
ON THE MORAVA K-THEORY OF SOME FINITE 2-GROUPS

Björn Schuster

Abstract. We compute the Morava K-theories of finite nonabelian 2-groups having
a cyclic maximal subgroup, i.e., dihedral, quaternion, semidihedral and quasidihedral

groups of order a power of two.

1. Introduction

For any fixed prime p and any nonnegative integer n there is a 2(pn−1)-periodic
generalized cohomology theory K(n)∗, the nth Morava K-theory. Let G be a finite
group and BG its classifying space. For some time now it has been conjectured that
K(n)∗(BG) is concentrated in even dimensions. Standard transfer arguments show
that a finite group enjoys this property whenever its p-Sylow subgroup does. It is
easy to see that it holds for abelian groups, and it has been proved for some non-
abelian groups as well, namely groups of order p3 ([7]) and certain wreath products
([3], [2]). In this note we consider finite (nonabelian) 2-groups with cyclic maxi-
mal subgroup, i.e., dihedral, semidihedral, quasidihedral and generalized quaternion
groups of order a power of two.

Theorem. Let G be a nonabelian 2-group with cyclic maximal subgroup and n > 1.
Then the Morava K-theory of BG is muliplicatively generated by three classes in
dimensions 2, 2 and 4, respectively, modulo some explicit relations.

The Morava K-theories of the dihedral and quaternion group of order eight have
been known for a while (see [7], with a correction in [8]); the relations mentioned
in the statement of the theorem are written down explicitly in section 2.

2. Preliminaries

The theorem is proved by calculating a spectral sequence of Atiyah-Hirzebruch-
Serre type (”AHSSS”). For any extension of finite groups H −→ G −→ K and any
generalized cohomology theory h∗, there is a spectral sequence (see [5])

E2 = H∗(BH; h∗(BK)) =⇒ h∗(BG) ,
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natural both in the cohomology theory and in the extension. It generalizes the
Atiyah-Hirzebruch as well as the Serre spectral sequence: for H = 1 it degenerates
into the Atiyah-Hirzebruch spectral sequence (”AHSS”) for BK, whereas for h∗

being ordinary cohomology one has the Serre spectral sequence. It is well known (see
e.g. [9]) that the Atiyah-Hirzebruch spectral sequence for K(n)∗ has first differential
(”AHSS-differential”) d2(pn−1) = vn ⊗ Qn, where Qn is Milnor’s operation defined

inductively by Q0 = β (resp. Sq1) and Qi = [Qi−1,P
pi

] (resp. Qi = [Qi−1, Sq2i

] if
p = 2); this fact will be used repeatedly below.

3. Proof of the theorem

The proof splits into two cases. The first case covers dihedral, semidihedral and
generalized quaternion groups: let

G = < s, t | s2N+1

= 1, t2 = se, tst−1 = sr >

where N ≥ 1, and either e = 2N , r = 1 or e = 0, r = −1, 2n − 1. For e = 0, r = −1
the group G is the dihedral group D2N+2 of order 2N+2, for e = 2N , r = −1 we get
the generalized quaternion group Q2N+2 , while for N ≥ 2, e = 0 and r = 2N − 1
gives the semidihedral group SD2N+2 . The center Z of G is a Z/2, generated by

s2N

, with quotient isomorphic to the dihedral group D2N+1 . Thus we get a central
extension

(3.1) 1 −→ Z
i
−→ G

π
−→ D2N+1 −→ 1

(where D4 = Z/2 × Z/2).

The second case are the quasidihedral groups QD2N+2 , which can be presented
as

QD2N+2 = < s, t | s2N+1

= t2 = 1, tst−1 = s2N+1 >

where N ≥ 2. The center of QD2N+2 is the cyclic subgroup generated by s2 with
quotient 〈s̄, t〉 isomorphic to Z/2 × Z/2, i.e., we have a central extension

(3.2) 1 −→ Z/2N
i
−→ QD2N+2

π
−→ Z/2 × Z/2 −→ 1 .

