
ON THE MORAVA K-THEORY OF M12

BJÖRN SCHUSTER

Abstract. We show that for all n and all primes p, the Morava K-theory of
the classifying space of the Mathieu group M12 is generated by transfers of

Euler classes.

1. Introduction

In this note, we add to the growing list of calculations of the Morava K-theory
of classifying spaces of finite groups by considering the 2-Sylow subgroup of the
Mathieu group M12. We mainly work with mod 2 Morava K-theory; this is a
periodic, complex oriented cohomology theory with coefficients K(n)∗ ∼= F2[vn, v

−1
n ]

with vn of degree −2(2n− 1). It has a complex orientation x such that the 2-series
of the asociated formal group law has the form [2](x) = vnx

2n

. At some point we

may refer to the ‘integral’ version K̃(n) with coefficients K̃(n)∗ ∼= WF2n [vn, v
−1
n ]

where WF2n is the ring of Witt vectors over F2n .

The Mathieu group M12 is a simple group of order 96 040 = 26 · 33 · 5 · 11; a
presentation of a 2-Sylow subgroup is e.g.

G = 〈a, b, c, d | a4 = b4 = c2 = d2 = [a, b] = [c, d] = 1, cac = b, dad = a3, dbd = b3〉 .

Thus G is a semidirect product of 〈a, b〉 ∼= C4×C4 with 〈c, d〉 ∼= C2×C2. Our main
result is as follows. Recall from [2] that a finite group is called K(n)-good (at the
prime p) if its mod p Morava K-theory is generated by transfers of Euler classes
of G.

Theorem. Let G be a 2-Sylow subgroup of M12. Then G is K(n)-good.

In particular, this implies that K(n)∗(BG) is concentrated in even degrees, so that
the K(n) Euler characteristic

χn,2(G) = rankK(n)∗ K(n)even(BG)− rankK(n)∗ K(n)odd(BG)

coincides with the rank.
The other p-Sylow subgroups of M12 are the extraspecial group of order 27 and
exponent 3 and the cyclic groups of order 5 and 11, all of which have good Morava
K-theory at the respective prime. As the classifying space of M12 is a p-local stable
summand of BG, one obtains

Corollary. M12 is K(n)-good for any prime p.

In the next section we shall describe the method of calculation. Section 3 will pro-
vide the necessary prerequisites about the Morava K-theory of a certain subgroup
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of G; this material is not new (see [9]). The main theorem is then proved in Sec-
tion 4. In an appendix we calculate the Morava K-theory Euler characteristic of G,
which by then has been seen to coincide with the rank.

2. Outline of the calculation

We propose to calculate the Morava K-theory of G in two stages: Since the Morava
K-theories of the groups of order 32 are known, at least additively ([9]), one can
attempt to compute the Serre spectral sequence for a suitable extension with a C2

on top. G contains several index 2 subgroups; for no particular reason we chose
H := 〈a, b, d〉 = N o d with N = 〈a, b〉. Then one has a split extension

(2.1) 1 - H - G - 〈c〉 - 1

with 〈c〉 ∼= C2 whose associated Serre spectral sequence we want to compute. We
might equally well have started with either K := 〈a, b, c〉 or L := 〈a, b, cd〉, both
of which are isomorphic to the wreath product C4 o C2, which was among the first
nonabelian groups whose Morava K-theory was computed ([3, 2]).
To begin with, we have to know K(n)∗(BH), as a module for K(n)∗[C2]. The
calculation of the additive structure of K(n)∗(BH) was already outlined in [9]: the
Serre spectral sequence for the extension 1→ N → H → 〈d〉 → 1 is as simple as one

might hope, in the sense that E0,∗
2 = H0(〈d〉;K(n)∗(BN)) consists of permanent

cycles. To see that, note that K(n)∗(BN) decomposes as a K(n)∗[C2]-module as
a direct sum F ⊕ T of free and trivial summands whose corresponding invariants
are transfers of Euler classes. Thus E2

