of the underlying data generating distri-
bution such as the fourth moment. This observation is illustrated in Figure 1 where we consider
the problem of testing whether the covariance matrix of a p-dimensional random vector admits
a block-diagonal structure with q blocks. Here, we display three histograms for the correspond-
ing log-likelihood ratio test under the null hypothesis based on three different distributions for
the samples. The components of all vectors are independent identically distributed with respect
to a standard normal distribution (left column), standardized t-distribution (middle column)
and centered exponential distribution (right column), respectively. Thus, the null hypothesis
of a block-diagonal covariance matrix is obviously satisfied (in this case, the covariance matrix
equals the identity matrix). We observe that the histograms look very similar. This testing
problem will be examined in detail in Section 2 of this work.
Before concluding this introduction, we would like to discuss the main ideas for our proofs.
Under the normal assumption, the exact distribution of the test statistic is available under the
null hypothesis on which proofs of previous works crucially depend on. Equipped with such a
knowledge, the moment-generating of the log-likelihood test statistic is investigated (see, e.g.,
Jiang and Yang, 2013; Qi et al., 2019; Guo and Qi, 2021) or a general central limit theorem is
applied (see Dette and Dörnemann, 2020). Obviously we cannot hope for an analogue exact
representation without knowing the underlying distribution of the data.
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Figure 1: Histograms for the log-likelihood ratio test (3) under the hypothesis (2) of a block
diagonal structure of q = 30 blocks of equal size 2 in a p = 60-dimensional random vector
(sample size 100, simulation runs 10, 000). Left column: standard normally distributed data,
middle column: standardized t-distributed data with 15 degrees of freedom, right column:
centered exponentially distributed data with parameter 1. The grey curve indicates the density
of the standard normal distribution.

In order to tackle the difficulties arising in the proof for non-normal populations, we derive
a novel representation of the log-likelihood test statistic involving random quadratic forms
without imposing restrictive distributional assumptions. For this purpose, we perform a QR-
decomposition for the (sub)data matrices. Such QR-decompositions are useful in a broader
context: Wang et al. (2018) used this tool in order to derive the logarithmic law of the sample
covariance matrix for the case p/n → 1 near singularity, while Heiny and Parolya (2021)
investigated the log-determinant of the sample correlation matrix under infinite fourth moment.
These papers were partially inspired by works of Nguyen and Vu (2014) and Bao et al. (2015), in
which the authors proved Girko’s logarithmic law for a general random matrix with independent
entries and brought his “method of perpendiculars” (see Girko, 1998) on a mathematically
rigorous level. Via our representation, we are in the position to decompose the test statistic
into three parts: we will prove that the dominating linear term satisfies a central limit theorem
for martingale difference schemes, while the quadratic term converges to constant and the
remainders are asymptotically negligible. Heuristically, this decomposition can be motivated
by Taylor’s expansion log(1+x) = x−x2/2+O(x3), though one needs more delicate arguments
in order to justify this step mathematically correct.

This work is structured as follows. In Section 2, we present a CLT for the log-likelihood ratio
test of a block-diagonal covariance matrix under the null hypothesis. Here, the number of blocks
may increase together with dimension of the data and sample size while we do not assume that
the data is generated by a normal distribution. As a corollary, the distribution of a test for a
diagonal covariance matrix is derived. In Section 3, we apply our method to another classical
likelihood ratio test and provide the asymptotic distribution of the log-likelihood ratio test on
the equality of many large covariance matrices. The main results of Section 2 and 3 are proven
in Section 5. We illustrate our findings with a simulation study in Section 4.
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2 Testing for a block-diagonal covariance matrix

In the main part of this work, we revisit a very prominent problem in high-dimensional data
analysis, namely a test for uncorrelation of sub-vectors of a multivariate distribution. For
normally distributed data, this coincides with a test for independence of these sub-vectors. To
be precise, let y = Σ

1
2 x denote a p-dimensional random vector with mean µ = 0 ∈ Rp and

covariance matrix Σ ∈ Rp×p, where Σ
1
2 denotes the symmetric square root of Σ. We assume

that y is decomposed as

y =
(
y(1)>, . . . ,y(q)>)>,

where y(i) are vectors of dimension pi ∈ N, 1 ≤ i ≤ q, such that
∑q

i=1 pi = p for some integer
q ≥ 2. Moreover, we assume that the components of x are i.i.d. with respect to some centered
distribution. Let

Σ =


Σ11 Σ12 . . . Σ1q

Σ21 Σ22 . . . Σ2q
...

...
...

Σq1 Σq2 . . . Σqq

 (1)

denote the corresponding decomposition of the covariance matrix, where Σij := Cov(y(i),y(j)).
The hypothesis of uncorrelated sub-vectors is formulated as

H0 : Σij = 0 for all i 6= j. (2)

Let x1, . . . ,xn
i.i.d.∼ x be a sample of independent identically distributed random variables ac-

cording to x and denote yi = Σ1/2xi for 1 ≤ i ≤ n. Under the normal assumption x ∼ N (0, I),
the likelihood ratio test is given by

Λn =
|Σ̂|n/2

q∏
i=1

|Σ̂ii|n/2
= V

n
2
n , (3)

where

Σ̂ =
1

n

n∑
k=1

yky
>
k

denotes the sample covariance matrix of y1, . . . ,yn and and Σ̂ij denotes the block in the ith

