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Preface

The theme of this book is calculating Morava K-theory of classifying spaces, in
particular of finite groups. This topic has roots both in homotopy theory and
in group cohomology; in fact, given the lack of a proper geometric model for
Morava K-theory, many calculations have the flavour of group cohomology with
complicated coefficients.
There are many such computations in the literature, and apart from offering some
new ones, it was also intended to give a survey of the known results.
The first part of the book, consisting of two chapters, contains the background
necessary for the calculations carried out in the later chapters. For most of the
theory presented there I do not claim originality. A new feature though is an
adaptation of the Rothenberg-Steenrod spectral sequence to central products of
groups; this leads to various simplifications of existing work.
In Part 2 the techniques of Part 1 are applied to concrete calculations. The first of
its chapters is intended as a survey of results scattered over the literature. Some
new proofs are given, but mostly the results are just stated, with one exception:
Kriz’s celebrated example of a group with odd Morava K-theory is presented with
full details. Examples of groups whose Morava K-theory is completely determined
by the representation ring of the group are given next. The following chapter
concentrates on the prime 2, were new calculations, sometimes computer assisted,
are performed. Since it seemed to fit with the rest of the material, an earlier
paper on the structure of the Morava K-theory of an elementary abelian group as
a module for its automorphism group was also reproduced. The book ends with
a few preliminary observations on discrete groups; this area in particular needs
further study.

I am grateful to several people: Stewart Priddy, who got me interested in this area
of mathematics many years ago, David Green, John Hunton, Ian Leary, Nobuaki
Yagita, and Erich Ossa for many stimulating conversations and his never ending
patience.
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Introduction

Morava’s extraordinary K-theories have been around since the early seventies and
have proven their usefulness in homotopy theory. They play a prominent role in
much of the recent work in this area of mathematics, as evidenced by the beautiful
nilpotence and periodicity theorems of Hopkins, Devinatz, and Smith. From this
point of view, the Morava K-theories K(n) can be considered as filtering out
certain layers of p-local stable category, the so-called chromatic strata. Adding
further to their charm, they tend to be computable, as evidenced e.g. by Ravenel
and Wilson in their computation of the Morava K-theory of Eilenberg-Mac Lane
spaces, always a good test case. This brings us closer to the main theme of this
book: calculating Morava K-theories of classifying spaces.
Although the Morava K-theories are fairly well understood, we do not have good
models for the spaces representing them, with exception of K(1), which is closely
related to complex K-theory. The (so far elusive) hope is that analysing such
natural spaces as BG’s might shed some light on their nature.
The only known constructions of the spectraK(n) are purely homotopy theoretic.
In particular, we do not have a geometric interpretation akin to the theory of
vector bundles for complex K-theory. This considerably complicates matters,
including calculations. On the other hand, there is an intriguing connection
to number theory. As any complex oriented cohomology theory, K(n) comes
equipped with a formal group law. The n-th (integral) Morava K-theory realises
the Lubin-Tate formal group of height n, which plays a prominent role in the
theory of abelian extensions.

In this work we are mainly concerned with classifying spaces of finite groups. It
was Ravenel who realised that the Morava K-theory of a finite group G always
has finite rank [R]. Some time later, Kuhn calculated the rank of K(n)∗(BG)
when G has an abelian Sylow p-subgroup [Ku1]. Since the mid eighties, a preprint
by Hopkins, Kuhn and Ravenel circulated, which proved highly influential, long
before the final version appeared [HKR]. The results were startling: Although
there is no bundle theory for Morava K-theory, there is a character theory associ-
ated to a variant of Morava K-theory, often called Morava E-theory. The algebra
E∗(BG) may thus be studied using these ‘generalised characters’ in much the
same way one uses Artin’s theorem for the complex representation ring. Fur-
thermore, they calculated the K(n) Euler characteristic, i.e. the difference of the
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2 Introduction

ranks of the even-dimensional and the odd-dimensional part of K(n)∗(BG), in
terms of the subgroup structure of G. Some examples calculated up till then
(e.g. [HKR, Hu1, TY2, TY3, T, Y3]) led them to conjecture that the Morava K-
theory of a finite group is always concentrated in even degrees. This conjecture
in turn prompted many new calculations which seemed to support it, until finally
Kriz came up with a counterexample [K]: he showed that the group of unipotent
(4 × 4)-matrices over F3 has odd second Morava K-theory. (It is perhaps ironic
that the counterexample to the conjecture appeared before the paper of its insti-
gators.) This example was later generalised by Kriz and Lee to all odd primes
and all n > 2 [KL].
After it became clear that the conjecture was dead, the interest turned more to
structural questions, but new computations were still carried out ([Sc, Y5, Hu2,
St1, St3, B3, St4, GS], to mention a few). However, there are still relatively few
groups whose Morava K-theory is known.

This book is mainly about calculating K(n)∗(BG), and not intended to be a
comprehensive account of the subject. Much of the material presented here is
other people’s work. When embarking on this project, our intention was to give
a survey of the known computations on the one hand, and add a few more.
For example, we consider all 51 groups of order 32 (although for some we used
computer calculations, which restricted us to K(2) in these cases).
So the first question to be addressed is: how does one calculate Morava K-theory
of classifying spaces? There are in fact many possible approaches: an assortment
of spectral sequences, generalised character theory, duality, Chern approxima-
tions, transfer methods, and finally computer calculations implementing some of
the above methods. Pioneering work on the Serre spectral sequence of fibrations
over BCp was instrumental in Kriz’s construction of his counterexample: the
question of whether the Morava K-theory of the total space is concentrated in
even degrees turns out to depend solely on the structure of the (integral) Morava
K-theory of the fibre (assumed to be even degree) as a module for Cp; if this
module is a permutation module, then K(n)odd(E) is zero, otherwise there are
classes of odd degree. This condition is something one may check on the com-
puter, once one overcomes the basic difficulty of determining the action. This
is not quite as easy as it may sound, the formal group law complicates matters,
and furthermore one usually needs to know K(n)∗(F ) as an algebra. There are
not many groups where such knowledge is available. At the other extreme, one
might be tempted to evade the problem of calculating with the formal group law
by considering central extensions. However, this is rarely a viable approach, since
one needs the (ordinary) cohomology of the quotient as input.
A natural source of complex oriented cohomology of BG’s are Chern classes
of complex representations of G. This led Strickland to construct his Chern
approximations [St4]: consider all irreducible representations of G, introduce
formal variables for each Chern class of these representations, and impose all
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relations dictated by relations between the representations and all λ-operations.
This results in an object of finite rank, and is sometimes computable. In fact, the
only complete calculations of algebra structures we are aware of use this method;
in these cases, the approximation turns out to be exact.
Bakuradze and Priddy try a different approach: they try to find multiplicative
relations between Chern classes using formal properties of the transfer. They
come up with a formula linking the transfer of a Chern classes of a representation
of (index p) subgroups with Chern classes of the induced representation. Since
irreducible representations of p-groups are always induced from subgroups, one
obtains relations this way.

Almost all groups considered here are p-groups, mainly for one reason: the classi-
fying space of a finite group G is always a stable summand of the classifying space
of a Sylow p subgroup P of G. In a sense, p-groups are the building blocks of
finite groups, as evidenced by the many decomposition theorems in the literature.

The reader will notice that we refrain from using the algebro-geometric language
of formal schemes. This deprives us of its inherent elegance of exposition as
well as some geometric insight. We do so for two reasons: one, since the main
emphasis is on calculations, and two, we hope that writing in purely algebraic
terms renders the book more accessible.

Organisation of the book

This monograph is divided into two parts. Part 1 collects the prerequisites for
the calculations in Part 2. Although we intended this book to be largely self-
contained, the first part came out rather condensed, the principal reason being
that in many instances, we thought that any attempt on our side to improve on
the original exposition would be futile. Chapter I gives a rudimentary account
of complex oriented cohomology in general and Morava K-theory in particular.
Chapter II describes the methods employed in the subsequent calculations of
Part 2. One new feature is that we describe a way to use the Rothenberg-Steenrod
spectral sequence for central products.

The heart of the book is clearly the second part. Chapter III surveys many known
computations. When we could offer a new approach, we have generally done so,
but in many cases we chose not to redo the original calculation, but rather state
the results. There is one notable exception to this rule: we felt that without a
detailed account of Kriz’s counterexample this work would be incomplete. The
next chapter gives a few worked examples of Chern approximations, before turn-
ing to 2-primary calculations in Chapter V. This chapter contains several new
calculations, notably the groups of order 32, many of which are not covered in the
existing literature. The vain hope was that by going through the list, we might
find a counterexample to the even-dimensionality conjecture at the prime 2: to
this date, no such example is known.
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Chapter VI is an adaption of [LS]; it studies the question when the Morava K-
theory of an elementary abelian group V is a permutation module for (subgroups
of) Aut(V ). Chapter VII makes a few obervations on discrete groups.

Sins of omission

We already said at the beginning that this book is far from comprehensive, nor
was it intended to be. Consequently, several important topics were left out, of
which we now list but a few.
Several versions of Eilenberg-Moore spectral sequences have been constructed
by Kriz [K], Bauer (not yet published), Tamaki, and Tanabe [T]; apart from
a passing reference to Tanabe’s work, we fail to mention any of them. This is
mainly since we have not used them in the calculations presented (or do not know
how to employ them to get better results).
For the same reason, we give no account of duality theory; we refer the reader to
Strickland’s paper [St3].
Since we do not use geometric language, we were also unable to include Green-
lees’s and Strickland’s theory of level structures on Morava E-theory of classifying
spaces [GS], which refines some results of [HKR].

Finally, a word on notation. When referring to a numbered statement or equation
within the same chapter, we omit the number of the chapter.
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Background
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Chapter I

Morava K-theories

In this chapter we very briefly collect a few fundamental facts about Morava
K-theories. A more detailed source is Würgler’s survey article [Wü2].

1 Complex oriented cohomology

A multiplicative generalised cohomology theory E is called complex oriented, if
there is a class x = xE ∈ E2(CP∞), called complex orientation, which pulls
back to a generator of the free rank one module E2(CP 1) under the inclusion
CP 1 ⊂ CP∞.
An essentially formal calculation with the Atiyah-Hirzebruch spectral sequence
shows there are isomorphisms

E∗(CP∞) = E∗[[x]]

E∗(CP∞ × CP∞) = E∗[[x1, x2]] .

A similar argument with the Atiyah-Hirzebruch spectral sequence shows

Lemma 1.1 (Adams). Any theory E whose coefficients are concentrated in even
degrees has a complex orientation.

Thus there are plenty of examples, such as

• singular cohomology HR with coefficients in a commutative ring R,

• complex K-theory (but not real K-theory KO),

• complex cobordism MU with coefficients MU∗ = Z[x1, x2, . . . ], |xi| = 2i,

• the Brown Peterson spectrum BP which arises as summand ofMU localised
at a prime p and has coefficients BP∗ = Z(p)[v1, v2, . . . ], |vi| = 2(pi − 1),

• the Johnson-Wilson spectra E(n) with E(n)∗ = Z(p)[v1, . . . , vn−1, vn, v
−1
n ],

among many others.
Complex oriented theories have a theory of Chern classes for complex vector
bundles, constructed as usual via the splitting principle: Let T = S1 × · · · × S1

7



8 I Morava K-theories

(m factors) be a maximal torus in U(m), iterating the above argument gives
E∗(BT ) = E∗[[x1, . . . , xm]]. Define ci as the coefficient of Xm−i in

∏m
i=1(X − xi).

Then

E∗(BU(m)) ∼= E∗[[c1, . . . , cm]] .

The Thom isomorphism theorem holds, too; in fact, one could use this as a
definition: E is complex oriented if and only if any n-dimensional complex vector
bundle ξ → X has a Thom class uξ ∈ E2n(Xξ).
The image of the complex orientation x under the homomorphism induced by
the map µ : CP∞ × CP∞ → CP∞ classifying the tensor product of line bundles
(the H-space multiplication for CP∞) is thus a formal power series in the two
variables x1, x2:

µ∗(x) =: FE(x1, x2)

When the theory E is understood from the context, we shall drop the subscript E.
This power series enjoys the formal properties of a commutative one-dimensional
formal group law, i.e.

F (x, 0) = 0 = F (0, x) Identity

F (x1, F (x2, x3)) = F (F (x1, x2), x3) Associativity

F (x1, x2) = F (x2, x1) Commutativity

The remarkable fact is that the formal group law for MU is universal in the sense
that if F is any formal group law over a ring R, there is a ring homomorphism
MU∗ → R mapping the coefficients of the universal formal group law to those of
F . For more about formal group laws, see [Ha], [Se]. One also uses the suggestive
notation x1 +E x2 instead of FE(x1, x2), and [n]E(x) = x+E x+E · · ·+E x︸ ︷︷ ︸

n

.

2 Morava K-theories

For every prime p and every nonnegative integer n there is a 2(pn − 1) periodic
generalised cohomology theory K(n)∗, called the n-th Morava K-theory. The rep-
resenting spectra K(n), or more precisely their connective analogues k(n), can
be obtained from the Brown-Peterson spectrum BP using the Sullivan-Baas con-
struction. By this construction one can make a new cohomology theory by killing
a regular ideal I in BP∗ ∼= Z(p)[v1, v2, . . .] with deg(vi) = 2(pi−1). Using the ideal
(p, v1, v2, . . . , vn−1, vn+1, vn+2, . . .), one obtains a copy of k(n) with coefficients
Fp[vn]. If p is odd, then there is a unique product map mn : k(n)∧ k(n) → k(n),
turning k(n) into a BP module spectrum with respect to the module structure
induced by the natural map BP → k(n) (also called the Thom map). For the
prime 2 the situation is a bit more involved, but one can show that there are,
up to homotopy, two compatible products, neither of which is commutative; see
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below. One thus has a map

Σ2(pn−1)k(n) −→ k(n) (2.1)

given as the composition

S2(pn−1) ∧ k(n)
vn∧1−−−→ k(n) ∧ k(n)

mn−−→ k(n) ,

choosing either product map when p = 2. Here vn denotes a map representing vn
in homotopy. The homotopy colimit of iterates of this map then is a spectrum
which has vn inverted in its coefficients, and represents periodic Morava K-theory.
It is a commutative ring spectrum for odd primes, by construction, whereas for
p = 2 one has two noncommutative products. Under certain circumstances,
though, e.g. if X is a space whose Morava K-theory is entirely concentrated
in even degrees, both products on K(n)∗(X) agree and are commutative. In
general, the difference between the two products is measured by a higher order
Bockstein operation: For all non negative n there are BP -module spectra P (n)
with P (n)∗ ∼= BP∗/In where In = (p, v1, v2, . . . vn−1) is the n-th invariant prime
ideal of BP∗, see [JW] for details. The spectra P (n) are related by exact triangles
of BP -module maps

P (n)
vn - P (n)

P (n+ 1)

ηn

�

∂n

�

One has the following result due to U. Würgler:

Theorem 2.1 ([Wü1]). Let n ≥ 1 and p = 2. Then there are exactly two
products mn,mn : P (n)∧P (n) → P (n) which make P (n) a BP -algebra spectrum
compatible with the given BP -module structure. Both are associative and have a
two-sided unit. mn and mn are related by the formula

mn = mn ◦ T = mn + vnmn(Qn−1 ∧Qn−1) ,

where T denotes the twist map. Moreover, ηn−1 : P (n − 1) → P (n) is a map
of ring spectra with respect to any admissible product chosen on P (n − 1) and
P (n).

Here Qn−1 = ηn ◦ ∂n is a Bockstein operation of degree 2n − 1. There is a map
λn : P (n) → K(n) which turns K(n)∗ into a P (n)∗-module. Using the exact
functor theorem mod In [Y1], one then gets a natural equivalence

P (n)∗(X)⊗P (n)∗ K(n)∗
∼−→ K(n)∗(X) .
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This is the mod In version of the Conner-Floyd theorem [CF]. Combined with
Theorem 2.1 above one can see that an analogous statement holds for Morava K-
theory, with P (n) replaced by K(n). The failure of either one of the two products
to be commutative is thus measured by

mn −mn ◦ T = vnmn(Qn−1 ∧Qn−1) .

In particular, since the degree of Qn−1 is odd, if X is a space whose Morava
K-theory is concentrated in even dimensions, both products on K(n)∗(X) will
agree and be commutative.

The coefficients K(n)∗ = Fp[vn, v−1
n ] are a graded field in the sense that all its

graded modules are free. Thus Morava K-theories enjoy Künneth isomorphisms,
and there is a linear duality between K(n)-homology and K(n)-cohomology:

K(n)∗(X) ∼= HomK(n)∗(K(n)∗(X), K(n)∗) .

Other variants of Morava K-theory frequently used include an integral version
K̃(n) with coefficients K̃(n)∗ ∼= WFpn [vn, v

−1
n ], where WFpn is the ring of Witt

vectors over Fpn . One can obtain WFpn from the p-adics by adjoining a (pn−1)-st
root of unity ζ.

Finally, there is the so-called Morava E-theory, whose coefficients

En∗ ∼= WFpn [[u1, . . . , un]][u, u
−1] , |ui| = 0 , |u| = 1 ,

represent the universal deformation of a p-typical formal group of height n.

We shall say a bit more about K̃(n) in later sections.

3 The formal group law

Formal group laws over a commutative Fp-algebra R are characterised (up to
isomorphism over the separable closure) by a single invariant called the height: a
formal group law F over such R is of height n if the p-series [p](x) has leading
term axp

n
with a 6= 0.

As an illustration, we give the following well-known formula for the formal group
law for K(n) (with the complex orientation inherited from BP ):

Proposition 3.1. Modulo the ideal generated by xp
n

1 and xp
n

2 , the formal sum
x1 +K(n) x2 for K(n) is

x1 +K(n) x2 = x1 + x2 − vn

p−1∑
i=1

1

p

(
p

i

)
xip

n−1

1 x
(p−i)pn−1

2 .
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Proof. First we recall the formal sum for BP ∗, Brown-Peterson cohomology
[Wi]. Let l be the power series

l(x) =
∑
i≥0

mix
pi

,

where m0 = 1, but the remaining mi’s are viewed as indeterminates, and let
e(x) be the compositional inverse to l, i.e., a power series such that e(l(x)) =
l(e(x)) = x. The BP ∗ formal sum is the power series e(l(x1)+ l(x2)). The K(n)∗

formal sum may be obtained as follows: Take the BP ∗ formal sum, replace the
indeterminates mi by indeterminates vi using the relation

vj = pmj −
j−1∑
i=1

miv
pi

j−i,

set vi = 0 for i 6= n, by which point all the coefficients lie in Z(p), and take the
reduction modulo p. To calculate the K(n)∗ formal sum, it is helpful to set vi = 0
for i 6= n as early as possible, and one may as well set vn = 1, since every term
in x1 +K(n) x2 has degree 2. Solving for the mi’s in terms of the vi’s gives

mi = 0 if n does not divide i,

mni = 1/pi .

Thus to compute x1 +K(n) x2, let e′(x) be the compositional inverse to

l′(x) =
∑
i≥0

xp
ni

/pi ,

and then x1 +K(n) x2 is the mod-p reduction of e′(l′(x1) + l′(x2)).
It is easy to see that

e′(x) ≡ x− xp
n

/p modulo x2pn
,

and so

x1 +K(n) x2 ≡ x1 + x2 − (x1 + x2)
pn

/p modulo (xp
n

1 , x
pn

2 , p) .

The claimed result follows.

A somewhat more subtle calculation carried out in [BV] gives a few more terms;
we shall come back to that where we need to.
For the integral version K̃(n), there exists a complex orientation x satisfying

[−p] eK(n)(x) = −px+ vnx
pn

.
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Recall that WFpn = Zp[ζpn−1] for a primitive (pn − 1)-th root of unity. For any
a ∈ Fpn and any power series α(x) with α(x) ≡ ax mod x2 which commutes with
[−p]F , one has α(x) = [a]F (x), cf. [Se, §3]. If in addition ap

n−1 = 1, it follows
that [a]F (x) = ax and that all coefficients aij of the formal group law

F (x, y) =
∑

aijx
iyj

are zero unless i+ j ≡ 1 mod (pn − 1).
Furthermore, if p > 2, then

[−1]F K̃(n)(x) = −x , [p] eK(n)(x) = px− vnx
pn

.

(This is false for p = 2.)

4 The Atiyah-Hirzebruch spectral sequence

Let A denote the mod p Steenrod algebra, and Qn the n-th Milnor primitive,
defined recursively by Q0 = β and Qn = [P pn−1

, Qn−1] (respectivley Q0 = Sq1

and Qn = [Sq2n
, Qn−1] = Sq∆n+1 for p = 2). Then in the cofibre sequence

· · · → Σ2(pn−1)k(n)
vn−→ k(n)

πn−→ HFp
Qn−→ Σ2pn−1k(n) → · · ·

the Thom map πn : k(n) → HFp (killing vn) induces an isomorphism

H∗(k(n); Fp) ∼= A/AQn ,

and one has Qn = πnQn.

One tool for computations is the Atiyah-Hirzebruch spectral sequence

E2 = H∗(X;K(n)∗) =⇒ E∗(X) .

This is a first and fourth quadrant spectral sequence, and in the case of K(n)
with non-zero rows only in vertical degrees divisible by 2(pn − 1), the degree of
vn. Thus the first potentially non-zero differential is d2pn−1.

Lemma 4.1 ([Y2]). d2pn−1 = vn ⊗Qn.

Proof. Since d2pn−1 ⊗ v−1
n is both a derivation and a stable cohomology opera-

tion, it has to be a scalar multiple of Qn, and checking on lens spaces gives the
result, see [Y2].

For our purposes though the Atiyah-Hirzebruch spectral sequence is of limited
use. Since we want to calculate Morava K-theories of classifying spaces of groups,
we would need the mod p cohomology of the group as input — but the problem
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of calculating the mod p cohomology of p-groups is notoriously hard. In a few
simple cases where not only the cohomology is known but also the action of Qn

easy to describe, one can actually do the calculation. We shall illustrate this with
examples at p = 2 in Chapter III.
Another example where this approach works is A. Yamaguchi’s calculation for
braid groups [Ym].
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Chapter II

Methods of calculation

There are several methods one may employ for calculation: representation theory,
transfer methods, generalised character theory, and various spectral sequences.
Roughly speaking, one first tries to compute K(n)∗(BG) additively, say by a
spectral sequence and/or character theory. To get at the multiplicative structure
one then can use character theory again, or transfer methods, or representation
theory — usually a combination of all of the above.

1 Complex oriented cohomology of finite abelian groups

Let E be a complex oriented cohomology theory with formal group law +E and
Cm a cyclic group of order m. Then the Gysin sequence for the fibration S1 →
BCmBS

1 = CP∞ gives

Lemma 1.1. E∗(BCm) ∼= E∗[[x]]/([m]E(x)) where x is the Euler class of the
standard generator of the complex character ring of Cm.

In particular,

K̃(n)∗(BCp) ∼= K̃(n)∗[x]/(px− vnx
pn

) , and

K(n)∗(BCpk) ∼= K(n)∗[x]/(xp
kn

) .

Thus E∗(BCm) is concentrated in even degrees. Now when E∗ is a (graded) field,
or a complete local ring, then E∗(BCm) is a free E∗-module: this follows from
the formal Weierstraß preparation theorem, whose proof may be found in [La,
Chapter V, §2].

Theorem 1.2. Let R be a commutative ring and I an ideal of R, such that R
is complete in the I-adic topology. Let f(x) be a power series over R such that
f(x) ≡ ε · xd mod (I, xd+1) where ε is a unit in R. Then R[[x]]/(f(x)) is a free
R-module with basis {xi | 0 ≤ i ≤ d − 1}. Furthermore, f factors uniquely
as f(x) = u(x) · w(x) where u(x) is a unit and w(x) a monic polynomial of
degree d.

15
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Thus under the above hypotheses, one has Künneth isomorphisms

E∗(BCm ×X) ∼= E∗(BCm)⊗E∗ E
∗(X)

for arbitrary spaces X. This determines the E-cohomology of finite abelian
groups. More precisely, suppose A = Cm1 × · · · × Cmk

, then

E∗(BA) ∼= E∗[[x1, . . . , xk]]/([m1](x1), . . . , [mk](xk)) .

2 Chern approximations

A good source of cohomology classes for classifying spaces BG are complex rep-
resentations of the group G. Recall from Chapter I that complex oriented coho-
mology theories come with a theory of Chern classes.
Strickland proposes in [St4] to study Morava K-theory of finite groups by com-
paring it to an algebra obtained as follows: take all irreducible complex represen-
tations ρ of G, assign an indeterminate to every Chern class of such ρ, and divide
out by the relations obtained from the product structure of the representation
ring and all λ-operations. He describes the resulting object in geometric terms,
i.e., the resulting formal scheme over the formal group.
Since we have consistently shunned the geometric language, we shall give a much
simplified account of the theory.

2.1 Chern classes of products and exterior powers

Let µ and ρ be complex representations of dimension m and r, respectively.
Let σi(s) and σj(t) denote the elementary symmetric functions in s1, . . . , sm and
t1, . . . , tr. Then the coefficient of Xk in∏

1≤i≤m
1≤j≤r

(
1 +X(si +K(n) tj)

)

is a polynomial in the σi(s) and σj(t), say Pk(σ1(s), . . . , σm(s);σ1(t), . . . , σr(t)).
Similarly, the coefficient of Xk in∏

i1<···<iq

(
1 +X(si1 +K(n) si2 +K(n) · · ·+K(n) siq)

)
is a polynomial Lk in the σi(s).
These power series determine Chern classes of products and exterior powers:

Proposition 2.1. (a) ck(µ⊗ ρ) = Pk
(
c1(µ), . . . , cm(µ); c1(ρ), . . . , cr(ρ)

)
.

(b) ck(λ
qµ) = Lk(c1(µ), . . . , cm(µ)).
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Proof. This follows at once from the splitting principle resp. the very construc-
tion of the Chern class ck of an n-dimensional bundle as the coefficient of Xn−k

in
∏n

i=1(X − ti).

Next, recall the Adams operations on the represenation ring. Let µ be a repre-
sentation of dimension m; set λt(µ) =

∑
i≥0 λ

i(µ)ti (where λ0µ = 1), and define

ψt(µ) = m− t

λ−t(µ)

d

dt
λ−t(µ) .

Then ψlµ is the coefficient of tl in ψt(µ). There are the well-known formulae
linking Adams operations and exterior powers via the Newton polynomials; in
particular, ψk(µ) = µk for any line bundle (one-dimensional representation).
Hence for a direct sum of line bundles one has

ck(ψ
l(µ1 ⊕ · · · ⊕ µm)) = ck(µ

l
1 ⊕ · · · ⊕ µlm) = σk

(
[l](x1), . . . , [l](xm)

)
where xi = c1(µi). Thus

Proposition 2.2. For the K(n) Chern classes one has ck(ψ
pr
µ) = ck(µ)p

rn
.

Definition 2.3. Let ρ1, . . . , ρk be the distinct non-trivial irreducible complex rep-
resentations of G. For each ρi, choose indeterminates cl,i, 1 ≤ l ≤ dim(ρi). De-
fine C(G;K(n)) as the quotient of the K(n)∗-algebra on the cl,i by the relations
imposed by Proposition 2.1.

As a consequence of Proposition 2.2, one gets the following special case of Corol-
lary 10.3 of [St4]. The proof is a paraphrase of the argument given there.

Corollary 2.4. For any finite group G, the rank of C(G;K(n)) over K(n)∗ is
finite.

Proof. It suffices to show that all generators of C(G;K(n)) are nilpotent. Let
e be the exponent of G and pr its p-part, i.e., e = prf with f coprime to p.
Then ψe(µ) = dim(µ) for any representation µ of G. Thus for k ≥ 1, one has
0 = ck(ψ

eµ) = ck(ψ
pr
ψfµ) = ck(ψ

fµ)p
rn

. Now let c• denote the total Chern class;
since we are working modulo p, we find that

1 = c•(ψ
fµ)p

rn

= c•(p
rnψfµ) = c•(ψ

f (prnµ))

(using additivity) and thus ck(ψ
f (prnµ)) = 0 for all k ≥ 1. But when f is coprime

to p, the series [f ](x) is an automorphism of the formal group law; thus ckψ
f = 0

for all k > 0 iff ck = 0 for all k > 0. This implies 1 = c•(p
rnµ) = c•(µ)p

rn
, whence

the claim.

