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Abstract

For a spatiotemporal process {Xj(s, t)| s ∈ S , t ∈ T}j=1,...,n, where S denotes the
set of spatial locations and T the time domain, we consider the problem of testing for a
change in the sequence of mean functions. In contrast to most of the literature we are
not interested in arbitrarily small changes, but only in changes with a norm exceeding
a given threshold. Asymptotically distribution free tests are proposed, which do not
require the estimation of the long-run spatiotemporal covariance structure. In partic-
ular we consider a fully functional approach and a test based on the cumulative sum
paradigm, investigate the large sample properties of the corresponding test statistics
and study their finite sample properties by means of simulation study.

Keywords: Spatiotemporal process, functional data analysis, change point analysis, self-
normalization, relevant hypotheses
AMS Subject classification: 62M10, 62R10

1 Introduction

In many applications such as in the analysis of weather- or pollution-related data, mea-
surements are obtained at different spatial locations over a certain time period at a high
temporal frequency. Often there exists a natural segmentation of the time series such that
it is reasonable to model at each spatial component, say s, and on each segment, say j, the
resulting data as a function, say t → Xj(s, t) of the time (on the corresponding segment).
Typical examples are measurements at different geographical locations. For example, within
the United States Climate Reference Network (USCRN) high resolution infrared surface tem-
perature measurements at 126 stations in the US are publicly available on the website of the
NOAA U.S. government agency. Here at each location s, and each day j one observes the
daily temperature curve t→ Xj(s, t) (Diamond et al., 2013). Other examples include yearly
curves at different locations over different years such as the daily mean temperature records
from 1916 to 2018 in 40 representative Canadian cities, which are publicly available from the
government of Canada website. In these applications data is typically modelled in the form

Xj(s, t) , s ∈ S , t ∈ T , j = 1, . . . , n, (1.1)
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where S is a finite set, T is a dense set (we will later consider an interval).
A typical question in this context is, if the mean, say {µj(s, t)| s ∈ S , t ∈ T}j=1,...,n, of

a spatiotemporal process {Xj(s, t)| s ∈ S , t ∈ T}j=1,...,n has changed over a specific time
period. For a fixed location this corresponds to the meanwhile classical change point problem
in functional data analysis (see, for example, Berkes et al., 2009; Zhang et al., 2011; Aston
and Kirch, 2012; Horváth and Kokoszka, 2012; Aue et al., 2018; Dette et al., 2020a, among
many others). On the other hand, in the spatiotemporal context as considered in model
(1.1) the change point problem is not so well studied. Recently, Gromenko et al. (2017)
proposed a test for the hypothesis of the existence of a change point in the mean function,
say µj(s, t) = E[Xj(s, t)], in a sequence of independent observations. They formulated the
null hypothesis and alternative in the form

H0 : µ1 = µ2 = . . . = µn

and
H1 : µ := µ1 = . . . = µbnϑ0c 6= µbnϑ0c+1 = . . . = µn =: µ+ δ

for some ϑ0 ∈ (0, 1), and combined the CUSUM principle with classical principal component
analysis to construct a test for these hypotheses, which generalizes the approach of Berkes
et al. (2009) to the spatiotemporal model (1.1). We also refer to the recent paper of Zhao
et al. (2021) who proposed change point analysis based on a composite likelihood criterion
for a different spatiotemporal model.

In contrast to this literature (and also to most of the literature on change point analysis
for functional data) this paper takes a different look at the change point problem. Our work
is motivated by the observation that in many applications one might not be interested in
arbitrary “small” changes in the mean function (in fact, one often does not believe that this
function is completely constant over the whole time period for all locations). As an alternative
we therefore propose to test the hypotheses of the existence of a time point bnϑ0c, such that
the difference, say δ, between the mean functions before and after this point in time is
relevant. For this purpose we define two measures of relevance. The first one corresponds
to the fully functional approach as advocated in Aue et al. (2018) and is based on a norm
of the difference δ. The second one is related to the PCA approach as considered in Berkes
et al. (2009) and Gromenko et al. (2017) and uses the norm of the projection of the difference
on the first principle components. The null hypothesis is then stated in the form that the
norm is less or equal than a given threshold ∆ > 0, that is H0 : ‖δ‖2 ≤ ∆ (see Section 2 for
details). We derive pivotal tests for both testing problems, which neither require estimation
of the long-run variance of the process {Xj}j=1,...,n nor the the estimation of the covariance
structure of the random field {Xj(s, t)|s ∈ S, t ∈ T}.

In Section 2 we introduce the basic terminology and carefully define the two types of
hypotheses considered in this paper. Section 3 is devoted to the fully functional approach,
while the problem of testing relevant hypotheses by projections on the functional principal
components is investigated in Section 4. Finally, in Section 5 we illustrate our approach by
means of a small simulation study and by the analysis of a data example.
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2 Relevant changes in the spatiotemporal mean

For a finite set S let L2(S × [0, 1]) denote the set of all square integrable functions of the
form f : S × [0, 1]→ R with the common inner product

〈f, g〉 =
∑
s∈S

∫
T

f(s, t)g(s, t)dt

and corresponding norm ‖f‖ = 〈f, f〉1/2. Let {Xj}j∈N be a sequence of square integrable
random functions on S × [0, 1], where

Xj = µj + ηj, j ∈ N , (2.1)

{ηj}j∈N is a centered error process and {µj}j∈N is a sequence of mean functions in L2(S×[0, 1]).
We assume that the mean functions are of the form

µ = µ1 = . . . = µbnϑ0c , µbnϑ0c+1 = . . . = µn = µ+ δ,

where µ, δ denote deterministic, but unknown elements in L2(S × [0, 1]) and ϑ0 ∈ (0, 1) is
a potential (unknown) change point. The case δ = 0 corresponds to the situation of no
change point. As explained in the introduction, we are not interested in “small” deviations
before and after a potential change point and therefore consider the problem of monitoring
the sequence for a relevant change in the mean function by testing the relevant hypotheses

H0 : ‖δ‖2 ≤ ∆ versus H1 : ‖δ‖2 > ∆. (2.2)

Here ∆ > 0 is a predefined threshold, which defines the difference before and after the time
point bnϑ0c as relevant. Note that the case ∆ = 0 corresponds to the “classical” hypotheses
(see Gromenko et al., 2017), but this case is not considered here. Our interest in hypotheses
of the from (2.2) with δ > 0 stems from the fact that in applications it is often questionable
to look for arbitrary small deviations. Instead it is more reasonable to focus on (scientifically)
relevant deviations, which are here defined by the threshold ∆ in (2.2). The choice of this
threshold depends sensitively on the specific application (see Remark 3.4 for some discussion
and Dette and Wied, 2014, for an example in the context of portfolio analysis based on
multivariate data). We also note that for hypotheses of the form (2.2) the choice of the
norm matters as objects might be identified as close with respect to one norm (such as an
L2), while they might be considered as different with respect to another norm (such as the
sup-norm). Moreover, we also mention that the null hypothesis and alternative in (2.2) can
easily be changed, i.e.

H0 : ‖δ‖2 > ∆ versus H1 : ‖δ‖2 ≤ ∆. (2.3)

This formulation is attractive because it allows to decide for a non-relevant change (such
that one can continue working under the assumption of a nearly constant mean function) at
a controlled type I error. For real valued data, hypotheses of the form (2.2) and (2.3) have
found considerable attention in the literature (see, for example, the monographs of Chow and
Liu, 1992; Wellek, 2010). This concept has also been used by Liu et al. (2009); Gsteiger et al.
(2011) and Dette et al. (2018) to establish the similarity of different parametric regression
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curves which are estimated from real valued data. In the context of functional data analysis,
relevant hypotheses have been considered by Fogarty and Small (2014); Dette et al. (2020a)
and Dette et al. (2020b) among others. A pivotal test for the hypotheses (2.2) (and as a
consequence also for the hypotheses (2.3)) will be developed in Section 3.

Recently, Gromenko et al. (2017) considered a different quantity to measure deviations
of the difference δ from the function δ ≡ 0, which is closely related to functional principal
component analysis. More precisely, assume that B := {b1, b2, . . .} is a basis in L2(S× [0, 1]),
such that the linear span of B is dense in L2(S× [0, 1]). Then these authors proposed to test,
for a fixed order d ∈ N, whether the sum of the squared scores

∑d
k=1〈δ, bk〉2 vanishes. In the

context of testing relevant hypotheses, we are therefore interested in testing hypotheses of
the form

H0 :
d∑

k=1

〈δ, bk〉2 ≤ ∆ versus H1 :
d∑

k=1

〈δ, bk〉2 > ∆ .

A pivotal test for these hypotheses, where the basis functions are given by the eigenfunctions
of a convex combination of the covariance kernels before and after the change point, will be
developed in Section 4.

We conclude this section by presenting several assumptions, which are required to prove
the results in the next and the following sections,

Assumption 2.1.

(A1) The process {Xj}j∈Z in model (2.1) satisfies

Xj =

{
µ+ η

(1)
j j ≤ nϑ0,

µ+ δ + η
(2)
j , j > nϑ0,

where {η(1)
j }j∈Z and {η(2)

j }j∈Z are stationary processes in L2(S × [0, 1]).

(A2) {η(1)
j }j∈Z and {η(2)

j }j∈Z form sequences of Bernoulli shifts, i.e. there exist a measurable
space S, measurable functions f1, f2 : S∞ −→ L2(S × [0, 1]) and a sequence of i.i.d, S-
valued and jointly (in (s, t, ω)) measurable random functions {εj}j∈Z = {εj(s, t, ω)}j∈Z
such that

η
(`)
j = f`(εj, εj−1, ...) (` = 1, 2)

for all j ∈ Z.

(A3) There exists a constant ψ ∈ (0, 1) such that E
∥∥∥η(`)

j

∥∥∥2+ψ

<∞ (` = 1, 2).