row and jth column of the estimate Σ̂ corresponding to the decomposition (1).
In the case y ∼ N (µ,Σ), Jiang and Yang (2013) and Jiang and Qi (2015) derived a central
limit theorem for the corresponding log-likelihood ratio test statistic in a high-dimensional
setting when assuming that the number q of blocks is fixed. Several authors such as Qi et al.
(2019) and Dette and Dörnemann (2020) demonstrated that such a CLT still holds true if the
parameter q = qn is allowed to increase with sample size and dimension. All of these works
rely on normally distributed data. Dropping the normal assumption, the following theorem
provides the asymptotic distribution of log Λn under the null hypothesis of uncorrelation without
assuming a normal distribution for x1, . . . ,xn ∼ x. The proof is deferred to Section 5.1.
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Theorem 2.1. Let the components of x be i.i.d. centered random variables following a contin-
uous distribution with finite (4 + δ)th moment for some δ > 0. Assume that q = qn ≥ 2 is an
possibly increasing integer, 2 ≤ p = pn < n with 0 < infn∈N min1≤i≤q(piq)/n ≤ supn∈N p/n < 1
and max1≤i≤q pi ≤ ηp for each n ∈ N and some fixed η ∈ (0, 1). Then, it holds under the null
hypothesis in (2) that

log Vn − µn
σn

D→ N (0, 1),

where

µn =

q∑
i=1

(
n− pi −

1

2

)
log
(

1− pi
n

)
−
(
n− p− 1

2

)
log
(

1− p

n

)
,

σ2
n = 2

{
q∑
i=1

log
(

1− pi
n

)
− log

(
1− p

n

)}
.

Remark 2.1. Choose α ∈ (0, 1). We propose to reject the null hypothesis whenever

log Vn ≤ σnuα + µn , (4)

where uα denotes the α-quantile of the standard normal distribution. Thus, we have by Theorem
2.1

lim
n→∞

PH0 (log Vn ≤ σnuα + µn) = P(N (0, 1) ≤ uα) = α,

which means that the test keeps asymptotically its nominal level α.

As a noteworthy-by-product of Theorem 2.1, we are able to construct a test for a diagonal
covariance matrix based on the sample correlation matrix.

Remark 2.2 (Testing for a diagonal covariance matrix). 1. As an application, we consider
the special case of testing for a diagonal covariance matrix which coincides with complete
independence of the p components of x in the normal case. In this case, the test in (2) is
equivalent to

H0 : R = Ip, (5)

where
R = diag(Σ)−

1
2 Σ diag(Σ)−

1
2

denotes the population correlation matrix of y. Then, the statistic Vn defined in (3) can
be written as the determinant of the sample correlation matrix, that is,

Vn = |R̂|,

where

R̂ = diag(Σ̂)−
1
2 Σ̂ diag(Σ̂)−

1
2
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denotes the sample correlation matrix of y1, . . . ,yn. Several authors investigated tests for
the hypothesis given in (5) in different frameworks (e.g., see Jiang and Yang (2013), Jiang
and Qi (2015), Gao et al. (2017), Mestre and Vallet (2017), Qi et al. (2019), Parolya
et al. (2021), Heiny and Parolya (2021)). We observe that testing for (5) is a special
case of testing for (2) by letting q = p and p1 = . . . = pq = 1. Then, Theorem 2.1 gives
us the following result.

Corollary 2.1. Let the components of x be i.i.d. centered random variables following
a continuous distribution with finite (4 + δ)th moment for some δ > 0. Assume that
2 ≤ p = pn < n and 0 < infn∈N p/n ≤ supn∈N p/n < 1. Then, it holds under the null
hypothesis in (5) that

log |R| − µn
σn

D→ N (0, 1),

where

µn = p

(
n− 3

2

)
log

(
1− 1

n

)
−
(
n− p− 1

2

)
log
(

1− p

n

)
,

σ2
n = 2

{
p log

(
1− 1

n

)
− log

(
1− p

n

)}
.

2. Note that Parolya et al. (2021) investigated the log-determinant of the sample correlation
matrix in a more general context. In fact, they cover the case R 6= I, while Corollary 2.1
is formulated under the null hypothesis R = I. If we assume that p/n→ γ ∈ (0, 1), then
Corollary 2.1 yields a special version of their Theorem 2.1, since

µn = −
(
n− p− 1

2

)
log

(
1− p− 1

n

)
− (p− 1) +

p

n
+ o(1),

σ2
n = −2

{
p

n
− log

(
1− p− 1

n

)}
+ o(1),

which coincides with mean and variance given in their Theorem 2.1 in the case R = I.
In a follow-up work, Heiny and Parolya (2021) showed that the CLT for the sample
correlation matrix in the case R = I still holds true under infinite fourth moment.

3 Testing for equality of covariance matrices

We expect that our method for proving a CLT as given in Theorem 2.1 can be adapted to the
investigation of other classical likelihood ratio tests in a non-normal setting. In order to demon-
strate this adaption, we consider in this section the comparison of q centered distributions with
covariance matrices Σ1, . . . ,Σq ∈ Rp×p and generic elements y1 = Σ

1/2
1 x, . . . ,yq = Σ

1/2
q x. We

assume that for each group j a sample of size nj is available, j ∈ {1, . . . , q}. When consider-
ing asymptotics, the dimension p and the number q of groups increase with the (sub)sample
sizes. As before, we assume that the components of x are i.i.d. with respect to some centered
distribution.
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An important assumption for multivariate analysis of variance (MANOVA) is that of equal
covariances in the different groups, which motivates our interest in testing the hypothesis

H0 : Σ1 = . . . = Σq. (6)

This problem has been considered by several authors in the context of high-dimensional infer-
ence (see O’Brien (1992), Schott (2007), Srivastava and Yanagihara (2010), Jiang and Yang
(2013), Jiang and Qi (2015), Dette and Dörnemann (2020) and Guo and Qi (2021) among oth-
ers). In this section, we add to this line of literature and investigate the asymptotic distribution

of the likelihood ratio test based on samples of independent distributed observations yji
i.i.d.∼ yj,

1 ≤ i ≤ nj, 1 ≤ j ≤ q. To be precise, let n =
∑q

j=1 nj be the total sample size, then the
likelihood ratio test for the hypothesis (6) under the normal assumption x ∼ N (0, I) is given
by

Λn,2 =

q∏
j=1

|Aj/nj|
1
2
nj

|A/n| 12n
, (7)

where the p× p matrices Aj and A are defined as

Aj =

nj∑
k=1

yjky
>
jk , A =

q∑
j=1

Aj.