∼= F 〈d〉 ⊕ T [u] with u ∈ H1, and the only

differential is d2n+1−1u = vnu
2n+1

. Such a behaviour of the spectral sequence has
sometimes been called ‘simple’, e.g. in [3]. We shall recall this calculation in the
next section.
From the group structure it is evident how c acts on the E2-page, and hence on
the E∞-page of this spectral sequence. Thus we obtain the action not quite on
K(n)∗(BH), but at least on the associated graded. This module again decomposes
into free an trivial summands, and if we can show that all invariants are transfers of
Euler classes, the same will hold for the unfiltered module, since unfiltering can only
result in combining two trivial modules to form a free module. Thus the analysis
of the graded module will prove sufficient to show that the Serre spectral of (2.1) is
again ‘simple’, finishing the proof. A calculation of the Euler characteristic, which
is deferred to an appendix, will then show that the associated graded is indeed
isomorphic to K(n)∗(BH) as a 〈c〉-module.

Notational conventions. For the sake of leaner formulas we set vn = 1, which means
that degrees have to be taken modulo 2(2n−1). We also assume n ≥ 2 throughout.

3. The Morava K-theory of H

We begin this section with a detailed analysis of K(n)∗(BC4) as a module for the
action by inversion, i.e., s 7→ s−1 for s a generator of C4. Recall that K(n)∗(BC4) ∼=
K(n)∗[z]/(z22n

) where z is the Euler class of a generator of the complex represen-
tation ring of C4. On the level of Morava K-theory, the action translates to z being
mapped to [−1](z), the formal group law inverse of z. Using the formula

x1 +K(n)x2 = x1 +x2 +
(
x1x2 +(x1 +x2)(x1x2)2n−1

)2n−1

mod
((

(x1 +x2)x1x2

)22n−2)
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for the formal group law, given as Lemma 2.2 (ii) in [1] (also see [8, Lemma 3.1 (ii)],

one obtains, calculating modulo [4](z) = z22n

,

(3.1) [−1](z) = [3](z) = z +K(n) [2](z) = z +K(n) z
2n

= z + z2n

+ z22n−1+2n−1

which immediately implies

(3.2) z + [−1](z) =
(
z · [−1](z)

)2n−1

mod z22n

.

Remark. Equation (3.2) reflects part of the multiplicative structure of the Morava
K-theory of the dihedral group D8: if c1 and c2 denote the first and second Chern
classes of the irreducible two-dimensional representation of D8, then c1 and c2
restrict to z + [−1](z) respectively z · [−1](z), and c1 − c2

n−1

2 lies in the kernel of
restriction to C4; see e.g. [8, Section 4].

The next result describes K(n)∗(BC4) as a module for K(n)∗[C2].

Lemma 3.1. (a) K(n)∗(BC4) decomposes into 22n−1−2n−1 free and 2n trivial
summands.

(b) The free summands are given by 〈zk, [−1](zk)〉 for 1 ≤ k < 22n−1 and
k 6≡ 0 (2n). The invariants of the free summands are powers of z · [−1](z).

(c) The trivial summands are generated by
(
z · [−1](z)

)k
, 0 ≤ k < 2n−1, and

the transfer classes TrC4

C2
(u2`+1), 0 ≤ ` < 2n−1, where u = ResC4

C2
(z).

Proof. (a) The decomposition can be recovered from the rank of K(n)∗(BD8):
dihedral groups are ‘good’ (see e.g. [7] or [10]), from which one easiliy deduces
that the Serre spectral sequence for the extension 1 → C4 → D8 → C2 → 1 with
E2 = H∗(C2;K(n)∗(BC4)) ∼= FC2 ⊕ T [t], where F stand for the free summands, T

for the trivial summands, and t ∈ E0,1
2 , has only one differential d2n+1−1t = t2

n+1

.

Thus E∞ ∼= FC2 ⊕ T [t2]/(t2
n+1

). The rank of K(n)∗(BD8) being 3 · 22n−1 − 2n−1

[7], one obtains the numbers claimed.
(b) For k as described, the modules 〈zk, [−1](zk)〉 are 22n−1 − 2n−1 distinct free
summands. Their invariants are symmetric functions in z+ [−1](z) and z · [−1](z),
whence the second claim follows from (3.2).