(A4) The sequences {η(1)
j }j∈Z and {η(2)

j }j∈Z can be approximated by m-dependent sequences

{η(1)
j,m}j∈Z and {η(2)

j,m}j∈Z, respectively, in the sense that for some κ > 2 + ψ

∞∑
m=1

(
E
∥∥∥η(`)

0 − η
(`)
0,m

∥∥∥2+ψ
)1/κ

<∞ (` = 1, 2) ,
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where η
(`)
j,m is defined by

η
(`)
j,m = f`(εj, ..., εj−m+1, ε

∗
j,m) (` = 1, 2), (2.4)

with ε∗j,m = (ε∗j,m,j−m, ε
∗
j,m,j−m−1, ...), and ε∗j,m,k are i.i.d copies of ε0 and independent of

{εj}j∈Z.

Note that our assumptions are different from those in Gromenko et al. (2017), who consid-
ered an independent and identically distributed error process {ηj}j∈Z. In particular, we allow
for different long-run variances before and after the change point bnϑ0c. Moreover, these au-
thors postulate separability in the spatiotemporal variance structure (in our case a long-run
variance), which means that it factors into a purely spatial and a purely temporal component.
This assumption simplifies the definition and the asymptotic analysis of their test statistics
substantially. We will demonstrate below that, by using the concept of self-normalization,
we can construct (asymptotically) pivotal test statistics for relevant hypotheses without any
of these assumptions.

3 Fully functional detection of relevant change points

We first consider a fully functional approach for testing the relevant hypotheses in (2.2). As
in the case of the classical hypothesis H0 : ‖δ‖ = 0, it is based on the CUSUM statistic,
but it turns out that for relevant hypotheses it will be more difficult to obtain asymptotic
quantiles of a corresponding test statistic. To be precise, we consider the common estimator
for the unknown change point ϑ0 (see Hariz et al., 2007; Jandhyala et al., 2013, among many
others) defined by

ϑ̂n :=
1

n
arg max

bnεc+1≤k≤n−bnεc

k(n− k)

n2

∥∥∥∥∥1

k

k∑
i=1

Xi −
1

n− k

n∑
i=k+1

Xi

∥∥∥∥∥
2

, (3.1)

where ε > 0 is a small predefined constant. It can be shown by similar arguments as in
Proposition 3.1 of Dette et al. (2020b) that, under Assumption 2.1, the estimator ϑ̂n is
consistent, whenever ‖δ‖2 > 0 and ϑ0 ∈ (ε, 1− ε), that is

ϑ̂n = ϑ0 + oP(n−1/2) (3.2)

as n→∞. Next, we define for λ ∈ [0, 1], ϑ ∈ (ε, 1− ε) the quantity

Dn(λ, ϑ) :=
1

bnϑc

bλbnϑcc∑
j=1

Xj −
1

n− bnϑc

bnϑc+bλ(n−bnϑc)c∑
j=bnϑc+1

Xj ∈ L2(S × [0, 1]) , (3.3)

where we also use the notation Dn(s, t, λ, ϑ) simultaneously to make the dependence on the
spatial and temporal component explicit. Note that Dn is well defined if ε ≥ 1

n
, and we will

assume throughout this paper that n is sufficiently large such that this condition is satisfied.
If ϑ = k/n and λ = 1 the quantity Dn(1, k/n) coincides with the expression in the squared
norm in (3.1). Therefore, Dn(1, ϑ̂n) is a natural estimator of the function δ, which defines
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the difference before and after the change point. Consequently, it is reasonable to reject the
null hypothesis in (2.2) for large values of the statistic

‖Dn(1, ϑ̂n)‖.

It will be shown later that
√
n
(
‖Dn(1, ϑ̂n)‖2−‖δ‖2

)
converges weakly to a normal distribution

with a complicated variance depending on a linear combination of the long-run variances of
the processes {η(1)

j }j∈Z and {η(2)
j }j∈Z. In order to avoid its estimation, we will construct a

pivotal statistic. Our main tool for this construction is the following result, which provides
the weak convergence of the process

{√
n(‖Dn(λ, ϑ̂n)‖2 − λ2‖δ‖2)

}
λ∈[0,1]

. For its statement

we denote by

K`((s1, t1), (s2, t2)) :=
∑
h∈Z

Cov(η
(`)
0 (s1, t1), η

(`)
h (s2, t2))

the long-run covariance kernel of the process {η(`)
j }j∈Z (` = 1, 2), which exists under Assump-

tion 2.1, and by

K̄((s1, t1), (s2, t2)) := 1
ϑ0
K1((s1, t1), (s2, t2))) + 1

1−ϑ0K2((s1, t1), (s2, t2)). (3.4)

a scaled convex combination of these kernels.

Theorem 3.1. If Assumption 2.1 is satisfied and ‖δ‖ > 0, then

√
n
{
‖Dn(λ, ϑ0)‖2 − λ2 ‖δ‖2 }

λ∈[0,1]
 τδ,ϑ0 {λB(λ)}λ∈[0,1] , (3.5)

√
n
{
‖Dn(λ, ϑ̂n)‖2 − λ2 ‖δ‖2 }

λ∈[0,1]
 τδ,ϑ0 {λB(λ)}λ∈[0,1] (3.6)

as n→∞, where  denotes weak convergence in `∞([0, 1]), {B(λ)}λ∈[0,1] denotes a standard
Brownian motion,

τ 2
δ,ϑ0

:= 4
∑

s1,s2∈S

∫ ∫
δ(s1, t1)δ(s2, t2)K̄((s1, t1), (s2, t2)))dt1dt2, (3.7)

and K̄ is defined in (3.4).

This result leads to a very simple and pivotal test for the relevant hypotheses in (2.2). To
be precise we define

D̂n := ‖Dn(1, ϑ̂n)‖2,

V̂n :=

(∫ (
‖Dn(λ, ϑ̂n)‖2 − λ2‖Dn(1, ϑ̂n)‖2

)2

dν(λ)

)1/2

, (3.8)

where ϑ̂n is defined as in (3.1) and ν a probability measure on the interval (0, 1). We propose
to reject the null hypothesis in (2.2), whenever

D̂n > ∆ + q1−α(W)V̂n, (3.9)
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where q1−α(W) is the (1− α)-quantile of the random variable

W :=
B(1)(∫

λ2(B(λ)− λB(1))2dν(λ)
)1/2

. (3.10)

The following result shows that the decision rule (3.9) defines a consistent and asymptotic
level α test for the hypotheses (2.3).

Theorem 3.2. If Assumption 2.1 is satisfied, α ≤ 0.5, ∆ > 0 and ϑ0 ∈ (ε, 1− ε), we have

lim
n→∞

P
(
D̂n > ∆ + q1−α(W)V̂n

)
=


0, if ‖δ‖2 < ∆,

α, if ‖δ‖2 = ∆ and τ 2
δ,ϑ0

> 0,

1, if ‖δ‖2 > ∆.

Remark 3.3. The distribution of the random variable W in (3.10) is symmetric. To see this,
note that the numerator and denominator of W are independent. This follows using the L2

representation B(t) = tZ0 +
∑

k≥1 Zk
sin(πkt)
πk

of the Brownian motion and comparing B(1) and
B(t)− tB(1). Lastly, since B(1) is symmetric, the claim follows, because(
− B(1), (

∫
λ2(B(λ)− λB(1))2dν(λ))−1/2

)
D
=
(
B(1), (

∫
λ2(B(λ)− λB(1))2dν(λ))−1/2

)
.

Remark 3.4.

(1) Note that the test (3.9) depends on the specification of the measure ν on the interval
[0, 1], which has to be chosen in advance by the data analyst. However, in numerical
experiments it turned out that this dependence does not have a significant influence
on the rejection probabilities, if the support of the measures has some distance to
the boundaries 0 and 1 of this interval (see Section 5 for some results). A heuristic
explanation for this observation consists in the fact that the measure ν appears in the
definition of the statistic V̂n in (3.8) and in the quantiles of the random variable W in
(3.10). Thus, intuitively, there is a cancellation effect in the decision rule (3.9).

(2) An important problem in applications is the choice of the threshold ∆, which is problem
specific. For this choice a careful discussion with experts from the field of application is
recommended to understand in which difference they are really interested. Moreover,
there are also several alternatives, if this choice is difficult after these discussions.

(a) It follows from the proof of Theorem 3.1 that

D̂n − ‖δ‖2

V̂n

D−−→W .

Consequently, an (asymptotic) (1 − α) confidence interval for the squared norm
‖δ‖2 ≥ 0 of the difference of the mean functions before and after the change point
is given by [

0, D̂n + q1−α(W)V̂n

]
. (3.11)

Similarly, if it can be ruled out that the squared norm vanishes, a two sided interval
for ‖δ‖2 > 0 is given by(

max{0, D̂n − q1−α/2(W)V̂n}, D̂n + q1−α/2(W)V̂n

]
. (3.12)
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(b) It is also possible to test the relevant hypotheses in (2.2) for a finite number of
thresholds ∆(1) < . . . < ∆(L) simultaneously. In particular, acceptance of the
null hypothesis with the threshold ∆(L0) implies also acceptance for all thresholds
∆(L0+1), . . . ,∆(L). Correspondingly, rejection for a ∆(L0) means rejection for all
smaller thresholds. In this sense, evaluating the test for several thresholds is
logically consistent for the user, and it is possible to determine for fixed level α
the largest threshold such that the null hypotheses is rejected.

4 Functional principal component analysis

In this section, we address the problem of detecting relevant changes in the mean of a sta-
tionary functional time series by estimating scores. For functional data this approach has
been successfully used by several authors in the context of testing “classical” hypotheses in
the one-, two-sample and change point problem (see Benko et al., 2009; Berkes et al., 2009;
Zhang and Shao, 2015, among others), and it has been generalized to spatiotemporal data by
Gromenko et al. (2017). To the best knowledge of the authors tests for relevant hypotheses
have not been constructed by this approach.