In the case yj ∼ N (µj,Σj), 1 ≤ j ≤ q, Jiang and Yang (2013) and Jiang and Qi (2015)
proved asymptotic normality of the corresponding log-likelihood ratio test statistic under the
null hypothesis if the number q of groups is fixed. These results were generalized by Dette
and Dörnemann (2020) and Guo and Qi (2021) for the case of an increasing number q = qn of
groups. All of these works dealt only with normally distributed data. In the following theorem,
we provide the limiting distribution of log Λn,2 under the null hypothesis without imposing a
normal assumption on y1, . . . ,yq in a high-dimensional setting, where the number of groups is
allowed to increase.

Theorem 3.1. Let the components of x be i.i.d. centered random variables following a con-
tinuous distribution with finite (4 + δ)th moment for some δ > 0. Assume that q = qn ≥ 2
is a possibly increasing integer, nj = nj(n) > p = pn for every n ∈ N and 0 < infn∈N p/n ≤
supn∈N max1≤j≤q p/nj < 1. Then it holds under the null hypothesis (6)

2 (log Λn,2 − µn)

nσn

D→ N (0, 1),

where

µn =n

(
n− p− 1

2

)
log
(

1− p

n

)
−

q∑
j=1

nj

(
nj − p−

1

2

)
log

(
1− p

nj

)
,

σ2
n = log

(
1− p

n

)
−

q∑
j=1

(nj
n

)2

log

(
1− p

nj

)
. (8)
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The proof is provided is Section 5.3. Similarly to Remark 2.1, an asymptotic level α for the
hypothesis (6) can be constructed using Theorem 3.1. For the sake of brevity, we omit the
details.

4 Finite-sample properties

Figure 2: Rejection rates for the log-likelihood ratio test (4) for scenario 1 (first row) and
scenario 2 (second row) under (9) based on 2, 000 simulation runs. First column: standard
normally distributed data, second column: standardized t-distributed data with 15 degrees of
freedom, third column: centered exponentially distributed data with parameter 1. The triangle
indicates n = 100, p = 60, the square n = 120, p = 90 and the circle n = 180, p = 120. The
vertical grey line in each figure defines the nominal level α = 5%.

In this section, we investigate the finite-sample properties of the test (4) under both the hy-
pothesis and the alternative. Following Qi et al. (2019), we consider the following alternative

Σ = (1− δ)I + δ1, (9)

where 1 denotes the p × p matrix filled with ones and I denotes the p × p identity matrix.
Here, the parameter δ ≥ 0 determines the ”distance” to the null hypothesis (2) (note that the
choice δ = 0 corresponds to the null hypothesis (2)). In Figure 2, we display the empirical
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rejection rates of the test (4) for different choices of δ, n, p, q, pi and different distributions for
the random vector x. All results are based on 2, 000 simulation runs and the components of
x are independent identically distributed with respect to a standard normal distribution (first
column), standardized t-distribution (second column) and centered exponential distribution
(third column), respectively. The vertical grey line in each figure defines the nominal level
α = 5%. For the choice of the different groups, we consider the following two scenarios:

1. q = 3, p1 = p2 = p3 = p/3,

2. q = p/2, p1 = . . . = pq−1 = 1, pq = q + 1.

We observe a good approximation of the nominal level in all cases under consideration. More-
over the power increases reasonably as δ increases. It should be noted that the increase in
power is a bit stronger for scenario 2 than for scenario 1. The finite-sample properties do not
significantly differ for the three underlying data generating distributions as indicated by the
asymptotic result provided in Theorem 2.1. Overall, the test admits a desirable performance
for finite-sample sizes, both for a large number and relatively small number of groups as covered
by scenarios 1 and 2, and the accuracy improves for large sample size and dimension.

5 Proofs

In Section 5.1, we provide the proof of Theorem 2.1 and use auxiliary results given in Section
5.2. We conclude with the proof of Theorem 3.1 in Section 5.3. In the following, we make use
of the notation a . b which means that a is less than or equal to b up to a positive constant,
that is, there exists some C > 0 independent of n ∈ N such that a ≤ Cb.

5.1 Proof of Theorem 2.1

Note that, under the null hypothesis (2), we have

Vn =
|Σ||Î|

q∏
i=1

(
|Σii||Îii|

) =
|Î|

q∏
i=1

|Îii|
, (10)

where

Î =
1

n
XnX

>
n ,

Îii =
1

n
Xn,iX

>
n,i,

Xn =(x1, . . .xn) = (b1, . . . ,bp)
>,

Xn,i =(bp?i−1+1, . . . ,bp?i )
>,

p?i =
i∑

j=1

pi,

9



for 1 ≤ i ≤ q, where we set p?0 = 0. In order to establish a more handy representation for
determinants of the sample covariance matrix, we proceed with a QR decomposition of X>n and
X>n,i as explained in detail in Section 2 of Wang et al. (2018) and get

Î =
1

n

p∏
i=1

b>i P(i− 1)bi,

Îii =
1

n

p?i∏
j=p?i−1+1

b>j P(p?i−1 + 1; j − 1)bj, 1 ≤ i ≤ q,

where

P(p?i−1 + 1; j − 1)

= I−Xn(p?i−1 + 1; j − 1)>
(
Xn(p?i−1 + 1; j − 1)Xn(p?i−1 + 1; j − 1)>

)−1
X(p?i−1 + 1; j − 1),

(11)

and

P(j) =P(1; j),

denote the projection matrices on the orthogonal complements of span(bp?i−1+1, . . .bj−1) and
span(b1, . . .bj), respectively. Here, we denote

Xn(i; j) =(bi, . . . ,bj)
>, 1 ≤ i ≤ j ≤ p

and P(0) = I = P(i; j) for j > i. This implies

log Vn =

p∑
i=1

log
(
b>i P(i− 1)bi

)
−

q∑
i=1

p?i∑
j=p?i−1+1

log
(
b>j P(p?i−1 + 1; j − 1)bj

)
=

p∑
i=p1+1

log
(
b>i P(i− 1)bi

)
−

q∑
i=2

p?i∑
j=p?i−1+1

log
(
b>j P(p?i−1 + 1; j − 1)bj

)
,

where we used P(i − 1) = P(1; i − 1) for 1 ≤ i ≤ p1. In the following, we will make use of
Stirling’s formula

log n! = n log n− n+
1

2
log(2πn) +

1

12n
+O

(
n−3
)
, n→∞.