We shall compute the AHS spectral sequences of the extensions (3.1) and (3.2). We
start with extension (3.1). The images s̄ and t̄ of s and t under π are generators
for the quotient D2N+1 . For N = 1, G is isomorphic to either the dihedral or the
quaternion group of order 8; this computation has been carried out in [7]. However,
since we will need some details of this computation in the course of this section, we
want to summarize it briefly. Let a and b denote the multiplicative generators of
H∗(B(Z/2×Z/2);F2) dual to s̄ and t̄. Then the extension class q is either a2 + ab
if G is dihedral or a2 + ab + b2 if G is quaternion. The E2-term of the spectral
sequence can thus be identified with K(n)∗[z]/z2n

⊗F2[a, b], and the only nontrivial
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differentials are d3 and d2n+1−1, acting as d3z = a2b + ab2, d2n+1−1a = vna2n+1

and

d2n+1−1b = vnb2n+1

. The E2n+1-page is even dimensional, thus E2n+1 = E∞. There
is also a nontrivial extension problem, see below. Now assume N > 1. Let K

denote the subgroup of D2N+1 generated by s̄2N−1

and t̄, T the subgroup generated

by s̄2N−1

and s̄t̄, and finally C ∼= Z/2N the cyclic subgroup generated by s̄. Then
both K and T are isomorphic to Z/2 × Z/2, and it is known that K and T detect
D2N+1 in mod 2 cohomology (see [1], VI, §3). The inclusions of K, T , and C into
D2N+1 produce three induced extensions

(3.3) 1 −→ Z −→ G8 −→ K −→ 1

with G8
∼= D8 for G dihedral or semidihedral and G8

∼= Q8 for G quaternion;

(3.4) 1 −→ Z −→ G8 −→ T −→ 1

with G8
∼= D8 for G dihedral, G8

∼= Q8 for G semidihedral or quaternion; and

(3.5) 1 −→ Z −→ Z/2N+1 −→ Z/2N −→ 1

for any of the three types of G. We will use the associated maps of spectral sequences
in the computations below. Recall the mod 2 cohomology of D2N+1 ([1], VI, § 3):

H∗(BD2N+1 ;F2) = F2[x, y, w]/(x2 + xy)

where x, y ∈ H1(BD2N+1 ;F2) = Hom(D2N+1 ,Z/2) are defined by 〈x, s̄〉 = 1,
〈y, t̄〉 = 1, 〈x, t̄〉 = 〈y, s̄〉 = 0, and w is the second Stiefel-Whitney class of the stan-
dard representation of D2N+1 in O(2). Moreover, the image of H∗(BD2N+1 ;F2) in
H∗(BK;F2), H∗(BT ;F2) and H∗(BC;F2) is given by the following table (see [4]):

i∗K
i∗T
i∗C

x y w

0 b a2 + ab

b b a2 + ab

u 0 v

Here i∗K , i∗T and i∗C are the restrictions of H∗(BD2N+1 ;F2) to the mod 2 cohomol-
ogy of K, T and C, respectively, a and b denote the one dimensional polynomial

generators of H∗(BK;F2) (orH∗(BT ;F2) ) dual to s̄2N−1

and t̄ (or s̄2N−1

and s̄t̄
for T ), u is the exterior generator of H∗(BC;F2) in degree one and v its 2N th
Bockstein. The extension class q of (3.1) will play a significant role. It is given by
(see [6])











w if G is dihedral

w + y2 if G is quaternion

w + x2 if G is semidihedral
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The spectral sequence calculation for (3.3) and (3.4) has been indicated above, and
we have chosen our notation as to coincide with the one used there. We also want to
sketch the calculation for (3.5). It is an almost immediate consequence of the fact

that we know what the Morava K-theory of BZ/2N+1 is, namely K(n)∗[z̃]/z̃2(N+1)n

with z̃ in dimension two. Thus we have

E2 = Λ(u) ⊗F2[v] ⊗ K(n)∗[z]/z2n

=⇒ K(n)∗(BZ/2N+1) ;

with the only nonzero differential being the one responsible for the ”truncation”,

i.e., dr(N)u = v
k(N)
n v2Nn

where r(N) = 2Nn+1 − 1 and k(N) = (2Nn − 1)/(2n − 1).

There is also a nontrivial extension, vnz2n

= v, and z represents the generator z̃
of K(n)∗(BZ/2N+1). We now return to the extension (3.1). The E2-term of its
associated spectral sequence is

E2 = H∗(BD2N+1 ;F2) ⊗ K(n)∗(BZ) ∼= F2[x, y, w]/(x2 + xy) ⊗ K(n)∗[z]/z2n

.