To be precise, consider model (2.1) and note that in this scenario, it is possible that the
covariance function also changes at the point bnϑ0c point. Therefore, we denote by c(1) and
c(2) the covariance kernels corresponding to the samples X1, . . . , Xbnϑ0c and Xbnϑ0c+1, . . . , Xn

before and after the change point, respectively, and define

cϑ0 := ϑ0c
(1) + (1− ϑ0)c(2) (4.1)

as a convex combination of these two kernels. We denote by τ1 ≥ τ2 ≥ . . . the ordered
eigenvalues of the operator having covariance kernel cϑ0 with corresponding orthonormal
eigenfunctions w1, w2, . . . in L2(S × [0, 1]). For a fixed integer d ∈ N we are interested in
testing the (relevant) hypotheses

H0 :
d∑

k=1

〈δ, wk〉2 ≤ ∆ versus H1 :
d∑

k=1

〈δ, wk〉2 > ∆ , (4.2)

where ∆ > 0 is a predefined threshold. Note that by Parseval’s identity ‖δ‖2 =
∑∞

k=1〈δ, wk〉2,
and therefore - similar as for testing classical hypotheses - a test for the hypotheses (4.2) can
also be used for the hypotheses (2.2). We refer to Remark 4.4 for a more detailed discussion
of this approach in the context of testing relevant hypotheses. For the statements in this
section we require the following assumptions.

Assumption 4.1. The process {Xj}j∈Z in model (2.1) satisfies conditions (A1) and (A2) of
Assumption 2.1. Furthermore, {Xj}j∈Z satisfies

(A3’) There exists a constant ψ ∈ (0, 1) such that E
∥∥∥η(`)

j

∥∥∥4+ψ

<∞ (` = 1, 2).
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(A4’) The sequences {η(1)
j }j∈Z and {η(2)

j }j∈Z can be approximated by m-dependent sequences

{η(1)
j,m}j∈Z and {η(2)

j,m}j∈Z, respectively, in the sense that for some κ > 4 + ψ

∞∑
m=1

(
E
∥∥∥η(`)

0 − η
(`)
0,m

∥∥∥4+ψ
)1/κ

<∞ (` = 1, 2),

where η
(`)
j,m is defined (2.4).

Assumption 4.2. The (ordered) eigenvalues of the covariance operator cϑ0 in (4.1) satisfy
τ1 > · · · > τd > τd+1 > 0, where d ∈ N is the number of scores considered in (4.2).

Recall the definition of the estimator for the change point in (3.1) and for f, g ∈ L2(S ×
[0, 1]), we define the function f⊗g ∈ L2((S×[0, 1])2) as (f⊗g)((s1, t1), (s2, t2)) := f(s1, t1)g(s2, t2).
We consider

ĉϑ̂n,λ := ϑ̂nĉ
(1)
λ + (1− ϑ̂n)ĉ

(2)
λ , (4.3)

as a sequential estimator of the convex combination (4.1), where

ĉ
(1)
λ :=

1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

Xi −
1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
j=1

Xj

⊗
Xi −

1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
j=1

Xj

 ,

ĉ
(2)
λ :=

1

bλ(n− bnϑ̂nc)c

bnϑ̂nc+bλ(n−bnϑ̂nc)c∑
i=bnϑ̂nc+1

Xi −
1

bλ(n− bnϑ̂nc)c

bnϑ̂nc+bλ(n−bnϑ̂nc)c∑
j=bnϑ̂nc+1

Xj


⊗

Xi −
1

bλ(n− bnϑ̂nc)c

bnϑ̂nc+bλ(n−bnϑ̂nc)c∑
j=bnϑ̂nc+1

Xj


are estimates of the covariance functions c(1) and c(2) before and after the change point,
respectively. For i = 1, 2 we put ĉ

(i)
λ := 0, if bλbnϑ̂ncc = 0. The first result of this section

shows that the statistic (4.3) is a uniformly consistent estimator for the convex combination
in (4.1).

Theorem 4.1. If Assumption 4.1 is satisfied and ϑ0 ∈ (ε, 1− ε), we have

sup
0≤λ≤1

√
λ
∥∥∥ĉϑ̂n,λ − cϑ0∥∥∥2

= OP

(
log2/κ(n)√

n

)
,

where ‖·‖2 denotes the norm induced by the inner product

〈f, g〉2 :=
∑

s1,s2∈S

∫ ∫
f((s1, t1), (s2, t2))g((s1, t1), (s2, t2))dt1dt2 (4.4)

on L2((S × [0, 1])2).
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In the following discussion, we will denote the eigenfunctions and eigenvalues of the
estimator ĉϑ̂n,λ by ŵ1,λ, ŵ2,λ, ... and τ̂1, τ̂2, ..., respectively. Recall the definition of the process

Dn(λ, ϑ) in (3.3) and note that Dn(1, ϑ̂n) is an estimator of difference between the mean
functions before and after the change point. Consequently, a natural estimator of the quantity∑d

k=1〈δ, wk〉2 in (4.2) is given by the statistic

d∑
k=1

〈Dn(1, ϑ̂n), ŵk〉2 , (4.5)

and the null hypothesis in (4.2) will be rejected for large values of this statistic. The follow-
ing result shows that the process

√
n{
∑d

k=1

(
〈Dn(λ, ϑ̂n), ŵk〉2 − λ2〈δ, wk〉2

)
}λ∈[0,1] converges

weakly, and - as a by-product - establishes asymptotic normality of (4.5) (after appropriate
normalization).

Theorem 4.2. If Assumption 4.1 is satisfied, ‖δ‖2 > 0 and ϑ0 ∈ (ε, 1−ε), then the following
statements are true n→∞.

√
n

{ d∑
k=1

(
〈Dn(λ, ϑ0), ŵk,λ〉2 − λ2〈δ, wk〉2

)}
λ∈[0,1]

 σcp {λB(λ)}λ∈[0,1] , (4.6)

√
n

{ d∑
k=1

(
〈Dn(λ, ϑ̂n), ŵk,λ〉2 − λ2〈δ, wk〉2

)}
λ∈[0,1]

 σcp {λB(λ)}λ∈[0,1] , (4.7)

where

σ2
cp :=2

∑
i∈Z

(
ϑ0

∑
s1,...,s4∈S

∫
Cov

(
η

(1)
0 (t1, s1)η

(1)
0 (t2, s2), η

(1)
i (t3, s3)η

(1)
i (t4, s4)

)
× f((t1, s1), (t2, s2))f((t3, s3), (t4, s4))d(t1, ..., t4)

− 2
∑

s1,s2,s3∈S

∫
Cov

(
η

(1)
0 (t1, s1)η

(1)
0 (t2, s2), η

(1)
i (t3, s3)

)
f((t1, s1), (t2, s2))w(t3, s3)d(t1, t2, t3)

+ (1− ϑ0)
∑

s1,...,s4∈S

∫
Cov

(
η

(2)
0 (t1, s1)η

(2)
0 (t2, s2), η

(2)
i (t3, s3)η

(2)
i (t4, s4)

)
× f((t1, s1), (t2, s2))f((t3, s3), (t4, s4))d(t1, ..., t4)

− 2
∑

s1,s2,s3∈S

∫
Cov

(
η

(2)
0 (t1, s1)η

(2)
0 (t2, s2), η

(2)
i (t3, s3)

)
f((t1, s1), (t2, s2))w(t3, s3)d(t1, t2, t3)

)
+
∑

s1,s2∈S

∫
K̄((t1, s1), (t2, s2))w(t1, s1)w(t2, s2)d(t1, t2)

with K̄ defined in (3.4) and

w(s1, t1) :=
d∑

k=1

〈δ, wk〉wk(s1, t1), (4.8)

f((s1, t1), (s2, t2)) :=
d∑

k=1

〈δ, wk〉wk(s1, t1)
∑
j 6=k

〈δ, wj〉
τk − τj

wj(s2, t2). (4.9)
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Note that Theorem 4.2 implies, the statistic
√
n
∑d

k=1

(
〈Dn(1, ϑ̂n), ŵk〉2 − 〈δ, wk〉2

)
con-

verges weakly to a normal distribution with mean 0 and variance σ2
cp. However, the limiting

variance σ2
cp is rather difficult to estimate and therefore we propose again to proceed by

self-normalization. For this purpose define

Ŷn :=

∫ 1

0

(
d∑

k=1

〈Dn(λ, ϑ̂n), ŵk,λ〉2 − λ2〈Dn(1, ϑ̂n), ŵk〉2
)2

dν(λ)

1/2

, (4.10)

for some probability measure ν on the interval (0, 1). Then we propose to reject the null
hypothesis in (4.2), whenever

d∑
k=1

〈Dn(1, ϑ̂n), ŵk〉2 > ∆ + q1−α(W)Ŷn. (4.11)

The next result shows that this decision rule defines a reasonable test for the hypotheses
(4.2). The proof is obtained by similar arguments as given in the proof of Theorem 3.2 and
is therefore omitted.

Theorem 4.3. If Assumption 4.1 is satisfied, α ≤ 0.5, ∆ > 0 and ϑ0 ∈ (ε, 1− ε), we have

lim
n→∞

P

(
d∑

k=1

〈Dn(1, ϑ̂n), ŵk〉2 > ∆ + q1−α(W)Ŷn

)
=


0, if

∑d
k=1〈δ, wk〉2 < ∆,

α, if
∑d

k=1〈δ, wk〉2 = ∆ and σ2
cp > 0,

1, if
∑d

k=1〈δ, wk〉2 > ∆.

Remark 4.4. Parseval’s implies ‖δ‖2 =
∑∞

k=1〈δ, wk〉2, and one can also use the decision rule
(4.11) for testing the hypotheses (2.2) (the null hypothesis is rejected, if (4.11) holds). As a
consequence of Theorem 4.2, we obtain for the rejection probabilities of this test - provided
that all the requirements stated in Theorem 4.3 are satisfied

lim
n→∞

P

(
d∑

k=1

〈Dn(1, ϑ̂n), ŵk〉2 > ∆ + q1−α(W)Ŷn

)
=

{
0, if ‖δ‖2 < ∆,

1, if
∑d

k=1〈δ, wk〉2 > ∆

and, if ‖δ‖2 = ∆, and σ2
cp > 0, we have

lim
n→∞

P

(
d∑

k=1

〈Dn(1, ϑ̂n), ŵk〉2 > ∆ + q1−α(W)Ŷn

)
≤ α.