(c) These classes are certainly invariant. For the given range of k,
(
z ·[−1](z)

)k
does

not belong to any summand as in (a), and using Frobenius reciprocity, Quillen’s

formula Tr
Cp

1 (1) = [p](x)/x (see [6]), and naturality, the transfer classes

TrC4

C2
(u2`+1) = z2`+1 TrC4

C2
(1) = z2`+1 [4](z)

[2](z)
= z22n−2n+2`+1

are odd powers of z and thus not in the subring generated by z · [−1](z). �

This describes the invariants as either in the image of restriction or transfers. Since
the transfer induces a map of spectral sequences [5] and the spectral sequence of
C2 → C4 → C2 is ‘simple’, these transfer classes are permanent cycles, giving
independent confirmation for the behaviour of the spectral sequence asserted in the
proof of (a). In fact all invariants in the image of restriction, but in the present
form they are easier to work with.
The group H = 〈a, b, d〉 = N o 〈d〉 is the group number 34 in the Hall-Senior list;
its Morava K-theory was seen to be ‘good’ in [9]. The easiest way to see that it
is concentrated in even degrees is by appealing to the calculation of K(n)∗(BD8).
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The group H can be mapped injectively into a product of two copies 〈a, d1〉×〈b, d2〉
of D8 (with d1ad1 = a3, etc.), by sending d to (d1, d2). Since D8 is good, a theorem

of Kriz [4, Theorem 2.1] implies that the integral Morava K-theory K̃(n)∗(BC4) ∼=
K̃(n)∗[z]/([4](z)) decomposes as a direct sum of free and trivial modules for the

action of the quotient C2. Thus the same is true for K̃(n)∗(BN) as a module for 〈d〉,
which by using Kriz’s theorem again implies that K(n)∗(BH) is concentrated in
even degrees. Our analysis from the previous section even yields that K(n)∗(BH)
is generated by transfers of Euler classes, i.e., H is ‘good’. The Serre spectral
sequence of the extension

1 −→ N −→ H −→ 〈d〉 −→ 1

has E2 = H∗(〈d〉;K(n)∗(BN)), with K(n)∗(BN) ∼= K(n)∗(BC4) ⊗K(n)∗ (BC4)
decomposing as F ⊕ T , a sum of free and trivial modules as before. All invariants
are either restrictions under the composite N → H → D8 ×D8 or transfers from
〈a2, b2〉, as the following application of Frobenius reciprocity and naturality of the
transfer shows:

Lemma 3.2. Let z be a generator of K(n)∗(BC4) and u = ResC4

C2
(z). Then

TrN〈a2,b2〉(u
k ⊗ ul) = Tr

〈a〉
〈a2〉(u

k)⊗ Tr
〈b〉
〈b2〉(u

`) .

Proof. In the following calculation, let π × π : 〈a, b〉 → 〈ā, b̄〉 denote the obvious
projection and pr2 the projection onto the second factor. Then π∗(z̄) = [2](z) for
the generator z̄ of K(n)∗(BC2), and

TrN〈a2,b2〉(u
k ⊗ ul) = TrN〈a2,b2〉

(
ResN〈a2,b2〉(z

k ⊗ zl)
)

= zk ⊗ zl · TrN〈a2,b2〉(1)

= zk ⊗ zl · (π × π)∗Tr
〈ā,b̄〉
1 (1)

= zk ⊗ zl · (π × π)∗Tr
〈ā,b̄〉
〈ā〉

( [2](z̄)

z̄

)
= zk ⊗ zl · (π × π)∗

(
[2](z̄)

z̄
⊗ 1 · Tr

〈ā,b̄〉
〈ā〉 (1)

)
= zk ⊗ zl · (π × π)∗

(
[2](z̄)

z̄
⊗ 1 · pr∗2 Tr

〈b̄〉
1 (1)

)
= zk ⊗ zl · (π × π)∗

(( [2](z̄)

z̄
⊗ 1
)
·
(

1⊗ [2](z̄)

z̄

))
= (zk ⊗ zl) ·

( [4](z)

[2](z)
⊗ [4](z)

[2](z)

)
= zk Tr

〈a〉
〈a2〉(1)⊗ zl Tr

〈b〉
〈b2〉(1)

= Tr
〈a〉
〈a2〉(u

k)⊗ Tr
〈b〉
〈b2〉(u

`) . �

Again, all invariants are permanent cycles. Thus the spectral sequence is ‘simple’
and one obtains an additive isomorphism

(3.3) K(n)∗(BH) ∼= F 〈d〉 ⊕ T [x]/(x2n

)

where x represents the Euler class of the nontrivial complex character of 〈d〉. Thus
K(n)∗(BH) is generated by transfers of Euler classes.
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There is no a priori reason for this to be an isomorphism of modules for the action
of c. We note though that c acts trivially on x.