Lemma 1. (a) d3z = yw .
(b) z2 is a permanent cycle.

Proof. Let k(n) denote the connective analogue of K(n). We analyze first the
differentials in the AHSSS converging to k(n)∗(BG) by comparing it to the mod 2-
cohomology version: the Thom map k(n) −→ HF2 induces a natural transformation
of cohomology theories and hence a map of spectral sequences. Let

E2 = H∗(BD2N+1 ;F2)⊗H∗(BZ;F2) ∼= F2[x, y, w]/(x2+xy)⊗F2[u] ⇒ H∗(BG;F2)

be the E2-term of the Serre spectral sequence in mod 2-cohomology, where u denotes
the one dimensional generator of the fiber. In Er, u transgresses to q, hence u2 =
Sq1u to Sq1q. An easy argument shows that the map

k(n)∗(BZ) ∼= k(n)∗[z]/vnz2n

−→ F2[u] ∼= H∗(BZ;F2)

(we are abusing notation again by denoting z the generator for the connective
Morava K-theory of BZ as well as for the nonconnective case) is given by z 7→ u2

and vn 7→ 0. Therefore
d3z ≡ Sq1q mod vn

in k(n)-theory, hence in K(n)-theory. (Note that d2 is zero since the fiber is con-
centrated in even dimensions.) We want to show that this equation holds on the

nose, not only mod vn. Suppose d3z = Sq1q +vnT for some class T ∈ E
3,−|vn|
2 . For

dimensional reasons T has to be of the form z2n−1R, where R ∈ E3,0
2 is a class in

H3(bD2N+1 ;F2). Then d3d3 = 0 implies

0 = d3(Sq1q) + (d3z)vnz2n−2R + vnz2n−1d3R

= d3(Sq1q) + vnz2n−2RSq1q + v2
nz2n+1−3R2 + vnz2n−1d3R .
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As long as n > 1, z2n+1−3 = 0 and comparison to the AHSS for BD2N+1 shows
that d3 is zero on classes not divisible by z, hence R = 0. (Recall that in the
AHSS, d2n+1−1 is the first differential.) Now Sq1x2 = Sq1y2 = 0 and Sq1w = yw,
which implies (a). Furthermore, let θ be the following two dimensional complex
representation of G:

θ(s) =

(

e 0
0 er

)

, θ(t) =

(

0 1
(−1)σ 0

)

where e = exp(πi/2N ), r = −1 if G is dihedral or quaternion, r = 2N − 1 if G is
semidihedral, σ = 0 if G is dihedral or semidihedral and σ = 1 for G quaternion.

Then θ(s2N

) = −I2 (where I stands for the identity matrix), i.e., θ restricted to the
center is twice the nontrivial representation η of Z/2. Thus the second Chern class
of θ restricts to the class z2 of the fiber. �

Note that yw is not a zero divisor in the cohomology of D2N+1 whence the E4-
page remains a tensor product. Since x2 = xy, all classes of the form xiw, i > 1,
and yjw, j > 0 are eliminated; xw however is not. Also observe that the E4-term is
detected by the E4-terms of the spectral sequences associated to (3.3) - (3.5). Thus
the next potentially nonzero differential is d2n+1−1 = vn ⊗ Qn,

d2n+1−1x = vnx2n+1

, d2n+1−1y = vny2n+1

.

Detection by the spectral sequences of (3.3) - (3.5) also shows d2n+1−1w = 0 and

d2n+1−1xw = (d2n+1−1x)w = x2n+1

= 0. Finally, comparison to (3.5) shows that
the remaining odd dimensional classes, xwk, are killed by the differential dr(N).