This means that the decision rule (4.11) defines also a (conservative) asymptotic level α test
for the hypotheses (2.2). Moreover, similar as in the case of testing classical hypotheses the
test is consistent, whenever

∑d
k=1〈δ, wk〉2 > ∆.

5 Finite sample properties

In this section, we illustrate the finite sample properties of the proposed tests by means of
a small simulation study and by the analysis of a data example. Throughout this section, if

11



not mentioned otherwise, we use a uniform distribution ν19 = 1
19

∑19
i=1 δi/20 at the the points

1/19, . . . , 18/19 for the the probability measure ν in the pivotal statistic (here δx denotes the
Dirac measure at the point x). We also demonstrate below that the tests (3.9) and (4.11)
are not very sensitive with respect to the choice of this measure.

5.1 Simulation study

For the illustration of the methods introduced in Section 3 (fully functional) and in Section 4
(functional principal components) we put µ ≡ 0 and as difference before and after the change
point we use the function

δ(s, t) =
√
γs cos

(π
2
t
)
. (5.1)

The parameter γ will be used to vary the size of the quantity ‖δ‖2 and
∑d

k=1〈δ, vk〉2 in
the hypotheses (2.2) and (4.2), respectively. In all cases we consider 4 locations, that is
S = {1, 2, 3, 4}, the threshold is ∆ = 0.15 and the sample size is given by n = 150, 250, 500.
The position of the change point is chosen as ϑ0 = 0.6 and the tuning parameter ε in the
change point estimator defined in (3.1) is set to 0.05. Throughout this section all results are
based on 1000 simulation runs.

For both procedures we consider different error processes {ηi}i∈Z in model (2.1), where we
assume that the processes before and after the change point have the same distribution, that

is {ηi}i∈Z
D
= {η(1)

i }i∈Z
D
= {η(2)

i }i∈Z. The first one consists of independent (scaled) Brownian
motions, that is

ηi(s, t) =
s

4
Wi(t) , i = 1, . . . , n, (5.2)

(here Wi denotes the standard Brownian motion on the interval [0, 1]). Note that this process
has a separable covariance function. Secondly, we consider a process {ηi}i∈Z of independent
functions with non-separable covariance defined by

ηi(s, t) =
∞∑
k=1

Nk,i

2πk
(sin(2πkt) + s · cos(2πkt)), (5.3)

where Nk,i denote independent standard normal distributed random variables. The third
process is a functional moving average process (fMA) of order 1. More precisely, we define
independent processes

εi(s, t) =
∞∑
j=1

Nji

√
λjvj(s, t), (5.4)

where Nji are independent standard normal distributed random variables, λj = (2πj2)−1 and

vj(s, t) =
√

2
4
· s · sin(2jπt), and consider the fMA(1) process

ηi(s, t) = εi + 0.7εi−1 . (5.5)

(we use the first 40 terms in the expansion (5.4)). The data is generated and stored in Fourier
basis representations using the R-package fda.
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5.1.1 Fully functional detection of relevant changes

We begin with an investigation of the fully functional approach and display in Figure 1 the
rejection probabilities of the test (3.9) for the hypotheses (2.2) (with ∆ = 0.15) for the three
different error processes. We observe a qualitatively similar behaviour in all three cases as
predicted by Theorem 3.2. The rejection probability is strictly increasing with ‖δ‖2. It is close
to the nominal level 5% if ‖δ‖2 = ∆ and smaller (larger) than 5% if ‖δ‖2 < ∆ (‖δ‖2 > ∆). A
comparison of the three error processes shows that the best power of the test is obtained for
the error process (5.3) followed by the error process (5.5), while for the error process (5.2)
the test is less powerful.

Figure 1: Empirical rejection probabilities of the test (3.9) for the hypotheses (2.2) with
∆ = 0.15. The difference δ between the mean functions is given by (5.1) and different error
processes are considered. Left panel: scaled Brownian motion (5.2); middle panel: non-
seperable process in (5.3); right panel: fMA(1) process in (5.5).

Figure 2: Size of the term (∆ − ‖δ‖2)/τδ,ϑ0 as a function ‖δ‖2 in the approximation of the
rejection probability (∆ = 0.15) in (5.6). Left panel: scaled Brownian motion (5.2); middle
panel: non-seperable process in (5.3); right panel: fMA(1) process in (5.5).

This observation can be explained by the fact that the different error processes have
different variability. More precisely, it follows from the proof of Theorem 3.2 that for large
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sample sizes the probability of rejection can be approximated by

P

(
Ŵ >

√
n

V
∆− ‖δ‖2

τδ,ϑ0
+ q1−α(W)

)
, (5.6)

where τ 2
δ,ϑ0

is defined in (3.7) and V =
(∫

λ2(B(λ)− λB(1))2dν(λ)
)1/2

denotes a generic
random variable (a functional of the Brownian motion). Thus, the power is dominated by
the term (∆ − ‖δ‖2)/τδ,ϑ0 , which is negative under the alternative. A smaller value of this
term results in a larger power and in Figure 1 we display this quantity as a function of
‖δ‖2. The results explain the differences in the simulated power for the three processes under
consideration.
We also note that the approximation of the nominal level at the boundary of the hypotheses
‖δ‖2 = ∆ differs in the scenarios. For small sample sizes it is more accurate for the non-
separable process (5.3) compared to the two other cases. A possible explanation for this
observation is the different accuracy of the change point estimator (3.1) in the three scenarios,
which is displayed in Figure 3. We observe that the change point estimator for the error
process (5.2) exhibits a larger variability than in the two other cases, while the smallest
variability is obtained for the error process (5.3).

Figure 3: Histogram of the change point estimator based on n = 250 observations. The
difference between the mean functions is given by (5.1), ∆ = 0.15, the change point is located
as ϑ0 = 0.6 and different scenarios for the error process are considered. Left panel: scaled
Brownian motion in (5.2); middle panel: non-separable process in (5.3); right panel: fMA(1)
process in (5.5).

Next we investigate the impact of the measure ν in the self-normalizing factor (3.8) on the
properties of the test (3.9). Note that this measure appears in the definition of the statistic
V̂n in (3.8) and in the random variable W in (3.10). Thus, intuitively, there is a cancellation
effect in the decision rule (3.9). For the sake of brevity, we restrict ourselves to the case of
the fMA(1) error process (5.5) and display in Figure 4 the rejection probabilities of the test
(3.9), where we use a uniform distribution

νk =
1

k

k∑
i=1

δi/(k+1) (5.7)
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at k = 4, 9 and k = 19 points as measure in the statistic (3.8). We observe a rather similar
behaviour for all three measures, where ν19 yields a slightly better approximation of the
nominal level at the boundary of the hypotheses (that is ‖δ‖2 = ∆ = 0.15) for the sample
size n = 150.

Figure 4: Empirical rejection probabilities of the test (3.9) for the hypotheses (2.2) with
∆ = 0.15. The error process is given by an fMA(1) model and different measures in the
statistic (3.8) are considered. Left panel: ν4, middle panel: ν9, right panel: ν19.

Figure 5: Empirical rejection probabilities of the test (4.11) for the hypotheses (4.2) with
∆ = 0.15. The difference δ between the mean functions is given by (5.1) and different error
processes are considered. Left panel: Brownian motion (d = 15) ; middle panel: non-separable
process (d = 11); right panel: fMA(1) process (d = 11).

5.1.2 Relevant changes by functional principal components

In this section, we briefly illustrate the finite sample properties of the test (4.11) for the
hypotheses (4.2), where we use the same scenarios as before. The test requires the choice
of the number of principal functional components and we choose the parameter d such that
95% of the variance in the data will be explained. This results in d = 15, d = 11 and d = 11
functional principal components for the models (5.2), (5.3) and (5.5), respectively. The
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corresponding rejection probabilities are displayed in Figure 5 and we observe the qualitative
behaviour predicted by Theorem 4.3. We also observe that the test (4.11) is conservative in
the case of the non-seperable process (5.3), while the nominal level at the boundary of the
hypotheses

∑d
k=1〈δ, bk〉2 = ∆ is very well approximated for the Brownian motion (5.2).

Finally we investigate the impact of the measure ν in the scaling factor (4.10), where we
again restrict ourselves to the case of an fMA(1) process and the uniform distributions νk in
(5.7) for k = 4, 9 and 19. The corresponding results are shown in Figure 6 and demonstrate
that the test (4.11) is not very sensitive with respect to this choice.

Figure 6: Empirical rejection probabilities of the test (4.11) for the hypotheses (4.2) with
∆ = 0.15. The error process is given by an fMA(1) model and different measures in the
statistic (3.8) are considered. Left panel: ν4, middle panel: ν9, right panel: ν19.

5.2 Data example

We conclude this paper with an application of the two test procedures in a real data example.
For this purpose, we use Canadian weather data, which consists of daily measurements at
40 representative Canadian cities. Thus we observe yearly curves at different locations over
different years (1916−2018) at different locations. The data can be downloaded from the gov-
ernment of Canada website: https://climate.weather.gc.ca/historical_data/search_
historic_data_e.html. The available data contains several different measurements such as
maximum/minimum temperature or precipitation amount. Here, for the sake of brevity,
we concentrate on the average daily temperatures. Due to missing values in the reported
temperature data, four stations were chosen such that a large amount of available data over-
laps and only little parts had to be interpolated or removed: Calgary International
Airport, Alberta (ID: 2205), Medicine Hat Airport, Alberta (ID: 2273), Indian
Head CDA, Saskatchewan (ID: 2925) and Ottawa CDA, Ontario (ID: 4333). In the
notation of the previous sections this means S = {1, 2, 3, 4} and the sample size is given by
n = 113, which corresponds to the period from years 1891 − 2007 without the years 1910,
1911, 1993 and 1995.