There is an obvious map

chG : C(G;K(n)) −→ K(n)∗(BG)

assigning to ck,i the Chern class ck(ρi). In general, this map is neither injective not
surjective. We call the Chern approximation of G exact if chG is an isomorphism.
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2.2 The example Σ3

This is somewhat trivial, but illustrates the method; more examples are to follow
at a later stage. The representation ring of Σ3 is generated by 1, ε, δ of dimensions
1, 1, 2, respectively, with relations ε2 = 1, εδ = δ, and δ2 = 1+ε+δ. Furthermore,
ψ2δ = 1−ε+δ, ψ3δ = 1+ε, and λ2δ = ε. Let x = c1(ε), y = c1(δ), and z = c2(δ).
First look at p = 2: from ε2 = 1 one immediately concludes 0 = [2](x) = x2n

.
The quickest way to arrive at the remaining relations is using Adams operations:
from 2 = ψ3ψ2δ = ψ3(1−ε+δ) we see 1 = c•(1−ε+δ), where c• denotes the total
Chern class; consequently 1 + x = 1 + y + z and thus y = x and z = 0 for degree
reasons. Thus we recover the obvious isomorphism K(n)∗(BΣ3) ∼= K(n)∗(BC2)
for p = 2.
At the prime 3, ε2 = 1 gives [2](x) = 0, hence x = 0. This implies ck(ψ

2δ) = ck(δ)
for all k. From ψ3δ = 1 + ε we then learn y3n

= z3n
= 0. Now use the splitting

principle, i.e., write δ = λ1 + λ2 and set ti = c1(λi). Then

c1(ψ
2δ) = c1(λ

2
1 + λ2

2) = [2](t1) + [2](t2) = (−t1 +F [3](t1)) + (−t2 +F [3](t2)) .

Since we may calculate modulo y3n
and z3n

, we conclude y = c1(ψ
2δ) = −y,

hence y = 0. A similar calculation gives

c2(λ
2
1 + λ2

2) ≡ c2(λ1 + λ2)− c2(λ1 + λ2)
(3n+1)/2 mod (c1, c

3n

2 ) ,

hence z(3n+1)/2 = 0. In summary:

Proposition 2.5. Let p = 3 and z denote the Euler class of the two-dimensional
irreducible representation of Σ3. Then K(n)∗(BΣ3) ∼= K(n)∗[z]/z(3n+1)/2.

3 Transfer

When H is a finite index subgroup of G, the restriction map BH → BG is a
finite covering, and for such maps one has a stable transfer map BG+ → BH+

inducing the transfer homomorphism

TrGH : E∗(BH) −→ E∗(BG)

for any cohomology theory E. Being induced by a geometric map, the transfer
homomorphism is natural.
Naturality is at the base of all formal properties enjoyed by the transfer, of which
we mention but the two of most interest to us: Frobenius reciprocity and the
double coset formula.
Both are consequences of a simple observation: let H and K be subgroups of
the group G, which we assume to be finite (finite index would suffice). The set
G/H ×G/K is a G-set with diagonal G-action, and as such decomposes as

G/H ×G/K =
∐
KgH

G/(K ∩Hg)
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where g runs over a set of double coset representatives of K\G/H. Since the
functor EG×G− preserves pullbacks up to homotopy, this decomposition yields
a pullback diagram ∐

KgH

BK ∩Hg cg◦Res- BH

BK

Res

?

Res
- BG

Res

?

Here cg denotes the map induced by conjugation with g.
Applying a cohomology functor E to the diagram yields, using naturality of the
transfer, the double coset formula

ResGK TrGH =
∑
KgH

TrKK∩Hg ResH
g

K∩Hg cg .

Frobenius reciprocity is the special case

BH - BG

B(G×H)
?

- BG×BG

∆

?

giving
TrGH(ResGH(x) · y) = x · TrGH(y) ,

i.e., the transfer is a map of E∗(BG)-modules.

Another special case occurs for H,K ≤ G, when H ×K and ∆G (the diagonal
subgroup) are considered as subgroups of G×G. Then the double coset decom-
position of G×G as left H ×K-set and right ∆G-set gives rise to the pullback
diagram ∐

gi

BGi
- BG

BH ×K
?

- BG×BG

∆

?
(3.1)

with Gi of the form ∆G ∩ (H × K)gi where again gi runs over a set of double
coset representatives of ∆G\(G×G)/(H ×K).

An influential but now disproved conjecture of Hopkins, Kuhn, and Ravenel
claimed that the Morava K-theory of classifying spaces was concentrated in even
degrees. This statement is equivalent to Morava E-theory being concentrated in
even degrees and torsion-free. A slightly sharper conjecture by the above authors
claimed that finite groups are ‘good’ in the sense of the following definition (taken
from [HKR]):
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Definition 3.1. Let G be a finite group.

(a) An element x ∈ K(n)∗(BG) is called good if there exists a subgroup H ≤ G
and a complex representation ρ of H such that x = TrGH(e(ρ)).

(b) G is called good if K(n)∗(BG) has a basis consisting of good elements.

It is observed in [HKR, Proposition 7.2] that additive generation by transferred
Euler classes is equivalent to multiplicative generation by such classes. This
follows from diagram (3.1) above.

Later on, Bakuradze and Priddy [BP1, BP2] studied the multiplicative structure
of K(n)∗(BG) using the transfer: Suppose one knew that K(n)∗(BG) was ‘good’
in the above sense. One might then ask which of the relations between the
generating transfered Euler classes are consequences of formal properties of the
transfer.
In particular, they came up with a formula expressing transfers of Chern classes of
a representation of an index p subgroup in terms of Chern classes of the induced
representation on the Euler class of the generator of the representation ring of
the quotient Cp.
Their result can be summarised as follows (for details we refer to the original
sources):

Theorem 3.2 (Bakuradze-Priddy [BP2]). Let G be a finite group and H a nor-
mal subgroup of index p. Let ε be a generator of the complex representation ring
of Cp, and z its Euler class. Finally, let η be a complex representation of H, and
ρ = IndGH(η). Then there is an identity

ck(ρ)− TrGH(ωk(η)) = A
(n)
k (zp−1), cp(ρ), . . . , cnp(ρ))

where A
(n)
k is an explicitly given polynomial, and ωk(η) is a certain polynomial in

the Chern classes of η (defined by way of universal example).

4 The Serre spectral sequence

The Serre spectral sequence associated to a group extension is probably the first
tool coming to mind when attempting calculations. Suppose given a group ex-
tension

1 → N −→ G −→ Q→ 1 ,

then one has the Serre spectral sequence

E2 = H∗(BQ;K(n)∗(BN)) =⇒ K(n)∗(BG) .

Here H∗(BQ;K(n)∗(BN)) is the ordinary cohomology of Q with coefficients in
the Fp[Q]-module K(n)∗(BN), the action of Q being induced by conjugation in
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G as usual. This module structure can be quite messy, even in the simplest cases:
suppose N is an elementary abelian group V of rank r with a linear action of Q.
Then K(n)∗(BV ) ∼= K(n)∗[x1, . . . , xr]/(x

pn

i ), where the xi are the Euler classes of
a set of generators for the complex representation ring of V . Thus the action can
be calculated in terms of tensor products of line bundles, and this involves the
formal group law. Such actions were considered in [LS], in particular with regard
to the question whether such modules are permutation modules (the relevance
of which shall be explained later). In Chapter VI we reproduce some of this
material.

Two “extreme” cases thus come to mind:

(1) extensions with trivial action, such as central extensions, and

(2) extensions with quotient Cp.

Case (1) has the drawback that the quotient is usually a large (p-)group, whose
mod p cohomology poses a real problem, whereas in (2) we have to determine the
Cp-module K(n)∗(BN), which typically means intricate calculations involving
the formal group law. Nevertheless both strategies are useful in special cases. A
non-trivial example for (1) is the extraspecial group of order 32 (see Chapter V),
the wreath product theorem III.2.1 is an easy calculation using (2). The Serre
spectral sequence for extensions of type (2) was also used by Ravenel to give an
inductive proof of finite generation [R]. We shall give a slightly different argument
below.

In [K], Igor Kriz proved a beautiful theorem about the Serre spectral sequence
associated to fibrations over BCp. This theorem is one of the few practical tools
for calculation; Kriz used it to great effect to supply the first counterexample to
the even degree conjecture. His result gives a useful criterion to decide whether a
group G has even Morava K-theory. For odd primes p, it may be simply stated as
follows: supposeH is a normal subgroup of index p in G. The quotient G/H ∼= Cp
acts on H and thus on K(n)∗(BH). Suppose K(n)odd(BH) = 0, then the same
is true for G if and only if K(n)∗(BH) is a permutation module for G/H. For
p = 2 this is trivially false (all F2[C2]-modules are permutation modules), but
the statement is true if one replaces mod p Morava K-theory with the integral
variant K̃(n).

The Serre spectral sequence for bundles over BCp. We begin by recalling
the mod p cohomology of the cyclic group Cp = 〈t | tp〉. In the group ring Z[Cp]
there are two special elements, namely D := t−1 and N := 1+ t+ t2 + · · ·+ tp−1.
Then

· · · - Z[Cp]
D- Z[Cp]

N- Z[Cp]
D- Z[Cp]

ε- Z - 0
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is a Z[Cp]-free resolution of Z. Let M be a Z[Cp]-module, then one has

H i(Cp;M) =


MCp = ker(D) i = 0;
kerD/ ImN i ≡ 0 (2) , i > 0;
kerN/ ImD i ≡ 1 (2) .

Theorem 4.1. Let F
π−→ E

f−→ BCp be a fibration with K̃(n)∗(F ) finitely

generated over K̃(n)∗.

(a) The Serre spectral sequence

Es,t
2 = Hs(BCp; K̃(n)∗(F )) =⇒ K̃(n)∗(E) (4.1)

has only finitely many differentials.

(b) K̃(n)∗(E) is a finitely generated K̃(n)∗-module.

Proof. Let y ∈ H2(BCp; Z) be a generator for the integral cohomology of Cp.

Then A := K̃(n)∗ ⊗ Z[y] is the E2 = E∞ page of the Atiyah-Hirzebruch spec-
tral sequence for BCp. The fibration F → E → BCp maps to the fibration
∗ → BCp → BCp, turning E∗,∗

r into an A-module. The class y is a permanent
cycle since it is represented by f ∗(x), the image under f ∗ of the generator of

K̃(n)∗(BCp) = K̃(n)∗[x]/(px− vnx
pn

). By assumption, K̃(n)∗(F ) is finitely gen-
erated. Now y : Ei,∗

2 → Ei+2,∗
2 is an isomorphism for i > 0, whence E∗,∗

r is a finitely
generated A-module, since A is noetherian. Thus the chain of the A-submodules
of boundaries

0 = B∗,∗
2 ⊂ B∗,∗

3 ⊂ · · · ⊂ B∗,∗
r ⊂ . . . B∗,∗

∞ ⊂ E∗,∗
∞

becomes stationary. This shows (a). Furthermore, since E∗,∗
2 is finitely generated

over A, so is E∗,∗
∞ . Standard commutative algebra implies that K̃(n)∗(E) is finitely

generated over K̃(n)∗(BCp) and thus over K̃(n)∗.

As immediate consequence we obtain Ravenel’s finite generation theorem for
classifying spaces of finite groups [R]:

Corollary 4.2 (Ravenel). Let G be a finite group. Then K̃(n)∗(BG) is a finitely

generated K̃(n)∗-module.

Proof. Let P be a Sylow p-subgroup of G. Since p-locally, BG is a stable
summand of BP , it is enough to prove this for p-groups. Since any p-group has a
normal subgroup of index p, the corollary follows from the theorem by induction.
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Ravenel’s original formulation was that K(n)∗(BG) has finite rank over K(n)∗.
Part (b) of the theorem above easily generalises to fibrations over classifying
spaces of finite p-groups, and even further. Let P be a finite p-group and F →
E → BP a fibration. Let Q be a normal index p subgroup of P ; consider the
diagram of fibrations

BCp =======BCp

F - E

6

- BP

6

F

wwwww
- E ′

6

- BQ

6

Then K̃(n)∗(E) is finitely generated if K̃(n)∗(E ′) is, by the theorem, and we can
work by induction on the order of P . Thus

Corollary 4.3. Let P be a finite p-group and F → E → BP a fibration. If
K̃(n)∗(F ) is finitely generated over K̃(n)∗, the so is K̃(n)∗(E).

Returning to fibrations over BCp, let E and F be as in Theorem 4.1. Then
π : F → E is a p-fold covering, with t, say, generating the group of deck trans-
formations. The transfer map for this covering induces a homomorphism

Tr: K̃(n)∗(F ) → K̃(n)∗(E)

of K̃(n)∗(E)-modules, since Tr(π∗(x) · y) = x ·Tr(y) by Frobenius reciprocity. In
particular, one has Tr(π∗(x)) = x · Tr(1). As the transfer commutes with deck
transformations, so does Tr. Quillen [Q2] gives a formula for Tr(1):

Lemma 4.4 (Quillen). Tr(1) = p− vnx
pn−1 ∈ K̃(n)∗(E).

Proof. By Frobenius reciprocity, it suffices to consider E = BCp and F = ∗.
Then since π∗(x) = 0, one computes

0 = Tr(π∗(x) · 1) = x · Tr(1) .

On the other hand, Tr(1) ≡ p modulo higher skeletal filtration, whence

Tr(1) =
[p](x)

x
.

More precisely, xTr(1) = 0 implies that there is a power series f(x) with

Tr(1) = f(x)
[p](x)

x
= f(0)

[p](x)

x

where the last equality holds since multiplication by x annihilates the expression.
Now the two conditions Tr(1) ≡ p mod x and [p](x) ≡ px mod x2 imply f(0) = 1.
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Since in ordinary cohomology, the transfer is given on chain level as the action
by the sum of all deck transformations,, one has a commutative diagram

K̃(n)∗(F )
Tr- K̃(n)∗(E) -- E0,∗

∞
⊂ - E0,∗

2

K̃(n)∗(F )

N

?

� ⊃ H0(BCp; K̃(n)∗(F ))

wwwwwww
i.e., in the spectral sequence (4.1) the transfer represents the norm map. In
particular, the elements in the image of the norm are permanent cycles.

Lemma 4.5. Suppose K(n)odd(E) = 0. Let x ∈ K̃(n)∗(F ) be an element with
N(x) = 0. Then Tr(x) = 0.

Proof. If N(x) = 0, then x represents an element [x] ∈ H1(BCp; K̃(n)∗(F )).
By assumption on E, this class is p-torsion, hence px = (1− t)y for a suitable y.
Since the transfer commutes with deck transformations, one obtains

0 = Tr(y − ty) = Tr(px) = pTr(x) ,

but K̃(n)∗(E) is p-torsion free.

Since Im(N) injects into E0,∗
r for any r, the Serre spectral sequence has a quotient

spectral sequence

Ēp,q
r =

{
Ep,q
r / Im(N) for p = 0,

Ep,q
r for p > 0,

(4.2)

This spectral sequence is multiplicative since Im(Tr) and Im(N) are ideals by
Frobenius reciprocity. If furthermore K(n)odd(E) = 0, Lemma 4.5 implies that

it converges to K̃(n)∗(E)/ Im(Tr).

Remark. The E2-page of this quotient spectral sequence is just the cohomology
of Cp made periodic, i.e., Tate cohomology Ĥ∗(Cp; K̃(n)∗(F )).

Kriz’s theorem. In the rest of this section we shall discuss

Theorem 4.6 (Kriz [K]). Let F → E → BCp be a fibration with K(n)∗(F )

finitely generated and K(n)odd(E) = 0. Then H1(BCp; K̃(n)2∗(F )) = 0.

We break down the proof into a series of lemmas; the arguments closely follow
the original in [K].
Below y ∈ H2(BCp) denotes a generator of integral cohomology (as in the proof
of Theorem 4.1), [x] shall always denote an E∞-representative of a class x ∈
K̃(n)∗(E).
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Lemma 4.7. Let x ∈ K̃(n)∗(E) be of filtration s but not s+1 (such that [x] 6= 0
in Ēs,∗

∞ ). Let z = px− Tr(π∗(x)).

(a) If yp
n−1[x] is non-zero in Ē∞, then [z] = yp

n−1[x].

(b) If yp
n−1[x] = 0, then z has filtration at least s+ |vn|.

Proof. This follows from Tr(π∗(x)) = x · Tr(1) = x(p− yp
n−1).

Lemma 4.8. The map Ēi,∗
r

y- Ēi+2,∗
r given by multiplication by y is

(i) onto, and

(ii) injective for i ≥ r.

Proof. Induction on r. For r = 2 multiplication by y is an isomorphism (peri-
odicity). Suppose the claim holds for r. Let α ∈ Ēr be a cycle for dr and ᾱ its
image in Ēr+1. Then α = yβ for some β with ydr(β) = 0. Since β must have
higher filtration, part (ii) of the inductive hypothesis implies dr(β) = 0, whence
ᾱ = yβ̄; this shows (i). For (ii), suppose i ≥ r + 1 and ᾱ ∈ Ēi,∗

r+1 is an element
annihilated by y. Then yα = dr(β) for some β ∈ Ēi+2−r,∗

r . Since i + 2 − r > 1,
there is a γ with β = yγ, hence yα = dr(β) = ydr(γ). Now α has filtration larger
than r, and multiplication by y is injective in this range by (ii). Thus α = dr(γ).

In other words, Ēr is generated as K̃(n)∗[y]-module in degrees 0 and 1, with
relations in filtrations at most r.

Lemma 4.9. Let 2 ≤ s < r, and α ∈ Ē2i+1,∗
s with ds(α) 6= 0. Then there exists

k, 1 ≤ k ≤ r − 1, and a non-zero class β ∈ Ēk,k+2∗
r with yβ = 0 in Ēr.

Proof. Induction on r. The statement is trivial for r = 2, so assume the lemma
for r, and let 2 ≤ s < r + 1. Suppose first that s < r. By induction hypothesis,
there exists a non-zero element β′ ∈ Ēk,k+2∗

r with yβ′ = 0, hence ydr(β
′) = 0, and

dr(β
′) = 0 by Lemma 4.8. Then β = β̄′ 6= 0 since β′ cannot be a boundary for

degree reasons, and yβ = 0.
If s = r then dividing by y as often as possible (cf. Lemma 4.7) we may assume
α ∈ Ē1,2∗

s with dr(α) 6= 0. Then dr(α) = yβ for some β ∈ Ēr−1,2∗
r with ydr(β) =

drdr(α) = 0. Since dr(β) is in filtration 2r − 1 > r, Lamma 4.8 (ii) implies
dr(β) = 0. Thus β̄ ∈ Ēr+1 is defined, non=zero since it is in filtration r − 1, and
yβ̄ = 0.

The lemma says that a nontrivial differential on a class of odd filtration produces
y-torsion. The idea of proof for the theorem consists in the observation that
y-torsion ultimately produces p-torsion.
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Proof of the theorem. Suppose µ ∈ H1(Cp; K̃(n)2t(F+)) is a non-zero class.
Then there is an s with µ ∈ Ē1,2t

s and dsµ 6= 0. Let r > s with Ē∗,∗
r = Ē∗,∗

∞ .
By Lemma 4.9 there is a non-zero α ∈ Ēk,k+2∗

r with yα = 0. Let α represent

x ∈ K̃(n)∗(E), then by Lemma 4.8 (ii) the class z0 = px−Tr(π∗(x)) has filtration

k1 > k + 2(pn − 1). Let [z0] = yp
n−1γ1 ∈ Ēk1,∗

r where γ1 ∈ Ē
k1−2(pn−1),∗
r . Since

Ēr = Ē∞, γ1 is represented by a class c1 ∈ K̃(n)∗(E). Now let

z1 = pc1 − Tr(π∗(c1)) .

By Lemma 4.8, z1 also represents by yp
n−1γ1; thus

z0 − z1 = p(a− c1)− Tr(π+(a− c1))

has filtration k2 strictly larger than k1. Iterating this procedure, one inductively
finds classes ci ∈ K̃(n)∗(E) of increasing filtration such that

p · (x−
∑
ci)− Tr(π∗(x−

∑
ci)) = 0 .

(The infinite sum of the ci’s converges since K̃(n)∗(E) is complete with respect
to the skeletal filtration.) Now z := x−

∑
ci has positive filtration whereas the

image of the transfer sits in filtration zero, implying that pz has to be zero. On the
other hand, z is not zero since

∑
ci has higher filtration than x, by construction.

Thus we have produced a p-torsion class in K̃(n)∗(E), contradicting the even-
dimensionality of K(n)∗(E).

The following result is stated in [K] without a reference; it follows easily from the
classification of indecomposables.

Proposition 4.10. Let R = Z(p) or R = Zp and M be a finitely generated R-free
R[Cp]-module. Then the following are equivalent:

(a) M is a permutation module;

(b) H1(Cp;M) = 0.

Proof. There are three isomorphism classes of indecomposable R[Cp]-lattices,
namely the trivial module T , the regular module F , and the reduced regular
module, F̃ , say; see [CR, p. 690 and §34B]. For the first two, H1 clearly vanishes.
Furthermore, H2(Cp;T ) ∼= Z/p, and H i(Cp;F ) = 0 for i > 0. The long exact
sequence in cohomology associated to the short exact sequence 0 → T → F →
F̃ → 0 gives H1(Cp; F̃ ) ∼= Z/p.

Remark. For p odd, it furthermore transpires that a torsion free Zp[Cp] module is
a permutation module if and only if its mod p reduction is a permutation module.
(This is clearly false for p = 2.)
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5 Central products and the Rothenberg-Steenrod spec-
tral sequence

Let p be a prime and denote by k the field of p elements. Suppose G is a p-group
which is expressible as the central product of two subgroups P and Q, ,i.e., there
is a central subgroup Z of G contained in P ∩Q and a central extension

1 → Z
∆−→ P ×Q −→ G→ 1

where ∆ is the diagonal inclusion of Z. We shall also write P ×Z Q or just P ◦Q
to denote this central product.
K(n)∗(BZ) is a K(n)∗-coalgebra by virtue of the group product, and K(n)∗(BP )
and K(n)∗(BQ) become comodules over K(n)∗(BZ) via the multiplication maps

µ1 : P × Z → P and µ2 : Z ×Q→ Q .

By definition,

P × Z ×Q
µ1×1-

1×µ2

- P ×Q
µ - G

is a coequalizer in the category of groups. Applying K(n)∗ to this coequalizer
yields a diagram

K(n)∗(BG)

K(n)∗(BP )⊗K(n)∗(BQ)

µ∗

?

K(n)∗(BP )⊗K(n)∗(BZ)⊗K(n)∗(BQ) .

1⊗µ∗2
?

µ∗1⊗1

?

This certainly will fail to be an equalizer, since the inflation map is generally
not injective. Note though that by definition, the equalizer of the above parallel
arrows is the cotensor product K(n)∗(BP )�K(n)∗(BZ)K(n)∗(BQ). Recall that if
Γ is a coalgebra, (M1, ψ2) a right Γ-comodule, and (M2, ψ2) a left Γ-comodule,
their cotensor product M1�ΓM2 is by definition the kernel of the map

M1 ⊗M1
ψ1⊗1−1⊗ψ2−−−−−−−→M1 ⊗ Γ⊗M2 .

By construction, the image of inflation is contained in the cotensor product, and
it is tempting to ask when it is all of it.
We may regard BZ as a topological group acting on B(P ×Q) with orbit space
BG. The Rothenberg-Steenrod spectral sequence of this principal fibration is
then a spectral sequence of algebras

E2 = CotorK(n)∗(BZ)(K(n)∗(BP ), K(n)∗(BQ)) =⇒ K(n)∗(BG) .



28 II Methods of calculation

This spectral sequence is concentrated in the right half plane; the zero column is
just the cotensor product

K(n)∗(BP )�K(n)∗(BZ)K(n)∗(BQ)) .

For details see [P], or [V, McC].
Write Γ for K(n)∗(BZ) and ψΓ for the comultiplication of Γ. Since we are
working over a field, all modules are flat (Γ, in particular) and we may calculate
CotorΓ using resolutions by extended comodules, i.e., comodules of the form
(Γ ⊗ V, ψΓ ⊗ 1) for some K(n)∗-module V . (Unadorned tensor products shall
always be over K(n)∗.) Now let M be a left Γ-comodule and

M
i−→ Γ⊗ V0

∂0−→ Γ⊗ V1
∂1−→ Γ⊗ V2 −→ · · ·

be a resolution of M by extended comodules. Then for any right Γ-comodule M ′,

CotoriΓ(M ′,M) = H i(M ′�Γ(Γ⊗ V•)) .

Using the isomorphism M�Γ(Γ⊗V )
∼=→ M ⊗V given by m⊗ r⊗ v 7→ ε(r)m⊗ v

(the reverse isomorphism being given by m⊗v 7→ ψM(m)⊗v), the above complex
for calculating Cotor simplifies to M ′ ⊗ V•.
Sometimes it is easier to dualise everything and work with K(n) homology, al-
though that might only be due to being more used to modules rather than comod-
ules. In order to do that, one needs to know the Morava K-homology of abelian
groups as an algebra. Obviously, it is enough to know K(n)∗(BC) for C a cyclic
group of prime power order. For example, it is easy to caclulate K(n)∗(BCp):
Recall K(n)∗(BCp) ∼= K(n)∗[x]/(xp

n
) where x is the Euler class of a generator of

the (oridinary) character ring. The coproduct being given by the formal group
law, one obtains from Lemma I.3.1:

Theorem 5.1 ([RW], Theorem 5.7). Let ξ(i) = ξpi be dual to xp
i
. Then

K(n)∗(BCpm) ∼= K(n)∗[ξ(i) , 0 ≤ i < nm]/
(
ξp(n+i−1) − vp

i

n ξ(i)
)

where ξ(i) = 0 for i < 0.

For example, if n > 1 one has

K(n)∗(BCp) ∼= K(n)∗[ξp, ξp2 , . . . , ξpn−1 ]/(ξpp , ξ
p
p2 , . . . , ξ

p
pn−2 , ξ

p2

pn−1) .

Unfortunately, we have not been able to use this spectral sequence for effective
calculation (yet). Later we shall present an example showing that the spectral
sequence is highly non-collapsing even in simple cases. At this point we only offer
the following essentially trivial example:
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Central products with abelian groups. Let H be a p-group and 〈h〉 a
central element of order p. Let G be the central product of H with Cpm = 〈t〉,
m ≥ 2, obtained by identifying tp

m−1
with h. To apply the Rothenberg-Steenrod

spectral sequence, we need to know K(n)∗(BCpm) as a K(n)∗(BCp)-comodule,
but this is very simple: again from Lemma I.3.1 one obtains

Lemma 5.2. K(n)∗(BCpm) ∼= K(n)∗[z]/(zp
mn

) is an extended K(n)∗(BCp)-co-
module. More precisely,

K(n)∗(BCpm) ∼= K(n)∗(BCp)⊗K(n)∗{ai | 0 ≤ i < p(m−1)n}

as comodules, where ai = zip
n

Proof. It is immediate from Lemma I.3.1 that the ai are comodule primitives.

Remark. By contrast, the analogous statment for ordinary cohomology is false.

Corollary 5.3. The Rothenberg-Steenrod spectral sequence

CotorK(n)∗(BCp)(K(n)∗(BH), K(n)∗(BCpm)) =⇒ K(n)∗(BG)

collapses.

Thus K(n)∗(BG) is a module of rank p(m−1)n over K(n)∗(BH). In particular, if
H has even Morava K-theory, so does G.

Remark. This last corollary also follows easily from Theorem 4.6, working by
induction on m: one can build up G by successive extensions of the form H ′ →
G′ → Cp where the quotient Cp acts trivially on H ′.

6 A brief introduction to generalised characters

Generalised character theory was invented by Hopkins, Kuhn, and Ravenel in
their seminal paper [HKR]. For suitable complex oriented theories E (in a sense
to be made precise below) it relates the E-cohomology of the classifying space
BG of a finite group G to the ring of “generalised class functions” with values in
a suitably chosen E∗-algebra L, i.e., functions on the set Cn,p(G) of commuting n-
tuples of elements of p-power order in G which are constant on conjugacy classes
of n-tuples.
The account we shall give below is rather terse: we do not think we can improve
on the exposition in the original source, which we highly recommend to the reader.
In Chapter VII we shall present a generalisation to certain classes of discrete
groups. This is not really new, all the necessary ingredients are in [HKR].
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6.1 Detection by abelian subgroups

Let G be a finite group. Before describing the characters, we recall another
remarkable theorem from [HKR] which says that under favourable circumstances,
the E-cohomology of BG is detected on abelian subgroups. This will e.g. be the
case when we can prove that K̃(n)∗(BG) is torsion free; thus our emphasis on
trying to prove K(n)odd(BG) = 0 in as many cases as possible.
Denote by A(G) the category with objects the abelian subgroups of G and mor-
phism sets A(G)(A,B) = MapG(G/B,G/A). If Y is a G-space, then a mor-
phism G/B → G/A induces maps G ×N Y → G ×A Y and Y A → Y B. Ap-
plying a complex oriented cohomology functor E∗ yields a compatible family of
maps E∗(EG ×G Y ) → E∗(EG ×A Y ), thus a homomorphism to the inverse
limit over the category A(G), and furthermore a map from the limit to the end∫
A∈A(G)

E∗(BA× Y A). Then the following theorem is proved in [HKR]:

Theorem 6.1 ([HKR], Theorem A). Let E be a complex oriented cohomology
theory. Then for any finite group G and any finite G-CW-complex Y , the natural
maps

E∗(EG×G Y ) → lim
A∈A(G)

E∗(EG×A Y ) →
∫
A∈A(G)

E∗(BA× Y A)

become isomorphisms upon inverting the order of G.