As a preparation, we note that

p∑
i=p1+1

log(n− i+ 1)−
q∑
i=2

p?i∑
j=p?i−1+1

log(n− j + 1 + p?i−1)

= log
(n− p1)!

(n− p)!
−

q∑
i=2

log
n!

(n− pi)!
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=

q∑
i=2

(
n− pi +

1

2

)
log
(

1− pi
n

)
−
(
n− p+

1

2

)
log
(

1− p

n

)
−

q∑
i=2

(
1

12n
− 1

12(n− pi)

)
+ o(1)

=µn +
σ2
n

2
− 1

12

q∑
i=2

pi
n(n− pi)

+ o(1) = µn +
σ2
n

2
+ o(1), (12)

where we used the fact

min
1≤i≤q

(n− pi)→∞, (13)

which is a consequence of our assumptions. Defining for p1 + 1 ≤ i ≤ p, 2 ≤ j ≤ q

Xi =
b>i P(i− 1)bi − (n− i+ 1)

n− i+ 1
, Xj,i =

b>i P(p?j−1 + 1; i− 1)bi − (n− i+ 1 + p?j−1)

n− i+ 1 + p?j−1

,

Yi = log(1 +Xi)−
(
Xi −

X2
i

2

)
, Yj,i = log(1 +Xj,i)−

(
Xj,i −

X2
j,i

2

)
,

we decompose using (12)

log Vn − µn

=

p∑
i=p1+1

Xi −
q∑
j=2

p?j∑
i=p?j−1+1

Xj,i −

 p∑
i=p1+1

X2
i

2
−

q∑
j=2

p?j∑
i=p?j−1+1

X2
j,i

2
− σ̌2

n

2


+

p∑
i=p1+1

Yi −
q∑
j=2

p?j∑
i=p?j−1+1

Yj,i + o(1).

The assertion of Theorem 2.1 is then implied by the following auxiliary results, which are proven
in Sections 5.2.1, 5.2.2 and 5.2.3.

Lemma 5.1. Under the assumptions of Theorem 2.1, it holds

p∑
i=p1+1

Xi −
q∑
j=2

p?j∑
i=p?j−1+1

Xj,i

σn

D→ N (0, 1), n→∞.

Lemma 5.2. Under the assumptions of Theorem 2.1, it holds

p∑
i=p1+1

X2
i

2
−

q∑
j=2

p?j∑
i=p?j−1+1

X2
j,i

2
− σ2

n

2

σn

P→ 0, n→∞.

Lemma 5.3. Under the assumptions of Theorem 2.1, it holds

p∑
i=p1+1

Yi
σn

P→ 0, (14)
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q∑
j=2

p?j∑
i=p?j−1+1

Yj,i
σn

P→ 0, (15)

as n→∞.

5.2 Auxiliary results for the proof of Theorem 2.1

5.2.1 Proof of Lemma 5.1

Let Fi = σ({b1, . . . ,bi}) denote the σ-field generated by b1, . . . ,bi for 1 ≤ i ≤ p. We write

p∑
j=p1+1

Xj −
q∑
i=2

p?i∑
j=p?i−1+1

Xi,j =

q∑
i=2

p?i∑
j=p?i−1+1

(Xj −Xi,j) =

p∑
i=p1+1

Zi,

where

Zi =Xi −Xg(i),i, p1 + 1 ≤ i ≤ p,

where g(i) = k if x(i) belongs to the kth group, that is, if pk−1 + 1 ≤ i ≤ pk. We observe that

E [Zi|Fi−1] = 0

and that Zi is measurable with respect to Fi for p1 + 1 ≤ i ≤ p. Thus, we conclude that
(Zi)p1+1≤i≤p forms a martingale difference scheme with respect to the filtration (Fi)p1+1≤i≤p
scheme for every n ∈ N. We aim to apply a central limit theorem for this dependency structure.
In order to calculate the limiting variance, we write

Zi = b>i
(n− i+ 1 + p?g(i)−1)P(i− 1)− (n− i+ 1)P(p?g(i)−1 + 1; i− 1)

(n− i+ 1)(n− i+ 1 + p?g(i)−1)
bi

− tr

(
(n− i+ 1 + p?g(i)−1)P(i− 1)− (n− i+ 1)P(p?g(i)−1 + 1; i− 1)

(n− i+ 1)(n− i+ 1 + p?g(i)−1)

)
, p1 + 1 ≤ i ≤ p,

and use the fact

E
(
b>i Abi − tr A

)2
= 2 tr A2 + (ν4 − 3) tr

(
A�2

)
, 1 ≤ i ≤ p, (16)

for any non-random matrix A ∈ Rn×n, where ν4 = E[b4
11]. Here, � denotes the Hadamard

product of matrices (entry-wise multiplication) and we use the notation

A�A = A�2.