The change point estimator in (3.1) gives ϑ̂n = 0.708, which approximately corresponds
to the year 1969. We first investigate the fully functional approach in Section 3. The results
of the test (3.9) for different thresholds and different nominal level are given in Table 1.
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Figure 7: The function e in (5.8) for j = 1, ..., 100

We observe that ∆ = 2.974 is the largest threshold such that the test (3.9) rejects the null
hypothesis at nominal level α = 0.05. Because there are 4 stations this corresponds to an
average effect of 2.974/4 ≈ 0.74. Finally, we note that the one-sided confidence interval
‖δ‖ ≥ 0 in (3.11) is given by [0, 4.397] while the two-sided interval ‖δ‖ > 0 in (3.12) is
obtained as [0.672, 4.675]

∆ 10 % 5 % 1 %
2.974 reject reject accept
2.975 reject accept accept

Table 1: Results of the test (3.9) for the Canadian weather data for different nominal level
and different thresholds. The value 2.974 represents the maximal threshold (2.3), such that
the null hypothesis of no relevant change is rejected at nominal level 5%.

Next we consider the test based on functional principal components developed in Section
4. In this case, the choice of d is crucial and we display in Figure 7 the ratios

j 7→ e(j) :=

∑j
k=1 λ̂k

trace(ĉϑ̂n)
, (5.8)

where λ̂1, λ̂2, . . . are the eigenvalues of the estimated covariance operator (4.1). We observe
that the eigenvalues are slowly decreasing, and we choose d = 51, which results in a value of
e(51) ≈ 0.849 of explained variance. The results of the test (4.11) for the relevant hypotheses
(4.2) are shown in Table 2 for different values of ∆ and α. We observe that the maximal
threshold in (4.2), such that the null hypothesis of no relevant change is rejected at nominal
level 5%, is given by 4.467. Finally one and two-sided confidence intervals for the quantity(∑d

k=1〈δ, wk〉2
)1/2

are obtained in same way as described in Remark 3.4 and are given by
[0, 3.254] and [1.877, 3.396], respectively (d = 51).

Acknowledgements This research has been supported by the German Research Foun-
dation (DFG), project number 45723897.

17



∆ 90 % 95 % 99 %
4.467 reject reject accept
4.468 reject accept accept

Table 2: Results of the test (4.11) with d = 51 principal components for the Canadian
weather data for different nominal level and different thresholds. The value 4.467 represents
the maximal threshold in (4.2), such that the null hypothesis of no relevant change is rejected
at nominal level 5%.
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A Appendix: proofs

A.1 Some preliminary results

We start with some preparations and present several results which are used in the proof. We
define for s ∈ S and t ∈ [0, 1]

Sn(s, t, λ) :=
1

n

bλnc∑
i=1

(Xi(s, t)− µ(s, t))

and state the following result, which can be obtained by generalizing Theorem 1 in Berkes
et al. (2013) to the space L2(S × [0, 1]).

Theorem A.1. If Assumption 2.1 is satisfied, there exists a sequence of Gaussian processes(
{Γn(s, t, λ) | s ∈ S, 0 ≤ λ, t ≤ 1}

)
n∈N, such that

sup
0≤λ≤1

∑
s∈S

∫ (√
nSn(s, t, λ)− Γn(s, t, λ)

)2
dt = sup

0≤λ≤1

∥∥√nSn(·, ·, λ)− Γn(·, ·, λ)
∥∥2

= oP(1)

and
{Γn(s, t, λ) | s ∈ S, 0 ≤ λ, t ≤ 1} D= {Γ(s, t, λ) | s ∈ S, 0 ≤ λ, t ≤ 1} ,

where

Γ(s, t, λ) :=
∞∑
i=1

√
λiφi(s, t)Wi(λ),

λi, φi are the eigenvalues and eigenvectors of the covariance operator of Xj and {Wi}i∈N are
independent standard Brownian motions.

Our next auxiliary result quantifies the difference between the processes {Dn(λ, ϑ0)}λ∈[0,1]

and {Dn(λ, ϑ̂n)}λ∈[0,1] as n→∞.

Lemma A.2. If Assumption 2.1 is satisfied, then

(1) sup
0≤λ≤1

‖Dn(λ, ϑ)‖ = OP(1) for ϑ ∈ {ϑ0, ϑ̂n} ,

(2) sup
0≤λ≤1

∥∥∥Dn(λ, ϑ̂n)−Dn(λ, ϑ0)
∥∥∥ = oP(n−1/2).

Proof. We can assume that 1
n
≤ λ, because, by definition, Dn(λ, ϑ0) ≡ Dn(λ, ϑ̂n) ≡ 0 if

0 ≤ λ < 1
n
, and both assertions are trivially true.

For a proof of part (1) we note that for some κ > 0

sup
1
n
≤λ≤1

1√
bλnc

∥∥∥∥∥∥
bλnc∑
j=1

η
(`)
j

∥∥∥∥∥∥ = OP(log1/κ(n)) (` = 1, 2), (A.1)
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which follows from Lemma B.1 in the online supplementary material of Aue et al. (2018).
Let λ ∈ [1/n, 1]. It suffices to show the assertion for ϑ = ϑ0, because the second part of the
Lemma implies the statement for ϑ = ϑ̂n. Then

‖Dn(λ, ϑ0)‖ ≤
∥∥∥D̃n(λ, ϑ0)

∥∥∥+ λ ‖δ‖+ oP(1) =
∥∥∥D̃n(λ, ϑ0)

∥∥∥+OP(1),

where the process {D̃n(λ, ϑ)}λ∈[0,1] in L2(S × [0, 1]) is defined by

D̃n(λ, ϑ) :=
1

bnϑc

bλbnϑcc∑
j=1

η
(1)
j −

1

n− bnϑc

bnϑc+bλ(n−bnϑc)c∑
j=bnϑc+1

η
(2)
j .

Note that D̃n(λ, ϑ) is the centered version of Dn(λ, ϑ) defined in (3.3) and that

Dn(λ, ϑ0) + λδ = D̃n(λ, ϑ0) +OP(n−1) (A.2)

(note that ϑ0 ∈ (ε, 1− ε) and that ε ≥ 1
n

if n is sufficiently large). We have

sup
1
n
≤λ≤1

∥∥∥D̃n(λ, ϑ0)
∥∥∥ ≤ sup

1
n
≤λ≤1

1

bnϑ0c

∥∥∥∥∥∥
bλbnϑ0cc∑
j=1

η
(1)
j

∥∥∥∥∥∥+ sup
1
n
≤λ≤1

1

n− bnϑ0c

∥∥∥∥∥∥
bnϑ0c+bλ(n−bnϑ0c)c∑

j=bnϑ0c+1

η
(2)
j

∥∥∥∥∥∥ ,
where the first term can be estimated as follows

sup
1
n
≤λ≤1

1

bnϑ0c

∥∥∥∥∥∥
bλbnϑ0cc∑
j=1

η
(1)
j

∥∥∥∥∥∥ ≤ 1√
bnϑ0c

sup
1
n
≤λ≤1

1√
bλbnϑ0cc

∥∥∥∥∥∥
bλbnϑ0cc∑
j=1

η
(1)
j

∥∥∥∥∥∥
≤ 1√

bnϑ0c
sup

1
n
≤λ≤1

1√
bλnc

∥∥∥∥∥∥
bλnc∑
j=1

η
(1)
j

∥∥∥∥∥∥ = OP

(
log1/κ(n)√

n

)
= oP(1).

(here in the second inequality, we expanded the set over which we take the supremum and
in the last step, we used the estimate (A.1)). A similar argument provides the same rate for
the second term, which proves the part (1) of Lemma A.2.

For the proof of the second assertion we need the following (slightly more general) state-
ment from the beginning of Section B.1 in Dette et al. (2020b), which states that the sequence
of processes {Γn(s, t, λ) | s ∈ S, 0 ≤ t, λ ≤ 1}n∈N in Theorem A.1 satisfies

sup
ν,λ∈[0,1]:
|ν−λ|≤κn

‖Γn(·, ·, ν)− Γn(·, ·, λ)‖2 = oP(1). (A.3)

for any and positive sequence (κn)n∈N with κn → 0. By adding and subtracting λδ, we have

Dn(λ, ϑ̂n)−Dn(λ, ϑ0) = D̃n(λ, ϑ̂n)− D̃n(λ, ϑ0) +OP(n−1), where

D̃n(λ, ϑ̂n)− D̃n(λ, ϑ0) =
1

bnϑ̂nc

bλbnϑ̂ncc∑
j=1

η
(1)
j −

1

bnϑ0c

bλbnϑ0cc∑
j=1

η
(1)
j

+
1

n− bnϑ0c

bnϑ0c+bλ(n−bnϑ0c)c∑
j=bnϑ0c+1

η
(2)
j −

1

n− bnϑ̂nc

bnϑ̂nc+bλ(n−bnϑ̂nc)c∑
j=bnϑ̂nc+1

η
(2)
j .
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For the first difference we obtain by a similar argument as in the proof of part (1) that

sup
1
n
≤λ≤1

√
n

∥∥∥∥∥∥ 1

bnϑ̂nc

bλbnϑ̂ncc∑
j=1

η
(1)
j −

1

bnϑ0c

bλbnϑ0cc∑
j=1

η
(1)
j

∥∥∥∥∥∥
≤ n

bnϑ̂nc
sup

1
n
≤λ≤1

∥∥∥∥∥∥ 1√
n

bλbnϑ̂ncc∑
j=1

η
(1)
j − Γn

(
·, ·, λ bnϑ̂nc

n

)∥∥∥∥∥∥
+

n

bnϑ0c
sup

1
n
≤λ≤1

∥∥∥∥∥∥ 1√
n

bλbnϑ0cc∑
j=1

η
(1)
j − Γn

(
·, ·, λ bnϑ0c

n

)∥∥∥∥∥∥
+

n

bnϑ̂nc
sup

1
n
≤λ≤1

∥∥∥Γn

(
·, ·, λ bnϑ̂nc

n

)
− Γn(·, ·, λϑ̂n)

∥∥∥
+

n

bnϑ0c
sup

1
n
≤λ≤1

∥∥∥Γn

(
·, ·, λ bnϑ0c

n

)
− Γn(·, ·, λϑ0)

∥∥∥
+ sup

1
n
≤λ≤1

∥∥∥∥∥ n

bnϑ̂nc
Γn(·, ·, λϑ̂n)− n

bnϑ0c
Γn(·, ·, λϑ0)

∥∥∥∥∥
≤ sup

ν,λ∈[0,1]:

|ν−λ|≤ 1
n

‖Γn(·, ·, ν)− Γn(·, ·, λ)‖

+O(1) sup
ν,λ∈[0,1]:

|ν−λ|≤|ϑ̂n−ϑ0|

‖Γn(·, ·, ν)− Γn(·, ·, λ)‖+
|ϑ0 − ϑ̂n|
ϑ0ϑ̂n

OP(1) + oP(1)

= oP(1),

where we have used (A.3) in the last equality. Assertion (2) of Lemma A.2 now follows by a
similar argument for the second difference.