Taking Y to be a point immediately gives

Corollary 6.2 ([HKR]). If E∗(BG) is torsion free, the natural map

E∗(BG) −→
∏

A∈A(G)

E∗(BA)

is injective.

In particular, integral Morava K-theory of BG is detected on (maximal) abelian
subgroups if it is torsion free. We shall make repeated use of this fact.

6.2 Characters

Suppose E is a complex oriented ring spectrum satisfying

(i) the coefficients E∗ are a complete local ring with maximal ideal m and
residue characteristic p;

(ii) p is not a zero divisor in E∗;

(iii) the formal group law over the mod m reduction has height n.
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Furthermore, let O be the ring of integers in a complete algebraically closed local
field L, and suppose we have a local homomorphism E∗ → O. Consider the
set Cn,p(G) of n-tuples of commuting elements of p-power order in G. Such an
n-tuple corresponds to a group homomorphism g : Zn

p → G. Since G is finite,
there is a minimal i ∈ N such that g factors through the quotient homomorphism
Zn
p → (Z/pi)n; the resulting map (Z/pi)n → G shall again be called g. For E

satisfying the above conditions we have Künneth isomorphisms

E∗(B(Z/pi)n) ∼= E∗[[x1, . . . , xn]]/([p
i](xj)) .

The generalised character associated to g is the map

χ(g) : E∗(BG) −→ L

given as the composition

E∗(BG)
g∗−→ E∗(B(Z/pi)n) ∼= E∗[[x1, . . . , xn]]/([p

i](xj))
ϕj−→ L ,

where the maps ϕj form a compatible family of E∗-algebra morphisms sending
the generators xj to generators of the pi-torsion subgroup of the maximal ideal
of the ring of intergers in L. This torsion subgroup is known to be (abstractly)
isomorphic as abelian group to (Z/pi)n, by Lubin-Tate theory. The above maps
assemble to the character homomorphism

χG : E∗(BG) −→ MapG(Hom(Zn
p , G), L) =: Cln,p(G)

associating to a class x ∈ E∗(BG) the map χx : Hom(Zn
p , G) = Cn,p(G) → L

defined by χx(g) = χ(g)(x); this is clearly invariant under the action of G by
conjugation.
More generally, if Y is a finite G-CW-complex, consider the set

Fixn,p(G, Y ) :=
∐

α∈Hom(Zn
p ,G)

Y Im(α) ;

this is a G-space via the action of G by conjugation. Now set

Cln,p(G, Y ;L) := L⊗E∗ E
∗(Fixn,p(G, Y ), L))G .

This object comes equipped with an action of Aut(Zn
p ). Since E∗(B(Z/pi)n) is a

free E∗-module, one has Künneth isomorphisms

E∗(B(Z/pi)n × Z) ∼= E∗(B(Z/pi)n)⊗E∗ E
∗(Z)

for all spaces Z. Thus the inclusion of fixed point sets together with the maps
ϕj above combine to give the character map

E∗(EG×G Y ) −→ Cln,p(G, Y ;L)Aut(Zn
p ) .
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Theorem 6.3 ([HKR], Theorem C). The generalised character map χGn,p induces
isomorphisms

χG
n,p : L⊗E∗ E

∗(EG×G Y ) → Cln,p(G, Y ;L)

and
χG
n,p : p

−1E∗(EG×G Y ) → Cln,p(G, Y ;L)Aut(Zn
p ) .

Remark. The account given here seems to depend on certain choices made for
the maps ϕj. This can be avoided by properly saying what L should be; we have
not done so in order to keep the exposition short and simple.

In many of our examples, G will have exponent p, whence it suffices to consider
i = 1. In that case we may work over an appropriate extension of the p-adic
rationals, where the equation p−xpn−1 = 0 has a solution: the p-torsion subgroup
of the height n Lubin-Tate formal group law consists of 0 and the solutions to
this equation. If π is a uniformising element, then all other solutions are of the
form ζπ for a (pn− 1)-st root of unity ζ, and calculations become very tractable.

6.3 The Euler characteristic formula

Finally, we record the formula for the Morava K-theory Euler characteristic. Here
Euler characteristic means the difference between the ranks of the even and odd
degree parts of K(n)∗(BG):

χn,p(G) := rankK(n)∗ K(n)ev(BG)− rankK(n)∗ K(n)odd(BG) ;

by a theorem due to D. Ravenel, the rank of K(n)∗(BG) over K(n)∗ is always
finite if G is a finite group, and sometimes too when G is discrete; see Section 4.

Theorem 6.4 ([HKR], Theorem D).

χn,p(G) =
∑
A<G

|A|
|G|

µA(G)(A)χn,p(A) (6.1)

where the sum is over all abelian subgroups A < G and µA(G) is a Möbius function
defined recursively by ∑

A<A′

µA(G)(A
′) = 1 (6.2)

where the sum is over all abelian subgroups A′ < G containing A.

In particular, µA(G)(A) = 1 when A is maximal. It is easy to see that one only
has to consider subgroups arising as intersections of maximal ones. Furthermore,
one clearly has χn,p(A) = |A(p)|n where A(p) denotes the p-part of the abelian
group A.
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Chapter III

Calculations at any prime

There are not that many groups whose Morava K-theory is known. The purpose
of this chapter is to give an overview of existing results, many of which are
documented in the literature. We shall however in some cases indicate different
proofs, and add a few more groups.
Apart from natural curiosity, one of the driving factors for such calculations was
to either prove or disprove the so-called ‘even-dimensionality conjecture’, i.e.,
the claim that for any finite group G, K(n)odd(BG) is always zero. With Kriz’s
construction of a counterexample [K] this search has come to an end; we shall
give a brief description of his example in Section 6. Nevertheless, there are some
families of groups for which the conjecture holds, and only in these cases complete
calculations do exist.
Generally speaking, many successful calculations follow the same pattern: first try
to calculate K(n)∗(BG) additively, by means of a spectral sequence for a suitable
extension. If it should turn out that K(n)∗(BG) is ‘good’, meaning generated
by (tranfers of) Chern classes, one can try to find the multiplicative structure
using restriction to subgroups, Chern approximations, and formal properties of
the transfer.
The computations are generally presented in increasing order of complication.
We start in Section 1 with some calculations using only the Atiyah-Hirzebruch
spectral sequence. This is really very inefficient, and one normally would not
contemplate such an approach, but it does work in some simple cases. Next
comes the wreath product theorem, due to Hunton and Hopkins-Kuhn-Ravenel.
We present it here as an easy application of Theorem II.4.6. We also include a
certain generalisation, due to Hunton, Leary and the author (unpublished).
We continue with a survey of results already in the literature: Yagita’s theorem
on groups of p-rank 2 (Section 3), Tanabe’s theorem on linear groups away from
the defining characteristic, the calculation of elementary-abelian by cyclic groups,
due independently to Kriz and Yagita (Section 5).
We chose to redo some of the calculations, although they are mostly well-docu-
mented. Other known computations include 2-groups with a cyclic maximal
subgroup [Sc]. We defer those to the next chapter, which deals exclusively with
2-primary cases.
In the last section we give an account of Kriz’s counterexample.
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1 Warm up: Calculations with the AHSS

The Atiyah-Hirzebruch spectral sequence is not really suitable for doing calcula-
tions, inasmuch it requires knowledge of the mod p cohomology of the group in
question. The purpose of this section is to demonstrate that such computations
can succeed for simple enough groups.

1.1 Abelian groups

If G is an abelian group, the calculation is essentially trivial: we can deduce the
behaviour of the spectral sequence from the answer, obtained from the Gysin
sequence. Using the Künneth theorem, we may immediately reduce to the case
of a cyclic group Cpr of order pr. For odd primes or r > 1, its mod p cohomology
is known to be H∗(BCpr ; Fp) ∼= Λ(x)⊗ Fp[y] where |x| = 1, and y = βr(x) is the
r-th Bockstein of x; for p = 2 and r = 1 identify y with x2. Then y is the Euler
class of a generator of the complex character ring of Cpr .

Lemma 1.1. The Atiyah-Hirzebruch spectral sequence for BCp has only one
differential, namely

d2·pnr−1x = vkn,r
n yp

nr

with kn,r = (pnr − 1)/(pn − 1).

Proof. This is dictated by the relation [pr](y) = v
kn,r
n yp

nr
= 0 which arises from

the Gysin sequence.

For r = 1, this differential is none but vnQn.

1.2 Dihedral groups at p = 2

We start with the dihedral group D8 of order 8. This group has a presentation

〈g1, g2 | g2
i = [g1, g2]

2 = 1〉 ,

we sometimes write c for the central element [g1, g2].
We recall the representation theory of D8: the representation ring R(D8) is gen-
erated by two one-dimensional representations γ1, γ2 and the standard real two-
dimensional representation ∆ defined as follows:

γi(gj) = (−1)δij , ∆(g1) =

(
0 1
1 0

)
, ∆(g2) =

(
−1 0
0 1

)
.

By abuse of notation, we shall use the same symbols to denote the complexified
representations.
The mod 2 cohomology of D8 is given by

H∗(D8; F2) = F2[x1, x2, w2]/(x1x2) (1.1)
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where xi = w1(γi) are the Euler classes of γi and w2 is the Euler class of ∆. Thus
the E2-page of the AHSS is

E2 = H∗(D8;K(n)∗) ∼= F2[x1, x2, w2]/(x1x2)⊗K(n)∗ . (1.2)

The first differential is d2n+1−1 = vn⊗Qn; so in the first step we have to calculate
the Qn-homology of H∗(D8; F2).
By instability (as a module over the Steenrod algebra), we have Qnxi = x2n+1

i ,
whereas Qnw2 may be computed using the Wu formula. Note that w1(∆) =
x1 + x2, we shall often write just w1 to denote this class. Then Sq1(w2) = w1w2

and Sq2w2 = w2
2 are the only non-trival Steenrod squares on w2. Let p be the

polynomial

p(u, v) :=
n∑
j=0

u2n+1−2j+1+1v2j

.

By induction, one readily verifies Qnw2 = p(w1, w2).
Next, since H∗(D8; F2) is detected on elementary abelian subgroups, no odd
degree class in degree less than deg(Qn) + 1 = 2n+1 can be a cycle for Qn: this
follows immediately from the AHSS for C2. We proceed to calculate all cycles
and boundaries.
Obviously, Qnw2 is a cycle, and so is the class ζ = p(x1, w2): since x1w1 = x2

1, we
have

Qn(ζ) = x2n+1−2
1 w2 + x2n+1−1

1 Qn(w2) +
n∑
i=1

x2n+2−2i+1

1 w2i

2

= x2n+1−2
1 w2 + x2n+1−1

1 w2n+1−1
1 w2

+
n∑
i=1

(x2n+1−1
1 w2n+1−2i+1+1

1 + x2n+2−2i+1

1 )w2i

2

= 0 .

The cohomology of D8 has an additive basis

{xi1w
j
2 | i, j ≥ 0} ∪ {xk2wl2 | k > 0, l ≥ 0} .

Suppose y is an element of degree 2d + 1 > 2n+1. Then y may be written as
y1 + y2 where y1 =

∑d
i=0 λix

2d+1−2i
1 wi2 and y2 =

∑d
j=0 µjx

2d+1−2j
2 wj2. We claim

that if y1 is in the kernel of Qn, then there is a polynomial q in x2
1 and w2

2 such
that y1 = ζ · q. We have

Qny1 =
d∑
i=0

λi

(
x2d−2i+2n+1

1 wi2 + i
n∑
j=0

x2d+1−2i+2n+1−2j+1+2
1 w2j+i−1

2

)

=

[ d
2
]∑

k=0

λ2kx
2d−4k+2n+1

1 w2k
2 +

[ d−1
2

]∑
k=0

λ2k+1

n∑
j=0

x2d−4k+2n+1−2j+1

1 w2j+2k
2
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This is equal to zero if and only if the relations λ0 = 0 and λ2k =
∑ν2(2k)

j=1 λ2k−2j+1

(for 0 < k ≤ d) hold. This leads to

y1 =

[ d
2
]∑

k=0

λ2kx
2d+1−4k
1 w2k

2 +

[ d−1
2

]∑
k=0

λ2k+1x
2d−4k−1
1 w2k+1

2

=

[ d
2
]∑

k=1

(ν2(2k)∑
j=1

λ2k−2j+1

)
x2d+1−4k

1 w2k
2 +

[ d−1
2

]∑
k=0

λ2k+1x
2d−4k−1
1 w2k+1

2

= ζ ·
[ d−1

2
]∑

k=0

λ2k+1x
2d−4k−2n+1

1 w2k
2 .

Similarly, if Qny2 = 0 then y2 is a product of p(x2, w2) = ζ + Qnw2 with a
polynomial in x2

2 and w2
2.

Next, the even degree cycles have to be squares: suppose

y =
d∑
i=0

(λix
2d−2i
1 + µix

2d−2i
2 )wi2 .

Then λ2i+1 is the coefficient of x2d−4i+2n+1−3
1 w2i+1

2 (respectively µ2i+1 the coeffi-

cient of x2d−4i+2n+1−3
2 w2i+1

2 ) in Qny:

Qn

( d∑
i=0

λix
2d−2i
1 wi2

)
=

[ d−1
2

]∑
j=0

λ2j+1x
2d−4j−2
1 w2j

2

(
x2n+1−1

1 w2 + f(x1, w
2
2)

)
,

where f is a poynomial in x1 and w2
2; similarly for x2. Thus the cycles for Qn are

given by (note that x2
1ζ = x2

1Qnw2 and x2
2ζ = 0)

Z = F2[x
2
1, x

2
2, w

2
2]/(x

2
1x

2
2){1, Qnw2} ⊕ F2[w

2
2]{ζ} . (1.3)

Now to the boundaries: Clearly the image of Qn in odd degrees is given by

F2[x
2
1, x

2
2, w

2
2]/(x

2
1x

2
2){Qnw2} .

In even degrees, the classes x2k+2n+1

i w2m
2 = Qn(x

2k+1
i w2m

2 ) are obvious boundaries
(i = 1, 2). Furthermore, one easily sees that for k + m ≥ 2n, all classes of the
form x2k+2

i w2m+2n

2 (i = 1, 2) are boundaries, too. For the homology, one arrives
at

F2[x
2
1, x

2
2, w

2
2]/(x

2
1x

2
2, x

2n+1

1 , x2n+1

2 , w2n

2 )⊕ F2[w
2
2]{w2n

2 , ζ} . (1.4)

This is not yet finite, whence there has to be another differential. Restriction to
the cyclic supgroup of order 4 says that ζ will eventually support a differential
d2·4n−1; the only possibility is

d2·4n−1ζ = v2n+1
n w4n+2n

2 . (1.5)

Summing up:
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Lemma 1.2. (a) The E2n+1-page of the Atiyah-Hirzebruch spectral sequence
for K(n)∗(BD8) is isomorphic to

K(n)∗[x2
1, x

2
2]/(x

2
1x

2
2, x

2n+1

1 , x2n+1

2 )⊗K(n)∗[w2
2]/(w

2n

2 ) ⊕ K(n)∗[w2
2]{w2n

2 , ζ}

where z is the class in degree 2n+1 +1 obtained by replacing w1 by x1 in the
expression for Qn(w2).

(b) There is one more differential, namely d2·4n−1(ζ) = v2n+1
n w4n+2n

2 .

Let y1, y2, c2 denote the Euler classes of γ2, γ2,∆, regarded as complex represen-
tations. Then yj is a representative for x2

j ∈ E∞, and c2 represents w2
2. The

E∞-page is thus additively isomorphic to

K(n)∗[y1, y2, c2]/(y1y2, y
2n

1 , y2n

2 , c2
n−1

2 )⊕K(n)∗[c2]/(c
22n−1

2 ){c2n−1

2 } .

There are extension problems to check:

(i) y2n

1 , y2n

2 , c2
2n−1+2n−1

2 ;

(ii) y1y2 and yic
2n−1

2 , i = 1, 2.

We have y2n

j = [2](e(γi)) = e(γ2
j ) = e(1) = 0. Also, c2

2n−1+2n−1

2 = 0 since the
spectral sequence is concentrated in horizontal degrees less than the degree of
this class.
The classes in (ii) are in degree 4, and fortunately, K(n)4(BD8) is detected on
subgroups, as we shall now see (the other degrees however are not).
The maximal subgroups of D8 are all abelian, namely

W1 := 〈a1, c〉 , W2 := 〈a2, c〉 , C := 〈a1a2〉

with Wj isomorphic to C2 × C2 and C ∼= C4. Denote by η the character of Wj

given by η(c) = −1 and η(aj) = 1, and define ρ : C → C by ρ(a1a2) = i. Then
the the character ring of Wj (resp. C) is generated by η and γj (resp. ρ).

ResW1(γ1) = γ1 ResW1(γ2) = 1 ResW1(∆) = η + ηγ1

ResW2(γ1) = 1 ResW2(γ2) = γ2 ResW2(∆) = η + ηγ2

ResC(γ1) = ρ2 ResC(γ2) = ρ2 ResC(∆) = ρ+ ρ3

Define u = c1(η) and z = c1(ρ) as elements of the Morava K-theory of the
appropriate subgroups. Then

K(n)∗(BWj) ∼= K(n)∗[yj, u]/(y
2n

j , u
2n

) (j = 1, 2),

K(n)∗(BC) ∼= K(n)∗[z]/(z4n

) .

We shall also use the following Lemma about the formal group law for K(n),
which is slightly more precise than Proposition I.3.1. For a proof, see [BP1].
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Lemma 1.3. x+K(n) y = x+ y + (xy)2n−1
mod (x22(n−1)

, y22(n−1)
).

Thus, if n > 1,

[2](z) = z2n

and [3](z) = z + z2n

+ z2n−1(2n+1)

in K(n)∗(BC). For example, [3](z) = z + z4 + z10 for n = 2.
A basis for K(n)4(BD8) consists of the union of the following three sets:

Aj = {y2
j} ∪ {y2n−2k+1

j ck2 | 1 ≤ k ≤ 2n−1 − 1} (j = 1, 2), and

B = {c1+`(2
n−1)

2 | 0 ≤ ` ≤ 2n−1} .

Clearly ResW1(A2) = 0 = ResW2(A1). Now, since for W1 we may compute modulo
u2n

and y2n

1 ,

ResW1(y
2n−2k+1
1 ck2) = y2n−2k+1

1

(
u2 + uy1 + u(uy1)

2n−1)k
= y2n−2k+1

1

(
(u2 + uy1)

k + k(u2 + uy1)
k−1u(uy1)

2n−1)
=

k∑
i=0

(
k

i

)
u2k−iy2n−2k+1+i

1 + k
k−1∑
j=0

(
k − 1

j

)
u2n−1+(2k−j−1)y

2n+2n−1−(2k−j−1)
1

The second sum vanishes, since the sum of exponents is 2 · 2n. Thus

ResW1(y
2n−2k+1
1 ck2) = u2ky2n−2k+1

1 + monomials with lower exponents for u.

Similarly for ResW2(y
2n−2k+1
2 ck2). Finally,

ResC(c
1+`(2n−1)
2 ) = z2+2`(2n−1) + terms of higher order.

Thus if ξ =
∑

a∈A1
λaa+

∑
a′∈A2

µa′a
′+

∑
b∈B νbb is an element restricting to zero

on Wi and C, then λa = 0 follows from looking at ResW1 , and so on.
This means we can solve the extension problems by restriction. From

ResW1(y1y2) = ResW2(y1y2) = 0 , ResC(y1y2) = z2n+1

resp.

ResW1(c
2n

2 ) = ResW2(c
2n

2 ) = 0 , ResC(c2
n

2 ) = z2n+1

we obtain y1y2 = c2
n

2 . Secondly, we claim

yic
2n−1

2 = c2
n

2 +
n−1∑
j=1

y2n−2j+1
i c2

j−1

2 (i = 1, 2) .

This can again be checked by restriction. In a later section we shall see how this
relation arises, so we omit the proof here.
We arrive at the relations

y2n

i = c2
2n−1+2n−1

2 = 0 , y1y2 = c2
n

2 yic
2n−1

2 = c2
n

2 +
n−1∑
j=1

y2n−2j+1
i c2

j−1

2 . (1.6)
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Remark. (a) To justify our earlier assertion that K(n)∗(BD8) is not detected in
other degrees, it suffices to look at the classes ck2 for 22n−1 ≤ k ≤ 22n−1 + 2n−1:
they restrict to zero on any subgroup.

(b) Later we shall describe how to obtain the relations from the representation
theory of D8.

Next, consider dihedral groups D2m+2 of order 2m+2. Their mod 2 cohomologies

H∗(D2m+2 ; F2) ∼= F2[x1, x2, w2]/(x1x2)

are isomorphic to H∗(D8; F2) as algebras over the Steenrod algebra; thus the
action of the first differential is as described in Lemma 1.2. w2

2 is a permanent
cycle, whence the next differential — which has to exist to arrive at a finite rank
object — will do away with ζ, hitting an appropriate power of w2

2. This will result
in an even degree page and collapsing of the spectral sequence at this stage. The
power of w2

2 hit is then easily calculated from the Euler characteristic formula, or
alternatively we can detect the differential by restriction to the maximal cyclic
subgroup C2m+1 :

d2·2n(m+1)−1ζ = vkm
n w2n(m+1)+2n

2 with km = (2n(m+1) − 1)/(2n − 1) .

We shall be less explicit about the relations, however. Denoting by y1, y2, c2 the
Euler classes of the analogous representations γ1, γ2,∆, we first note that in the
degree of the relations one again has detection on subgroups. This enables us in
principle to determine them: one needs to compute enough terms of the formal
group law to calculate z · [−1](z) ∈ K(n)∗[z]/(z2n(m+1)

).
We did not try to produce a closed formula for general m and n, but just looking
at the first few terms one gets

y2n

i = c2
n(m+1)−1+2n−1

2 = 0 , y1y2 = c2
nm

2

yic
2n−1

2 =
n−1∑
j=1

y2n−2j+1
i c2

j−1

2 mod c2
n

2 .

As examples, we offer the following relations of the last kind for D16 and n = 2, 3:

yic
2
2 + y3

i c2 = c102 + c222 + c252 + c282 + c312 (n = 2)

yic
4
2 + y5

i c
2
2 + y7

i c2 = c362 + c148
2 + c162

2 + c204
2 + c232

2 + c246
2 + c253

2 (n = 3)

The lengthy computations in this section should convince the reader that for
effective calculation, one had better turn to other methods. Nevertheless, we
shall find them useful later on.
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2 Wreath products

2.1 Wreath products with the cyclic group of order p

Let H be a finite group whose integral Morava K-theory is torsion free. Then a
simple application of Kriz’s theorem shows that the wreath product of H with
a cyclic group of order p enjoys the same property. Such a result was first ob-
tained by Hunton [Hu1], who used ‘unitary-like embeddings’ to show that if
K(n)∗(BH) is concentrated in even degrees, then so is K(n)∗(BH o Cp). An
independent proof was given in [HKR]; the authors there actually showed some-
thing stronger: if K(n)∗(BH) has a basis consisting of transferred Euler classes
of complex representations of subgroups of H, then the same holds for H o Cp.

Theorem 2.1 ([Hu1, HKR]). Let H be a finite group with torsion free integral
Morava K-theory. Then the integral Morava K-theory of the wreath product H oCp
is also torsion free.

Proof. Since K̃(n)∗(BH) has no torsion, the Künneth theorem implies that

K̃(n)∗(BHp) is a permutation module for Cp. The claim thus follows from The-
orem II.4.6.

2.2 A generalisation

Under suitable hypotheses on the cohomology theory E, the wreath product
theorem generalises to other extended power spaces. Let G be a subgroup of the
symmetric group Σm on m letters, and X a pointed space. Then the space

DG(X) = EG+ ∧G X∧m

is called the extended power space of X and G. In particular, if X = BL+ is
itself a classifying space, then DG(X) is a model for B(L o G)+, the classifying
space of the wreath product.
One has a fibration

X∧m - DG(X) - BG

and an associated Serre spectral sequence (we shall use the homological version
below)

E2 = H∗(BG;E∗(X
∧m)) =⇒ E∗DG(X) . (2.1)

Assume that E∗X is a free E∗-module. Then the E2-page decomposes alge-
braically into a direct sum of terms isomorphic to the E2-pages of the Atiyah-
Hirzebruch spectral sequences associated to the subgroups of G:

E2 =
⊕
H≤G

H∗(BH;E∗)⊗MH
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where MH is the image of the function x 7→
∑

g∈G/H g∗x defined on the coinvari-

ants of E∗(X
∧m). Now if E is an H∞ ring spectrum, the algebraic decomposition

actually has a basis in geometry. This observation is essentially due to McClure
(see [B], Chapter IX in particular):

Proposition 2.2. Suppose E is an H∞ ring spectrum and E∗(X) is free over E∗.
Then the spectral sequence (2.1) splits up as the direct sum of Atiyah-Hirzebruch
spectral sequences for E∗(BH).

Proof. That E∗(X) = π∗(E ∧ X) is E∗ free means that there is a stable map
f : W −→ E∧X such that W is a wedge of spheres and f induces an equivalence
E ∧W −→ E ∧X (using the ring structure of E). The H∞ structure provides a
map DG(E) −→ E and thus f induces a map DG(W ) −→ E ∧DG(X) which in
turn induces an equivalence E ∧DG(W ) −→ E ∧DG(X), as in [B, IX §2 or §4].
However, DG(W ) is just a wedge of Thom spectra and this decomposition gives
rise to the algebraic decomposition of the spectral sequence.

As MU and En are H∞, one has such splittings for these theories. By exactness,
the same holds for E(n): since

En∗(X) = En∗ ⊗E(n)∗ E(n)∗(X) ,

any space X with E(n)∗-free E(n)-homology has En∗-free En∗-homology, too.
The natural map En → E(n) induces a map of spectral sequences. Since the
Atiyah=Hirzebruch spectral sequence for En∗(BH) is the tensored down version
of the E(n) spectral sequence, this determines the latter. The same conlusion is

valid for the Baker-Würgler completion Ê(n) of E(n) (since we are assuming X
is a space).
Arguing with connective covers (in particular, connective covers of H∞ ring spec-
tra are H∞), one sees that the same holds for E = BP 〈n〉.
Summing up:

Theorem 2.3. Suppose X is a space and E = MU or one of the Johnson-

Wilson theories E(n), its connective cover BP 〈n〉 or its In-adic completion Ê(n),
and that E∗(X) is free as an E∗-module. Then the spectral sequence (2.1) is
isomorphic to the direct sum of Atiyah-Hirzebruch spectral sequences

E∗
∗,∗ =

⊕
1≤H≤G

{
E∗
∗,∗(H)⊗E∗ FH

}
where E∗

∗,∗(H) is the Atiyah-Hirzebruch spectral sequence for E∗(BH).

Corollary 2.4. Suppose K(n)odd(BH) = 0 for all subgroups H ≤ G and that
X is a space for which K(n)odd(X) = 0. Then the spectral sequence (2.1) with
E = K(n) is isomorphic to the corresponding direct sum of Atiyah-Hirzebruch
spectral sequences for K(n)∗(BH); in particular, K(n)odd(DG(X)) = 0.
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Proof. If K(n)odd(X) = 0 then the Bockstein spectral sequence K(n)∗(Y ) =⇒
Ê(n)∗(Y ) of [BW] collapses and Ê(n)∗(X) is concentrated in even dimensions

and is free over Ê(n)∗. The spectral sequence for Ê(n)∗(DG(X)) is now de-
scribed by Theorem 2.3. If for each subgroup H ≤ G we have K(n)odd(BH) = 0
then the Atiyah-Hirzebruch spectral sequence for K(n)∗(BH) is just that for

Ê(n)∗(BH) tensored down by the coefficients, and hence the same applies for the
sequence (2.1) for K(n)∗(DG(X)).

3 Groups of p-rank 2

For primes greater than 3, these groups were shown to have even Morava K-
theory by Tezuka-Yagita [TY2, TY3] and Yagita [Y4]. Furthermore, Yagita also
proved that these groups are generated by transfered Euler classes and are thus
‘good’ in the sense of Hopkins-Kuhn-Ravenel.

These results were obtained case by case using Blackburn’s classification of groups
of p-rank 2: for p > 3, any such group belongs to one of the following classes (see
[Hp, III, 12.4]):

(1) G = 〈a, b | apr
= 1, bp

s
= ap

t
, b−1ab = ak〉

with t ≥ 0, kp
s ≡ 1 (pr), and pt(k − 1) ≡ 0 (pr);

(2) G = 〈a, b, c | ap = bp = cp
k

= [a, c] = [b, c] = 1, a−1ba = bcp
k−1〉;

(3) G = 〈a, b, c | ap = bp = cp
r

= [b, c] = 1, a−1ba = bcsp
r
, a−1ca = bc〉

where r ≥ 2 and s is either 1 or a quadratic non-residue modulo p.