Consequently, we observe

E[Z2
i |Fi−1] =E[(Xi −Xg(i),i)

2|Fi−1]

12



=2

 tr P(i− 1)2

(n− i+ 1)2
+

tr P(p?g(i)−1 + 1; i− 1)2

(n− i+ 1 + p?g(i)−1)2
− 2

tr
(
P(p?g(i)−1 + 1; i− 1)P(i− 1)

)
(n− i+ 1 + p?g(i)−1)(n− i+ 1)


+ (ν4 − 3)

(
tr (P(i− 1)�2)

(n− i+ 1)2
+

tr
(
P(p?g(i)−1 + 1; i− 1)�2

)
(n− i+ 1 + p?g(i)−1)2

− 2
tr
(
P(p?g(i)−1 + 1; i− 1)�P(i− 1)

)
(n− i+ 1 + p?g(i)−1)(n− i+ 1)

)
=σ2

n,1,i + (ν4 − 3)σ2
n,2,i,

where

σ2
n,1,i = 2

(
1

n− i+ 1
− 1

n− i+ 1 + p?g(i)−1

)
,

σ2
n,2,i =

tr (P(i− 1)�2)

(n− i+ 1)2
+

tr
(
P(p?g(i)−1 + 1; i− 1)�2

)
(n− i+ 1 + p?g(i)−1)2

− 2
tr
(
P(p?g(i)−1 + 1; i− 1)�P(i− 1)

)
(n− i+ 1 + p?g(i)−1)(n− i+ 1)

. (17)

Note that
∑p

i=p1+1 σ
2
n,2,i = oP(1) by Lemma 5.5. For the term σ2

n,1,i, we used that P(i −
1)P(p?g(i)−1 + 1; i− 1) = P(i− 1). Thus, we have for this term

p∑
i=p1+1

σ2
n,1,i =2

log(n− p1)− log(n− p)−
q∑
i=2

p?i∑
j=p?i−1+1

1

n− j + 1 + p?i−1

+ o(1)

=2

{
log(n− p1)− log(n− p)−

q∑
i=2

{
log(n)− log(n− p?i + p?i−1)

}
−

q∑
i=2

(
1

2n
− 1

2(n− pi)

)}
+ o(1)

=2

(
log
(

1− p1

n

)
− log

(
1− p

n

)
+

q∑
i=2

log
(

1− pi
n

)
+

1

2

q∑
i=2

pi
n(n− pi)

)
+ o(1)

=2

(
q∑
i=1

log
(

1− pi
n

)
− log

(
1− p

n

))
+ o(1) = σ2

n + o(1), (18)

where we used (13),
∑q

i=2 pi ≤ p and the expansion for the partial sums of the harmonic series

n∑
k=1

1

k
= log n+ γ +

1

2n
+O

(
n−2
)
, n→∞. (19)
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Here, γ denotes the Euler-Mascheroni constant. Note that the term in (18) is bounded away
from zero for all n ∈ N. More precisely, we have applying inequality (33) of Qi et al. (2019)

σ2
n ≥ 2

{
q∑
i=1

log
(

1− pi
n

)
− log

(
1− p

n

)}
≥ −2

(
log
(

1− p

n

)
+
p

n

)
(1− η) > 0 (20)

uniformly over n ∈ N (recall that infn∈N p/n > 0 and max1≤i≤q pi ≤ ηp). These considerations
imply

p∑
i=p1+1

E
[
Z2
i

σ2
n

∣∣∣Fi−1

]
P→ 1, n→∞. (21)

Let ε > 0. Then, using Lemma B.26 in Bai and Silverstein (2010) and recalling that E|x11|4+δ <
∞, we get

p∑
i=p1+1

E[Z2
i I{|Zi| > ε}] ≤ 1

ε
δ
2

p∑
i=p1+1

E[|Zi|2+ δ
2 ]

.
p∑

i=p1+1

1

(n− i+ 1)2+ δ
2

E
∣∣b>i P(i− 1)bi − (n− i+ 1)

∣∣2+ δ
2

+

q∑
i=2

p?i∑
j=p?i−1+1

1(
n− j + 1 + p?i−1

)2+ δ
2

E
∣∣b>j P(p?i−1 + 1; i− 1)bj − (n− j + 1 + p?i−1)

∣∣2+ δ
2

.
p∑

i=p1+1

1

(n− i+ 1)1+ δ
4

+

q∑
i=2

p?i∑
j=p?i−1+1

1(
n− j + 1 + p?i−1

)1+ δ
4

= o(1), n→∞.

Using (20) and the fact that (σ2
n)n∈N is bounded, we see that (Zi/σn)p1+1≤i≤p satisfies the

following Lindeberg condition for all ε > 0:

p∑
i=p1+1

E
[
Z2
i

σ2
n

I{|Zi/σn| > ε}
]

= o(1), n→∞. (22)

Since (21) and (22) hold true, we may apply a CLT for martingale difference schemes (e.g., see
Corollary 3.1 in Hall and Heyde (1980)) and the proof of Lemma 5.1 concludes.

5.2.2 Proof of Lemma 5.2

Note that for each n ∈ N both (Xi)p1+1≤i≤p and (Xg(i),i)p1+1≤i≤p form a martingale difference
scheme with respect to the filtration (Fi)p1+1≤i≤p defined in Section 5.2.1. We obtain from the
proof of Lemma 5.1 in Section 5.2.1

p∑
i=p1+1

E[X2
i |Fi−1] = σ̌2

n,1 + oP(1), n→∞, (23)

14



and

q∑
i=2

E

[
X2
g(i),i

∣∣∣∣∣Fi−1

]
=

q∑
i=2

p?i∑
j=p?i−1+1

E[X2
i,j|Fi−1] = σ̌2

n,2 + oP(1), n→∞, (24)

where we define

σ̌2
n,1 = −2 log

(
1− p

n

)
+ (ν4 − 3)

p∑
i=p1+1

tr (P(i− 1)�2)

(n− i+ 1)2
,

σ̌2
n,2 = −2

q∑
i=1

log
(

1− pi
n

)
+ (ν4 − 3)

p∑
i=p1+1

tr
(
P(p?g(i)−1 + 1; i− 1)�2

)
(n− i+ 1 + p?g(i)−1)2

.