Remark. From this description we can recover the rank of K(n)∗(BH): each trivial
module contributes 2n, and each free module 1, so that

rankK(n)∗ K(n)∗(BH) =
1

2
16n + 8n − 1

2
4n .

4. Proof of the theorem

In order to prove the theorem, it suffices to show that the vertical edge in the Serre
spectral sequence associated to extension (2.1) consists of permanent cycles. This
vertical edge is given by the invariants of the action of c on the Morava K-theory
of H,

E0,∗
2 = H0(〈c〉;K(n)∗(BH)) ∼= K(n)∗(BH)〈c〉 .

For the moment, we shall pretend that the isomorphism (3.3) is as 〈c〉-modules. As
remarked earlier, this need only be true up to extensions, but if we can show that
all the invariants pertaining to this module structure are permanent cycles, we are
done: the only thing that could happen is that two trivial modules of this graded
structure combine to a free module, whose invariant is already taken care of.
We now consider the action of c on the 〈d〉-invariants. Since x is represented by an
Euler class which is clearly invariant under c, it is enough to analyse the restrictions
of the invariants to K(n)∗(BN). As above, let F and T denote the free and trivial
parts of K(n)∗(BN) as 〈d〉-module. Since c acts by interchanging the two factors
of N , it appears convenient to rearrange the summands as follows. Let F i and T j

denote the trivial and free modules in the decomposition of K(n)∗(BC4), then

F =
⊕
i<j

Aij ⊕
⊕
k

Bkk ⊕
⊕
`,m

C`m

T =
⊕
i<j

Dij ⊕
⊕
k

Ekk

where

Aij = F i ⊗ F j ⊕ F j ⊗ F i , Bkk = F k ⊗ F k , C`m = F ` ⊗ Tm ⊕ Tm ⊗ F `

Dij = T i ⊗ T j ⊕ T j ⊗ T i , Ekk = T k ⊗ T k

Each C
〈d〉
`m is a free 〈c〉-module, as is Dij , whereas A

〈d〉
ij is a sum of two free 〈c〉-

modules.

Lemma 4.1. The invariants belonging to the free summands are in the image of
restriction.

Proof. Indeed, they are in the image of ResGH TrGH . �

We are left with the summands of type B and E. Each Ekk ia a trivial 〈c〉-module,

and B
〈d〉
kk is the sum of two trivial modules .

Lemma 4.2. The modules Ekk consist of permanent cycles.

Proof. According to Lemma 3.1, we have to consider two types of classes:

(i) zk · [−1](zk) ⊗ zk · [−1](zk), where z is the Euler class of a generator ρ of
the complex representation ring of C4, and
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(ii) Tr(uk)⊗ Tr(uk), with u = ResC4

C2
(z).

For classes of type (ii), consider the subgroup M := 〈a2, b2, c〉 × 〈d〉 ∼= D8 × C2 of
G. Let ∆ be the two-dimensional irreducible complex representation of D8 and η
the nontrivial complex character of C2, then ∆ restricts to η⊗ 1 + 1⊗ η on 〈a2, b2〉,
hence its Euler class e(∆) to e(η)⊗ e(η) = u⊗ u. Thus

ResGN TrGM
(
e(∆)k ⊗ 1

)
= TrN〈a2,b2〉ResM〈a2,b2〉

(
e(∆)k ⊗ 1

)
= TrN〈a2,b2〉

(
(u⊗ u)k

)
= Tr

〈a〉
〈a2〉(u

k)⊗ Tr
〈b〉
〈b2〉(u

k)

using the double coset formula and Lemma 3.2. For (i), observe that G has a
complex representation χ that restricts to ρ ⊗ ρ + ρ−1 ⊗ ρ−1 + ρ−1 ⊗ ρ + ρ ⊗ ρ−1

on N . The representation ρ⊗ ρ of N is fixed under the action of c, hence extends
to a representation κ of the wreath product K = 〈a, b, c〉; for the same reason
ρ−1⊗ ρ−1 extends to a representation κ′ = κd of K. Similarly, ρ−1⊗ ρ and ρ⊗ ρ−1

are invariant under cd, whence they extend to representations λ and λ′ = λc of
L := 〈a, b, cd〉 ∼= C4 o C2. Now let