For p = 2, 3 there are other groups; in fact, for p = 2 no such classification is
known. Nevertheless, Tezuka-Yagita’s and Yagita’s results are valid for groups
with such presentations regardless of the prime.

The groups in (1) are metacyclic; they fit into an extension

1 - Cpr - G - Cps - 1 . (3.1)

Tezuka-Yagita calculate the BP -theory Serre spectral sequence associated to this
extension. It turns out that the E2-page is concentrated in even degrees, and that
BP ∗(BG) is torsion-free. They further identify the BP ∗-algebra generators as
Chern classes, thus proving

Theorem 3.1 (Tezuka-Yagita [TY3]). Let G be a metacyclic p-group. Then
BP ∗(BG) is multiplicatively generated by Chern classes of representations.

Consequently, such groups have even Morava K-theory.
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Remark. In [B3], Brunetti attempts to calculate the multiplicative structure of
the Morava K-theory of the so-called modular groups, i.e., extensions of Cpm by
Cp, drawing on results of Tezuka-Yagita. He does succeed in writing down an
algebra structure, but the generators are not geometric, since they are derived
from the E∞-page of the spectral sequence.

The groups (2) can either be described as a central extension

1 - Cp × Cps - G - Cp - 1 (3.2)

or as the central product of a cyclic group with the nonabelian groups of order
p3 and exponent p (resp. D8 for p = 2).
Tezuka-Yagita’s argument is again by calculating the Serre spectral sequence for
BP -theory. As for metacyclic groups, they can show

Theorem 3.2 (Tezuka-Yagita [TY3]). If G is of type (2), then BP ∗(BG) is
generated by Chern classes.

Alternatively, we can use the other description as a central product, and appeal to
Corollary II.5.3. This reduces the problem to calculating the Morava K-theory of
the nonabelian group H := p1+2

+ of order p3 and exponent p, which is an instance
of applying Theorem 5.1 (compare Example 5.2).
One can also do this differently: consider the central extension

1 - Cp - H - Cp × Cp - 1 (3.3)

and the associated Serre spectral sequence

E2 = H∗(Cp × Cp;K(n)∗(BCp)) ∼= Λ(x1, x2)⊗ Fp[y1, y2]⊗K(n)∗[z]/(zp
n

) .

Then

Lemma 3.3. The Serre spectral sequence for the extension (3.3) has the following
differentials:

(i) d3z = x2y1 − x1y2;

(ii) d2p−1((x2y1 − x1y2)z
p−1) = yp1y2 − y1y

p
2;

(iii) d2p−1(x1x2z
p−1) = x2y

p
1 − x1y

p
2;

(iv) d2pn−1xi = vny
pn

i (i = 1, 2).

Proof. This is an exercise in exhaustion. (i) follows by comparing to the mod
p cohomology spectral sequence via connective Morava K-theory (recall that the
extension class is x1x2), and (ii) from Kudo’s transgression theorem and again
comparison. For (iii), observe that zp is the restriction of the Euler class of a
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certain representation of G, namely zp = i∗cp(IndGA λ) where A is a maximal
abelian subgroup of G and λ a character of A restricting to the generator of the
character group of the center. By comparison to mod p cohomology again, one
sees that zp should transgress (via d2p+1) to x1y

p
2 − x2y

p
1. Thus this element has

to be killed by an earlier differential. The only way this can happen is if we have
a differential as stated in (iii). Finally, (iv) is the differential inherited from the
Atiyah-Hirzebruch spectral sequence for the base. To see that these are the only
differentials, one only has to observe that they turn the next page of the spectral
sequence into an even degree object.

Remark. Anyone comparing this calculation to the original in [TY3] will be con-
vinced that their method of using BP is more effective. Working with BP instead
of K(n) has its advantages, since BP is both connective and ‘integral’, making
the spectral sequences sparser.

One can generalise the above lemma to show that the Morava K-theory of any
minimal non-abelian p-group (a p-group all of whose maximal subgroups are
abelian) is concentrated in even degrees. This was first observed by Yagita [Y3],
who again worked with BP (the result for Morava K-theory follows).
We include a proof for future reference. Recall that minimal non-abelian p-
groups G were classified by Rédei [Re]; we quote from [Hp, p. 309]. G is one of
the following groups:

(i) quaternion of order 8;

(ii) G = 〈a, b | apr
= bp

s
= 1, b−1ab = ap

r−1+1〉, i.e. split metacyclic;

(iii) G = 〈a, b, c | apr
= bp

s
= cp = [a, c] = [b, c] = 1, [a, b] = c〉.

We only consider (iii), the other cases being covered elsewhere. Such G has centre
Z = 〈ap, bp, c〉 ∼= Cpr−1 × Cps−1 × Cp, with quotient Cp × Cp. The Serre spectral
sequence for the central extension 1 → Z → G→ Cp×Cp → 1 now behaves just
as described in the lemma: one has

E2 = K(n)∗[x, y, z]/(xp
r−1n, yp

s−1n, zp
n

)⊗H∗(BCp × Cp; Fp)

where x, y, z are the Euler classes of the representations α, β, γ of Z defined in
the obvious way: α(ap) = exp(2πip1−r), α(bp) = α(c) = 1, and so on. Then α
and β are restrictions of representations α̃ and β̃ of G, implying that x and y
are permanent cycles. z is not a cycle, but zp is: consider the maximal subgroup
A = 〈a, bp, c〉 of G, and define ε ∈ RA by ε(a) = ε(bp) = 1, ε(c) = exp(2πi/p).
Set σ = IndGA(ε), then by the double coset formula,

ResGZ(σ) = ResAZ
(
(1 + b+ b2 + · · ·+ bp−1)∗(σ)

)
= p · ResAZ(ε) = p · γ ,

whence the claim. Together with the result for metacyclic groups, this implies
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Theorem 3.4 (Yagita [Y3]). Let G be a p-group all of whose maximal subgroups
are abelian. Then K(n)odd(BG) = 0.

Finally, in [Y4] Yagita calculates BP -cohomology of the groups of type (3). He
uses an extension of the form

1 - H - G - Cp - 1 (3.4)

where H = 〈a, b, cp〉 is a group of type (2). His result is

Theorem 3.5 (Yagita [Y4]). If G is a group of type (3) and p > 2, then
BP ∗(BG) is generated by transfered Euler classes of complex representations of
G.

4 Tanabe’s work on Chevalley groups

In [T], Tanabe proves a beautiful theorem about the Morava K-theory of Cheval-
ley groups:

Theorem 4.1 (Tanabe [T]). Let G be a connected reductive Z-group scheme

such that H∗(G(C); Z) has no p-torsion. Let K̃(n) denote p-complete Morava

K-theory, ` a prime distinct from p, and q = `m, m > 0. Then K̃(n)∗(BG(Fq))
is torsion free and concentrated in even dimensions.

This theorem applies for example to GLk(Fq) or SLk(Fq).

The method of proof involves the homotopy pullback diagram

BG(Fq)∧
iq - BG(F)∧

BG(F)∧

iq

?

1×φq
- (BG(F)×BG(F))∧

∆

?

from [FM], where ( )∧ denotes completion in the sense of Bousfield-Kan, ∆ is the
diagonal map, and φq is induced by the Frobenius. He then constructs a strongly
convergent Eilenberg-Moore spectral sequence

TorK(n)∗(BG(F)2)
(
K(n)∗(BG(F)), K(n)∗(BG(F))

)
=⇒ K(n)∗(BG(Fq))

from which he derives his result.
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5 Elementary abelian by cyclic groups

Kriz in [K] and Yagita in [Y5] show that an extension of an elementary abelian
p group by a cyclic p-group satisfies the even-dimensionality conjecture.

Theorem 5.1 (Kriz [K], Yagita [Y5]). Suppose G fits into an extension V →
G→ C where V is an elementary-abelian p-group and C a cyclic p-group. Then
K(n)odd(BG) = 0.

Kriz’s proof is based on an explicit calculation of the structure of K̃(n)∗(BV ) as
a module first over Cp, and then induction on the order of the cyclic quotient.
It turns out that the action is a permutation action, and he then appeals to
Theorem II.4.6. (He only states the above theorem for semidirect products, but
for the action on the Morava K-theory of BV it is irrelevant whether the extension
is split or not.) Yagita calculates with Brown-Peterson cohomology BP using a
clever filtration on BP ∗(BV ).

Example 5.2. Since it is needed for Kriz’s counterexample, we shall examine
the extraspecial group of order p3 and exponent p in some detail. This calculation
is entirely due to Kriz, and we follow his reasoning very closely.
H fits into a split extension

1 - 〈a, b〉 - H - 〈c〉 - 1 ; (5.1)

with V := 〈a, b〉 ∼= Cp × Cp and 〈c〉 ∼= Cp. The element b is central, and a and c
commute according to the rule c−1ac = ab.
Define representations µ, ν, ρ of H as follows:

µ : H -- 〈a〉 ⊂ - C×, µ(a) = ζp,

ν : H -- 〈c〉 ⊂ - C×, ν(c) = ζp

and ρ = IndHV β where β(a) = 1, β(b) = ζp, and ζp denotes a p-th root of unity:
Set

z = c1(µ) , w = c1(ν) , u = cp(ρ) .

Then a permutation basis for K̃(n)∗(BV ) consists of free Cp-orbits and the in-
variant elements u′iyj, 0 ≤ i ≤ pn−1− 1, 0 ≤ j ≤ p− 1, where u′ is the restriction
of u to V . Furthermore, Theorem 5.1 (or rather its proof, which we have not

reproduced here) implies that K̃(n)∗(BH)/ Im(Tr) is generated as an algebra by
u, w, and z. Here and below be write just Tr for TrHV . It remains to determine
the relations between the generators; this can be done by restricting to maximal
abelian subgroups and character theory.
There are (p + 1) such subgroups of H, all elementary abelian of rank two. A
complete list consists of

E∞ := V , Eλ := 〈aλc, b〉 , 0 ≤ λ ≤ p− 1 .
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Let E = 〈a′, b〉 be any group from this list. If α and β denote the representations
of E with α(b) = β(a′) = 1, α(a′) = β(b) = ζp, and x1 = c1(α), x2 = c1(β), then
we get the following restrictions.

µ ν ρ z w u

E∞ α 1
∑p−1

k=0 β ⊗ αk x2 0
∏p−1

i=0 (x2 +F [i]x1)

Eλ αλ α
∑p−1

k=0 β ⊗ αk [λ]x2 x2

∏p−1
i=0 (x2 +F [i]x1)

We claim the following identities:

(i) wzp = wp (in K̃(n)∗(BH));

(ii) wp
n

= pw;

(iii) up
n

= ppu.

We check these equality on the maximal abelian subgroups E of H, beginning
with (i). For E = E∞, the equation is trivial. Otherwise the restriction of
wzp − wpz equals

([λ]x1)
px1 − xp1([λ]x1) .

By Theorem II.6.3 we can verify the resulting equation using generalised charac-
ters.

Remark. When the groups in question have exponent p, calculating with gen-
eralised characters becomes particularly easy: In such cases the characters take
values in an extension of WFpn where the equation p − xp

n−1 = 0 has a solu-
tion. The p-torsion subgroup consists of 0 and the solutions to the equation
p− xp

n−1 = 0. If π is a uniformising element, then all other solutions are of the
form ζπ for a (pn − 1)-st root of unity ζ.

So let χ be a character of E. If χ(x1) = 0 there is nothing to show. Thus we can
assume without loss of generality that χ is a character taking the value π on x1.
Then [λ]π = εp−1π for a (p− 1)-st root of unity εp−1and (i) follows.

(ii) is clear; for (iii) note that the restriction of u is a product of p Euler classes
of one dimensional representations of E, see the table above. Each such Euler
class satisfies [p]e = 0, i.e. ep

n
= pe; the claim follows.

The next claim is

pw

n−1∑F

i=0

w
( u

wp

)pi

= 0 (5.2)
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in K̃(n)∗(BH). We first should check that the left hand side makes sense: by (ii)
and (iii) above, ( u

wp

)pn

=
u

wp
.

The formal group law for K̃(n)∗ is of the form

x+F y = x+ y +
∑
k≥1

Ck(x, y) ,

where the Ck are homogeneous polynomials of degree k(pn − 1) + 1. Hence
Ck(wx,wy) is divisible by wk(p

n−1)+1. Furthermore, (ii) implies that the expo-
nents of w in the denominators of the higher order terms of the formal sum do
not exceed pn − 1. Since pw = wp

n
, it follows that the expression in the claim is

integral. Moreover, the higher order terms are divisible by increasing powers of
p, thus the power series converges in the p-adic topology and thus constitutes an
element of K̃(n)∗(BH). More precisely,

pw

n−1∑F

i=0

w
( u

wp

)pi

≡ pw
n−1∑
i=0

w
( u

wp

)pi

mod p

where the right hand side is not divisible by p, and, since pw = wp
n
, equals

(∗) w(up
n−1

+ wp
n−pn−1

up
n−2

+ · · ·+ wp
n−pn−i+1

up
n−i

+ · · ·+ wp
n−pu) .

Proof of (5.2). Restriction to E∞ is again 0. Let E = Eλ be one of the other
subgroups in the list. Then

ResHE u = x2

p−1∏
i=1

(x2 +F [i]x1) , ResHE w = x2 .

Let χ be a generalized character of E. If χ(x1) = 0 or χ(x2) = 0 there is nothing
to prove. Without loss of generality we may thus assume χ(x1) = π. Then
χ(x2) = γπ = [γ]π for some (pn − 1)-st root of unity, and

χ(ResHE u) = γπ

p−1∏
i=1

(γπ +F [i]π) = γπ

p−1∏
i=1

(γπ +F εiπ)

= γπ

p−1∏
i=1

[γ + εi]π .

where the εi range over the (p− 1)-st roots of unity. Setting ε0 = 0 we conclude
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χ
(
ResHE pw

n−1∑F

i=0

w
( u

wp

)pi)
= pπ

n−1∑F

i=0

[p−1∏
k=0

(γ + εk)
]
π

= pπ
[n−1∑
i=0

p−1∏
k=0

(γ + εk)
]
.

Inside the square brackets we may compute modulo p, since [p]π = 0. Now

p−1∏
k=0

(γ + εk) = γp − γ ;

since
n−1∑
i=0

(γp − γ) = γp
n − γ = 0

modulo p, the claim follows.

Now let x be a class in K̃(n)∗(BH). If x = Tr(y), then wx = wTr(y) =
Tr(ResHE (w) · y) = 0 by Frobenius reciprocity and since ResHV w = 0. Conversely,
suppose that wx = 0. Then

Tr ResHV (x) = x · Tr(1) = x(p− wp
n−1) = px

implies px ∈ Im(Tr). Since K̃(n)∗(BH)/ Im(Tr) is torsion free (this follows from
Theorem II.4.6), x is in the image of Tr. Thus we have established:

wx = 0 ⇐⇒ x ∈ Im(Tr) . (5.3)

Remark. A similar argument works for any cyclic covering Y → X → BCpr .

Corollary 5.3. K(n)∗(BH)/ Im(Tr)⊗K(n)∗ Fp is isomorphic to

Fp[z, w, u]/(zp − wp−1z, wp
n−1, up

n−1

+ wp
n−pn−1

up
n−2

+ · · ·+ wp
n−pu) .

Proof. It is easy to check that the relations proved above give a module of the
correct rank.

6 Kriz’s counterexample

Kriz’s counterexample is the 3-Sylow subgroup of GL4(F3), which we shall denote
by P . He shows that the second Morava K-theory of BP at the prime 3 contains
elements of odd degree. He considers an extension

1 - G - P - Cp - 1
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and shows that there is an element 0 6= ζ ∈ H1(C3; K̂(2)∗BG); that suffices by

Theorem II.4.6. To that end one has to determine K̃(n)∗(BG), and furthermore

the action of the quotient C3 on K̃(n)∗(BG), or at least part of it (this will be
made more precise below). To do that one uses the calculations of the previous
section and generalised characters again. We shall give a rather a detailed account
of his work in this section.

From now on let p denote an odd prime. Let P be the goup of unipotent upper
triangular (4× 4)-matrices, i.e. the p-Sylow subgroup of GL4(Fp):

P =




1 c b2 b1
0 1 a2 a1

0 0 1 d
0 0 0 1

 ∣∣∣∣ ai, bi, c, d ∈ Fp

 .

By abuse of notation, a1 shall also denote the matrix whose entry in position a1

is 1 and a2 = bi = c = d = 0; similarly for a2 etc.. Then we have an extension

1 - G - P - Cp - 1

〈ai, bi, c〉 〈d〉

The group G has an elementary abelian subgroup A = 〈ai, bi〉 of rank four, i.e.,
there is an extension

1 - A - G - 〈c〉 - 1 .

Thus G is a group to which the results of Section 5 apply.
Let H be the group of Example 5.2, i.e., the nonabelian group of order p3 and
exponent p. There are two homomorphisms π1, π2 : G→ H, with

π1(a1) = a, π1(b1) = b, π1(a2) = 1, π1(b2) = 1,
π2(a1) = 1, π2(b1) = 1, π2(a2) = a, π2(b2) = b,

πi(c) = c .

We shall study K̃(n)∗(BG) via πi and K̃(n)∗(BH).
A is isomorphic as Cp-module to a sum of two copies of V , which implies

K̃(n)∗(BV ) ∼= K̃(n)∗(BV )⊗ eK(n)∗ K̃(n)∗(BV )

as Cp = 〈c〉-module; consequently

Ĥ∗(Cp; K̃(n)∗(BA)) ∼= Ĥ∗(Cp; K̃(n)∗(BV ))⊗2

where Ĥ∗ stands for Tate cohomology; cf. the remark after Lemma II.4.5.
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Denote by u, z (abusing notation) and v, t the images of u, z under π∗1 and π∗2,
respectively. From now on Tr will stand for the transfer from A to G. Let

M̂ := K̃(n)∗(BG)/ Im(Tr) ,

M := K(n)∗(BG)/ Im(Tr)⊗K(n)∗ Fp .

Then naturality of the transfer and Corollary 5.3 imply

Corollary 6.1. M = K(n)∗(BG)/ Im(Tr) ⊗K(n)∗ Fp ∼= Fp[t, u, v, w, z]/R where
R is generated by

zp − wp−1z, tp − wp−1t, wp
n−1,

∑
up

n−i

wp
n−pi−1

,
∑
vp

n−i

wp
n−pi−1

.

This sums up what we need to know about K̃(n)∗(BG).
Next we need to compute the action of the element d of P on the Morava K-
theory of BG. More precisely, we shall determine its action on u, ua, z, t, and
w, considered as elements of K(n)∗(BG)/ Im(Tr) ⊗K(n)∗ Fp. Conjugation by d
changes only entries in the last column of a matrix in P , so v, t, and w are
obviously invariant. Also clear is the effect on z:

dz = z +F t .

It remains to compute du.

Lemma 6.2. In K̃(n)∗(BG)⊗Q, d acts on u via

du = wp−1
( u

wp−1
+F

v

wp−1

)
.

Remark. Since ( u
wp )p

n
= u

wp (see Example 5.2), and similarly ( v
wp )p

n
= v

wp , the
right hand side becomes integral after multiplication by pp−1, see also the remarks
following (5.2).

Proof. Once more we restrict to maximal abelian subgroups. Restricting to A
results in a trivial equation, since ResGA w = 0. The remaining maximal abelian
subgroups are of the form

Ars := 〈b1, b2, car1as2〉 , 0 ≤ r, s ≤ p− 1 .

Let β1, β2, α be one dimensional representations of Ars with βi dual to bi and α
dual to car1a

s
2. u and v are the Euler classes of the representations ρ1 = ρ◦π1 and

ρ2 = ρ ◦ π2, and du is the Euler class of the conjugate ρd1 of ρ1. The groups Ars
are elementary abelian of rank three; their Morava K-theory is isomorphic to

K̃(n)∗[x1, x2, x3]/([p]x1, [p]x2, [p]x3) ,
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with x1 = c1(β1), x2 = c2(β2) und x3 = c1(α). We have the following restrictions
of representations and generators.

ResGArs
(ρ1) =

∑p−1
i=1 β1 ⊗ αi , ResGArs

(u) =
∏p−1

i=0 (x1 +F [i]x3)

ResGArs
(ρ2) =

∑p−1
i=0 β2 ⊗ αi , ResGArs

(v) =
∏p−1

i=0 (x2 +F [i]x3)

ResGArs
(ρd1) =

∑p−1
i=0 β1 ⊗ β2 ⊗ αi , ResGArs

(du) =
∏p−1

i=0 (x1 +F x2 +F [i]x3)

Let χ be a generalised character, which (without loss of generality) takes the
value π on x3. Then

χ(x1) = ε1π , χ(x2) = ε2π ,

where the εi are either (pn−1)-st roots of unity or 0. The lemma is then equivalent
to ∏p−1

i=0 [ε1 + ε2 + i]π

πp−1
=

∏p−1
i=0 [ε1 + i]π

πp−1
+F

∏p−1
i=0 [ε2 + i]π

πp−1
.

Now [p]π = 0 implies that the left hand side equals [(ε1 + ε2)
p − (ε1 + ε2)]π, and

the right hand side

[εp1 − ε1]π +F [εp2 − ε2]π = [εp1 − ε1 + εp2 − ε2]π .

The expressions in [. . .] agree modulo p.

The formulae obtained so far lend themselves to concrete calculations for p = 3
and n = 2. From Proposition I.3.1 and Lemma 6.2 one obtains

dz = z + t+ w6(z2t+ zt2) ,

du = u+ v − w2(u2v + uv2) ;

these equations hold in M̂ . Consequently

(1− d)(tu− zv) ≡ tw2(u2v + uv2) mod w3

in M , hence

(1− d)w(tu− zv) ≡ tw3(u2v + uv2) mod (w4, 3w)

in M̂ . Filter M̂ by powers of w; then 3w = w9 implies

(1− d)w(tu− zv) ≡ tw3(u2v + uv2) + s ,

where s is in a higher filtration. Thus

(1− d)w(tu− zv)− tw3(u2v + uv2)− s

is an element of Im(Tr). On the other hand, it lies in a positive filtration, since
1− d preserves filtration. The following variant of (5.3) guarantees that such an
element has to be zero.



6 Kriz’s counterexample 55

Lemma 6.3. Im(Tr) is in w-filtration zero.

Proof. Let y ∈ K̃(n)∗(BA) and x ∈ K̃(n)∗(BG) with Tr(y) = wx. (5.3) holds
analogously when H is replaced by G and V by A, whence 0 = wTr(y) = w2x
and therefore 0 = wp

n
x = pwx = pTr(y). The claim follows from the fact that

K̃(n)∗(BG) has no p-torsion.

Now let Z ∈ K̃(n)∗(BG) be an element with w2Z = tw3(u2v+uv2) + s. Such an
element exists, since s is divisible by at least w4, and Z itself will still be divisible
by w. We conclude

3N(Z) = 3(1 + d+ d2)Z = w8(1 + d+ d2)Z

= w6(1 + d+ d2)(tw3(u2v + uv2) + s) = 0.

The last equality holds since tw3(u2v+uv2)+s lies in the image of (1−d). Then

N(Z) = 0 because K̃(n)∗(BG) has no 3-torsion, and it remains to show that Z
is non-zero.

Lemma 6.4. 0 6= Z ∈ H1(Cp; K̃(n)∗(BG)).

Proof. It is enough to prove 0 6= Z ∈ H1(C3;M). Consider the w-filtration on
M ; this is a finite filtration since w8 = 0. From the spectral sequence associated
to this filtration one sees that it suffices to check that Z does not vanish in
H1(C3; gr(M)), where gr(M) denotes the associated graded of M . Setting D =
1− d, the structure of gr(M) as D-module is as follows.

gr(M) ∼= Fp[w]⊗
(
Fp[D]/(D){1, u2v2} ⊕ Fp[D]/(D2){u, u2v} ⊕ Fp[D]/(D3){u2}

)
⊗

(
Fp[D]/(D){1, z2t2} ⊕ Fp[D]/(D2){z, z2t} ⊕ Fp[D]/(D3){z2}

)
One sees that u2v and uv2 are in different summands: uv2 = D(u2v) mod w,
and u2v /∈ Im(D).
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Chapter IV

Examples of Chern approximations

1 The examples D8 and Q8

These groups are among the few examples where one can completely calculate
the Chern approximation. It turns out to agree with the Morava K-theory of
the group in question, giving an explicit desripction of the algebra structure in
terms of natural generators. Another way to obtain such a description would be
by Bakuradze-Priddy’s method, but relations obtained from the transfer alone
do not suffice: one has to throw in exterior power relations.

We use the presentation of D8 given in Section III.1, and

Q8 = 〈g1, g2 | g4
1, g

2
1g

2
2, g1g

−1
2 g1g2〉 ;

this allows us to treat both groups at the same time. We recall the representation
theory: There are 4 one-dimensional irreducible complex representations and
one two-dimensional. Let γj be defined by γj(gk) = (−1)δjk (j, k = 1, 2) , and
∆ = IndG〈g1g2〉(β) where β(g1g2) = i. Then one has γ2

j = 1, γj∆ = ∆, ∆2 =
1 + γ1 + γ2 + γ1γ2, and

λ2∆ =

{
γ1γ2 for D8,

1 for Q8.

We shall also use a further refinement of the formal group law, due to Bakuradze
and Vershinin [BV]:

Lemma 1.1. x+K(n) y = x+ y+
(
xy+(x+ y)(xy)2n−1

)2n−1

mod (xy)22n−2
(x+

y)22n−2
.

Here we have suppressed the appropriate powers of vn from the notation, as we
shall keep doing below.
Now let yi = c1(γi) (i = 1, 2) and cj = cj(∆) (j = 1, 2). Then we know that
K(n)∗(BG) is multiplicatively generated by y1, y2, and c2, see [TY2, SY] or
Section 1 for D8.
The first relations are easy: from γ2

i = 1 we immediately obtain

y2n

1 = 0 , y2n

2 = 0 . (1.1)

57
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Now to γi∆ = ∆: by (1.1), the formula for c1(γi∆) from Proposition 2.1 simplifies
to

c1(γi∆) = c1 + y2n−1

i c2
n−1

1 ,

whence
(yic1)

2n−1

= 0 . (1.2)

Similarly, the formula for c2(γi∆) simplifies to

c2(γi∆) = y2
i + yic1 + c2 + yi(yic1)

2n−1

+ y2n−1

i

n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2

= y2
i + yic1 + c2 + y2n−1

i

n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2

where we used (1.2). Now since this is to equal c2, we obtain, by repeated
application of the ensuing formula,

yic1 = y2
i +

n−1∑
k=1

y2n−2k+1
i c2

k−1

2 . (1.3)

We intend to use ∆2 = 1 + γ1 + γ2 + γ1γ2 next: one has c1(∆
2) = c1(∆)2n

, hence

c2
n

1 = y1 + y2 + (y1 +K(n) y2) = (y1y2)
2n−1

. (1.4)

By (1.2) and (1.3), this implies

y1(y1y2)
2n−1

= y1c
2n

1 =
(
y2

1 +
n−1∑
k=1

y2n−2k+1
1 c2

k−1

2

)
c2

n−1
1

= y2
1c

2n−1
1 = y4

1c
2n−3
1 = · · · = y2n

1 c1 = 0

and thus

c2
n+1

1 = (y1y2)
2n−1

c1 = y2n−1

1 y2n−1−1
2

(
y2

2 +
n−1∑
k=1

y2n−2k+1
2 c2

k−1

2

)
= 0 (1.5)

Consequently, using (1.3) repeatedly,

yic
2
1 = y2

i c1 +
n−1∑
k=1

y2n−2k

i (yic1)c
2k−1

2

= y3
i +

n−1∑
k=1

y2n−2k+2
i c2

k−1

2 +
n−1∑
k=1

y2n−2k

i c2
k−1

2

(
y2
i +

n−1∑
l=1

y2n−2l+1
i c2

l−1

2

)
= y3

i
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which implies y3
1y2 = y1y2c

2
1 = y1y

3
2. This gives

y1y2c1 = y2
1y2 +

n−1∑
k=1

y2n−2k+1
1 y2c

2k−1

2 = y2
1y2 +

n−1∑
k=1

y1y
2n−2k−1
2 c2

k−1

2

= y2
1y2 + y1y2c1 + y1y

2
2 ,

hence

y2
1y2 = y1y

2
2 . (1.6)

Furthermore, since we may calculate modulo c2
n+1

1 by (1.5), we have

c2(∆
2) = c21 + c2

n

1 c
22n−1

2 .

On the other hand

c2(1 + γ1 + γ2 + γ1γ2) = y1y2 + (y1 + y2)(y1 + y2 + y2n−1

1 y2n−1

2 ) = y2
1 + y1y2 + y2

2

using (1.6), thus

c21 = y2
1 + y1y2 + y2

2 + (y1y2)
2n−1

c2
2n−1

2 . (1.7)

Also, modulo c2
n+1

1 one has c3(∆
2) = c2

n

1 c
2n

2 and

c3(1 + γ1 + γ2 + γ1γ2) = y1y2(y1 + y2 + (y1y2)
2n−1

) = y2
1y2 + y1y

2
2 + c2

n+1
1 = 0 ,

leading to

(y1y2)
2n−1

c2
n

2 = 0 and c21 = y2
1 + y1y2 + y2

2 . (1.8)

So far, everything worked for either D8 or Q8. Now that we shall use exterior
powers, things will start to differ. We have

c1(λ
2∆) = c1 + c2

n−1

2 + c2
n−1

1 c2
2n−2

2 (1.9)

since we may calculate modulo c2
n

1 c
2n

2 by (1.8), and

c1(γ1γ2) = y1 + y2 + (y1y2)
2n−1

.