Recalling that 0 < infn∈N min1≤i≤q(piq)/n ≤ supn∈N p/n < 1 and using the inequality log(1 +
x) ≤ x for x > −1, we note that

0 < inf
n∈N

σ̌2
n,1 ≤ sup

n∈N
σ̌2
n,1 <∞, 0 < inf

n∈N
σ̌2
n,2 ≤ sup

n∈N
σ̌2
n,2 <∞. (25)

Taking a closer look at the proof of (22), we observe that both schemes satisfy the Lindeberg
condition, that is, we have for ε > 0

p∑
i=p1+1

E
[
X2
i

σ̌2
n,1

I{|Xi/σ̌n,1| > ε}
]

= o(1), (26)

p∑
i=p1+1

E

[
X2
g(i),i

σ̌2
n,2

I{|Xg(i),i/σ̌n,2| > ε}

]
= o(1). (27)

By the proof of Corollary 3.1 in Hall and Heyde (1980), we see that (23), (24), (26) and (27)
imply that the conditional variance can be approximated by the sum of squares, that is,

p∑
i=p1+1

X2
i − E[X2

i |Fi−1]

σ̌2
n,1

P→ 0,

p∑
i=p1+1

X2
g(i),i − E

[
X2
g(i),i|Fi−1

]
σ̌2
n,2

P→ 0, n→∞,

Combining these observations with (23), (24) and (25), we get

p∑
i=p1+1

X2
i − σ̌2

n,1
P→ 0,

p∑
i=p1+1

X2
g(i),i − σ̌2

n,2
P→ 0.

Using (20) and σ̌2
n,1 − σ̌2

n,2 = σ2
n + oP(1) by Lemma 5.4, the proof of Lemma 5.2 concludes.

5.2.3 Proof of Lemma 5.3

In the following, we will show that the convergence in (14) holds true. Then, the assertion (15)
can be shown similarly.
Let 0 < ε < 1. Then, we estimate for 1 + p1 ≤ i ≤ p using Taylor’s expansion

E [|Yi|I{|Xi| ≤ 1− ε}] . E
[
|Xi|3I{|Xi| ≤ 1− ε}

]
. E|Xi|2+ δ

2 .
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We also have

E [|Yi|I{|Xi| > 1− ε}]
≤E [| log(1 +Xi)|I{|Xi| > 1− ε}] + E [|Xi|I{|Xi| > 1− ε}] + E

[
X2
i I{|Xi| > 1− ε}

]
.E [|Xi|I{|Xi| > 1− ε}] + E

[
X2
i I{|Xi| > 1− ε}

]
. E|Xi|2+ δ

2 ,

where we used the inequality log(1 + x) ≤ x for all x > −1. These two estimates imply

p∑
i=p1+1

E|Yi| .
p∑

i=p1+1

E|Xi|2+ δ
2 = o(1), n→∞,

where we used Lemma B.26 in Bai and Silverstein (2010) as in the proof of (22). Thus, we
obtain

p∑
i=p1+1

Yi
P→ 0, n→∞,

which implies the assertion of Lemma 5.3 recalling infn∈N σ
2
n > 0.

5.2.4 Further auxiliary results for the proof of Theorem 2.1

Lemma 5.4. It holds, as n→∞,

p∑
i=p1+1

(
tr (P(i− 1)�2)

(n− i+ 1)2
− 1

n

)
P→ 0, (28)

p∑
i=p1+1

tr
(
P(p?g(i)−1 + 1; i− 1)�2

)
(n− i+ 1 + p?g(i)−1)2

− 1

n

 P→ 0, (29)

where the projection matrices are defined in (11).

Proof of Lemma 5.4. As a preparation, we will first show that for any sequence (in)n∈N such
that 2 ≤ in ≤ pn for all n ∈ N and the limit limn→∞ in/n ∈ [0, 1) exists, it holds

ain,n − bin,n
P→ 0, n→∞, (30)

where we define for 2 ≤ i ≤ p

ai,n =
tr (P(i− 1)�2)

n− i+ 1
, bi,n =

(
1− i

n

)
, cn =

p∑
i=p1+1

ai,n − bi,n
n− i+ 1

.

In the following, we denote the diagonal entries of P(in − 1) by pii (1 ≤ i ≤ n). First, we
consider the case limn→∞ in/n = 0. For this case, we note that

tr (P(in − 1)�2)

n
=

1

n

n∑
i=1

(1− pii)2 − 1 +
2

n

n∑
i=1

pii =
2(n− in + 1)

n
− 1 + oP(1)
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= 1 + oP(1), n→∞,

where we used

1

n

n∑
i=1

E(1− pii)2 ≤ 1

n

n∑
i=1

E[1− pii] =
1

n
tr(I−P) =

in − 1

n
= o(1), n→∞.

In this case, we conclude

ain,n − bin,n =
tr (P(in − 1)�2)

n
− 1 + oP(1) = oP(1), n→∞.

Now consider the case limn→∞ in/n = γ ∈ (0, 1). Then we have from Theorem 3.2 in Anatolyev
and Yaskov (2017)

1

n

n∑
i=1

(1− pii − γ)2 P→ 0, n→∞,

which implies

tr (P(in − 1)�2)

n
=

1

n

n∑
i=1

(1− pii − γ)2 − (1− γ)2 +
2(1− γ)

n

n∑
i=1

pii

=
2(1− γ)(n− in + 1)

n
− (1− γ)2 + oP(1) = (1− γ)2 + oP(1), n→∞,

which implies that (30) holds also true in this case. We continue with a proof of (28) by showing
that any subsequence of (cn)n∈N admits a further subsequence converging in probability to 0.
Let (cnj)j∈N be an arbitrary subsequence of (cn)n∈N. We choose

inj ∈ arg max
p1+1≤i≤p

(
ai,nj − bi,nj

)
.

Not that there exists a subsequence (injk )k∈N of (inj)j∈N which admits a limit limk→∞ injk/k ∈
[0, 1) (that is, this subsequence satisfies the assumption for (30)). Then, it holds using (30)

cnjk . max
p1+1≤i≤p

(
ai,njk − bi,njk

)
= ainjk ,njk

− binjk ,njk
P→ 0, n→∞.