We conclude our preparations recalling the definition of the inner product in (4.4) and
state a lemma regarding the weak convergence of the process(

Z(1)
n , Z(2)

n

)>
:=
{

(Z(1)
n (λ), Z(2)

n (λ))>
}
λ∈[0,1]

(A.4)

:=
{( 1√

n

bnλc∑
i=1

(
〈η(k)
i ⊗ η

(k)
i − c(k), ξk〉2 + 〈η(k)

i , ζk〉
))

k=1,2

}
λ∈[0,1]

,

where {η(1)
j }j∈Z and {η(2)

j }j∈Z are centered processes in L2(S×[0, 1]) and ζ1, ζ2 ∈ L2(S×[0, 1]),
ξ1, ξ2 ∈ L2((S × [0, 1])2) are given functions. We emphasize that we consider the process

(Z
(1)
n , Z

(2)
n )> with different parameters ζ1, ζ2 ∈ L2(S × [0, 1]), ξ1, ξ2 ∈ L2((S × [0, 1])2) in the

proofs of the results of Section 3 and 4. The proof of the following result is similar to the
proof of Lemma B.1 in Dette et al. (2020b) and therefore omitted.

Lemma A.3. Let ζ1, ζ2 ∈ L2(S × [0, 1]), ξ1, ξ2 ∈ L2((S × [0, 1])2) be fixed but arbitrary

functions and let {η(1)
j }j∈Z, {η

(2)
j }j∈Z denote centered processes satisfying Assumption 4.1.
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Then the process defined in (A.4) converges weakly in `∞([0, 1])2, that is(
Z(1)
n , Z(2)

n

)>
 Σ1/2 (B1,B2)> , (A.5)

where B1,B2 are independent Brownian motions and Σ = (Σkl)k,l=1,2 is a 2 × 2 matrix with
entries

Σkl =
∑
i∈Z

(
Cov(〈η(k)

0 ⊗ η
(k)
0 , ξk〉2, 〈η(l)

i ⊗ η
(l)
i , ξl〉2) + Cov(〈η(k)

0 ⊗ η
(k)
0 , ξk〉2, 〈η(l)

i , ζl〉)

+ Cov(〈η(k)
0 , ζk〉, 〈η(l)

i ⊗ η
(l)
i , ξl〉2) + Cov(〈η(k)

0 , ζk〉, 〈η(l)
i , ζl〉)

)
. (A.6)

Moreover, in the case ξ1 ≡ ξ2 ≡ 0 Assumption 2.1 instead of Assumption 4.1 is sufficient for
the weak convergence in (A.5).

A.2 Proof of Theorem 3.1

For a proof of the weak convergence in (3.5) we use (A.2) and several applications of the
Cauchy-Schwarz inequality, which give

Un(λ) :=
√
n
(
‖Dn(λ, ϑ0)‖2 − λ2 ‖δ‖2) = 1√

n

∥∥∥√nD̃n(λ, ϑ0)
∥∥∥2

+ 2λ〈
√
nD̃n(λ, ϑ0), δ〉+ oP(1)

= 2λ〈
√
nD̃n(λ, ϑ0), δ〉+ oP(1),

since
∥∥∥√nD̃n(λ, ϑ0)

∥∥∥2

= OP(1) by Theorem A.1. Next define for ` = 1, 2 and λ ∈ [0, 1]

Z(`)
n (λ) :=

1√
n

bλnc∑
j=1

〈η(`)
j , δ〉,

in order to rewrite

〈
√
nD̃n(λ, ϑ0), δ〉 =

n

bnϑ0c
1√
n

bλbnϑ0cc∑
i=1

〈η(1)
i , δ〉 − n

n− bnϑ0c
1√
n

bnϑ0c+λ(n−bnϑ0c)∑
i=bnϑ0c+1

〈η(2)
i , δ〉

=
n

bnϑ0c
Z(1)
n

(
λ bnϑ0c

n

)
− n

n− bnϑ0c

(
Z(2)
n

(
bnϑ0c+bλ(n−bnϑ0c)c

n

)
− Z(2)

n (ϑ0)
)
.

Hence,

Un(λ) =
√
n
(
‖Dn(λ, ϑ0)‖2 − λ2 ‖δ‖2)

=
2λ

ϑ0

Z(1)
n

(
λ bnϑ0c

n

)
− 2λ

1− ϑ0

(
Z(2)
n

(
bnϑ0c+bλ(n−bnϑ0c)c

n

)
− Z(2)

n (ϑ0)
)

+ oP(1)

and by an application of Lemma A.3 with ζ1 = ζ2 = δ and ξ1 ≡ ξ2 ≡ 0, (note that in this
case Assumption 2.1 is sufficient) we obtain

{Un(λ)}λ∈[0,1]  {Z(λ)}λ∈[0,1]

:=

{
2λ

ϑ0

Z(1)(λϑ0)− 2λ

1− ϑ0

(
Z(2)(ϑ0 + λ(1− ϑ0))− Z(2)(ϑ0)

)}
λ∈[0,1]

,
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with Z(1) = Σ∗11B1 + Σ∗12B2 and Z(2) = Σ∗21B1 + Σ∗22B2, where B1 and B2 are independent
Brownian motions. Here Σ∗ij denotes the ij-th entry of the matrix Σ1/2 (i, j = 1, 2) and Σ
is defined by the entries given in (A.6), where in this case ζ1 = ζ2 = δ and ξ1 ≡ ξ2 ≡ 0.
Inspecting the covariance structure of the limit above, we see that because of

Cov(Z(1)(λ1ϑ0),Z(1)(λ2ϑ0)) = (λ1 ∧ λ2)ϑ0Σ11,

Cov(Z(2)(ϑ0 + λ1(1− ϑ0))− Z(2)(ϑ0),Z(2)(ϑ0 + λ2(1− ϑ0))− Z(2)(ϑ0)) = (λ1 ∧ λ2)(1− ϑ0)Σ22,

Cov(Z(1)(λ1ϑ0),Z(2)(ϑ0 + λ2(1− ϑ0))− Z(2)(ϑ0)) = 0,

we have

Cov (Z(λ2),Z(λ2)) = 4λ1λ2(λ1 ∧ λ2)

(
1

ϑ0

Σ11 +
1

1− ϑ0

Σ22

)
.

Hence the limit has the same distribution as τδ,ϑ0 {λB(λ)}λ∈[0,1], and the first assertion follows.

For a proof of (3.6), we rewrite the expression as

√
n

(∥∥∥Dn(λ, ϑ̂n)
∥∥∥2

− λ2 ‖δ‖2

)
=
√
n
(
‖Dn(λ, ϑ0)‖2 − λ2 ‖δ‖2 )+Nn(λ),

where

Nn(λ) :=
√
n

(∥∥∥Dn(λ, ϑ̂n)−Dn(λ, ϑ0)
∥∥∥2

+ 2〈Dn(λ, ϑ̂n), Dn(λ, ϑ̂n)−Dn(λ, ϑ0)〉
)

By the Cauchy-Schwarz inequality and both parts of Lemma A.2, we obtain supλNn(λ) =
oP(1). Therefore, the convergence follows from (3.5).

A.3 Proof of Theorem 3.2

First of all, we consider ‖δ‖2 = 0. By a careful inspection of the proof part 1 of Lemma A.2,
we can verify that D̂n is a consistent estimator of ‖δ‖2. So in this case, we have D̂n = oP(1).
By Remark 3.3 the random variable W in (3.10) has a symmetric distribution, which in turn
implies q1−α(W) ≥ 0, whenever α ≤ 0.5. Together with the fact that V̂n ≥ 0, we have

P
(
D̂n > ∆ + q1−α(W)V̂n

)
−→ 0,

whenever ∆ > 0 and α ≤ 0.5. Now, consider the case ‖δ‖ > 0, then, by Theorem 3.1, the

weak convergence of the vector
√
n
(
(D̂n − ‖δ‖2), V̂n

)>
is an immediate consequence of (3.6)

and the continuous mapping theorem applied to the map

f 7−→
(
f(1),

( ∫ 1

0

λ2(f(λ)− λf(1))dν(λ)
)1/2)>

.

Hence, we have D̂n − ‖δ‖2 = oP(1) and V̂n = oP(1). Therefore,

P
(
D̂n − ‖δ‖2 > ∆− ‖δ‖2 + q1−α(W)V̂n

)
−→

{
0, if ‖δ‖2 < ∆,

1, if ‖δ‖2 > ∆,
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as n → ∞. In the case ‖δ‖2 = ∆ and τ 2
δ,ϑ0

> 0, we obtain from (3.6) and the continuous

mapping theorem applied to the map f 7−→ f(1)
( ∫ 1

0
λ2(f(λ)− λf(1))dν(λ)

)−1/2
, that

D̂n − ‖δ‖2

V̂n

 W,

where W is defined in (3.10). This yields

lim
n→∞

P
(
D̂n > ∆ + q1−α(W)V̂n

)
= lim

n→∞
P

(
D̂n − ‖δ‖2

V̂n

> q1−α(W)

)
= α.