Together with (1.8) this gives

y2
1 + y1y2 + y2

2 = c21 =

{
c2

n

2 + y2
1 + y2

2 for D8,

c2
n

2 for Q8;
(1.10)

hence

c2
n

2 =

{
y1y2 for D8,

y2
1 + y1y2 + y2

2 for Q8.
(1.11)
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Equations (1.8) - (1.11) furthermore imply

c1 =

{
y1 + y2 + c2

n−1

2 for D8,

c2
n−1

2 + c2
2n−1

2 for Q8.
(1.12)

Finally, plugging all this into (1.3) results in

n∑
k=1

y2n−2k+1
i c2

k−1

2 =

{
y1y2 for D8,

y2
i for Q8.

(1.13)

To complete the calculation of the Chern approximation, it is easy to check that
c4(∆

2) = 0 follows from the relations already proved and thus does not give rise
to a new one.
Summing up, we get the following relations (which in the case D8 indeed coincide
with those obtained earlier):

(i) y2n

i = 0;

(ii) c2
n

2 =

{
y1y2 for D8,

y2
1 + y1y2 + y2

2 for Q8;

(iii)
∑n

k=1 y
2n−2k+1
i c2

k−1

2 =

{
y1y2 for D8,

y2
i for Q8.

Furthermore, in (1.12) we have also identified c1, which can not be done by
restriction methods. Note that these relations imply all the others proved along
the way, as well as c2

2n−1+2n−1

2 = 0.
It remains to check that the Chern approximation has the correct rank, which
according to the Euler chracteristic formula from [HKR] should be 3

2
4n − 1

2
2n.

From the relations one easily reads off the basis (which works for either group){
yi1y

ε
2c
k
2 , y

j
2c
l
2 , c

m
2

∣∣∣∣ 1 ≤ i < 2n, ε ∈ {0, 1}, 0 ≤ j < 2n,
0 ≤ k, l < 2n−1, 2n−1 ≤ m < 2n

}
which has indeed the right length. We thus have:

Theorem 1.2. Let G be either D8 or Q8.

(a) K(n)∗(BG) ∼= C(G;K(n)).

(b) K(n)∗(BG) is multiplicatively generated by the classes y1, y2, c2 subject to
the relations (i)-(iii) above.

Remark. Note that our relations coincide with those obtained in [BV]. The au-
thors use slightly different generators there, their x corresponds to our y1 and c
to y1 +K(n) y2.
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2 Groups with dihedral and quaternion Sylow subgroups

As corollaries of the calculations of the previous section one can determine the
Morava K-theory of groups having Q8 or D8 as Sylow subgroup. We shall do this
for SL2(F3) for all n and Σ4 for n = 2.

Let G = SL2(F3) ∼= Q8 o C3. This group has three one-dimensional represen-
tations 1, ε, ε2 factoring through the quotient C3, three two-dimensional repre-
sentations ∆, ε∆, ε2∆, where ∆ restricts to the representation of the same name
of Q8 (which extends to G), and one three-dimensional representation, which
is obtained by inducing a nontrivial linear character of Q8 up to G. One has
the following product relations, Adams operations, and exterior powers, easily
calculated from the character table:

β3 = 1, ∆2 = 1 + σ, σ2 = 1 + β + β2 + 2σ, βσ = σ, ∆σ = (1 + β + β2)∆

ψk∆ =



2 k = 0, 1 (12)

∆ k = 1, 5, 7, 11 (12)

(−1 + β + β2)∆ k = 2, 10 (12)

β + β2 k = 4, 8 (12)

1− β − β2 + σ k = 6 (12)

ψkσ =


3 k = 0 (6)

σ k = 1, 5 (6)

1 + β + β2 k = 2, 4 (6)

2− β − β2 + σ k = 3 (6)

λ2∆ = 1 , λ2σ = σ , λ3σ = 1 .

Since the Morava K-theory of the 2-Sylow subgroup Q8 is concentrated in even
degrees, the same is true for SL2(F3). The rank of K(n)∗(BG) is readily com-
puted using the Euler characteristic formula,

χn,2(SL2(F3)) =
1

2
4n +

1

2
2n .

We proceed to calculate C(SL2(F3);K(n)), although in less detail than above.
Clearly, ck(β) = 0 for k > 0. Let ci = ci(∆) and di = ci(σ). From ψ4∆ = β + β2

one obtains c4
n

i = 0. (This implies in particular that in calculating Chern classes
of operations on ∆, the terms of the formal group law given by the Bakuradze-
Vershinin formula (1.1) suffice.) Secondly, ψ2∆ + 1 = σ gives

d1 = c2
n

1 , , d2 = c2
n

2 and d3 = 0 ,
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whence the Chern classes of ∆ generate – which is what one would expect, see
below. Next, λ2∆ = 1 gives c1 = c2

n

2 + c2
2n−1

2 . Finally, consider ψ3∆ + ∆ =
(β+β2)∆. Since ci(β∆) = ci, one concludes c1(ψ

3∆) = c1 and c2(Ψ
3∆+∆) = 0,

hence
c2 = c2(ψ

3∆) = c2 + c2
2n−1+2n−1

2 .

Thus C(SL2(F3);K(n)) is generated by c2 and has rank 22n−1 + 2n−1. Since this
coincides with the Euler characteristic (which equals the rank by virtue of there
being no elements of odd dimension), we have proved:

Theorem 2.1. Let p = 2 and c2 = c2(∆). Then

K(n)∗(BSL2(F3)) ∼= C(SL2(F3);K(n)) ∼= K(n)∗[c2]/(c
22n−1+2n−1

2 ) �

Remark. The calculation of the Morava K-theory of this group (at p = 2) is of
course much simpler than this: It follows immediately from the Serre spectral
sequence that K(n)∗(BG) = K(n)∗(BQ8)

C3 . The representation ∆ is invariant
under the C3-action whence the same is true for its Chern classes. Now the
submodule of K(n)∗(BQ8) generated by Res(c2(∆)) (= c2 in the notation of
Theorem 1.2) has the correct rank, as one immediately reads off the relations for
Q8.

Remark. Of course, this result can also (and arguably more easily) be obtained
from Tanabe’s theorem.

Next, consider the group Σ4. The following calculation is a variant of Strickland’s
calculation in [St4], Section 14. The symmetric group Σ4 has 5 irreducible repre-
sentations 1, ε, δ, ρ, ερ of dimensions 1, 1, 2, 3, 3, respectivley, subject to relations

ε2 = 1, εδ = δ, δ2 = 1 + ε+ δ,

ρ2 = 1 + δ + ρ+ ερ, δρ = ρ+ ερ .

The Adams operations are easily calculated from the character table:

ψkδ =


2 k ≡ 0 mod 6
δ k ≡ ±1 mod 6
1− ε+ δ k ≡ ±2 mod 6
1 + ε k ≡ 3 mod 6

ψkρ =



3 k ≡ 0 mod 12
ρ k ≡ ±1,±5 mod 12
1 + δ + ρ− ερ k ≡ ±2 mod 12
1 + ε− δ + ρ k ≡ ±3 mod 12
2− ε+ δ k ≡ ±4 mod 12
2 + δ + ρ− ερ k ≡ 6 mod 12
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and ψk(ερ) = ψj(ρ). Thus the non-trivial exterior power operations are

λ2δ = ε, λ2ρ = λ2(ερ) = ερ, λ3ρ = ε, λ3(ερ) = 1 .

Conceivably one can calculate the Morava K-theory of Σ4 from these relations and
operations, but we shall not do so. Instead, we use the embeddingK(n)∗(BΣ4) ↪→
K(n)∗(BD8). Furthermore, we only consider the case n = 2.
Let d2 := c2(ερ), d3 := c3(ερ), and y1 := c1(ε). We claim that K(2)∗(BΣ4) is
generated by these three classes. Denote their images in K(2)∗(BD8) by the same
names; since ResΣ4

D8
(ε) = γ1 and ResΣ4

D8
(ερ) = γ1γ2 + ∆ (using the same notation

for representations of D8 as before), y1 coincides with the class also called y1

earlier, whereas

d2 = c2 + y2
1 + y2

2 + (y3
1 + y3

2)c2

d3 = (y1 + y2)c2 + c92

Using the relations in K(2)∗(BD8), we first see di2 = ci2 for i ≥ 2, and

d2d3 = 0, d2
3 = 0, y1d

2
2 + y3

1d2 = d4
2, y1d3 = y2

1d2 + y1d
3
2 . (2.1)

This gives a basis of 17 elements, namely

{yi1d
j
2 | 0 ≤ i, j ≤ 3} ∪ {d3} .

Since 17 is the rank of K(2)∗(BΣ4), we conclude

Theorem 2.2 (Strickland). K(2)∗(BΣ4) is generated by y1, d2, d3, subject to the
relations (2.1). All the relations can be obtained formally from the representation
ring. Thus K(2)∗(BΣ4) ∼= C(Σ4;K(2)).

The second sentence in the theorem follows from the result for D8. This is not to
say that C(G;K(n)) is isomorphic to K(n)∗(BG) whenever this holds for a Sylow
p subgroup P . Indeed, such a statement is plainly false: when K(n)∗(BP ) ∼=
C(P ;K(n)), one cannot even conclude that K(n)∗(BG) is generated by Chern
classes of (irreducible) representations of G. For an example here, consider the
alternating groupA4: a simple consideration of invariants shows thatK(n)∗(BA4)
is not generated by Chern classes, one needs transfer classes.

3 Dihedral and quaternion groups of larger order

In order to prove a statement like part (a) of Theorem 1.2, it is not always
necessary to determine all multiplicative relations.
Suppose one already knew that K(n)∗(BG) was generated by Chern classes of
representations. It then suffices to produce, using only formal consequences of
the ring structure of RG plus Adams operations, enough relations among the
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Chern classes of all irreducible representations so that the rank of the result is
equal to the Euler characteristic of G. This is the course we shall follow for
dihedral and generalised quaternion groups of larger order; for the assumption
on generation by Chern classes we refer to the main result of [Sc], reproduced
here as Corollary V.1.3.

Let

G = 〈a, b | a2m+1

= 1, b2 = ae, bab−1 = a−1〉

with G ∼= D2m+2 for e = 1 and G ∼= Q2m+2 for e = 2m.
The next few lemmas, recording the structure of the representation ring RG and
the Adams operations, are routine. Note that RD2m+2 and RQ2m+2 are isomorphic
as rings.
Define representations γj (j = 1, 2) and σk (0 ≤ k < 2m+1) of G by

γ1(a) = γ2(a) = −1 , γ1(b) = 1 , γ2(b) = −1

and

σk = IndG〈a〉(ρ
k)

where ρ : 〈a〉 ↪→ C× is given by ρ(a) = exp(2−mπi). The choices made for the γj
are consistent with earlier notation, and will result in more symmetric looking
formulas later on.

Lemma 3.1. The irreducible representations of G are 1, γ1, γ2, γ1γ2, and σk for
1 ≤ k < 2m.

Note that σ0 = 1 + γ1γ2 and σ2m = γ1 + γ2, as well as σ2m+r = σ2m−r.

Lemma 3.2. The ring structure of RG is given by

(a) γjσk = σ2m−k (0 ≤ k ≤ 2m);

(b) σjσk = σk+j + σk−j for j ≤ k.

Adams operations and exterior powers differ for the two types; they are deter-
mined by

Lemma 3.3. (a) ψkσ1 = σk for k odd;

(b) ψ2σk =

{
1− γ1γ2 + σ2k for G dihedral,

(−1)k(1− γ1γ2) + σ2k for G quaternion;

λ2σk =

{
γ1γ2 for G dihedral, or G quaternion and k even;

1 for G quaternion and k odd.
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The central extension Z → G→ D′ ∼= D2m+1 (for either group) gives an ‘inflation’
map RD′ → RG with image generated by the γ’s and the σ2k. This means we can
inductively assume the relations among the Chern classes of these representations.

Theorem 3.4. Let G be either D2m+2 or Q2m+2. Then K(n)∗(BG) ∼= C(G;K(n)).

Proof. We shall give fewer details than before; the arguments closely resemble
those of Section 1. Also, we only give the proof for dihedral groups, the other
case being similar.
Let ck = ck(σ1) and yj = c1(γj). We shall prove:

(i) all other Chern classes can be expressed in terms of y1, y2, and c2;

(ii) y2n

1 = y2n

2 = 0;

(iii) y2
1y2 = y1y

2
2;

(iv) y1y2 = c2
mn

2

(v) c1 = y1 + y2 + c2
n−1

2 mod c2
n

2 ;

(vi) c2
(m+1)n−1+2n−1

2 = 0;

(vii) yjc
2n−1

2 = f(yj, c2) + g(c2) (j = 1, 2) for certain polynomials f and g, where
the c2-degree of f is less than 2n−1.

This suffices, since K(n)∗(BG) is generated by Chern classes, and modulo the
relations (i) - (vii) one has the basis

{yrj cs2 | j = 1, 2, 1 ≤ r < 2n, 0 ≤ s < 2n−1} ∪ {ct2 | 0 ≤ t < 2(m+1)n−1 + 2n−1}

of cardinality
1

2
2(m+1)n + 4n − 1

2
2n = χn,2(G) .

Assertion (i) follows directly from Lemma 3.3, except for the claim about c1, to
which we shall return later. (ii) is obvious. Most of the others are proved by
induction on m, based on the calculations for D8. Let dk = ck(σ2). Then we can
inductively assume (i) - (vii) for the dk (where (i) refers to all σ2k) withm replaced
by m−1. Then (iii) is immediate, and (iv) follows from ψ2m

σ1+γ1γ2 = 1+γ1+γ2,
which gives c2

mn

1 = (y1y2)
2n−1

and then

c2
mn

2 = c2
mn

1 (y1 +K(n) y2) + y1y2 = (y1y2)
2n−1(

y1 + y2 + (y1y2)
2n−1)

+ y1y2 = y1y2

where we have used (ii) and (iii).
Next, consider ψ2σ1 + γ1γ2 = 1 + σ2. Applying first and second Chern classes to
this identity yields

c2
n

1 = d2n−1

2 mod d2n

2 and d2 = c2
n

2 + (y1 + y2)c
22n−1

2 mod c2
2n

2 ;
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where the second equality should then be plugged into the first. Moreover, if we
write z for y1 +K(n) y2, then γ1γ2σ1 = σ1 implies

zc1 = z2 +
n−1∑
k=1

z2n−2k+1c2
k−1

2 and zc21 = z3

since we can copy the proof of (1.3). Thus

(y1 + y2)c1 = (y1 + y2)
2 + (y1y2)

2n−1

c1 +
n−1∑
k=1

(y1 + y2)
2n−2k+1c2

k−1

2 (3.1)

(note that by virtue of (iii), zr = (y1 + y2)
r for r > 1).

From λ2σ1 = γ1γ2 one obtains

c1 = (y1 + y2) + c2
n−1

2 + c2
n−1

1 c2
n

2 mod c2
2n−2

1 c2
2n−2

2 (3.2)

which by repeated application proves (i) for c1 and (v). Together with (3.1) this
implies

(y1 + y2)c
2n−1

2 =
n−1∑
k=1

(y1 + y2)
2n−2k+1c2

k−1

2 (3.3)

which in turn gives (using (iii) and (iv) )

c2
(m+1)n−1+2n−1

2 = (y1y2)
2n−1

c2
n−1

2 = y2n−1
1 y2c

2n−1

2

= y2n−1
1

(
y1c

2n−1

2 +
n−1∑
k=1

(y1 + y2)
2n−2k−1c2

k−1

2

)
= 0 ,

i.e., (vi). Finally, (vii) follows from

σ1 + γ1σ1 = σ2m−1−1σ2m−1 = ψ2m−1−1σ1 · ψ2m−1

σ1 ,

a general formula for c1(γσ) as in Section 1, the formula for c1, and the fact that
by all of the equalities proved already, c2(ψ

2m−1−1σ1 · ψ2m−1
σ1) can be expressed

as a polynomial in yj and c2.

Remark. (a) With more effort, the actual relations can be derived using this
method, but we were more interested in the fact that the Morava K-theory of these
groups is completely determined by K(1). Also, there are more efficient ways to
find the relations; one was hinted at in III.1, another consists of a combination
of the above with transfer methods, see [BV].

(b) An analogous theorem can be proved for semidihedral groups.



Chapter V

Calculations at the prime 2

This chapter is concerned with the prime 2, as the title says. There are some ways
in which this prime is different. For example, there is no complex orientation x
such that [−1](x) = −x, which makes some arguments harder.
The first section is an outgrowth (and slight generalisation) of [Sc]; it deals with
groups having a maximal cyclic subgroup and other related groups.
Section 2 covers groups of order 16. These calculations are implicit in Yagita’s
papers, but we chose to include them for illustration and reference.
Section 3 gives calulations of the Morava K-theory of the groups of order 32.
Many of those are new, and make use of the tools developed in the first two
sections of this chapter.
In this chapter we assume always p = 2.

1 Central extensions with dihedral quotients

In [Sc], we calculated K(n)∗(BG) for groups G possessing a maximal cyclic sub-
group; these are the dihedral, semidihedral, generalised quaternion, and quasidi-
hedral groups of 2-power order. The method of calculation was in all instances
the same: in each case there is a central extension

1 - N
i- G

π- D - 1 (1.1)

with D a dihedral group (it makes sense to identify C2×C2 with D4). Then N is
cyclic of order 2 for dihedral, semidihedral or generalised quaternion groups, and
cyclic of index 4 in the quasidihedral case. It turned out that the Serre spectral
sequence

E2 = H∗(D; F2)⊗K(n)∗(BN) =⇒ K(n)∗(BG) (1.2)

associated to (1.1) had only three differentials, namely d3 : E0,3
2 → E3,0

2 , then
d2n+1−1 given by Qn, and one more, which is determined by the maximal cyclic
subgroup.
After a slight generalisation of the method, we shall give a shortened account of
this calculation.
The reason it is so easy is that one has perfect control over the Qn-homology of
quotients of H∗(D) by non-zero divisors; thus this part of the argument can be

67
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made a little bit more general. An ‘integral’ variant for the special case D = D4

was originally considered in [SY].
Suppose that in the extension (1.1), D ‘acts trivially’ onN , by which we just mean
that every element of D has a preimage in G that centralises N . This certainly
happens when the extension is central, or when G is the central product of N
with D. In general, when N is not abelian, D does not act on N , but only up to
inner automorphisms of N , i.e., one has a homomorphism ψ : D → Out(N); this
homomorphism should be trivial. A set theoretic splitting s of π gives rise to a
set theoretic lift φ : D → Aut(N) of ψ, and we further require the existence of a
trivial lift.
Under these circumstances, we have

Theorem 1.1. Let G be as above. Suppose that K(n)∗(BN) is concentrated in
even degrees, and that in the Serre spectral sequence (1.2), all elements in E0,∗

4

are permanent cycles. Then K(n)∗(BG) is concentrated in even degrees.

Proof. We first prove the statement when D has order 4 (this is the case treated
in [SY]). Consider the inverse images H of any C2 ⊂ D4. Such H is either
abelian or a central product; in any case, the associated Serre spectral sequence
has only one differential d2n+1−1 = vnQn. This implies that the first potentially
nontrivial differential has to be of the form d3z = x2

1x2 + x1x
2
2 mod vn, where

H∗(D4; F2) = F2[x1, x2]. Thus we obtain an isomorphism

E4
∼= K ⊗ F2[x1, x2]/(x1x2(x1 + x2))⊕H ⊗ F2[x1, x2]{x1x2(x1 + x2)}

where K = Ker(d3|K(n)∗(BN)) and H = H(K(n)∗(BN), d3 ⊗ (x1x2(x1 + x2))
−1).

By assumption on E4, the next differential is d2n+1−1 = vnQn. It is now easy
to verify that the Qn-homology of M ′ = F2[x1, x2]x1x2(x1 + x2) and M ′′ =
F2[x1, x2]/(x1x2(x1 + x2)) is finite and concentrated in even degrees: look at
the short exact sequence 0 → M ′ → M → M ′′ → 0 with M = H∗(BV ) and
the induced long exact sequence(s) in Qn-homology (one for each degree mod-
ulo |vn|). The Qn-homology of M ′′ is even and concentrated in degrees at most
2n+1, and the map H(M ;Qn) → H(M ′′;Qn) is onto, rendering the connecting
homomorphisms trivial, whence the claim. This finishes the proof for this case.
For the case D = D2m+1 with m > 1, first recall the cohomology of D (e.g. from
III.1):

H∗(D; F2) ∼= F2[x1, x2, w2]/(x1x2)

As before, we sometimes write w1 for x1 + x2. There are two conjugacy classes
of maximal elementary abelian subgroups, represented (say) by K and T , both
of rank two. Restricting to these and applying the special case just proved, one
sees that d3 is either trivial, or has image (w1w2) mod vn. If d3 is trivial, we are
done by the assumption on E4 and (the calculation of) the Atiyah-Hirzebruch
spectral sequence for the dihedral quotient. Otherwise, we have

E4
∼= K ⊗M ′′ ⊕H ⊗M ′



1 Central extensions with dihedral quotients 69

where K and H are defined as before as the kernel and homology of d3 and
d3 ⊗ (w1w2)

−1 on K(n)∗(BN), respectively. Here M ′ = M{w1w2} and M ′′ =
M/(w1w2), where M = H∗(D; F2) (note that w1w2 is not a zero divisor in M).
The next differential being d2n+1−1 = vn ⊗ Qn, we need to calculate the Qn-
homology of M ′ and M ′′. For M ′′ this is easy: modulo w1w2, one has

Qn(xi) = x2n+1

i , Qn(w2) =
n∑
r=0

w2n+1−2r+1+1
1 w2r

2 = 0 , Qn(x1w2) = 0 ,

giving

H(M ′′;Qn) = F2[w2]{1, x1w2} ⊕ F2[x
2
1, x

2
2]/(x

2
1x

2
2, x

2n+1

2 , x2n+1

2 ) .

For M ′, one could either do this directly, or, since we already calculated the
Qn-homology of M in III.1, by means of the short exact sequence of Qn-modules
0 →M ′ →M →M ′′ → 0 and the associated long exact sequence(s)

· · · - Hs(M ′;Qn)
ι- Hs(M ;Qn)

κ- Hs(M ′′;Qn)
δ- Hs+|Qn|(M ′;Qn) - · · · .

Recall from Lemma III.1.2

H(M ;Qn) = F2[x
2
1, x

2
2]/(x

2
1x

2
2, x

2n+1

2 , x2n+1

2 )⊗ F2[w
2
2]/(w

2n

2 )⊕ F2[w
2
2]{w2n

2 , ζ}

with ζ =
∑n

r=0 x
2n+1−2r+2+1
1 w2r

2 . We need to determine δ and κ. The formulas for
the action of Qn give

δ(x2k
i ) = δ(w2l

2 ) = 0 ,

δ(w2k+1
2 ) = w2k

2 Qnw2 (note that Qnw2 is not a boundary in M ′),

δ(x1w
2k
2 ) = x2n+1

1 w2k
2 , δ(x1w

2k+1
2 ) = Qn(x1w2)w

2k
2 =

n∑
r=1

x2n+1−2r+1+2
1 w2r+2k

2 .

Reduction modulo w1w2 gives

Ker(κ) = F2{x2i
1 w

2k
2 , x

2j
2 w

2l
2 | 1 ≤ i, j < 2n , 0 ≤ k, l < 2n−1} .

Splitting the long exact homology sequences into short exact sequences 0 →
Im(δ) → H(M ′;Qn) → Ker(κ) → 0 thus yields an additive isomorphism

H(M ′;Qn) ∼= F2[w
2
2]{x2n+1

1 , Qn(x1w2), Qnw2}
⊕ F2{x2i

1 w
2k
2 , x

2j
2 w

2l
2 | 1 ≤ i, j < 2n , 0 ≤ k, l < 2n−1} .
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Thus the E2n+1-page

E2n+1
∼= K ⊗H(M ′′;Qn)⊕H ⊗H(M ′;Qn)

is still infinite, and there must be further differentials. The only way to arrive
at a finite E∞-page is when ζ and Qnw2 support differentials, and we obtain an
E∞-page concentrated in even degrees.

Corollary 1.2. Suppose in addition that all elements in E0,∗
4 are restrictions of

good elements of K(n)∗(BG). Then K(n)∗(BG) is good.

Proof. This is a consequence of the following facts: (i) the x2
i are clearly repre-

sented by Euler classes of one-dimensional representations of G; (ii) there is an
extension problem identifying w2 as a polynomial in elements of E0,∗

4 : this can
be seen either by restriction to subgroups, or by appealing to the extension class
in (ordinary) cohomology.

As a first application, we immediately recover the aforementioned results of [Sc]:

Corollary 1.3. Let G be either dihedral, semidihedral, generalised quaternion,
or quasidihedral. Then

(a) K(n)odd(BG) = 0;

(b) K(n)∗(BG) is generated by Euler classes of complex representations.

Proof. For each of the four types, one has a central extension

1 - C - G - D - 1

as in the lemma, with C = C2 for the first three types, and C an index four cyclic
subgroup for quadidihedral G.
It remains to check the condition on the E4-page of the Serre spectral sequence.
It is easily verified that each of these groups has a two-dimensional complex repre-
sentation restricting to a sum of two copies of a generator µ of the representation
ring of the (cyclic) centre; thus if z = c1(µ) denotes the generator of K(n)∗(BC),
then z2 is the restriction of an Euler class of G.

Remark. The multiplicative relations given in [Sc] contain errors, since we missed
another extension problem there. For D8 and Q8, the correct relations were
derived from the Chern approximation in IV.1. The same method should work
for the bigger groups; compare the remark at the end of IV.3.

Remark. Since these groups are metacyclic, one could equally well derive the
corollary from the results of Tezuka-Yagita [TY3].

There are other instances when the lemma is useful, as shall be seen in the next
sections.
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2 Groups of order 16

There are 11 nonabelian groups of order 16,

(a) D8 × C2, Q8 × C2,

(b) D16, Q16, the semidihedral group SD16, the quasidihedral group QD16,

(c) the central product C4 ◦D8, also known as almost extraspecial group,

(d) G1 = 〈a, b, c | a4 = b2 = c2 = 1, cac = ab, [a, b] = [b, c] = 1〉 ∼= (C4×C2)oC2,

(e) G2 = 〈a, b | a4 = b4 = 1, b−1ab = a−1〉 ∼= C4 o C4.

The groups in (a) and (b) have been dealt with in previous sections. The central
product is described additively by Corollary II.5.3, so just (d) and (e) remain:
both are minimal non-abelian 2-groups, i.e., all of their maximal subgroups are
abelian. Thus they also have even Morava K-theory by Theorem III.3.4.

3 Groups of order 32

In this section we calculate K(n)∗(BG) additively for G of order 32. The original
motivation for doing so was the faint hope of finding a 2-primary counterexample
to the Hopkins-Kuhn-Ravenel conjecture, i.e., a 2-group G with odd Morava K-
theory. In this we failed — the groups considered are probably way too small.
The problem thus remains open.

The theory as described in Chapter III covers 33 groups, leaving 18 to be calcu-
lated. For some groups we only consider the second Morava K-theory K(2); the
reason for this restriction is that in these cases we rely on computer calculations
(with MAPLE), being unable to cope without. This concerns the groups #38-41
and #44-48, which shall be dealt with at the very end of the section.

We shall use the Hall-Senior list for the 51 groups of order 32, and denote the
group number i by Gi. The groups are ordered by their central quotients.

3.1 Groups 1-15

The first 7 groups are abelian, and G8 - G15 have an abelian factor, so they are
all good by the results of Section 2.