This implies the convergence cn
P→ 0 of the whole sequence (cn)n∈N for n → ∞ and thus,

the convergence in (33) holds true. The second assertion (29) of Lemma 5.4 can be shown
similarly.

Lemma 5.5. It holds

p∑
i=p1+1

σ2
n,2,i

P→ 0, n→∞,

where the term σ2
n,2,i is defined in (17).
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Proof of Lemma 5.5. Recalling the definition of σ2
n,2,i and using Lemma 5.4, it suffices to show

p∑
i=p1+1

(
tr Ai �Bi −

1

n

)
P→ 0, n→∞,

where we denote

Ai =
P(i− 1)

n− i+ 1
, Bi =

P(p?g(i)−1 + 1; i− 1)

n− i+ 1 + p?g(i)−1

, p1 + 1 ≤ i ≤ p.

Note that tr Ai = tr Bi = 1 for all p1 + 1 ≤ i ≤ p. This gives

p∑
i=p1+1

(
tr Ai �Bi −

1

n

)
=

p∑
i=p1+1

tr

{(
Ai −

1

n
I

)
�
(

Bi −
1

n
I

)}

≤
p∑

i=p1+1

{
tr

(
Ai −

1

n
I

)�2

tr

(
Bi −

1

n
I

)�2
} 1

2

≤

{
p∑

i=p1+1

tr

(
Ai −

1

n
I

)�2 p∑
i=p1+1

tr

(
Bi −

1

n
I

)�2
} 1

2

=

{
p∑

i=p1+1

(
tr A�2

i −
1

n

) p∑
i=p1+1

(
tr B�2

i −
1

n

)} 1
2

P→ 0, n→∞,

where we applied the Cauchy-Schwarz inequality twice and Lemma 5.4.

5.3 Proof of Theorem 3.1

For proving Theorem 5.6, we need the following properties of the variance.

Lemma 5.6. Under the assumptions of Theorem 3.1, we have

0 < inf
n∈N

σ2
n ≤ sup

n∈N
σ2
n <∞,

where σ2
n denotes the variance defined in (8).

Proof of Lemma 5.6 . Define the functions

ξ(x) = − (log(1− x) + x) , η(x) =
ξ(x)

x2
,

where x ∈ (0, 1). Note that η is a monotone increasing function with η(x) ≥ 1/2. Using∑q
j=1 nj = n and the definition nmax = max1≤j≤q nj, we obtain the estimate

n2σ2
n = −

q∑
j=1

n2
jξ

(
p

nj

)
+ n2ξ

(p
n

)
= p2

{
q∑
j=1

η

(
p

nj

)
− η

(p
n

)}

18



≥ p2

{
qη

(
p

nmax

)
− η

(
p

nmax

)}
= p2(q − 1)η

(
p

nmax

)
.

Using infn∈N p/n > 0, we conclude infn∈N σ
2
n > 0. Moreover, from our assumption on the

dimension-to-subsample-size ratios p/nj, we obtain

sup
n∈N

σ2
n ≤ sup

n∈N
max
1≤j≤q

(
− log

(
1− p

nj

))
<∞.

In order to prove Theorem 3.1, we follow the same strategy as in the proof of Theorem 2.1 and
concentrate on discussing the main steps. Recalling the definition (7) of the likelihood ratio
test, we note that under the null hypothesis (6)

2 log Λn,1 =

q∑
j=1

nj log |Aj| − n log |A|+ pn log n−
q∑
j=1

njp log nj

=

q∑
j=1

nj log |nj Îj| − n log |nÎ|+ pn log n−
q∑
j=1

njp log nj,

where Î is defined in the proof of Theorem 2.1 and

Îj =
1

nj

nj∑
k=1

xjkx
>
jk.

Applying the QR-procedure to the matrices Î and Îj (1 ≤ j ≤ q), we obtain for their determi-
nants

|nÎ| =
p∏
i=1

b>i P(i− 1)bi,

|nj Îj| =
p∏
i=1

b>jiP(j; i− 1)bji,

where

bi = (b1i, . . . ,bqi)
> ∈ Rn,bji ∈ Rnj , 1 ≤ j ≤ q,

and throughout this proof, P(j; i−1) ∈ Rnj×nj denotes the projection matrix on the orthogonal
complement of span{bj1, . . . ,bj,i−1} for 1 ≤ i ≤ p, 1 ≤ j ≤ q (note that we have a different
definition than in the proof of Theorem 2.1). We set P(j; 0) = I ∈ Rnj×nj . The remaining
quantities are defined as in the proof of Theorem 2.1. With a slight abuse of notation, we define
for 1 ≤ i ≤ p, 1 ≤ j ≤ q

Xi =
b>i P(i− 1)bi − (n− i+ 1)

n− i+ 1
, Xj,i =

b>jiP(j; i− 1)bji − (nj − i+ 1)

nj − i+ 1
,
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Yi = log(1 +Xi)−
(
Xi −

X2
i

2

)
, Yj,i = log(1 +Xj,i)−

(
Xj,i −

X2
j,i

2

)
.

Similarly to (12), we obtain using Stirling’s formula

p∑
i=1

q∑
j=1

nj log(nj − i+ 1)− n
p∑
i=1

log(n− i+ 1) + pn log n−
q∑
j=1

njp log nj

=

q∑
j=1

nj log

(
nj!

(nj − p)!

)
− n log

(
n!

(n− p)!

)
+ pn log n−

q∑
j=1

njp log nj

=n

(
n− p+

1

2

)
log
(

1− p

n

)
−

q∑
j=1

nj

(
nj − p+

1

2

)
log

(
1− p

nj

)

+

q∑
j=1

nj
12

(
1

nj
− 1

nj − p

)
+ o(n)

=n

(
n− p+

1

2

)
log
(

1− p

n

)
−

q∑
j=1

nj

(
nj − p+

1

2

)
log

(
1− p

nj

)

−
q∑
j=1

p

12(nj − p)
+ o(n)

=n

(
n− p+

1

2

)
log
(

1− p

n

)
−

q∑
j=1

nj

(
nj − p+

1

2

)
log

(
1− p

nj

)
+ o(n) (31)

=µn +
σ̆2
n

2
+ o(n), n→∞,

where

σ̆2
n =2

{
n log

(
1− p

n

)
−

q∑
j=1

nj log

(
1− p

nj

)}
.