χ := IndG
K(κ) + IndG

L (λ) ;

since N\G/K = N1K tNdK and N\G/L = N1L tNcL,

ResGN (χ) = ResKN (κ) + ResKN (κd) + ResLN (λ) + ResLN (λc)

= ρ⊗ ρ+ ρ−1 ⊗ ρ−1 + ρ−1 ⊗ ρ+ ρ⊗ ρ−1

= (ρ⊗ 1 + ρ−1 ⊗ 1)(1⊗ ρ+ 1⊗ ρ−1) .

The Euler class of χ restricts to(
z · [−1](z)

)
⊗
(
z · [−1](z)

)
)

as required, and similarly for the kth powers. �

Lemma 4.3. The 〈c〉-invariants of the modules B
〈d〉
kk consist of permanent cycles.

Proof. By Lemma 3.1 again, two types of elements have to be considered.

(i) yk = zk ⊗ zk + [−1](zk)⊗ [−1](zk),
(ii) wk = zk ⊗ [−1](zk) + [−1](zk)⊗ zk.

For (i), let ρ as above denote a generator of the representation ring of C4. Then
ρ⊗1+1⊗ρ ∈ RN is invariant under the action of c, hence extends to a representation
σ of K = 〈a, b, c〉, with

ResKN e(σ) = e
(
ResKN (σ)

)
= e(ρ⊗ 1 + 1⊗ ρ) = e(ρ⊗ 1)e(1⊗ ρ) = z ⊗ z

where e( ) stands for the Euler class. Since N\G/K = N1K t NdK, the double
coset formula gives

ResGN TrGK
(
e(σ)

)
= ResKN

(
e(σ)

)
+ ResKN

(
d · e(σ)

)
= (1 + d)(z ⊗ z)
= z ⊗ z + [−1](z)⊗ [−1](z) = y1 .

For k > 1, replacing ρ by a sum of k copies of ρ yields the desired result.
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In case (ii), we consider the subgroup L = 〈a, b, cd〉 ∼= C4 o C2. Here ρ−1 ⊗ ρ is
invariant under cd and thus extends to a representation τ of L. Just as above,
ResLN

(
e(τ)

)
= [−1](z)⊗ z and

ResGN TrGL
(
e(τ) = (1 + d)([−1](z)⊗ z) = [−1](z)⊗ z + z ⊗ [−1](z) = w1 .

For k > 1, argue as above with kρ. �

We have thus seen that all elements of the vertical edge of the Serre spectral se-
quence associated to the extension (2.1) are permanent cycles, the spectral sequence
must therefore be ‘simple’. Since all generators of E∞ are represented by transfers
of Euler classes, we are done.

Remark. The decomposition of the E∞ page of the spectral sequence converging
to K(n)∗(BH) as a 〈c〉-module into free and trivial modules does indeed coincide
with the decomposition of K(n)∗(BH), not just up to filtration: based on this
(hypothetical) decomposition, one can calculate the rank of E∞ by the same method
as used in the concluding remark of the previous section. As there are 1

416n+ 1
28n−

5
44n + 1

22n free and 2 · 4n − 2n trivial summands, on obtains

(4.1)
1

4
16n +

5

2
8n − 9

4
4n +

1

2
2n

which coincides with the Euler characteristic computed in the appendix. Were there
more free modules, the rank of E∞ would be smaller.

Finally, an analysis of the degrees of the generators showsK(n)∗(BG) to be ‘equidis-
tributed’ in the sense that

rankK(n)∗ K(n)2i(BG) = rankK(n)∗ K(n)0(BG)− 1

for i = 1, 2, . . . , 2n − 2 (recall hat we are grading cyclically). Thus the rank deter-
mines the additive structure, as is the case in all known examples of good p-groups.