3.2 Groups 16-22

These all have central quotient C2 × C2, so Theorem 1.1 applies, once one has
checked the hypothesis on the E4-page of the Serre spectral sequence. In fact,
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we only need to do this for G16 and G17, since the others are metacyclic and/or
minimal non-abelian:

G18 = 〈a, b, c | a4 = b4 = c2 = [a, c] = [b, c] = 1, a−1ba = ac〉 ∼= (C4 × C2) o C4

and

G20 = 〈a, b, c | a8 = b2 = c2 = [a, c] = [b, c] = 1, bab = ac〉 ∼= (C8 × C2) o C2

are minimal non-abelian and hence good by Theorem III.3.4;

G19 = 〈a, b | a8 = b4 = 1, b−1ab = a5〉 ∼= C8 o C4

G21 = 〈a, b | a4 = b8 = 1, b−1ab = a3〉 ∼= C4 o C8

G22 = QD32

are split metacyclic.
G16 is a semidirect product (C4 × C4) o C2; a presentation is

G = G16 = 〈a, b, c | a4 = b4 = c2 = [a, b] = [b, c] = 1, cac = ab2〉 .

a2 and b generate the centre Z ∼= C4 × C2, and we consider the Serre spectral
sequence for the central extension 1 → Z → G→ C2 × C2 → 1 with

E2
∼= K(n)∗[y, z]/(y2n

, z4n

)⊗H∗(C2 × C2; F2)

where y and z are the Euler classes of the representations η and λ of Z defined by
η(a2) = −1, η(b) = 1, and λ(a2) = 1, λ(b) = i, respectively. Then η extends to a
representation η̃ of G16 by setting η̃(a) = i and η̃(c) = 1; thus y is a permanent
cycle. z however is not, but we need to check that z2 is. Define a representation
σ of G by

σ = IndG〈a,b〉(µ) where µ(a) = 1, µ(b) = i.

Then ResGZ(σ) = 2λ, and we are done.

G17 has a presentation

G = G17 = 〈a, b, c | a8 = c2 = [a, c] = [a, b] = 1, b2 = a2, cbc = a4b〉 ;

the centre Z = 〈a〉 is cyclic of order 8 with quotient C2×C2. The E2-term of the
Serre spectral sequence of the corresponding central extension is then

E2 = K(n)∗[z]/(z8n

)⊗H∗(C2 × C2; F2)

with z = e(ρ), ρ(a) = exp(πi/4). Now ρ extends to a representation ρ̃ of 〈a, c〉
by setting ρ̃(c) = 1. Since a is central, one has ρ̃b(a) = ρ̃(a), whence

ResGZ IndG〈a,c〉(ρ̃) = 2ρ ,

implying that z2 is a permanent cycle. Summing up:

Theorem 3.1. The groups #16-22 are good.
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3.3 Groups 23-33

These groups all have central quotient D8, so this will be another instance of
Theorem 1.1 and henceforth an easy exercise in representation theory.
They also share the same Morava K-theory Euler characteristic

χn,2(G) =
1

2
16n + 8n − 1

2
4n .

The first three (groups 23-25 or Γai, i = 1, 2, 3) have a direct factor C2: they are
isomorphic to C2 ×D16, C2 × SD16, and C2 ×Q16, respectively.

G29 = 〈a, b | a8 = b4 = 1, b−1ab = a−1〉 and

G30 = 〈a, b | a8 = b4 = 1, b−1ab = a3〉

are split metacyclic, whereas G31
∼= C4 o C2 and G33 = (C2 × C2) o C2. Thus we

are left with numbers 26-28 and 32.

Groups 26-28 and 32. Presentations are e.g. as follows:

G26 = 〈a, b, c | a8 = b2 = c2 = [a, b] = 1, cac = a−1, cbc = a4b〉
G27 = 〈a, b, c | a8 = b2 = c2 = [a, b] = [b, c] = 1, cac = a−1b〉
G28 = 〈a, b, c | a8 = b2 = [a, b] = [b, c] = 1, c2 = a4, c−1ac = a3b〉
G32 = 〈a, b, c | a8 = 1, b = c2, c4 = a4, [a, b] = [b, c] = 1, c−1ac = a3〉

We chose these presentations in order to facilitate unified treatment: for example,
a and b generate a maximal abelian subgroup A ∼= C8 × C2 in all four of these
groups.

We start with G26: this group is a central product of a cyclic group of order
four (generated by a2b) with a dihedral group of order 16, and we are done by
Corollary II.5.3.

Next, G32 is (nonsplit) metacyclic, thus already covered.

Finally, let G be either G27 or G28. Both groups have centre Z = 〈a4, b〉 ∼= C2×C2

(with quotient D8, as remarked earlier). Mandated by Theorem 1.1, we consider
the Serre spectral sequence of the central extension

1 - 〈a4, b〉 - G - 〈ā, c〉 - 1

with

E2 = H∗(D8;K(n)∗(BZ)) ∼= F2[x1, w1, w2]/(x
2
1 +x1w1)⊗K(n)∗[z1, z2]/(z

2n

1 , z2n

2 ) .

Here z1 and z2 are the Euler classes of λ1, λ2 corresponding to a4 and b, respec-
tively, while we keep the notation for H∗(D8; F2) from previous sections.
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Since [G,G] = 〈a2b〉 ∼= C4, we have a one-dimensional representation β of G with
β(b) = −1 (and β(a) = β(c) = 1); this restricts to λ2 on the centre. Thus z2 is a
permanent cycle. Now let A = 〈a, b〉 ∼= C8 × C2 as above, and define ρ ∈ RA by
ρ(a) = exp(πi/4) and ρ(b) = 1. Then ρc is either ρ−1 (for G27) or ρ3 (for G28);
in any case,

ResGZ IndGA(ρ) = ResAZ(ρ+ ρc) = 2λ1 ,

so z2
1 is a permanent cycle, too.

Theorem 3.2. The groups #23-33 are good.

3.4 Groups 34-37

Presentations of G34-G37 are as follows:

G34 = 〈a, b, c | a4 = b4 = c2 = [a, b] = 1, cac = a−1, cbc = b−1〉
G35 = 〈a, b, c | a4 = b4 = [a, b] = 1, c2 = a2, cac = a−1, cbc = b−1〉
G36 = 〈a, b, c | a4 = b4 = c2 = [b, c] = 1, a−1ba = b−1, cac = a−1〉
G37 = 〈a, b, c | a4 = c2 = d2 = [b, c] = 1, d = [a, c], b2 = a2, bab−1 = a−1〉

All four groups have centre Z ∼= C2×C2 with quotient C3
2 , and Euler characteristic

χn,2 =
1

2
16n + 8n − 1

2
4n .

G34 and G35 have the maximal abelian subgroup A = 〈a, b〉 ∼= C4 ×C4, on which
the quotient acts (diagonally) by inverting a and b. From the result for D8 we

know that M := K̃(n)∗(BC4) is a permutation module for the automorphism

inverting the generator of the group, thus K̃(n)∗(BA) ∼= M ⊗ M is again a
permutation module. It follows that G34 and G35 are both good.
G36 contains the maximal abelian aubgroup A = 〈b, a2, c〉 ∼= C4 ×C2 ×C2. From

the relations one reads off that K̃(n)∗(BA) ∼= M ⊗N , where N = K̃(n)∗(BC2 ×
C2) with the switch action, so this is again a permutation module; the situation
is similar for G37 and the maximal abelian subgroup A = 〈b, c, d〉.

Theorem 3.3. The groups #34-37 are good.

3.5 Extraspecial groups

There are two of those, namely the central products D8 ◦ D8 and D8 ◦ Q8, and
they carry the numbers 42 and 43. Both groups were treated originally in [SY]
using integral Morava K-theory. Here we present a mod 2 calculation; this has
its advantages, as we shall see.
In both cases, G is generated by elements a1, . . . , a4 of order 2, and we have an
extension

1 - G′ - G - V - 1
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with G′ ∼= D8 and trivial V -action on G′. Thus the strategy will be to use
Theorem 1.1.
Set Gij = 〈ai, aj〉 ⊂ G, numbering the generators ai such that G′ = G12, and Ai =
〈ai〉. Then G34

∼= D8 or Q8, and G34/C = V for C = centre of G. This allows us
to keep the notation for K(n)∗(BD8) from the earlier section. Furthermore, let
H∗(BV ; F2) = F2[x1, x2], and set for convenience α = x2

1x2 + x1x
2
2. We consider

the spectral sequence

E∗,∗
2 = H∗(BV ;K(n)∗(BD8)) =⇒ K(n)∗(BG) . (3.1)

Lemma 3.4. In the above spectral sequence, we have

d3c2 = c1 ⊗ α mod (y1, y2)
2 .

Before beginning with the proof, recall that c1 = y1 + y2 + vnc
2n−1

2 ; we use c1
here for notational simplicity. Also, all K(n)∗ generators of cyclic groups will
indiscriminately be called u.

Proof. For dimensional reasons, d3c2 = (λ1y1 + λ2y2 + λ3c1)⊗ α mod (y1, y2)
2

with λi ∈ F2. Consider the map of spectral sequences induced by

1 - A1 × C - A1 ×G34
- V = G34/C - 0

1 - G′

i

?
- G

i

?
- V

wwwww
- 0

Since ResA1×C(c2) = u2 + uy1 mod (y2
1) and d3u = 1⊗ α, we get

i∗(d3c2) = d3(u
2 + uy1) = y1 ⊗ α mod (y2

1)

and hence λ1 + λ3 = 1. Similarly, replacing A1 with A2, we get λ2 + λ3 = 1.
Finally, consider the inclusion of A = 〈a1a2〉 ∼= C4 into G12:

1 - A - A ◦G34
- V - 0

1 - G12

j

?
- G

j

?
- V

wwwww
- 0

Now modulo u2n+1
, we have ResA(c2) = u2 +vnu

2n+1 and thus j∗(d3c2) = vnu
2n ⊗

α. Since ResA(c1) = vn(ResA(c2))
2n−1

= vnu
2n

, we get λ1 + λ2 + λ3 = 1, too.

Therefore
d3(yic2) = yic1 ⊗ α = y2

i ⊗ α mod (y1, y2)
3 .

Using this formula, it is easy to see that K := Ker(d3|K(n)∗(BD8)) is generated as
K(n)∗-algebra by

y1 , y2 , c
2
2 , b1 = y2n−1

1 c2 , b2 = y2n−1
2 c2 , y2b1 = y1b2 = y1y

2n−1
2 c2 = c2

2n−1+1
2 .

The last three terms are in K since vny
2n

i = 0 in K(n)∗(BD8). More precisely,
we have
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Lemma 3.5. In the spectral sequence (3.1), the kernel K and the homology H
with respect to d3 ⊗ α−1 are given additively by

K ∼= K(n)∗[c22]/(c
2n−1

2 ){b1, b2, y2b1, y
i
1, y

j
2(1 ≤ i, j < 2n)}

⊕ K(n)∗[c22]/(c
22n−1+2n−1

2 ) ,

H ∼= K(n)∗{1, y1, y2, b1, b2, y1b2}[c22]/(c2
n−1

2 )

Proof. This is a simple calculation using the relations in K(n)∗(BD8).

We want to show that all elements in K are permanent cycles. This is clear for y1

and y2, since they are Euler classes of linear characters of G itself. Furthermore,
c22 is the restriction of the Euler class of the spin representation of G: it restricts
to 2∆ on D8. Finally, using the relation

n∑
k=1

y2n−2k+1
i c2

k−1

2 = y1y2

we see that b1, b2, and y2b1 are polynomials in yi and c22 (so we might as well
have said that K is generated by yi and c22, but the bi show up as generators for
homology). Note how much easier this argument is compared to the laboured
character considerations in [SY]. We even get a slightly better result: all genera-
tors are restrictions of Euler classes of representations of G proper – no need for
transfers.

Thus the assumptions of Theorem 1.1 hold, yielding (for D8 ◦ Q8 the reasoning
is completely analogous)

Theorem 3.6. Let G be an extraspecial group of order 32. Then K(n)∗(BG) is
concentrated in even degrees, and generated by Euler classes.

Remark. One might try other extensions as well, e.g., the one with a single C2

on top. Morally, the associated spectral sequence should have no differentials at
all, if one works integrally, or only the one inherited from the Atiyah-Hirzebruch
spectral sequence for BC2 in the mod 2 case. One would however need a calcu-
lation of invariants, which (at least in the case of Morava K-theory) seems fairly
complicated. At the other extreme, one could attempt to use Quillen’s original
approach for mod 2 Morava K-theory. One gets a similar picture with powers
of the multiplicative generator of K(n)∗(BC2) transgressing and killing a regular
sequence in the cohomology of BV , but is left with the problem of computing the
Qn-homology of the quotient. Computer calculations for n = 2, 3 suggest that
this is indeed finite, concentrated in even degrees, and gives rise to the correct
rank, but we have been unable to prove it in general. Conceptually it would be
the most satisfying approach.
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Remark. Yet another possible approach is using the Rothenberg-Steenrod spec-
tral sequence of II.5 for the description of the group as a central product D8 ◦D8.
To that end, one first has to calculate the structure of K(n)∗(BD8) as a comodule
over the Morava K-theory of the centre Z: let K(n)∗(BZ) = K(n)∗[u]/(u2n

) with
u the Euler class of η, say. Keeping the notation established previously for D8,
the composite of the multiplication map µ : Z×D8 → D8 with the representations
∆ and γi of D8 gives

γi ◦ µ = 1⊗ γi , ∆ ◦ µ = η ⊗∆ .

From now on let n = 2; then one obtains

µ∗(yi) = 1⊗ yi (i = 1, 2)

µ∗(c1) = 1⊗ c1 + u2 ⊗ c21
µ∗(c2) = 1⊗ c2 + u⊗ c1 + u2 ⊗ (1 + c1c2) + u3 ⊗ c21

Using this coaction, we used a MAPLE program to calculate first the cotensor
product of two copies of K(2)∗(BD8) over K(2)∗(BZ). This turns out to have
rank 148 (’equidistributed’ over the degrees 0, 2, 4, i.e., one extra in degree 0).
To calculate

CotorK(2)∗(BZ)

(
K(2)∗(BD8), K(2)∗(BD8)

)
,

we would have to construct a resolution e.g. by extended comodules. We found
it easier to dualise everything and build a free resolution of K(2)∗(BD8) as a
K(2)∗(BZ)-module. The K(2)-homology of BZ is again a truncated polynomial
algebra, generated by ξ dual to u2 (in the basis {1, , u, u2, u3}), cf. Theorem II.5.1.
Feeding this into MAPLE, one sees that the 22 dimensional module K(2)∗(BD8)
splits as a sum of four free and six trivial modules (this can be done by computing
the Jordan normal form for the action of ξ.) Thus Tork (Cotork) has rank 148 for
k = 0 and rank 6 in every positive degree. This means that the spectral sequence
cannot collapse on E2, there must be differentials. Having another argument for
this group, we have not pursued this line further.

3.6 Groups 49-51

These are the dihedral, semidihedral, and generalised quaternion groups of or-
der 32 and thus covered by Corollary 1.3.

3.7 Groups 38-41

The results in this and the next subsection are for n = 2 only and were obtained
with the aid of computer calculations. The method is simple: choose an index
2 subgroup H whose Morava K-theory you know everything about, calculate
invariants, and try to represent them as restrictions to H of transfers of Chern
classes of subgroups of G.
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The easy bit is to calculate invariants. The image of ResGH TrGH clearly gives the
invariants corresponding to the free summands (recall that K(n)∗(BH) is a direct
sum of free and trivial C2-modules), so we need to find representatives for the
trivial summands. Often these are restrictions of Chern classes of G itself, but
not always, and one has to caclulate the transfer from other subgroups of G.

We did this with MAPLE, which limited us to n = 2: calculating the image of
C(G;K(n)) tends to get large; without human intervention one would have to
handle square matrices of roughly 100MB in size even for n = 2 — small fry for
a serious computational effort, which we however shied.

For each group, we supply the following information: a presentation, the K(n)
Euler characteristic, the index 2 subgroup H used in the calculation, the irre-
ducible representations of G and their restrictions to H, the action of G/H on
the representation ring RH of H and the resulting action on K(n)∗(BH), and
finally the result of our MAPLE manipulations.

Presentations.

G38 = 〈a, b, c | a4 = b2 = c4 = [a, b] = 1, cac−1 = ac2, cbc−1 = a2b〉
G39 = 〈a, b, c | a4 = b4 = c2 = [a, b] = 1, cac = a3, cbc = a2b3〉
G40 = 〈a, b, c | a4 = b4 = 1, c2 = b2, [a, b] = 1, c−1ac = a3, c−1bc = a2b3〉
G41 = 〈a, b, c | a4 = b4 = c2 = [a, b] = 1, cac = a3b2, cbc = a2b〉

Each of these groups has an index 2 abelian subgroup A: for G38, this is the
subgroup 〈a, b, c2〉 ∼= C4 × C2 × C2, whereas all the others contain a copy of
C4 × C4 generated by a and b. Note that G39

∼= Ao C2 is a semidirect product,
and G40 is a non-split version of G39. Thus if we can establish G39 to be good,
the same holds for G40: the action of the quotient C2 on the (integral) Morava
K-theory is the same for both groups.

Euler characteristics. All these groups have a unique index 2 abelian sub-
group, centre of order 4, and 14 conjugacy classes of elements. This suffices to
conclude that they all have the same Euler characteristic

χn,2 =
1

2
16n + 8n − 1

2
4n .

The subgroup H. One can always take the index 2 abelian subgroup A. In the
case of G38, one might alternatively use the subgroup H := 〈ac, b, c2〉 ∼= D8×C2;
given the smaller size of its Morava K-theory, the MAPLE programme is faster
by a factor of about 10. To make presenting the calculation easier, we stick with
A, though.
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Irreducible representations. For all of these groups, there are 8 irreducible
representations of dimension 1 and 6 of dimension 2. In detail:

• G38: the commutator subgroup equals the centre Z = 〈ac, c2〉 ∼= C2 × C2

with quotient 〈ā, b̄, c̄〉. Thus the 1-dimensional representations are αiβjγk,
i, j, k ∈ {0, 1}, with α(a) = −1, α(b) = α(c) = 1; β(b) = −1, β(a) = β(c) =
1; γ(a) = γ(b) = 1, γ(c) = −1.
The 2-dimensional irreducibles are induced representations from certain
subgroups of G. Let A = 〈a, b, c2〉 as above with RA generated by ζ, η, ξ
corresponding to the generators (in this order). Secondly, let K1 = 〈a, c〉 =
〈c〉 o 〈a〉 (with a−1ca = c−1), and define λ ∈ RK1 by λ(c) = i, λ(a) = 1.
Thirdly, let K2 = 〈ab, abc, c2〉 (this subgroup is isomorphic to group (d)
from the previous section), and set µ(ab) = i, µ(abc) = 1, µ(c2) = −1.
Then

σ1 = IndGA(ξ) , σ2 = IndGK1
(λ) , σ3 = IndGK2

(µ) ,

σ′1 = βσ1 , σ′2 = ασ2 , σ′3 = ασ3

are distinct irreducible representations of dimension 2.

• G39 and G41 can be treated simultaneously. The 1-dimensional irreducibles
are given by αiβjγk defined as above. The 2-dimensional representations
can be obtained by induction from the subgroup A = 〈a, b〉 ∼= C4 × C4: let
λj ∈ RA be defined by λ1(a) = i, λ1(b) = 1, and λ2(a) = 1, λ2(b) = −1.
Set

σ1 = IndGA(λ1) , σ2 = IndGA(λ1) , σ3 = IndGA(λ1λ1) .

For G39, the 2-dimensional irreducibles are σ1, ασ1, σ2, ασ2, σ3, βσ3, for G41

they are σ1, ασ1, σ2, βσ2, σ3, ασ3.

The action of G/A on RA and restriction to A. In all cases, G/A = 〈c̄〉.
For G38, the action on ζ, η, ξ is given by

ζc = ζη , ηc = η , ξc = ζ2ξ .

Define z, y, x ∈ K(n)∗(BA) by z = c1(ζ), y = c1(η), and x = c1(ξ). Then c acts
on the Morava K-theory of A by

c∗(z) = y +F z , c∗(y) = y , c∗(x) = x+F [2](z) ;

this was fed into a MAPLE routine to caclulate invariants. The generators of the
representation ring of G38 restrict to A as follows:

Res(α) = ζ2, Res(β) = η, Res(γ) = 1,

Res(σ1) = (1 + ζ2)ξ, Res(σ2) = (1 + η)ζ, Res(σ3) = (1 + ζ2η)ζξ,
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from which one readily reads off the restrictions of the Euler classes of these
representations. Note that the simplest form of the formal group law suffices,
since only [2](z) appears in all expressions.

For G39 and G41, let x, y ∈ K(n)∗(BA) be defined as the Euler classes of λ1 and
λ2, respectively. The following table gives the action of c on RA and K(n)∗(BA):

λc1 λc2 c∗(x) c∗(y)

G39 λ3
1λ

2
2 λ3

2 [3](x) +F [2](y) [3](y)

G41 λ3
1λ

2
2 λ2

1λ2 [3](x) +F [2](y) [2](x) +F (y)

Finally, the restrictions of the generators of RG are as follows:

α β γ σ1 σ2 σ3

G39 λ2
1 λ2

2 1 λ1(1 + λ2
1λ

2
2) λ2 + λ3

2 λ1λ2(1 + λ2
1)

G41 λ2
1 λ2

2 1 λ1(1 + λ2
1λ

2
2) λ2 + λ3

2 λ1λ2(1 + λ2
2)

MAPLE results. A short description of the MAPLE programmes might be in
order. We first created a basis of monomials for K(2)∗(BH), and calculated the
matrix of (c − 1) with respect to this basis. The dimension of the nullspace of
the matrix gives the rank of the invariants

rI := rankK(2)∗ K(2)∗(BH)C2 .

We also produced an explicit basis for the image of the matrix, which represents
the image of ResGH TrGH (i.e., the free summands); this meant no extra cost and
turned out to be useful.
Next, we calculated the restriction of the Chern approximation of G to H. To
keep the size manageable, we did this one representation at a time, checking for
each representation individually how many powers of its Chern classes would be
needed. This resulted in a second submodule of rank

rC := rankK(2)∗
(
Im(ResGH C(G;K(2))

)
.

Finally, we added the image of ResGH TrGH , to obtain a third submodule of rank

rHC = rankK(2)∗
(
Im(ResGH C(G;K(2)) + Im(ResGH TrGH K(2)∗(BH))

)
.

For the groups in this subsection, this turned out to be sufficient, but in the next
one we shall see that in some cases, more effort is needed to see that G is good.
The results of these steps are given in the next table.
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rI rC rHC

G38 136 136 136

G39 136 132 136

G41 136 132 136

This effectively computes the Serre spectral sequence for the extension 1 → A→
G→ G/A→ 1: there is only one differential in

E2 = H∗(G/A;K(2)∗(BA) ∼= FC2 ⊕ T ⊗H∗(C2; F2) ,

where K(2)∗(BA) = F ⊕ T is the decomposition into free and trivial modules,
namely d2n+1−1(t) = vnt

2n+1
for t the generator of H∗(C2; F2). Since t2 is repre-

sented by e(γ), we arrive at

Theorem 3.7. The groups G38-G41 are K(2)-good in the sense of Hopkins-Kuhn-
Ravenel. More precisely,

(a) K(2)∗(BG39) is multiplicatively generated by Euler classes of irreducible
representations;

(b) if G is one of G39−G41, then K(2)∗(BG) is generated by transfers of Euler
classes.

The statement (a) holds since we only used Euler classes in the calculation.

3.8 Groups 44–48

These groups are the most complicated of all groups of order 32, insofar as they
have a single central involution, and ‘small’ Euler characteristic, indicating more
differential action in the Serre spectral sequence for the central extension. On the
other hand, they all have a subgroup H isomorphic to either D8×C2 or Q8×C2.
Armed with explicit bases and multiplicative relations for the Morava K-theories
of those groups, we can let MAPLE calculate the invariants under the quotient
C2 and the image of C(G;K(2)) in K(n)∗(BH).

Presentations.

G44 = 〈a, b, c | a8 = b2 = c2 = [b, c] = 1, bab = a−1, cac = a5〉
G45 = 〈a, b, c | a8 = c2 = 1, b2 = a4, [b, c] = 1, b−1ab = a−1, cac = a5〉
G46 = 〈a, b, c | a4 = b2 = c2 = [a, c]2 = 1, [a, [a, c]] = [b, c] = 1, bab = ac〉
G47 = 〈a, b, c | a8 = b2 = c2 = [b, c] = 1, bab = ac, cac = a5〉
G48 = 〈a, b, c | a8 = c2 = 1, b2 = a4, [b, c] = 1, b−1ab = ac, cac = a5〉
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Euler characteristics. All of the above groups have Euler characteristic

χn,2 =
7

4
8n − 3

4
4n .

The subgroup H. We takeH = 〈a2, b〉×〈c〉; forG44, G46, G47 this is isomorphic
to D8 × C2, and in the remaining cases to Q8 × C2.

Irreducible Representations. In all cases, there are eight irreducible repre-
sentations of dimension 1, two of dimension two, and one of dimension four. The
groups fall into two classes:

• G44 and G45: The commutator subgroup is 〈a2〉 ∼= C4 with quotient C3
2 ;

thus the 1-dimensional representations are αiβjγk, i, j, k ∈ {0, 1}, with
α(a) = −1, α(b) = α(c) = 1, etc. (the notation is meant to be suggestive).
For the 2- and 4-dimensional representations, recall the representations γi
and ∆ of D8 and Q8 from previous sections (or see below). Let

σ = IndGH(γ1) and τ = IndGH(∆) .

Then σ1 = σ and σ2 = γσ are two distinct two-dimensional irreducibles,
and τ is an irredicible of dimension 4.

• G46 - G48: Here [G,G] is isomorphic to C2 × C2 with quotient C4 × C2,
generated by ā and b̄; let α and β be the obvious characters corresponding
to ā, b̄. Then αiβj, 0 ≤ i <≤ 3, 0 ≤ i ≤ 1 are the one-dimensional
representations of G. Furthermore, let ε be the representation of H given
by ε(a2) = ε(b) = 1, ε(c) = −1. This time set

σ = IndGH(ε) and (as before) τ = IndGH(∆) .

Then σ1 = σ and σ2 = ασ are the irreducibles of dimension two, and τ is
the four-dimensional irreducible.

The abusive notation, giving different representations the same name, is of course
deliberate; as before, this allows us to treat several groups at the same time.

The action of G/H on RH and restriction to H. First recall the represen-
tation theory of D8 and Q8: there are two one-dimensional generators γ1, γ2, and
one two-dimensional, ∆. We chose γi so that they both have the value −1 on
the elements of order four of D8. Furthermore, let ε be the representation that
is trivial on 〈a2, b〉 and −1 on c, as before. We list the actions and restrictions in
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three tables, starting with the action.

γa1 γa2 ∆a εa

G44 γ2 γ1 ε∆ ε

G45 γ1γ2 γ2 ε∆ ε

G46 γ1 γ2 ε∆ εγ2

G47 γ1 γ2 ε∆ εγ1γ2

G48 γ1 γ2 ε∆ εγ2

Restrictions for G44 and G45:

α β γ σ1 σ2 τ

G44 1 γ1γ2 ε γ1 + γ2 ε(γ1 + γ2) ∆ + ε∆

G45 1 γ2 ε γ1(1 + γ2) εγ1(1 + γ2) ∆ + ε∆

Restrictions for G46 - G48:

α β σ1 σ2 τ

G46 γ1 γ2 ε(1 + γ2) εγ1(1 + γ2) ∆ + ε∆

G47 γ1 γ1γ2 ε(1 + γ1γ2) ε(γ1 + γ2) ∆ + ε∆

G48 γ1 γ2 ε(1 + γ2) εγ1(1 + γ2) ∆ + ε∆

From the action table one immediately reads off the action on Morava K-theory:
recall yi = c1(γi), ci = ci(∆); set z := c1(ε). Then we have

K(2)∗(BH) ∼= K(2)∗[y1, y2, c2, z]/R

with

R = y4
i , z

4, and

{
yic

2
2 + y3

i c2 + y1y2, c
4
2 + y1y2 for D8 × C2;

yic
2
2 + y3

i c2 + y2
i , c

4
2 + y2

1 + y1y2 + y2
2 for Q8 × C2.

and, e.g. for G48:

a∗(z) = y2 +F z = y2 + z + y2
2z

2

(we again suppress all mention of v2).
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MAPLE results. Again we use a table to record our results, which are for
n = 2 only.

rI rC rHC

G44 52 44 50

G45 52 44 50

G46−48 52 46 52

For G44 and G45, one can obtain the invariants not yet seen to be in the image of
restriction from G as restrictions of transfers from other subgroups. We exemplify
this for G44, where we are missing the span of the invariants c62 +c92 and (c62 +c92)z.

G = G44 has a maximal subgroup K = 〈a2, ab, c〉 ∼= D8 ◦ C4, with a2c central of
order four. K has 10 irreducible complex representations, 8 of dimension 1 and
2 of dimension 2. The one-dimensional representations are α̃k ⊗ β̃l ⊗ γ̃m with
0 ≤ k, l,m ≤ 1, where α̃(a2) = −1, β̃(ab) = −1, γ̃(a2c) = −1, and trivial on the
remaining generators. (They are the restrictions of the one-dimensional represen-
tations of G.) The two-dimensionals can be described as induced representations
from the subgroup 〈ab, a2c〉 ∼= C2 × C4: let

δ = IndK〈ab,a2c〉(ρ) with ρ(ab) = 1, ρ(a2c) = i.

Then δ and γδ are two distinct irreducibles. Now set

ζ := e(τ)3 + e(τ)2e(γ) + TrGK
(
e(δ)e(α̃)

)
+ TrGK

(
e(δ)e(γ̃)

)
where e( ) stands for Euler class.