For (31), we used that under the assumptions of Theorem 3.1

q∑
j=1

p

12n(nj − p)
.
q

n
≤ 1

minj nj
= o(1), n→∞. (32)

Consequently, we may decompose

2 (log Λn,1 − µn)

=

q∑
j=1

p∑
i=1

njXj,i − n
p∑
i=1

Xi −

(
q∑
j=1

p∑
i=1

nj
X2
j,i

2
− n

p∑
i=1

X2
i

2
− σ̆2

n

2

)

+

q∑
j=1

p∑
i=1

njYj,i − n
p∑
i=1

Yi + o(n), n→∞.
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Note that (Wi)1≤i≤p with

Wi =

q∑
j=1

njXj,i − nXi, 1 ≤ i ≤ p,

forms a martingale difference scheme with respect to the filtration (Ai)1≤i≤p, where the σ-field
Ai is generated by the random variables b1, . . . ,bi for 1 ≤ i ≤ p. One can show that

q∑
j=1

p∑
i=1

nj
X2
j,i

2
− n

p∑
i=1

X2
i

2
− σ̆2

n

2

nσn

P→ 0, n→∞, (33)

and

q∑
j=1

p∑
i=1

njYj,i − n
p∑
i=1

Yi

nσn

P→ 0, n→∞. (34)

For the sake of brevity, we omit the proofs of (33) and (34) as they are very similar to the
proofs of Lemma 5.2 and Lemma 5.3. We continue with a proof of the asymptotic normality
of the scheme (Wi/(nσn))1≤i≤p. To begin with, we show that

p∑
i=1

E

[(
Wi

nσn

)2
∣∣∣∣∣Ai−1

]
= 1 + oP(1), n→∞. (35)

As a preparation for (35), note that

p∑
i=1

q∑
j=1

njnE[XiXj,i|Ai−1]

=

p∑
i=1

q∑
j=1

nnj


n?j∑

k=n?j−1+1

(ν4 − 3)
(P(j; i− 1))kk (P(i− 1))kk

(n− i+ 1)(nj − i+ 1)
+ 2

tr
(
P(j − 1)P̃(j; i− 1)

)
(n− i+ 1)(nj − i+ 1)


=

p∑
i=1

q∑
j=1

nnj

(ν4 − 3)
tr
(
P̃(j; i− 1)�P(i− 1)

)
(n− i+ 1)(nj − i+ 1)

+ 2
tr P̃(j; i− 1)

(nj − i+ 1)(n− i+ 1)


= (ν4 − 3)

p∑
i=1

q∑
j=1

nnj
∑ tr

(
P̃(j; i− 1)�P(i− 1)

)
(n− i+ 1)(nj − i+ 1)

+

p∑
i=1

2n2

(n− i+ 1)
,

where P̃(j; i − 1) denotes the (n × n) dimensional embedded matrix of P(j; i − 1) ∈ Rnj×nj ,
that is, (

P̃(j; i− 1)
)
kl

=

{
(P(j; i− 1))kl : n?j−1 + 1 ≤ k, l ≤ n?j ,

0 : else,
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for 1 ≤ k, l ≤ n, 1 ≤ j ≤ q, 1 ≤ i ≤ p. In order to prove (35), we calculate
p∑
i=1

E
[
W 2
i

∣∣Ai−1

]
=n2

p∑
i=1

E[X2
i |Ai−1] +

p∑
i=1

q∑
j=1

n2
jE[X2

j,i|Ai−1]− 2

p∑
i=1

q∑
j=1

njnE[XiXj,i|Ai−1]

=2

q∑
j=1

p∑
i=1

n2
j

1

nj − i+ 1
− 2n2

p∑
i=1

1

n− i+ 1
+ σ̃2

n,2,

where we used the fact E[Xj,iXj′,i|Ai−1] = 0 for different groups j, j′ ∈ {1, . . . , q}, j 6= j′ and
(16) and we define

σ̃2
n,2 =(ν4 − 3)

{
n2

p∑
i=1

tr P(i− 1)�2

(n− i+ 1)2
+

p∑
i=1

q∑
j=1

n2
j

tr P(j; i− 1)�2

(nj − i+ 1)2

− 2

p∑
i=1

q∑
j=1

nnj
tr
(
P̃(j; i− 1)�P(i− 1)

)
(n− i+ 1)(nj − i+ 1)

}
.

Note that σ̃2
n,2/n

2 = oP(1) as n→∞ (similarly to Lemma 5.4 and Lemma 5.5). Using (19) and
(32), we obtain

p∑
i=1

E

[(
Wi

n

)2 ∣∣Ai−1

]
=

p∑
i=1

log
(

1− p

n

)
−

p∑
i=1

q∑
j=1

(nj
n

)2

log

(
1− p

nj

)

+

q∑
j=1

(nj
n

)2
{

1

2nj
− 1

2(nj − p)

}
+
σ̃2
n,2

n2
+ o(1)

=σ2
n + oP(1), n→∞,

which implies (35) by an application of Lemma 5.6. Note that the Lindeberg condition for the
scheme (Wi/(nσn))1≤i≤p can be shown similarly to (22) using Lemma 5.6. Combining (33) and
(34), we conclude

2 (log Λn,1 − µn)

nσn
=

q∑
j=1

p∑
i=1

njXj,i − n
p∑
i=1

Xi

nσn
+ oP(1), n→∞.

By an application of Corollary 3.1 of Hall and Heyde (1980), we obtain
q∑
j=1

p∑
i=1

njXj,i − n
p∑
i=1

Xi

nσn

D→ N (0, 1), n→∞.

The proof Theorem 3.1 concludes.
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