More precisely, one has dr(N)xw = v
k(N)
n w2Nn+1, where r(N) = 2Nn+1 − 1 and

k(N) = (2Nn−1)/(2n−1) as above. To obtain the ring structure of K(n)∗(BG) we
still have to solve extension problems. This can be done, up to some indeterminacy,
by comparison arguments once again. The indeterminacy arises from the fact that
the E∞-page is no longer detected by the E∞-pages of (3.3) - (3.5), but the only

classes eluding detection are those divisible by w2Nn

(for N = 1 the class ab plays
the role of w in this respect). The filtration drop occuring for (3.5) was described
above; for (3.3) and (3.4), that is the case N = 1, it can be worked out by restricting
further to the three subgroups Z/2 of the base. Thus

vnz2n

=

{

q + εvn(ab)2
n

if N = 1

q + εvnw2Nn

if N > 1

where ε is either 0 or 1. Let y1, y2 and c2 denote the classes represented by x2, y2 and
z2, respectively. (The reader should be warned that despite its suggestive name, c2

is not the second Chern class of the representation θ, but only up to lower filtration.
Thus the choice of c2 is not canonical; this is the price we pay to obtain explicit
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relations.) Then K(n)∗(BG) ∼= K(n)∗[y1, y2, c2]/R where the relations R can be
derived from the relations introduced in the spectral sequence by the differentials
d3 and d2n+1−1, and the filtration drop described above. Recall that q is either w,
w + x2 or w + y2, depending on whether G is dihedral, semidihedral or quaternion,
and note that it does not make a difference whether ε is 0 or 1, since at E∞, the

class w2Nn

is annihilated by any class of positive horizontal degree. Thus we obtain
the following list of relations (where we include the case N = 1 for completeness,
see also [7] and [8]):

(1) y2n

1 , y2n

2 , vny1c
2n−1

2 = vny2c
2n−1

2 = y1y2 = v2
nc2n

2 if G = D8

(2) y2n

1 , y2n

2 , vny1c
2n

2 + y2
1 , vny2c

2n

2 + y2
2 , v2

nc2n

2 + y2
1 + y1y2 + y2

2 if G = Q8

(3) y2n

1 , y2n

2 , c
2n−1(2Nn+1)
2 , y1y2 = y2

1 if N > 1 and all three types, and

(a) y1c
2n−1

2 , y2c
2n−1

2 if G is dihedral

(b) y2
1 + vny1c

2n−1

2 , y2
2 + vny2c

2n−1

2 if G is quaternion

(c) y2
1 + vny1c

2n−1

2 , y2
1 + vny2c

2n−1

2 if G is semidihedral

We now turn to extension (3.2), i.e., quasidihedral groups. We have

E2 = H∗(B(Z/2 × Z/2); K(n)∗(BZ/2N )) ∼= F2[x, y]⊗ K(n)∗[z]/z2Nn

,

with x and y dual to s and t, respectively, and z (as usual) the first Chern class
of the standard complex character of Z/2N . As before, we will use comparison
arguments throughout the computation: let i1, i2 and i3 denote the inclusions of
〈s〉, 〈st〉 and 〈t〉 into 〈s, t〉, respectively. Then we get three induced extensions

1 −→ Z/2N −→ Hk −→ Z/2 −→ 1 .

H1 and H2 are cyclic of order 2N+1, whereas H3 = Z/2N × Z/2.

Lemma 2. (a) d3z = (x2y + xy2)U where U is a unit in E3 with d3U = 0.
(b) z2 is a permanent cycle.

Proof. We start with (b). It suffices to show that there is a complex representation
of QD2N+2 restricting to twice the standard representation on the fiber. Set

θ(s) =

(

e 0
0 e2N +1

)

, θ(t) =

(

0 1
1 0

)

where e = exp(2πi/2N+1).
To prove (a), observe that z cannot be a permanent cycle: under the map induced
by the natural transformation k(n) −→ HF2, z maps to the polynomial generator of
H∗(BZ/2N ;F2), which has to transgress to the zero line (otherwise the dimension
of H3(BQD2N+2 ;F2) becomes too big). To actually compute d3z, we compare
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the spectral sequence of (3.2) to both the mod 2 cohomology spectral sequence as
above and the Morava K-theory spectral sequences of the three extensions induced
by i1, i2 and i3. In every one of them, the only nontrivial differential is d2n+1−1; in
particular, d3z restricts to zero on all three of them. Since the E3-term of (3.2) is
a tensor product, d3z is a sum of products of classes in H3(BZ/2 × Z/2;F2) and
elements of the Morava K-theory of the fiber of degree zero. Let αx3 + βx2y +
γxy2 + δy3 be an arbitrary class in H3(BZ/2 × Z/2;F2) and let u denote the one
dimensional generator of H∗(BZ/2;F2). The following table lists the images of x,
y and αx3 + βx2y + γxy2 + δy3 under the restrictions i∗k:

i∗1
i∗2
i∗3

x y αx3 + βx2y + γxy2 + δy3

u 0 αu3

u u (α + β + γ + δ)u3

0 u δu3

Now αx3 + βx2y + γxy2 + δy3 restricts to zero under all three inclusions if and
only if α = δ = 0 and β = γ = 1 or α = β = γ = δ = 0. In other words,
d3z is divisible by x2y + xy2. Together with the above observation that d3z is not
zero in the cohomology spectral sequence, that is not zero modulo vn, this shows

d3z = (x2y+xy2)(1+R), where R 6= 1 is an element of degree zero in K(n)∗[z]/z2Nn

.
Using d3d3 = 0, we can conclude that there are no summands of R containing an
odd power of z as a factor (since d3 is nontrivial on odd powers one otherwise gets
relations in the E3-term, contradicting its structure). Hence, 1+ R is a cycle for d3

and, since R is nilpotent, a unit in K(n)∗[z]/z2Nn

. �

As a consequence of part (a) of the lemma, zU−1 hits x2y + xy2, so all the
mixed powers of x and y of degree at least three become identified from the E4-
page on. As in the previous calculations, E4 is detected by the E4-pages of the
spectral sequences of the extensions induced by i1, i2 and i3; thus the next nontrivial
differential is d2n+1−1. This differential kills all remaining odd dimensional classes,
hence the AHSSS collapses at the E2n+1−1-page. Note that xy is a permanent
cycle. The only remaining question is that of possible extension problems. Using

comparison to the three induced extensions again yields v
k(N)
n z2Nn

= x2+εvn(xy)2
n

where k(N) = (2Nn − 1)/(2n − 1) and ε = 0 or 1. Note that x2 is the ”extension
class” of (3.2) in the sense that it is the class the exterior generator of the mod
2 cohomology of the fiber transgresses to in the mod 2 cohomology version of the
spectral sequence. Finally, let y1, y2 and c2 denote the classes represented by xy, y2

and z2, respectively; again, c2 is a Chern class only modulo lower filtration. Then as

a consequence of x2y = xy2 and the filtration drop of z2Nn

we obtain the following
relations:

(1) y2n+1
1 , y2n

2 , c2(N+1)n−1

2

(2) y2
1 = y1y2 = v

k(N)
n y1c

2Nn−1

2 = v
k(N)
n y2c

2Nn−1

2 where k(N) = (2Nn − 1)/(2n − 1).



8 BJÖRN SCHUSTER

References

[1] Z. Fiedorowicz and S. Priddy, Homology of Classical Groups over Finite Fields and Their

Associated Infinite Loop Spaces, Lecture Notes in Mathematics 674, Springer-Verlag, Berlin,
Heidelberg, New York.

[2] M. J. Hopkins, N. J. Kuhn and D. C. Ravenel, Morava K-Theories of Classifying Spaces and

Generalized characters for Finite Groups, Algebraic Topology, Barcelona 1990, Lecture Notes
in Mathematics 1509, Springer-Verlag, Berlin, Heidelberg, New York, pp. 186–209.

[3] J. R. Hunton, The Morava K-theories of wreath products, Math. Proc. Cambridge Phil. Soc.
107 (1990), 309–318.

[4] S. Mitchell and S. Priddy, Symmetric product spectra and splittings of classifying spaces, Amer.

J. Math. 106 (1984), 219–232.
[5] D. C. Ravenel, Morava K-theories and finite groups, Contemp. Math. 12 (1982), 289–292.

[6] D. Rusin, The mod 2 cohomology of metacyclic 2-groups, J. Pure Appl. Algebra 44 (1987),

315–327.
[7] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Al-

gebraic Topology, Arcata 1986, Lecture Notes in Mathematics 1370, Springer-Verlag, Berlin,
Heidelberg, New York, pp. 396–408.

[8] M. Tezuka and N. Yagita, Complex K-theory of BSL3(Z), K-Theory 6 (1992), 87–95.

[9] N. Yagita, On the Steenrod algebra of Morava K-theory, J. London Math. Soc. 22 (1980),
423–438.
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