Lemma 3.8. ResGH(ζ) = c62 + c92.

Proof. Classes in K(2)0(BH) are almost detected on maximal abelian sub-
groups; the kernel of the detection map is spanned by c92, c

9
2z

3, and c82z
2; this was

proved in III.1. Thus we may verify the claim via the double coset formula, while
keeping in mind that all restrictions to H have to be invariants — this is how
we may conclude that TrGK(e(δ)e(α̃)) must contain a summand c92. We leave the
details to the reader.

It follows that (c62 + c92)z is also in the image of restriction from G, and we may
conclude that G44 is good. A similar analysis can be performed for G45.

Theorem 3.9. The groups G44 - G48 are K(2)-good, i.e., K(2)∗(BG) is (addi-
tively) generated by transfers of Euler classes.



Chapter VI

Permutation modules

Kriz’s theorem II.4.6 leads one to consider the structure of the Morava K-theory
of a group G as a module over a subgroup of Aut(G) of order p. It appears
natural to ask the question in more generality: given a group extension of Q by
H, what can be said about the structure of K(n)∗(BH) as a K(n)∗[Q]-module?
In particular, when is it a permutation module? A positive answer has certain
computational implications as it makes the E2-term of the Serre spectral sequence
associated to this extension easily computable.
In this chapter we study the problem for linear actions on Fp-vector spaces.
The results were originally obtained by I. Leary and the author in [LS]; some
preliminary observations may be found in [B1].

1 Preliminaries

For a ring R and a finite group G we call an R-free R[G]-module M a permutation
module if there is an R-basis for M which is permuted by the action of G; such
a basis is called a permutation basis for M . For a G-set S, we write R[S] for the
permutation module with permutation basis S. If M is a graded module over the
graded ring R[G], call M a graded permutation module if it has a permutation
basis consisting of homogeneous elements.

Lemma 1.1. Let M be a graded K(n)∗[G]-module. Then each of the following
conditions implies the next:

(i) M is a graded permutation module;

(ii) M is a permutation module;

(iii) M is a direct summand of a permutation module.

Furthermore, if G is a p-group then (iii) implies (i).

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear, and hold for any graded
R[G]-module. The proof of the last sentence is deferred until Section 4.

85
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Our question is really a problem in modular representation theory. As we shall
need them later, we very briefly recall modular (or Brauer) characters. As a
general reference on modular characters, see [CR], in particular § 17.

Fix a prime p. Let G be a finite group and W an Fp[G]-module. Choose an
embedding of the multiplicative group of the algebraic closure of Fp in the group
of roots of 1 in C. Let g be a p-regular element of G, i.e., an element whose order
is coprime to p, and let λ1, λ2, . . . , λm denote the images in C of the eigenvalues
of its action on W . Then the Brauer character of g is

χW (g) = λ1 + λ2 + · · ·+ λm .

Two Fp[G]-modules have the same Brauer character if and only if they have
the same composition factors ([CR, Corollary 17.10]). In our context, Brauer
characters are useful in proving that a given module is not a permutation module,
see Section 3. They do not help in establishing positive answers, and say nothing
about p-groups.

Now let V be an elementary abelian p-group, or equivalently an Fp-vector space,
and GL(V ) the group of automorphisms of V .

It would be too much to ask that the K(n)∗[GL(V ]-module K(n)∗(BV ) sat-
isfied condition (i) of the lemma above: if V has dimension at least 3, there
are infinitely many indecomposable graded K(n)∗[GL(V )]-modules, only finitely
many of which occur as summands of modules satisfying condition (iv). Thus
it is unlikely that a ‘random module’ will satisfy any of the conditions. On the
other hand, from [HKR] we know that for complex oriented theories E with
torsion free coefficients containing an inverse for p, E∗(BV ) is a permutation
module for E∗[GL(V )]. N. Kuhn [Ku1] has shown that K(n)∗(BV ) has the same
Brauer character as the permutation module K(n)∗[Hom(V,Fnp )] for GL(V ), but
as we shall see below, as graded permutation modules the Brauer characters dif-
fer. However, Brauer characters give no information for the Sylow p-subgroup of
GL(V ). In Section 4.1 we present an algorithm to determine whether an Fp[G]-
module is a permutation module; this algorithm was put on the computer and
we record some of the results.

For a graded K(n)∗-module M , let M be the Fp-vector space M/(1−vn)M . Then
M is an Fp[G]-module, naturally graded by the cyclic group Z/2(pn − 1), and
determines M up to isomorphism.

When only interested in composition factors, we may further simplify the problem
by neglecting all higher order terms in the formal group law.

Let d = dimV and writeKV orKn,d forK(n)∗(BV )⊗K(n)∗Fp, i.e. the Z/2(pn−1)-
graded Fp[GLd(Fp)]-module given as an Fp-algebra as

Kn,d = KV = Fp[x1, . . . , xd]/(x
pn

1 , . . . , x
pn

d )
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with each xi of degree 1. A matrix (aij) ∈ GLd(Fp) acts via

xj 7→
d∑
i=1

F
[aij]K(n)(xi) = e′

(∑
i

l′(xi)aij
)
,

where e′ and l′ are as in the proof of Proposition I.3.1. (Recall that for any V
we take GL(V ) to act on the right of V , and hence obtain a left K(n)∗[GL(V )]-
module structure on K(n)∗(BV ).)
Secondly, let LV denote the algebra of polynomial functions on V (with V ∗ is
degree 2) modulo the ideal of pnth powers of elements of positive degree. Grade
LV by Z/2(pn−1), and let GLd(Fp) act on LV by its natural action on polynomial
functions. Thus as a graded algebra, LV is isomorphic to KV , but the action is
the standard action.

Lemma 1.2. KV has a filtration by graded submodules such that the associated
graded module is isomorphic to LV . In particular, KV and LV have the same
composition factors.

Proof. For each degree 2k, take the basis consisting of monomials of degree
congruent to 2k modulo 2(pn − 1), and arrange them in blocks with respect to
length. For any g, the matrix of its action on L2k

V with respect to this basis
consists of square blocks along the diagonal, whereas the corresponding matrix
for the action onK2k

V has some extra entries below the blocks. Thus both modules
have the same Brauer character.

We conclude this section with a few introductory remarks concerning the permu-
tation module K(n)∗[Hom(V,Fnp )]. If φ is a homomorphism from V to Fnp , then
g ∈ GL(V ) acts by composition, i.e.,

gφ(v) = φ(vg) .

Since we view GL(V ) as acting on the right of V , this makes Hom(V,Fnp ) into a
left GL(V )-set. The GL(V )-orbits in Hom(V,Fnp ) may be described as follows.
For W a subspace of V , let H(W ) ≤ GL(V ) be

H(W ) = {g ∈ GL(V ) | vg − v ∈ W for all v ∈ V }.
For example, H({0}) = {1}, and H(V ) = GL(V ). For 0 ≤ i ≤ dim(V ), let Hi be
H(Wi) for some Wi of dimension i. Thus Hi is defined only up to conjugacy, but
this suffices to determine the isomorphism type of theGL(V )-setGL(V )/Hi. Now
let φ be an element of Hom(V,Fnp ). The stabilizer of φ in GL(V ) is the subgroup
H(ker(φ)), and the orbit of φ consists of all φ′ such that Im(φ′) = Im(φ). It
follows that as GL(V )-sets,

Hom(V,Fnp ) ∼=
∐

0≤i≤dim(V )

m(n, i) ·G/Hi,

wherem(n, i) is the number of subspaces of Fnp of dimension i. Thus to decompose
the module Fp[Hom(V,Fnp )], it suffices to decompose each Fp[GL(V )/Hi].
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2 On K(1)

The case n = 1 is a simple application of Kuhn’s description of the mod-p K-
theory of finite groups [Ku2].

Theorem 2.1. The K(1)∗[GL(V )]-modules K(1)∗(BV ) and K(1)∗[Hom(V,Fp)]
are (ungraded) isomorphic.

Remark. For p = 2, v1 has degree −2, so that the ‘cyclically graded’ modules
K(1)∗(BV ) are in fact concentrated in a single degree.

Proof. Recall [Wi] that the spectrum representing mod p K-theory splits as
a wedge of one copy of each of the 0th, 2nd, . . . , (2p − 4)th suspensions of the
spectrum representing K(1)∗. Since K(1)∗(BV ) is concentrated in even degrees it
follows that KV is naturally isomorphic to K0(BV ; Fp). In [Ku2] it is shown that
for any p-group G, K0(BG; Fp) is naturally isomorphic to Fp⊗R(G), where R(G)
is the (complex) representation ring of G. The case G = V gives the theorem,
because as a GL(V )-module, Fp ⊗R(V ) is isomorphic to Fp[Hom(V,Fp)].

For p = 2, there is an ‘elementary’ proof working directly with the description
of KV . In this case, KV is isomorphic to an exterior algebra Λ(x1, . . . , xd). The
monomial 1 generates a trivial GL(V )-summand. Let H be the subgroup of
GL(V ) fixing x1. Then H is the subgroup of GL(V ) stabilising some hyperplane
W and inducing the identity map on the quotient V/W . There is a GL(V )-set
isomorphism

Hom(V,F2) ∼= GL(V )/GL(V )qGL(V )/H,

so it suffices to show that the submodule M generated by x1 contains each mono-
mial in Λ(x1, . . . , xd) of strictly positive length. The permutation matrices per-
mute the monomials of any given length transitively. Assume that M contains
all monomials of length i (this holds for i = 1), and let g ∈ GL(V ) be such that

gx1 = x1, . . . , gxi−1 = xi−1, gxi = xi+Fxi+1 = xi + xi+1 + xixi+1 .

Then

g(x1 . . . xi) + x1 . . . xi + x1 . . . xi−1xi+1 = x1 . . . xixi+1 ∈M,

so M contains all monomials of length i+ 1.

3 Negative results

In this section we shall prove those of our negative results that do not rely on
computer calculations, and analyse the cases dimV = 2, p = 2, 3.
We start with an easy observation.
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Theorem 3.1. If p is odd then K(n)∗(BV ) is not a graded permutation module
for GL(V ).

Proof. Let D be the subgroup of diagonal matrices in GLd(Fp), so that D is
isomorphic to a direct product of d cyclic groups of order p − 1. In KV , each
monomial in x1, . . . , xd is an eigenvector for D, and the monomials fixed by D
are those in which the exponent of each xi is divisible by p − 1. Hence if p − 1
does not divide k, then Kk

V cannot be a permutation module for D because it
contains no D-fixed point.

For p = 2 this argument clearly does not work, we shall use Brauer characters
instead. Recall from Lemma 1.2 that the characters of KV and LV coincide, so
we begin by describing how to compute the latter.
Fix an embedding of the multiplicative group of the algebraic closure of Fp in
the group of roots of unity in C. Let g be a p-regular element of GL(V ), and
let λ1, λ2, . . . , λd denote the images in C of the eigenvalues of its action on V ∗,
where d = dimV . Then the Brauer character of g afforded by V ∗ is

χV ∗(g) = λ1 + λ2 + · · ·+ λd .

To compute the character of LkV we proceed as follows. The proof of Molien’s
theorem (see e.g. [CR], p. 329) can be adapted to show that the character of a
pn-truncated polynomial algebra has generating function

fg(t) =
d∏
i=1

(1− (λit)
pn

1− λit

)
.

Then the character of LV evaluated at g is simply fg(1), whereas for each degree
k (recall that we are grading cyclically) one has

χ
Lk

V
(g) =

1

pn − 1

∑
τ

τ−kfg(τ) , (3.1)

where the sum ranges over all (pn − 1)-st roots of unity—to see this, recall that
the sum of λk over all mth roots of unity λ is equal to zero if m does not divide
k, and equal to m if m does divide k.

Theorem 3.2. Let p = 2 and d = dimV .

(a) Let n > 1. Assume d ≥ 4 and d is greater or equal to the smallest prime
divisor of n. Then K(n)∗(BV ) is not a graded permutation module for
GL(V ).

(b) Assume d = 3 and 3 divides n. Then K(n)∗(BV ) is not a graded permuta-
tion module for GL(V ).
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(c) For d = 2, K(n)∗(BV ) is a graded permutation module for GL(V ) if and
only if n is odd.

Proof. Suppose first that d equals a prime divisor q of the fixed number n. By
considering the action of the multiplicative group of F2q on the additive group
of F2q , we can always construct an element gq ∈ GLq(F2) that permutes the
2q − 1 nontrivial elements of Fq2 cyclically. The set of eigenvalues of gq contains a
primitive (2q−1)st root of unity, and is closed under the action of the Galois group
Gal(F2q/F2). Hence the Brauer lifts of the eigenvalues of gq are λ, λ2, . . . , λ2q−1

for some primitive (2q − 1)-st root of unity λ ∈ C. Consequently, the generating
function for the character afforded by LV is given by

fgq(t) =

q−1∏
i=0

(1− (λ2i
t)2n

1− λ2it

)
.

If τ is a (2n − 1)-st root of unity, one obtains

fgq(τ) =

{
2n if τ ∈ {λ−2i

, i = 0, 1, . . . q − 1}
1 otherwise.

Thus evaluating the formula (3.1) for the character afforded by LkV yields

χ
Lk

V
(gq) =

1

2n − 1

∑
τ 6=λ−2i

τ k +
2n

2n − 1

q−1∑
i=0

λ2ik =


q + 1 for k = 0
q−1∑
i=0

λ2ik for k 6= 0.

Specializing to the case k = 1, this sum is never zero, since the powers λi for i
coprime to 2q − 1 form a Q-basis for Q[λ]. For q > 2 the sum is not a rational,
because it is not fixed by the whole Galois group Gal(Q[λ]/Q). In the case
q = 2, one obtains −1 (the sum of the two primitive third roots of unity).
Since permutation modules have non-negative integer character values, this shows
that K(n)∗(BV ) is not a graded GLq(F2)-permutation module. To proceed with
vector spaces of dimension bigger than q we consider the cases q > 2 and q =
2 separately. In the first case we use the following lemma to conclude that
the character still takes non-integer values on certain elements of GL(V ). Let
V = U ⊕ W with U and W of dimensions d and r, respectively; then clearly
LV ∼= LU ⊗ LW . Let g be an arbitrary 2-regular element of GL(U) and denote
by g × 1 the element of GL(V ) which acts like g on LU and trivially on LW .

Lemma 3.3. χLk
V
(g × 1) = χ

Lk
U
(g) + 2nr−1

2n−1
· χLU

(g).

Proof. The generating function for g × 1 is obtained from the one for g as the
product with r factors (1 + t+ t2 + . . .+ t2

n−1), thus
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χ
Lk

V
(g × 1) =

1

2n − 1

∑
τ

τ−kfg×1(τ)

=
1

2n − 1

∑
τ 6=1

τ−kfg(τ)
(1− τ 2n

1− τ

)r
+

2nr

2n − 1
fg(1)

= χ
Lk

U
(g) +

(2nr − 1

2n − 1

)
fg(1) .

Thus gq × 1 will provide the contradiction when V has rank q + r. This fails for
q = 2, whence we choose the element g′ which consists of d/2 copies of g2 =

(
0 1
1 1

)
arranged along the diagonal if d is even, and add an extra diagonal entry 1 if d
is odd. Then a similar computation shows that for k 6≡ 0 mod 3,

χ
Lk

V
(g′) =


−2nd/2 − 1

2n − 1
if d is even,

−2n(d−1)/2 − 1

2n − 1
+ 1 if d is odd,

For d > 3 these numbers are negative.

The other parts of the theorem are proved in a similar fashion. In the case when V
has rank 3, evaluation of the Brauer character of an element of GL(V ) of order 7
shows that L1

V is not a GL(V )-permutation module if 3 divides n. Similarly,
when V has rank 2, the Brauer character of an element of GL(V ) of order 3 on
L1
V is negative if n is even. When V has rank 2 and n is odd, it may be shown

that for each k, any GL(V )-module having the same Brauer character as LkV is a
permutation module. This shows that for n odd, Kk

V is a permutation module,
but does not specify which one. In (3.1) we shall describe its isomorphism type,
giving an alternative argument.

3.1 dimV = 2 for p = 2

We shall determine the structure of LV as a GL2(F2)-module and deduce that
KV and LV are isomorphic.

There are three isomorphism types of indecomposable F2[GL(V )]-modules: the
trivial module T , its projective cover N (which is expressible as a non-split ex-
tension of T by T ), and the tautological module V , which is both simple and
projective. All these modules are self-dual. The transitive permutation modules
for GL(V ) decompose as T , N , T⊕V and N⊕2V . Let S∗[V ∗] denote the algebra
of polynomial functions on V as a graded GL(V )-module.
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Proposition 3.4. The generating functions PT , PN and PV for the multiplicities
of each of the indecomposable GL(V )-summands of S∗[V ∗] are

PT (t) =
1

1− t2
, PN(t) =

t3

(1− t2)(1− t3)
, PV (t) =

t

(1− t)(1− t3)
.

Proof. The ring of invariants S∗[V ∗]GL(V ) is a free polynomial ring on two gen-
erators of degrees two and three (see [Wk]). The Poincaré series for S∗[V ∗] and
the invariants, together with the Brauer character of an element of order three
give the equalites

PT + 2PN + 2PV =
1

(1− t)2

PT + PN =
1

(1− t2)(1− t3)

PT + 2PN − PV =
1− t

1− t3

Solving for PT etc. gives the result.

Proposition 3.5. Let k ∈ Z/(2n − 1). Then

LkV
∼=



2T ⊕ 2n−2
6

N ⊕ 2n+1
3

V for n odd, k = 0,

T ⊕ 2n−2
6

N ⊕ 2n+1
3

V for n odd, k 6= 0,

2T ⊕ 2n+2
6

N ⊕ 2n−1
3

V for n even, k = 0,

T ⊕ 2n+2
6

N ⊕ 2n−1
3

V for n even, k 6= 0, k ≡ 0 mod 3,

T ⊕ 2n−4
6

N ⊕ 2n+2
3

V for n even, k 6≡ 0 mod 3.

Proof. Let L̃ be the truncated symmetric algebra LV , but graded over the
integers instead of cyclically. Then L̃k = 0 for k > 2(2n − 1), and L̃2(2n−1) ∼= T ,

generated by x2n−1
1 x2n−1

2 . The product structure on L̃ gives a duality pairing

L̃k × L̃2(2n−1)−k → T , and since all modules are self-dual, it follows that L̃k ∼=
S2(2n−1)−k[V ∗] for 2n ≤ k ≤ 2(2n − 1). Since LkV

∼= L̃k ⊕ L̃2n−1+k for k 6= 0
(viewing k as either an integer or an integer modulo 2n − 1 as appropriate), and

L0
V
∼= L̃0⊕ L̃2n−1⊕ L̃2(2n−1) ∼= 2T ⊕ L̃2n−1, the claim follows from Proposition 3.4.

Corollary 3.6. Let dimV = 2 and p = 2. Then KV and LV are isomorphic as
graded F2[GL(V )]-modules.
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Proof. Kk
V has odd dimension for k 6= 0 and thus contains at least one trivial

summand. K0
V contains the trivial summand generated by 1 and then at least

another trivial summand, by the same dimension argument. Since N and V are
projective, Lemma 1.2 implies that Kk

V has at least as many summands N and
V as LkV . This accounts for all the summands of Kk

V .

The proof of Theorem 3.2 (c) follows easily from this description of KV . Further-
more, the remarks at the end of Section 1 now easily imply:

Corollary 3.7. Let p = 2 and dimV = 2. Then as K(n)∗[GL(V )]-modules,
K(n)∗(BV ) and K(n)∗[Hom(V,Fn2 )] are isomorphic.

3.2 dimV = 2 for p = 3

The argument used in the proof of Corollary 3.6 shows that for dimV = 2 and
any p, n, and k such that LkV contains at most one non-projective summand,
Kk
V
∼= LkV . For odd primes this does not always occur however. If 0 < k <

pn − 1 then LkV splits as a direct sum of submodules of dimensions k + 1 and
pn − k − 2 coming from the standard Z-grading on the truncated polynomial
algebra. If k is not congruent to either −1 or −2 modulo p, the dimensions
of these summands are not divisible by p, and hence LkV contains at least two
non-projective indecomposable summands. The calculations described next show
that for p = 3, n = 2, 3 and 0 < k < 3n − 1, the module Kk

V has exactly one
non-projective indecomposable summand. It follows that for p = 3, Kk

V and LkV
are not isomorphic in general. The results in this subsection were obtained by
computer.
For the remainder of this section let dimV = 2 and p = 3. There are fourteen
indecomposable GL(V )-modules in four blocks, two of which contain a single sim-
ple projective module. The six indecomposables in the block containig V are not
so easy to distinguish, whence we consider only SL(V ). Standard representation
theory techniques (see e.g. [Al, CR]) give the following facts. There are three
simple F3[SL(V )]-modules: the trivial module T , the natural module V , and a
simple projective module P = S2(V ) of dimension three. There are three blocks.
The blocks containing T and V each contain three indecomposable modules, each
of which is uniserial. This data may be summarised as follows:

block of T = I1 : T � I2 � T, T � I3 � I2,

block of V = I4 : V � I5 � V, V � I6 � I5,

block of P = I7 : contains no other indecomposables.

Letting τ stand for the element of order two in SL(V ) and σ for the sum of the
six elements of SL(V ) of order four, the block idempotents are

bT = 2 + 2τ + 2σ, bV = 2 + τ, bP = σ.
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The modules in any single block are distinguishable by their restrictions to a cyclic
subgroup of SL(V ) of order three. Thus if α is an element of SL(V ) of order
three, and M is an SL(V )-module, the direct summands of M are determined
by the ranks of the elements of End(M) representing the actions of the following
seven elements of F3[SL(V )]:

bT , (1− α)bT , (1− α)2bT , bV , (1− α)bV , (1− α)2bV , bP .

More precisely, if the seven ranks are r1, . . . , r7, and ni stands for the number of
factors of M isomorphic to Ii, then

n1 = r1 − 2r2 + r3, n2 = r2 − 2r3, n3 = r3, n4 = r5 − 2r6,

n5 = r4 − 2r5 + r6, n6 = (2r5 − r4)/2, n7 = r7/3.

The numbers ri (and thus ni) can be calculated on a computer. (We used MAPLE
to generate matrices representing the action of a certain pair of generators and
fed these into GAP.)
Recall from Section 1 that there is an isomorphism of (right) GL(V )-sets

Hom(V,Fn3 ) = GL(V )/GL(V )q 3n−1
2

·GL(V )/H1 q (3n−1)(3n−3
48

·GL(V )/{1}

where H1 is the subgroup stabilising a line L in V and acting trivially on V/L.
As SL(V )-modules, it may be checked that

F3[GL(V )/GL(V )] ∼= I1,

F3[GL(V )/H1] ∼= I1 ⊕ I5 ⊕ I7,

F3[GL(V )/{1}] ∼= 2I3 ⊕ 4I6 ⊕ 6I7.

This information together with the results given in Table 1 in Appendix B easily
imply:

Proposition 3.8. For dimV = 2, p = 3, and n = 1, 2, 3, the K(n)∗[SL(V )]-
modules K(n)∗(BV ) and K(n)∗[Hom(V,Fnp )] are isomorphic.

4 Permutation modules for p-groups

In the previous section our methods made use of the fact that there were only
finitely many indecomposable modules. If G is a group whose Sylow p-subgroup
is not cyclic, then Fp[G] has infinitely many indecomposable modules, so the same
sort of arguments cannot work.
In this section we shall describe an algorithm for determining, for any p-group
G, whether an Fp[G]-module is a permuation module, and if so to decompose
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it. The algorithm relies on the following fact [CR, 19.25]: For G a p-group, any
transitive permutation module for Fp[G] has a unique minimal submodule, which
is the trivial module generated by the sum of the elements in a permutation
basis. This implies that any transitive permutation module is indecomposable.
The Krull-Schmidt theorem and the indecomposabilty of transitive permutation
modules together imply that if a graded Fp[G]-module is a permutation module,
then it is also a graded permutation module. This argument finishes the proof of
Lemma 1.1.
Let G1, . . . , Gn be subgroups of a p-group G, where the order of Gi+1 is at least
the order of Gi, and let M be a (finitely generated) Fp[G]-module. Construct a
sequence of submodules Mi of M as follows. Let M0 be the zero submodule of
M . If Mi−1 has been defined, let

Mi = Mi−1 + Im
(( ∑

g∈G/Gi

g
)
: MGi −→M

)
,

where the sum ranges over a transversal to Gi in G, MGi denotes the Gi-fixed
points of M , and the sum is an element of Fp[G] viewed as an element of End(M).
Now define

mi = dimMi − dimMi−1.

Proposition 4.1. (a) M contains a submodule M ′ ∼= m1Fp[G/G1] ⊕ · · · ⊕
mnFp[G/Gn], and M ′ has maximal dimension among all submodules of M
isomorphic to a direct sum of copies of the Fp[G/Gi].

(b) If G1, . . . , Gn contains a representative of each conjugacy class of subgroups
of G, then dimM ′ = dimM if and only if M is a permutation module.

Proof. First, recall that the socle, Soc(N), of a module N is the smallest sub-
module of N containing every minimal submodule. The following statement is
easy to prove, and will be useful below. If L is a submodule of M , and f : N →M
is a module homomorphism, then f is injective if and only if its restriction to
Soc(N) is injective. If f is injective, then Soc(f(N)) = f(Soc(N)), and the sum
L+ f(N) in M is direct if and only if the sum Soc(L) + f(Soc(N)) is direct.
Module homomorphisms from Fp[G/Gi] to M are naturally bijective with ele-
ments of MGi , where the element x corresponds to the homomorphism θx send-
ing 1 · Gi to x. The socle of Fp[G/Gi] is a trivial submodule generated by∑

g∈G/Gi
g · Gi, so its image under θx is generated by

∑
g∈G/Gi

g · x. It follows
that any submodule of M isomorphic to a direct sum of copies of the modules
Fp[G/G1], . . . ,Fp[G/Gi] has socle contained in Mi, and in particular consists of
at most dimMi summands. This shows that any submodule of M isomorphic to
a direct sum of Fp[G/Gi]’s has dimension less than or equal to

∑
imi|G : Gi|,

but it remains to exhibit a submodule M ′ having this dimension.
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Define M ′
0 to be the zero submodule of M , and assume that for some j with

1 ≤ j ≤ n we have constructed a submodule M ′
j−1 of M with

M ′
j−1

∼= m1Fp[G/G1]⊕ · · · ⊕mj−1Fp[G/Gj−1] .

Let x1, . . . , xmj
∈ MGj be such that the images

∑
g∈G/Gj

g · xi form a basis

for a complement to Mj−1 in Mj. Taking L = Mj−1, N = mjFp[G/Gj], and
f : N → M the map sending the elements (0, . . . , 1 · Gj, . . . , 0) to the xi’s, the
statements in the first paragraph of the proof show that f is injective, and that
M ′

j defined as the submodule of M spanned by Mj−1 and the xi’s is isomorphic
to M ′

j−1 ⊕mjFp[G/Gj]. Now M ′ may be taken to be M ′
n.

In Appendix B we record the results of computer calculations obtained by im-
plementing the algorithm described above. The information contained in Tables
2–6 suffices to show:

Proposition 4.2. Let dimV = 3. Then K(n)∗(BV ) is not a permutation module
for K(n)∗[U(V )] in the following cases:

(a) p = 3, n = 2,

(b) p = 5, n = 2.

In the following cases, as well as those implied by Theorems 3.2, 2.1, Corol-
lary 3.7, and Proposition 3.8, K(n)∗(BV ) is a graded permutation module for
K(n)∗[U(V )]:

(c) p = 2, n = 2, 3 or 4.

For each n and p considered, K0
V is a U(V )-permutation module, although it

is easy to show that usually K0
V cannot be a GL(V )-permutation module by

comparing the information in the tables with the information given by Brauer
characters. This technique may also be used to prove:

Proposition 4.3. For p = 2 and dimV = 3, K(n)∗(BV ) is not a graded per-
mutation module if n is a multiple of three, or if n is 2, 4, or 5.

We have seen in Chapter III that for any V , K(n)∗(BV ) is a (graded) permu-
tation module for any subgroup of GL(V ) of order p. In the cases covered by
Proposition 4.4, the group U(V ) has order p3, and for p > 2 it contains no ele-
ment of order p2. The gap between Proposition 4.2 and a special case of Kriz’s
result is filled by:

Theorem 4.4. Let d = 3, let p = 3 or 5, and let H be any subgroup of GL(V )
of order p2. Then K(2)∗(BV ) is not a permutation module for H.
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Proof. Tables 5 and 6 we give just enough information to prove this. For
each subgroup H of U(V ) of order p2, we give the dimension of a maximal H-
permutation submodule M ′′ of K1

V . The dimension of K1
V is 91 for p = 3 and 651

for p = 5. Only one of the subgroups 〈AB,C〉, . . . , 〈ABp−1, C〉 is listed in these
tables, because these subgroups are all conjugate in GL(V ) and so give rise to
M ′′’s of the same dimension.
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Chapter VII

Some remarks on Morava K-theory of
discrete groups

Finiteness conditions for discrete groups of different kinds are well documented
in the literature, mostly in terms of ordinary group cohomology, or equivalently
of projective and free resolutions over group rings. Other formulations use finite-
ness properties of the classifying space of a group; in fact, many homological
concepts can be thought of as algebraists’ attempts to capture finite complexes.
It is however not clear to what extent these two approaches are equivalent. For
example, a group Γ which admits a finite model for its classifying space is always
of type FL, but the converse is an open problem.