A.4 Proof of Theorem 4.1

We show that

sup
0≤λ≤1

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2

= OP

(
log2/κ(n)√

n

)
, (A.7)

sup
0≤λ≤1

√
λ
∥∥∥(1− ϑ̂n)ĉ

(2)
λ − (1− ϑ0)E

[
η

(2)
0 ⊗ η

(2)
0

]∥∥∥
2

= OP

(
log2/κ(n)√

n

)
, (A.8)

For the sake of brevity we restrict ourselves to a proof of (A.7), the proof of (A.8) follows by
similar arguments.

First, we assume that λ < 1

bnϑ̂nc
, then ĉ

(1)
λ = 0 and

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2
<

ϑ0√
bnϑ̂nc

∣∣∣∣E [η(1)
0 ⊗ η

(1)
0

] ∣∣∣∣ = OP(n−1/2)

uniformly in λ ∈ [0, 1

bnϑ̂nc
). If 1

bnϑ̂nc
≤ λ ≤ 1 we use the representation

ĉ
(1)
λ =

1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

Xi ⊗Xi −
1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i,j=1

Xi ⊗Xj (A.9)

and consider the first term. For this we get

1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

Xi ⊗Xi =
1

bλbnϑ̂ncc

bλbnϑ̂ncc∧bnϑ0c∑
i=1

Xi ⊗Xi

+
1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bλbnϑ̂ncc∧bnϑ0c+1

Xi ⊗Xi

=
1

bλbnϑ̂ncc

bλbnϑ̂ncc∧bnϑ0c∑
i=1

(
η

(1)
i ⊗ η

(1)
i + µ⊗ η(1)

i + η
(1)
i ⊗ µ+ µ⊗ µ

)

+
1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bλbnϑ̂ncc∧bnϑ0c+1

(
η

(2)
i ⊗ η

(2)
i + µ̃⊗ η(2)

i + η
(2)
i ⊗ µ̃+ µ̃⊗ µ̃

)
, (A.10)
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where we use the notation µ̃ := µ+ δ. The second term in (A.9) can be rewritten as follows:

1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i,j=1

Xi ⊗Xj

=
1

bλbnϑ̂ncc2

bλbnϑ̂ncc∧bnϑ0c∑
i,j=1

(
η

(1)
i ⊗ η

(1)
j + µ⊗ η(1)

j + η
(1)
i ⊗ µ+ µ⊗ µ

)

+
1

{
bnϑ0c ≤ bλbnϑ̂ncc

}
bλbnϑ̂ncc2

[ bnϑ0c∑
i=1

bλbnϑ̂ncc∑
j=bnϑ0c+1

(
η

(1)
i ⊗ η

(2)
j + µ⊗ η(2)

j + η
(1)
i ⊗ µ̃+ µ⊗ µ̃

)

+

bλbnϑ̂ncc∑
i=bnϑ0c+1

bnϑ0c∑
j=1

(
η

(2)
i ⊗ η

(1)
j + η

(2)
i ⊗ µ+ µ̃⊗ η(1)

j + µ̃⊗ µ
)

+

bλbnϑ̂ncc∑
i,j=bnϑ0c+1

(
η

(2)
i ⊗ η

(2)
j + η

(2)
i ⊗ µ̃+ µ̃⊗ η(2)

j + µ̃⊗ µ̃
)]

.

We now consider the cases bλbnϑ̂ncc < bnϑ0c and bλbnϑ̂ncc ≥ bnϑ0c separately. For this
purpose, we define the set Λ := { 1

bnϑ̂nc
≤ λ ≤ 1 | bλbnϑ̂ncc < bnϑ0c} and note that

sup
1
n
≤λ≤1

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2

= max

{
sup
λ∈Λ

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2
, sup
λ∈ΛC

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2

}
.

We consider each case individually, starting with the first term, where the sup is taken over
the set Λ, i.e. bλbnϑ̂ncc < bnϑ0c. Observing that the sum in (A.10) vanishes, we obtain in
this case that

ĉ
(1)
λ =

1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

η
(1)
i ⊗ η

(1)
i −

1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i,j=1

η
(1)
i ⊗ η

(1)
j (A.11)

In the subsequent discussion, we will repeatedly make use of the following inequality, without
explicitly mentioning it. It is obtained by expanding the set over which the supremum is

calculated, and substituting λ′ = λ bnϑ̂nc
n

:

sup
λ∈Λ

1√
bλbnϑ̂ncc

∥∥∥∥∥∥
bλbnϑ̂ncc∑
i=1

η
(1)
i

∥∥∥∥∥∥ ≤ sup
1
n
≤λ′≤ bnϑ̂nc

n

1√
bλ′nc

∥∥∥∥∥∥
bλ′nc∑
i=1

η
(1)
i

∥∥∥∥∥∥ ≤ sup
1
n
≤λ≤1

1√
bλnc

∥∥∥∥∥∥
bλnc∑
i=1

η
(1)
i

∥∥∥∥∥∥ .
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Regarding the second term in (A.11) we have for some κ > 0

sup
λ∈Λ

√
λϑ̂n

∥∥∥∥∥∥ 1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i,j=1

η
(1)
i ⊗ η

(1)
j

∥∥∥∥∥∥
2

= sup
λ∈Λ

λϑ̂n

bλbnϑ̂ncc
1√
λ

∥∥∥∥∥∥ 1√
bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

η
(1)
i

∥∥∥∥∥∥
2

≤ OP(n−1/2)

 sup
1
n
≤λ≤1

1√
bλnc

∥∥∥∥∥∥
bλnc∑
i=1

η
(1)
i

∥∥∥∥∥∥
2

= OP

(
log2/κ(n)√

n

)
,

by (A.1). This implies

sup
λ∈Λ

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2

≤ sup
λ∈Λ

√
λ

∥∥∥∥∥∥ ϑ̂n

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

(
η

(1)
i ⊗ η

(1)
i − E

[
η

(1)
0 ⊗ η

(1)
0

])∥∥∥∥∥∥
2

+ |ϑ̂n − ϑ0|E
[
η

(1)
0 ⊗ η

(1)
0

]
+OP

(
log2/κ(n)√

n

)

≤ OP(n−1/2) sup
1
n
≤λ≤1

1√
bλnc

∥∥∥∥∥∥
bλnc∑
i=1

(
η

(1)
i ⊗ η

(1)
i − E

[
η

(1)
0 ⊗ η

(1)
0

])∥∥∥∥∥∥
2

+OP

(
log2/κ(n)√

n

)

≤ OP

(
log2/κ(n)√

n

)
,

where we used (3.2) and again a variation of (A.1), this time for L2((S × [0, 1])2)-valued
random variables.

It remains to calculate the supremum over the set ΛC . If bλbnϑ̂ncc ≥ bnϑ0c, a tedious but
straightforward calculation gives

ĉ
(1)
λ =

1

bλbnϑ̂ncc

bnϑ0c∑
i=1

η
(1)
i ⊗ η

(1)
i −

1

bλbnϑ̂ncc2

bnϑ0c∑
i,j=1

η
(1)
i ⊗ η

(1)
j

+
1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)⊗ (η

(2)
i + δ)

− 1

bλbnϑ̂ncc2

bnϑ0c∑
i=1

bλbnϑ̂ncc∑
j=bnϑ0c+1

η
(1)
i ⊗ (η

(2)
j + δ)− 1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i=bnϑ0c+1

bnϑ0c∑
j=1

(η
(2)
i + δ)⊗ η(1)

j

+
1

bλbnϑ̂ncc2

bλbnϑ̂ncc∑
i,j=bnϑ0c+1

(η
(2)
i + δ)⊗ (η

(2)
j + δ)
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and we claim that

sup
λ∈ΛC

√
λ
∥∥∥ϑ̂nĉ(1)

λ − ϑ0E
[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥
2
≤ sup

1
n
≤λ≤1

√
λ

∥∥∥∥∥∥ ϑ̂n

bλbnϑ̂ncc

bnϑ0c∑
i=1

η
(1)
i ⊗ η

(1)
i − ϑ0E

[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥∥∥∥
2

+OP

(
log2/κ(n)√

n

)
. (A.12)

For a proof of (A.12), we show that

sup
λ∈ΛC

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bnϑ0c∑
i=1

η
(1)
i

∥∥∥∥∥∥ = OP(n−1/2), (A.13)

sup
λ∈ΛC

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)

∥∥∥∥∥∥ = OP

(
log1/κ(n)√

n

)
, (A.14)

sup
λ∈ΛC

√
λϑ̂n

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)

∥∥∥∥∥∥
2

= OP

(
log2/κ(n)√

n

)
(A.15)

sup
λ∈ΛC

√
λϑ̂n

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)⊗ (η

(2)
i + δ)

∥∥∥∥∥∥ = OP

(
log1/κ(n)√

n

)
(A.16)

The estimate (A.13) follows from

sup
λ∈ΛC

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bnϑ0c∑
i=1

η
(1)
i

∥∥∥∥∥∥ ≤ 1√
bnϑ0c

∥∥∥∥∥∥ 1√
bnϑ0c

bnϑ0c∑
i=1

η
(1)
i

∥∥∥∥∥∥ = OP(n−1/2),

because bnϑ0c ≤ bλbnϑ̂ncc and the central limit theorem in Hilbert spaces in the last step.
For the estimate (A.14), recall that by (3.2), we have ϑ̂n = ϑ0 + oP(n−1/2). Moreover, this
implies

sup
λ∈ΛC

bnϑ0c
bλbnϑ̂ncc

= 1 + oP(n−1/2), (A.17)

because

1 + oP(n−1/2) =
bnϑ0c
bnϑ̂nc

≤ sup
λ∈ΛC

bnϑ0c
bλbnϑ̂ncc

≤ sup
λ∈ΛC

bλbnϑ̂ncc
bλbnϑ̂ncc

= 1 .
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Using again bnϑ0c ≤ bλbnϑ̂ncc and the estimate (A.1), we find that

sup
λ∈ΛC

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)

∥∥∥∥∥∥
≤ 1√

bnϑ0c
sup
λ∈ΛC

∥∥∥∥∥∥ 1√
bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

η
(2)
i

∥∥∥∥∥∥
+

1√
bnϑ0c

∥∥∥∥∥∥ 1√
bnϑ0c

bnϑ0c∑
i=1

η
(2)
i

∥∥∥∥∥∥+ sup
λ∈ΛC

bλbnϑ̂ncc − bnϑ0c
bλbnϑ̂ncc

‖δ‖

≤ OP(n−1/2) sup
1
n
≤λ≤1

∥∥∥∥∥∥ 1

bλnc

bλnc∑
i=1

η
(2)
i

∥∥∥∥∥∥+
bnϑ̂nc − bnϑ0c
bnϑ0c

‖δ‖+OP(n−1/2)

= OP

(
log1/κ(n)√

n

)
.