Appendix: The K(n)-Euler characteristic

We use the method of computing the Euler characteristic based on [2, Theorem D]:

χn,2(G) =
∑
A≤G

µ(A)

[G : A]
χn,2(A)

where the sum ranges over all abelian subgroups of G and the Möbius function µ
is defined recursively by µ(A) = 1 if A is maximal and∑

A≤A′
µ(A′) = 1 .

Thus we only need to consider the maximal subgroups and their intersections.

Maximal subgroups. There is a unique maximal subgroup isomorphic to C4×C4,
namely N = 〈a, b〉. Secondly, there are four cyclic groups of order eight, coming in
two conjugacy classes:

A1 = 〈ac〉 , A2 = Ac
1 = 〈bc〉 both containing 〈ab〉 ∼= C4,

A3 = 〈acd〉 , A4 = Ad
3 = 〈a3cd〉 both containing 〈ab3〉 ∼= C4,
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Next, there are eight subgroups isomorphic to C4 × C2, in four conjugacy classes;
we list them together with their subgroups C4:

B1 = 〈ab, c〉 ⊃ 〈ab〉, 〈abc〉 , B2 = 〈ab, a3bc〉 ⊃ 〈ab〉, 〈a2c〉 ,
B3 = 〈ab3, cd〉 ⊃ 〈a3b〉, 〈ab3cd〉 , B4 = 〈ab3, abcd〉 ⊃ 〈a3b〉, 〈a2cd〉 ,
B5 = 〈a2c, d〉 ⊃ 〈a2c〉, 〈a2cd〉 , B6 = 〈abc, b2d〉 ⊃ 〈abc〉, 〈a3bcd〉 ,
B7 = 〈a2c, abd〉 ⊃ 〈a2c〉, 〈a3bcd〉 , B8 = 〈abc, ab3d〉 ⊃ 〈abc〉, 〈a2cd〉 ,

with B1 ∼ B2, B3 ∼ B4, B5 ∼ B6, B7 ∼ B8 (all via b).

Finally, there are eight elementary abelian aubgroups of rank three, coming in five
conjugacy classes:

E1 = 〈a2, b2, d〉 , E2 = 〈a2, b2, abd〉 ,
E3 = 〈a2, b2, ad〉 E4 = 〈a2, b2, bd〉 ,
E5 = 〈a2b2, c, d〉 , E6 = 〈a2b2, a3bc, b2d〉 ,
E7 = 〈a2b2, c, abd〉 , E8 = 〈a2b2, a3bc, ab3d〉 ,

with E3 ∼ E4, E5 ∼ E6, E7 ∼ E8.

Intersections of maximal subgroups. There are six cyclic subgroups of order
four and nine rank two elementary abelians appearing as intersections:

〈ab〉 ⊂ A1, A2, B1, B2, N 〈a3b〉 ⊂ A3, A4, B3, B4, N

〈abc〉 ⊂ B1, B6, B8 〈a2c〉 ⊂ B2, B5, B7

〈ab3cd〉 ⊂ B3, B6, B7 〈a2cd〉 ⊂ B4, B5, B8

and

〈a2, b2〉 ⊂ E1, E2, E3, E4, N

〈a2b2, c〉 ⊂ B1, E5, E7 〈a2b2, a3bc〉 ⊂ B2, E6, E8

〈a2b2, cd〉 ⊂ B3, E5, E8 〈a2b2, abcd〉 ⊂ B4, E6, E7

〈a2b2, d〉 ⊂ B5, E1, E5 〈a2b2, b2d〉 ⊂ B6, E1, E6

〈a2b2, abd〉 ⊂ B7, E2, E7 〈a2b2, ab3d〉 ⊂ B8, E2, E8

Finally, the centre is contained in all of the above. This completes the description
of the poset of abelian subgroups.

Möbius function and Euler characteristic. The maximal subgroups N , Ai,
Bj , Ek all have µ = 1. The groups 〈ab〉, 〈a3b〉, 〈a2, b2〉 are each contained in
five maximal subgroups, hence have µ = −4. All other intersections in above list
(except Z) are contained in three maximal subgroups and thus have µ = −2; there
are 12 such subgroups. Finally, from

1 = µ(Z) + 12 · (−2) + 3 · (−4) + 21

one obtains µ(Z) = 16. Thus

χn,2(G) =
1

4
16n +

5

2
8n − 9

4
4n +

1

2
2n .
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