Here we propose yet another type of finiteness condition, based on Morava K-
theory. Since every finitely generated K(n)∗-module is free, the following condi-
tion, which we intend to study below, makes sense:

Definition 0.1. A discrete group Γ is said to be K(n)-finite if K(n)∗(BΓ) has
finite rank as a K(n)∗-module.

Remark. Whether this is a useful concept or not remains to be seen (and is not
yet clear to the author). This chapter should be considered a preliminary report
on work in progress.

It is immediately clear that groups having finite mod p cohomology are K(n)-
finite (such as finitely presented groups of type FL). According to Ravenel’s
theorem (Corollary II.4.2) all finite groups fall into this class, too. This is the
marked difference to cohomological finiteness conditions studied in the past.
Section 2 contains simple-minded applications of results due to Hopkins-Kuhn-
Ravenel to a class of discrete groups containing (S-)arithmetic groups. In Sec-
tion 1, we shall begin the investigation of the class of K(n)-finite groups by
making a few (more or less obvious) observations about what kind of groups
might belong to it. Section 3 is devoted to Euler characteristics. From the very
definition, it is clear that a K(n)-finite group Γ has an Euler characteristic, de-
fined as the difference in ranks between the even and the odd degree part of its
Morava K-theory (this becomes a “classical” Euler characteristic if one uses a
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Z/2-graded version of Morava K-theory). We shall see that in certain cases this
coincides with a so-called equivariant Euler characteristic; as in the classical case,
this follows easily from the Leray spectral sequence.

1 The class of K(n)-finite groups: Preliminary observa-
tions

We begin with the (obvious) observation that there are finitely presented groups
whose Morava K-theory has infinite rank, by the Kan-Thurston theorem.
On the other hand, we have Corollary II.4.3, which says that whenever P is a
finite p-group and F → E → BP a fibration, then finite generation of K(n)∗(F )
implies the same for E.

This argument may be applied to the following situation. Let Γ be a discrete
group, N a normal finite index subgroup, and G = Γ/N . Let P be a Sylow p
subgroup of G. Then Γ has a subgroup Γp normalizing N with Γ/Γp ∼= P which
plays the role of ”Sylow p subgroup” for Γ, see [Ad]. In particular, the usual
transfer argument shows that BΓ is a stable summand of BΓp in the p-local
category. Assuming further N to be K(n)-finite, the above proof shows that Γ
has finite K(n)∗-rank, too. In summary:

Corollary 1.1. Let Γ be a discrete group and Γ′ a normal finite index subgroup.
If Γ′ has finite K(n)∗-rank, then so does Γ.

The reverse implication is trivially false:

Example 1.2. Consider Morava K-theory at the prime p. Let C be a cyclic group
of p′ order, Γ a (countably) infinite free product of copies of C, and π : Γ → C the
homomorphism which is the identity on each factor. Then both C and Γ have
rank 1 over K(n)∗, but the kernel of π is an infinitely generated free group.

Another class of K(n)-finite groups may be obtained using the so-called classify-
ing spaces for families of subgroups:

Definition 1.3. A set F of subgroups of a group Γ is called a family of subgroups
if for H ∈ F all subgroups of H and all conjugates of H are in F .

Definition 1.4. A classifying space for a family of subgroups F of Γ is a Γ CW
complex EFΓ such that (EFΓ)H is contractible for H ∈ F and empty otherwise.
If F is the family of finite subgroups, also write EΓ for EFΓ.

Existence and uniqueness of EFΓ are proved in [tD1] or [tD2, I.6]; a combinatorial
construction can be found in [DL]. Uniqueness is implied by the fact that any
Γ-complex with isotropy in F admits a map to EFΓ which is unique up to
Γ-homotopy.
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Now let F be a family of subgroups of Γ all of whose members are K(n)-finite.
If there is a finite model for EFΓ, then Γ is also K(n)-finite. This follows from
the Leray spectral sequence of the bundle

BΓ ' EΓ×Γ EFΓ → EFΓ/Γ

with E1-page

E1 =
⊕
σ

K(n)∗(BΓσ) ;

here summation is over the equivariant cells σ of EFΓ. In particular, if there is
a finite model for EΓ, the Γ is K(n)-finite. As above one proves

Theorem 1.5. Let 1 → Γ′ → Γ → Γ′′ → 1 be a group extension satisfying the
following conditions:

(i) K(n)∗(BΓ′) has finite rank over K(n)∗;

(ii) there is a finite model for EΓ′′.

Then K(n)∗(BΓ) has finite rank over K(n)∗.

Proof. The isotropy groups Γσ are extensions of finite groups by Γ′. Hence the
claim follows from Corollary 1.1

Again the converse is false, which should not be too surprising. The property of
having a finite model for EG does not pass from a finite index subgroup to the
supergroup: I. Leary and B. Nucinkis have constructed counterexamples [LN],
such as the the one below.

Example 1.6. ([LN]) There is a group G = HoA with the following properties:

• there is a finite model for BH;

• A is C30×C30 or A5 (or any group not of the form p-group× cyclic group×
q-group ist, for p, q not necessarily distinct primes);

• G has infinitely many conjugacy classes of subgroups isomorphic to A.

The third property implies that such G cannot have a model for EG of finite
type. On the other hand, G is K(n)-finite by Corollary 1.1.
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2 Character theory for discrete groups

Inspired by Quillen’s method of extending his result to groups of finite vcd [Q4,
II, §15], we shall now describe how some of the results of [HKR] can be used to
describe Morava K-Theory of a certain class of discrete groups.
Suppose given a contractible complex X with an action of the discrete group Γ
such that a finite index normal subgroup Γ′ acts freely. Assume further that a
subgroup of Γ has non-empty fixed point set if and only if it is finite, and that
in that case the fixed point set is contractible. Then X is a classifying space for
Γ′. Let us finally assume that Y = X/Γ′ is a finite complex.

Remark. There are several important examples where these conditions are met:

(a) (S-)arithmetic groups by a result of Borel and Serre [BS],

(b) mapping class groups,

(c) word hyperbolic groups.

The finite group G = Γ/Γ′ acts on Y , and Γ acts on EG via the projection
π : Γ → G. The map r : X → Y is a finite covering with G as its group of deck
transformations. Since the diagonal action of Γ on EG×X is free, we see that

EG×Γ X ' EG×G Y

is a model for BΓ. Thus Theorem II.6.3 applies to the G-complex Y . In order to
interpret the answer, a few lemmas due to Quillen may help. Let X, Y,Γ,Γ′ be
as above.

Lemma 2.1 ([Q4], Lemma 15.1). Let x ∈ X and y = r(x). Then r induces an
isomorphism of isotropy groups Γx ∼= Gy.

Lemma 2.2 ([Q4], Lemma 15.3). Let K be a subgroup of G. Then r−1(Y K) is
the disjoint union of the fixed point sets XH , where H runs over the subgroups of
Γ mapped isomorphically onto K by π.

In other words,

r−1(Y K) =
∐
H∈C̃

XH

where C̃ is the set of finite subgroups of Γ whose image in G is K.

Corollary 2.3. Let C denote a set of representatives for the Γ′-conjugacy classes
of finite subgroups of Γ whose image in G is K. Then

Y K =
∐
H∈C

XH/Γ′ ∩NH .
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3 Euler characteristics

We start with the naive generalization of Morava K-theory Euler characteristics:

Definition 3.1. For a K(n)-finite group Γ let

χn,p(Γ) := rankK(n)∗ K(n)ev(BΓ)− rankK(n)∗ K(n)odd(BΓ)

denote the naive K(n) Euler characteristic of Γ.

Example 3.2. Let p = 2 and Γ the split extension of C2 by the integers Z,
where C2 acts by sign change. Then we have a fibration S1 → BΓ → BC2. The
associated Serre spectral sequence is easily seen to yield an additive isomorphism

K(n)∗(BΓ) ∼= K(n)∗(BC2)⊗ Λ(α) ∼= K(n)∗[x]/(x2n

)⊗ Λ(α)

with x in degree 2 and α in degree 1. Thus χn,2 = 0 here – not very thrilling.

As in the classical case one can try to compute Euler characteristics via actions
on CW complexes. To that end we consider the so-called equivariant Euler char-
acteristic defined as follows.

Definition 3.3. Let X be a Γ-complex satisfying

(i) X has are only finitely many equivaraint cells, and

(ii) every isotropy group Γσ is K(n)-finite.

Under these hypotheses set

χΓ
n,p(X) :=

∑
σ∈E

(−1)dimσχn,p(Γσ)

where E runs over a set of representatives of the cells mod Γ.

An important example is the situation described in the last section, i.e., where
one has an extension

1 → Γ′ → Γ → G→ 1 (3.1)

with G finite; and where one is given a Γ-complex X with finitely many cells mod
Γ′, all finite subroups as isotropy groups, and contractible fixed point sets. Then

BΓ ' EG×Γ X ' EG×G X/Γ
′ , (3.2)

and the (naive) Euler characteristic coincides with the equivariant Euler charac-
teristic of X:

Proposition 3.4. For such Γ, Γ′, and X one has χn,p(Γ) = χΓ
n,p(X).
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Proof. Clearly Γ is K(n)-finite, see section 1. The claimed equality follows from
the Cartan-Leray spectral sequence of the bundle π : EG×Γ X → X/Γ, with

E∗,∗
1
∼=

⊕
σ∈E

K(n)∗(π−1(σ)) =⇒ K(n)∗(X ×Γ EΓ) ∼= K(n)∗(BΓ) ,

where E denotes as above the set of equivariant cells of X. Then

π−1(Γσσ) = EΓ×Γ Γ/Γσ = EΓ×Γσ ∗ = BΓσ ,

whence the claim.

Example 3.5. Using Soulé’s computation of the 2-local cohomology [So], Tezuka
and Yagita calculated BP -cohomology and (Morava) K-theory of SL3(Z) at the
primes 2 and 3 [TY4].
We recall the 2-primary calculation: Γ = SL3(Z) acts on a contractible 3-
dimensional complex X (symmetric space respectively upper half plane) with
finite isotropy. Consider as above the Leray spectral sequence for the bundle
π : X ×Γ EΓ → X/Γ,

E∗,∗
1
∼=

⊕
σ∈E

k∗(π−1(σ) =⇒ k∗(X ×Γ EΓ) ∼= k∗(BΓ)

where k is either 2-local cohomology, or BP mod 2, or any other 2-local theory.
According to Soulé, locally at 2 one can replaceX/Γ by the interval Y = [0, 2] con-
sidered as a 1-complex with 0-cells 0, 1, 2 and two 1-cells σ, τ . The cell stabilisers
are Σ4 for the 0-cells, whereas Γσ ∼= C2 and Γτ ∼= D8. Since Y is 1-dimensional,
the spectral sequence degenerates to a Mayer-Vietoris sequence, from which one
can read off the result. In particular, one gets

χΓ
n,2 = 3 · χn,2(Σ4)− χn,2(D8)− χn,2(C2) = 2 · (4n − 2n) + 1 .



Appendix

A Euler characteristics of some groups

In this appendix we give the Euler characteristic of some groups which were omit-
ted for ease of exposition, including those whose Morava K-theory was computed
earlier.
We shall compute the Morava K-theory Euler characterstic χn,p(G), i.e., the
difference between the ranks of the even and odd degree parts of K(n)∗(BG),
using Theorem II.6.4 from [HKR]:

χn,p(G) =
∑
A<G

|A|
|G|

µA(G)(A)χn,p(A) (A.1)

where the sum is over all abelian subgroups A < G and µA(G) is a Möbius function
defined recursively by ∑

A<A′

µA(G)(A
′) = 1 (A.2)

where the sum is over all abelian subgroups of G containing A (including A). In
particular, µA(G)(A) = 1 when A is maximal. It is easy to see that one only has
to consider subgroups arising as intersections of maximal ones. Furthermore, one
clearly has χn,p(A) = |A(p)|n where A(p) denotes the p-part of the abelian group
A.

1. We begin with extraspecial p-groups of exponent p. The formula below was
obtained by Brunetti [B2]; we give a simplified version of his proof.
The abelian subgroups of D(m) = p1+2m

+ are in one-to-one correspondence with
the subspaces W of the central quotient V ∼= F2m

p which are isotropic with respect
to the bilinear form

b(x, y) = x1y2 + x2y1 + · · ·+ x2m−1y2m + x2my2m−1 .

Let αm,i denote the number of such subspaces of dimension i. Note that the
maximal dimension of a b-isotropic subspace is m.
The following lemma is an easy exercise in counting:
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Lemma A.1. αm,i =
i∏

j=1

p2(m−j+1) − 1

pj − 1
.

Proof. We first count the b-isotropic flags W1 ⊂ W2 ⊂ · · · ⊂ Wl of length l,
where Wk has rank k, in V of dimension 2m: For l = 1 this number equals the
number of one-dimensional subspaces, hence we get (p2m−1)/(p−1). Now fix W1

and count the complete flags staring with W1: this is the same as the number of
complete flags of length l−1 in V ′ = W⊥

1 /W1 of dimension 2m−2. By induction,
the number of flags thus becomes

l∏
j=1

p2(m−j+1) − 1

p− 1
.

Secondly, the number of complete flags inside a given subspace Wd of dimension
d is

d∏
i=1

pi − 1

p− 1
.

This is trivial for d = 1; for every W1 ⊂ Wd, each flag in Wd/W1 gives rise to
one in Wd, and the formula follows again by induction. Finally, the number of
b-isotropic subspaces is clearly the quotient of the above numbers.

The Möbius function on abelian subgroups can be computed via a Möbius func-
tion on b-isotropic subspaces defined as in (A.2). Let γm,k denote its value on a
subspace of dimension k: by symmetry, it is constant on subspaces of the same
rank. Furthermore, it only depends on the codimension of a b-isotropic subspace
in a maximal one, independent ofm; this follows as above by consideringW⊥

k /Wk.
In particular, γm,k = γm−k,0.

Lemma A.2. γm,k = (−p)(m−k)2.

Proof. By the remarks above, it is enough to show

γm,0 = (−1)mpm
2

,

where we may assume by induction

γm,d = (−1)m−dp(m−d)2 .

By definition of γ, this means we have to verify the formula

sm :=
m∑
j=0

(−1)jpj
2

αm,m−j = 1 . (A.3)
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This will be done in several steps. First, we note the obvious identities

αm−1,m−l =
p2l − 1

pm−l − 1
· αm−1,m−l−1 ;

αm,m−k =
p2m − 1

pm−k − 1
· αm−1,m−k−1 .

Next, we claim the following auxiliary formula

tl :=
l∑

k=0

(−1)kpk
2 p2m − pm−k

pm−k − 1
αm−1,m−k−1 = (−1)lpm+l(l+1)αm−1,m−l−1 . (A.4)

This is an easy induction on l. Clearly t0 = p2m−pm

pm−1
αm−1,m−1 = pmαm−1,m−1.

Assuming (A.4) for l − 1, we compute

tl = tl−1 + (−1)lpl
2 p2m − pm−l

pm−l − 1
αm−1,m−l−1

= (−1)l−1pm+l(l−1)αm−1,m−l + (−1)lpl
2 p2m − pm−l

pm−l − 1
αm−1,m−l−1

=

[
(−1)l−1pm+l(l−1) p

2l − 1

pm−l − 1
+ (−1)lpl

2+m−l p
m+l − 1

pm−l − 1

]
αm−1,m−l−1

= (−1)lpm+l(l−1) (p
m+l − 1)− (p2l − 1)

pm−l − 1
αm−1,m−l−1

= (−1)lpm+l(l+1)αm−1,m−l−1 .

In particular, tm−1 = (−1)m−1pm
2
. To finish the proof, subtract sm−1 from sm:

sm − sm−1 =
m∑
k=0

(−1)jpk
2

αm,m−k −
m−1∑
k=0

(−1)kpk
2

αm−1,m−k−1

= (−1)mpm
2

+
m−1∑
k=0

(−1)kpk
2

(
p2m − 1

pm−k − 1
− 1

)
αm−1,m−k−1

= (−1)mpm
2

+ tm−1 = 0 .

Since clearly s0 = 1, the claim follows.

Since a b-isotropic subspace W of dimension i gives rise to an abelian subgroup
of index 2m− i (the corresponding abelian is either W ×C or W ×C Z/4, where
C is the centre), we arrive at

Proposition A.3. The Morava K-theory Euler characteristic of G = p1+2m
+ is

given by

χn,p(G) =
m∑
i=0

αm,iγm,i
p2m−i p

(i+1)n =
m∑
i=0

(−1)m−ip(m−i−1)2+(n−1)(i+1)αm,i

with α and γ as above.
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For example, for D8 and D(2) = 21+4
+ we obtain

χn,2(D8) =
3

2
4n − 1

2
2n , and

χn,2(D(2)) =
15

4
(8n − 4n) + 2n .

This agrees with the Euler characteristics we can compute from Theorems IV.1.2
and V.3.6, as we shall now see. For D8 and Q8 this was done in the text, so
consider D(2). From Lemma V.3.5 we have that K (the kernel of d3) has rank
k := 22n−1 +22n−2 +2n−1, and H (the homology with respect to d3) has rank h :=
6 ·2n−2. The E4-page of the spectral sequence is isomorphic to K⊗M1⊕H⊗M2

where M1 = F2[x1, x2]/(x
2
1x2 + x1x

2
2) and M2 = F2[x1, x2]{x2

1x2 + x1x
2
2}. The

Qn-hmologies of M1 and M2 have ranks m1 = 3 · (2n − 1) and m2 = 22n − m1
(compare V.2), thus the rank of the E∞-page is

k ·m1 + h ·m2 = (15 · 22n − 15 · 2n + 4) · 2n−2 = χn,2(D(2)) .

2. Let G be dihedral, or semidihedral, or generalized quaternion of order 2N+2.
In the dihedral case, the maximal abelian subgroups are the cyclic subgroup 〈s〉
of order 2N+1 and 2N subgroups C2 ×C2, coming in two conjugacy classes; their
common intersection is the centre 〈s2N 〉 ∼= C2 with Möbius function value −2N .
The same pattern holds for semidihedral groups, so we obtain

χn,2(D2N+2) = χn,2(SD2N+2) =
1

2
2(N+1)n + 4n − 1

2
2n .

For generalized quaternion groups, there are 2N subgroups C4 (two conjugacy
classes) and one copy of C2N+1 , intersecting in the centre C2, so again we have

χn,2(Q2N+2) =
1

2
2(N+1)n + 4n − 1

2
2n .

Finally, for quasidihedral groups the maximal subgroups are Z×〈t〉 ∼= C2N ×C2,
〈st〉 ∼= C2N+1 and 〈s〉 ∼= C2N+1 , the latter two non-conjugate, all intersecting in
the centre Z = 〈s2〉 ∼= C2N . Thus

χn,2(QD2N+2) =
3

2
2(N+1)n − 1

2
2Nn .

3. Let G = PSL2(Fq) with q = pf for an odd prime p. According to [Hp,
II, 8.5], every non-identity element g of G lies in precisely one conjugate of one
of the subgroups P,U, S where P is an elementary abelian p-group of rank f
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(a Sylow p subgroup), U is cyclic of order m = 1
2
(q − 1) (U is the subgroup of

Möbius transformations leaving 0 and ∞ fixed), and S is cyclic of order k =
1
2
(q + 1). Furthermore P has q + 1 conjugates, and U and S have index two in

their normalisers (which are dihedral groups). Thus

χn,2(PSL2(Fq) =
1

2

(
2n·ν2((q+1)/2) + 2n·ν2((q−1)/2)

)
.

4. Let P be the 3-group giving rise to Kriz’s counterexample, i.e., the 3-Sylow
subgroup of GL4(F3). The maximal abelian subgroups of P are

• one elementary abelian subgroup of rank 4, corresponding to matrices of

the form
( 1 0 ∗ ∗

1 ∗ ∗
1 0

1

)
;

• 12 subgroups isomorphic to C9 × C3, coming in four conjugacy classes;

• 51 elementary abelian subgroups of rank 3.

Furthermore, P has 57 conjugacy classes of elements; since this gives χ1,3(P ),
and χ0,p(G) = 1 for any G, the above data suffice to compute

χn,3(P ) =
1

9
81n +

7

3
27n − 16

9
9n +

1

3
3n .

Just for fun, here is the corresponding result for the prime 2, i.e. the group
U4(F2) of 4 × 4 upper triangular matrices over F2: The number of conjugacy
classes is 16, and the maximal abelian subgroups are: one elementary abelian of
rank 4 (as above), 15 of type C4 × C2, and 5 of type C2 × C2 × C2. Thus

χn,2(U4(F2)) =
1

4
16n +

5

2
8n − 9

4
4n +

1

2
2n .
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B Tables

For each p, n, and V , let K̃V be the direct summand of KV corresponding to
the reduced n-th Morava K-theory of BV . Thus K̃k

V = Kk
V for k 6= 0, and

K0
V = K̃0

V ⊕ T , where T is the trivial Fp[GL(V )]-submodule of dimension one
spanned by the monomial 1. The Fp-dimension of K̃k

V is (pnd−1)/(pn−1), where
d = dimV as before.
Table 1 describes the SL2(F3)-module structure of K̃k

V (for p = 3) in terms of the
indecomposable modules I1, . . . , I7 as described in VI.3.2.

Tables 2–4 give the maximal rank permutation submodulesM ′ of K̃k
V for dimV =

3 and p = 2, 3, 5.
Specifically, let l be a line in V , and let π be a plane in V containing l. The
group GL(V ) acts on the set of all such pairs, and the stabiliser of the pair (l, π)
contains a unique Sylow p-subgroup U(V ) of GL(V ) (and is in fact equal to the
normaliser of U(V )). Let C be a generator for the centre of U(V ), which is cyclic
of order p. Let A be a non-central element of U(V ) stabilising every line in π,
and let B be a non-central element of U(V ) stabilising every plane containing l.
Then A and B generate U(V ), and after replacing C by a power if necessary, the
commutator of A and B is equal to C. If we identify V with F3

p, and take U(V )
to be the upper triangular matrices, then we may take

A =

1 1 0
0 1 0
0 0 1

 B =

1 0 0
0 1 1
0 0 1

 .

For p = 2 the group U(V ) has 8 conjugacy classes of subgroups, which we list in
the following order:

{1}, 〈A〉, 〈B〉, 〈C〉, 〈AB〉, 〈A,C〉, 〈B,C〉, U(V ).

Let P1, . . . , P8 be the corresponding transitive permutation modules, so that P1

is the free module and P8 is the trivial module. Similarly, for p > 2, U(V ) has
2p+ 5 conjugacy classes of subgroups, which we list as:

{1}, 〈A〉, 〈AB〉, . . . , 〈ABp−1〉, 〈B〉, 〈C〉,
〈A,C〉, 〈AB,C〉, . . . , 〈ABp−1, C〉, 〈B,C〉, U(V ).

Again we let P1, . . . , P2p+5 be the corresponding transitive permutation modules.
Note that for p = 2, the computations show this submodule always to coincide
with the entire module: we have dimP1 = 8, dimP2 = dimP3 = dimP4 = 4,
dimP5 = dimP6 = dimP7 = 2, and dimP8 = 1, and the dimension of each row
adds up to 23n − 1/(2n − 1). (This is the reason dimM ′ is omitted from this
table.)

Tables 5 and 6 finally give, for dimV = 2, the dimension of a maximal H-
permutation submodule M ′′ of K1

V , for each conjugacy class (in GL(V )) of sub-
groups H of U(V ). The dimension of K1

V is 91 for p = 3 and 651 for p = 5.
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Table 1: The SL2(F3)-summands of K̃k
V .

n k I1 I2 I3 I4 I5 I6 I7
1 0 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0 0
2 0,4 1 0 1 0 0 0 2
2 1,3,5,7 0 0 0 0 1 1 0
2 2,6 1 0 0 0 0 0 3
3 even 1 0 2 0 0 0 7
3 odd 0 0 0 0 1 4 0

Table 2: The D8-summands of K̃k
V .

n k P1 P2 P3 P4 P5 P6 P7 P8

1 0 0 1 0 0 0 0 1 1
2 0 0 2 2 1 0 0 0 1
2 1,2 1 1 1 0 0 1 1 1
3 0 4 4 4 2 0 0 0 1
3 1,6 6 1 3 0 0 3 1 1
3 2,5 5 3 3 1 0 1 1 1
3 3,4 5 2 4 1 0 2 0 1
4 0 24 8 8 4 0 0 0 1
4 1,14 28 1 7 0 0 7 1 1
4 2,13 25 7 7 3 0 1 1 1
4 3,12 27 2 8 1 0 6 0 1
4 4,11 25 6 8 3 0 2 0 1
4 5,10 27 3 7 1 0 5 1 1
4 6,9 26 5 7 2 0 3 1 1
4 7,8 26 4 8 2 0 4 0 1
5 0 112 16 16 8 0 0 0 1
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Table 3: A maximal Syl3(GL3(F3))-permutation submodule of K̃k
V .

n k dim. M ′ P1 P2 P5 P6 P7 P10 P11

1 0,1 13 0 1 0 0 0 1 1
2 0 91 1 3 3 1 0 0 1
2 1 65 1 1 2 0 3 0 2
2 2 71 1 2 2 0 1 1 2
2 3 73 1 2 2 0 1 2 1
2 4 57 1 1 1 0 2 1 3
2 5 65 1 2 1 0 1 2 2
2 6 67 1 2 1 0 2 2 1
2 7 73 1 2 2 0 2 1 1

Table 4: A maximal Syl5(GL3(F5))-permutation submodule of K̃k
V .

n k dim. M ′ P1 P2 P7 P8 P9 P14 P15

1 0–3 31 0 1 0 0 0 1 1
2 0 651 3 5 5 1 0 0 1
2 1 527 3 1 4 0 5 0 2
2 2 447 2 3 4 0 3 1 2
2 3 467 2 4 4 0 2 1 2
2 4 587 3 4 4 0 1 1 2
2 5 591 3 4 4 0 1 2 1

Table 5: A maximal H-permutation submodule of K1
V (p = 3, dimV = 2).

Subgroup H dim. M ′′

〈A,C〉 69
〈AB,C〉 84
〈B,C〉 87
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Table 6: A maximal H-permutation submodule of K1
V (p = 5, dimV = 2).

Subgroup H dim. M ′′

〈A,C〉 535
〈AB,C〉 628
〈B,C〉 643
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Epilogue

There is much work left to be done. As already mentioned, no example of a
2-group with odd Morava K-theory exists. We did some calculations for the mod
2 analogon of Kriz’s example, and our evidence points to this group having even
Morava K-theory: this is suggested by the decomposition of the Morava K-theory
of a rank 3 elementary abelian group V as D8-module carried out in Chapter VI,
where it is shown that K(n)∗(BV ) has a permutation basis. Of course, this is
very far from a proof.

Even more pressing would be a complete calculation of K(n)∗(BG) for the group
giving rise to the counterexample at odd primes.

Other experimental calculations suggest that any automorphism of order p of a
finite abelian p-group A turns K̃(n)∗(BA) into a permutation module for Cp.
This would imply that any p-group having an index p abelian subgroup would
have even Morava K-theory, and render some of the calculations in Chapter V
obsolete. We have however not succeeded in proving such a statement, and are
not even prepared to make a formal conjecture. Furthermore, there seem to exist
only very few possible module structures for such actions. We hope to be able to
classify them in the future using suitable filtrations.

We are more confident about a phenomenon sometimes called ‘equidistribution’.
Any p-group G whose Morava K-theory has been determined (this only concerns
G with K(n)odd(BG) = 0) enjoys the property that the rank of K(n)2i(BG) does
not depend on i, except for i = 0, where the unit gives one extra dimension:

Conjecture. Let G be a p-group with K(n)odd(BG) = 0. Then for 0 < i < pn−1,

rankK(n)∗
(
K(n)2i(BG)

)
= rankK(n)∗

(
K(n)0(BG)

)
− 1 .

A positive resolution to the conjecture would imply that the additive structure
of the Morava K-theory of a p-group is determined by a single invariant, its rank.

The treatment of discrete groups given here also leaves much to be desired. Many
natural questions were not addressed, leave alone answered. For example, we
could show that the property of having finite K(n)-rank passes from a finite index
subgroup to the supergroup, and had an example showing that the converse can
not hold. But this example was highly artificial and depended on mixing different

115
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primes. When the index of the subgroup is a power of the defining prime, we do
not know what happens.

Finally, the problem in our opinion overriding all others is the quest for a theory
explaining generalised characters in a functorial way, i.e., a theory that may be
dubbed ‘higher representation theory’. We have no idea what this could be.
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