These calculations also yield the estimate (A.15). For (A.16), we have, using a version of
(A.1) for L2((S× [0, 1])2)-valued random variables and the fact that bnϑ0c ≤ bλbnϑ̂ncc, that

sup
λ∈ΛC

√
λϑ̂n

∥∥∥∥∥∥ 1

bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=bnϑ0c+1

(η
(2)
i + δ)⊗ (η

(2)
i + δ)

∥∥∥∥∥∥
2

≤ 1√
bnϑc

sup
λ∈ΛC

∥∥∥∥∥∥ 1√
bλbnϑ̂ncc

bλbnϑ̂ncc∑
i=1

η̃⊗i

∥∥∥∥∥∥
2

+
ϑ̂n√
bnϑ0c

∥∥∥∥∥∥ 1√
bnϑ0c

bnϑ0c∑
i=1

η̃⊗i

∥∥∥∥∥∥
+ oP(n−1/2)E

[
(η

(2)
0 + δ)⊗ (η

(2)
0 + δ)

]
= OP

(
log1/κ(n)√

n

)
,

where η̃⊗i := (η
(2)
i + δ)⊗ (η

(2)
i + δ)−E

[
(η

(2)
0 + δ)⊗ (η

(2)
0 + δ)

]
. Finally, observing (A.12), the

assertion (A.7) follows from

sup
λ∈ΛC

√
λ

∥∥∥∥∥∥ ϑ̂n

bλbnϑ̂ncc

bnϑ0c∑
i=1

η
(1)
i ⊗ η

(1)
i − ϑ0E

[
η

(1)
0 ⊗ η

(1)
0

]∥∥∥∥∥∥
2

≤ 1√
bnϑ0c

∥∥∥∥∥∥ 1√
bnϑ0c

bnϑ0c∑
i=1

(
η

(1)
i ⊗ η

(1)
i − E

[
η

(1)
0 ⊗ η

(1)
0

])∥∥∥∥∥∥
2

+ sup
λ∈ΛC

∣∣∣∣ bnϑ0c
bλbnϑ̂ncc

ϑ̂n − ϑ0

∣∣∣∣E [η(1)
0 ⊗ η

(1)
0

]
= OP(n−1/2)
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by (A.1) and (A.17). This completes the proof of Theorem 4.1.

A.5 Proof of Theorem 4.2

We begin stating an expansion for the difference ĉj,λŵj,λ − wj, which is proved by similar
arguments as given in the proof of Proposition 2.1 in Aue et al. (2022). The details are
therefore omitted.

Proposition A.4. Suppose Assumption 4.1 and 4.2 hold. If further ϑ0 ∈ (ε, 1− ε), then for
any j ≤ d and some κ > 0, we have

sup
0≤λ≤1

∥∥∥∥∥λ(ĉj,λŵj,λ − wj)−
1√
n

∑
i 6=j

wi
τj − τi

〈Ẑn,λ, wj ⊗ wi〉2

∥∥∥∥∥ = OP

(
logκ(n)

n

)
and

sup
0≤λ≤1

√
λ‖ĉj,λŵj,λ − wj‖ = OP

(
log1/κ(n)√

n

)
,

where ĉj,λ = sign〈ŵj,λ, wj〉 and

Ẑn,λ :=
1√
n

bλbnϑ0cc∑
i=1

(η
(1)
i ⊗ η

(1)
i − c(1)) +

bnϑ0c+bλ(n−bnϑ0c)c∑
i=bnϑ0c+1

(η
(2)
i ⊗ η

(2)
i − c(2))

 .

For the proof of the first assertion (4.6) of Theorem 4.2, we add and subtract λδ, use (A.2)
and obtain

〈Dn(λ, ϑ0), ŵk,λ〉2 − λ2〈δ, wk〉2 = Ik,n(λ) + Jk,n(λ) +Kk,n(λ) +OP(n−1) , (A.18)

where ĉk,λ is defined in Proposition A.4 and

Ik,n(λ) := 〈D̃n(λ, ϑ0), ĉk,λŵk,λ〉2,
Jk,n(λ) := 2λ〈D̃n(λ, ϑ0), ĉk,λŵk,λ〉〈δ, ĉk,λŵk,λ〉,
Kk,n(λ) := λ2〈δ, ĉk,λŵk,λ〉2 − λ2〈δ, wk〉2.

By Theorem A.1, sup0≤λ≤1 ‖
√
nD̃n(λ, ϑ0)‖ is bounded and the Cauchy-Schwarz inequality,

yields

sup
0≤λ≤1

√
nIk,n(λ) ≤ 1√

n
sup

0≤λ≤1
‖
√
nD̃n(λ, ϑ0)‖2 ‖ŵk,λ‖2 = oP(1)

for all k = 1, ..., d. Moving to the second term Jk,n, we see that

√
nJk,n(λ) =

√
n2λ(〈D̃n(λ, ϑ0), ĉk,λŵk,λ − wk〉〈δ, ĉk,λŵk,λ − wk〉+ 〈D̃n(λ, ϑ0), wk〉〈δ, ĉk,λŵk,λ − wk〉

+ 〈D̃n(λ, ϑ0), ĉk,λŵk,λ − wk〉〈δ, wk〉+ 〈D̃n(λ, ϑ0), wk〉〈δ, wk〉)
= 2λ〈

√
nD̃n(λ, ϑ0), wk〉〈δ, wk〉+ oP(1),
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uniformly in λ, by the second part of Proposition A.4. Lastly, we have by the first part of
Proposition A.4

√
nKk,n(λ) = 〈δ, λ(ĉk,λŵk,λ − wk)〉2 + 2λ〈δ, λ(ĉk,λŵk,λ − wk)〉〈δ, wk〉

= 2λ〈δ, wk〉〈δ,
1√
n

∑
i 6=k

wi
τk − τi

〈Ẑn,λ, wk ⊗ wi〉2〉+ oP(1). (A.19)

Recalling the notations of w and f in (4.8) and (4.9), and combining (A.18) - (A.19) we can
rewrite

Tn(λ) :=
√
n

d∑
k=1

(
〈Dn(λ, ϑ0), ŵk,λ〉2 − λ2〈δ, wk〉2

)
=

2λ√
n

bλbnϑ0cc∑
i=1

〈η(1)
i ⊗ η

(1)
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2λ√
n
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〈η(2)
i ⊗ η
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− 2λ
√
n

bnϑ0c

bλbnϑ0cc∑
i=1

〈η(1)
i , w〉 − 2λ

√
n

n− bnϑ0c

bnϑ0c+bλ(n−bnϑ0c)c∑
i=bnϑ0c+1

〈η(2)
i , w〉+ oP(1)

= 2λ

(
Z̃(1)
n

(
λbnϑ0c
n

)
+ Z̃(2)

n

(
bnϑ0c+ bλ(n− bnϑ0c)c

n

)
− Z̃(2)

n (ϑ0)

)
+ oP(1),

where for ` = 1, 2

Z̃(`)
n (λ) =

1√
n

bλnc∑
i=1

(
〈η(`)
i ⊗ η

(`)
i − c(`), ξ`〉2 + 〈η(`)

i , ζ`〉
)

with ξ1 = ξ2 = f , ζ1 = − 1
ϑ0
w and ζ2 = − 1

1−ϑ0w. Now by Lemma A.3, we obtain

{Tn(λ)}λ∈[0,1]  
{
Z̃ (λ)

}
λ∈[0,1]

:=
{

2λZ̃(1) (λϑ0) + 2λ
(
Z̃(2) (ϑ0 + λ(1− ϑ0))− Z̃(2) (ϑ0)

)}
λ∈[0,1]

,

where Z̃(1)(λ) := Σ̃∗11B1(λ) + Σ̃∗12B2(λ) and Z̃(2)(λ) := Σ̃∗21B1 + Σ̃∗22B2. Σ̃∗ij denotes the ij-

th entry of the matrix Σ̃1/2 and the entries of Σ̃ = (Σ̃ij)i,j=1,2 are defined by (A.6) with
ξ1 = ξ2 = f , ζ1 = − 1

ϑ0
w and ζ2 = − 1

1−ϑ0w. Inspecting the covariance structure of the
limiting process, we see that

Cov
(
Z̃(λ1), Z̃(λ2)

)
= 4λ1λ2(λ1 ∧ λ2)(Σ̃11ϑ0 + Σ̃22(1− ϑ0))

and hence the the weak convergence in (4.6) follows.
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To prove the second assertion (4.7) we note that we have by part 1 and 2 of Lemma A.2

sup
0≤λ≤1

(〈Dn(λ, ϑ̂n), ŵk,λ〉2 − 〈Dn(λ, ϑ0), ŵk,λ〉2)

= sup
0≤λ≤1

(
〈Dn(λ, ϑ̂n)−Dn(λ, ϑ0), ŵk,λ〉2 + 2〈Dn(λ, ϑ̂n)−Dn(λ, ϑ0), ŵk,λ〉〈Dn(λ, ϑ0), ŵk,λ〉

)
≤ sup

0≤λ≤1

∥∥∥Dn(λ, ϑ̂n)−Dn(λ, ϑ0)
∥∥∥2

‖ŵk,λ‖2

+ 2 sup
0≤λ≤1

∥∥∥Dn(λ, ϑ̂n)−Dn(λ, ϑ0)
∥∥∥ ‖Dn(λ, ϑ0)‖ ‖ŵk,λ‖2

= oP(n−1/2)

Consequently, assertion (4.7) follows from (4.6).
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