
β-FAMILY CONGRUENCES AND THE f-INVARIANT

MARK BEHRENS1 AND GERD LAURES

Abstract. In previous work, the authors have each introduced methods for
studying the 2-line of the p-local Adams-Novikov spectral sequence in terms

of the arithmetic of modular forms. We give the precise relationship between
the congruences of modular forms introduced by the first author with the Q-

spectrum and the f -invariant of the second author. This relationship enables

us to refine the target group of the f -invariant in a way which makes it more
manageable for computations.

1. Introduction

In [Ada66], J.F. Adams studied the image of the J-homomorphism

J : πt(SO)→ πSt

by introducing a pair of invariants

d = dt : πSt → πtK,

e = et : ker(dt)→ Ext1,t+1
A (K∗,K∗)

where A is a certain abelian category of graded abelian groups with Adams oper-
ations. (Adams also studied analogs of d and e using real K-theory, to more fully
detect 2-primary phenomena.) In order to facilitate the study of the e-invariant,
Adams used the Chern character to provide a monomorphism

θS : Ext1,t+1
A (K∗,K∗) ↪→ Q/Z.

Thus, the e-invariant may be regarded as taking values in Q/Z. Furthermore, he
showed that for t odd, and k = (t + 1)/2, the image of θS is the cyclic group of
order denom(Bk/2k), where Bk is the kth Bernoulli number.

The d and e-invariants detect the 0 and 1-lines of the Adams-Novikov spectral
sequence (ANSS). In [Lau99], the second author studied an invariant

f : ker(et)→ Ext2,t+2

TMF∗ TMF[ 16 ]
(TMF[ 1

6 ]∗,TMF[ 1
6 ]∗)

which detects the 2-line of the ANSS for πS∗ away from the primes 2 and 3. He
furthermore used H. Miller’s elliptic character to show that, if t is even and k =
(t+ 2)/2, there is a monomorphism

ι2 : Ext2,t+2

TMF∗ TMF[ 16 ]
(TMF[ 1

6 ]∗,TMF[ 1
6 ]∗) ↪→ DQ/(DZ[ 16 ] + (M0)Q + (Mk)Q),

where D is Katz’s ring of divided congruences and Mk is the space of weight k
modular forms of level 1 meromorphic at the cusp. It is natural to ask for a
description of the image of the map ι2 in arithmetic terms.
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Remark 1.1. In [Lau99], the second author works with more general congruence
subgroups Γ ⊆ SL2(Z) and associated cohomology theories EΓ which also lead to
results for the primes 2 and 3. The spectrum TMF is just the spectrum ESL2(Z)

when 6 is inverted. In this paper we shall not be considering the f invariant
associated to more general congruence subgroups Γ and 6 shall always be a unit.

Attempting to generalize the J fiber-sequence

J → KOp
ψ`−1−−−→ KOp

the first author introduced a ring spectrum Q(`) built from a length two TMFp-
resolution. In [Beh09, Thm. 12.1], it was shown that for p ≥ 5, the elements
βi/j,k ∈ (πS∗ )p of [MRW77] are detected in the Hurewicz image of Q(`). This gives
rise to the association of a modular form fi/j,k to each element βi/j,k. Furthermore,
the forms fi/j,k are characterized by certain arithmetic conditions.

The purpose of this paper is to prove that the f -invariant of βi/j,k is given by
the formula

f(βi/j,k) =
fi/j,k

pkEjp−1

(Theorem 4.2).

In particular, since the 2-line of the ANSS is generated by the elements βi/j,k, the p-
component of the image of the map ι2 is characterized by the arithmetic conditions
satisfied by the elements fi/j,k.

J. Hornbostel and N. Naumann [HN07] computed the f invariant of the elements
βi/1,1 in terms of Katz’s Artin-Schreier generators of the ring of p-adic modular
forms. While their result is best suited to describe f -invariants of infinite families,
it is difficult to explicitly get one’s hands on their output. Direct computations with
q-expansions are limited by the computability of q-expansions of modular forms,
hence are generally not well suited for infinite families of computations. In low
degrees, however, our formula can directly be used to compute with q-expansions.
We demonstrate this by giving some sample calculations of some f -invariants at
the prime 5.

Remark 1.2. It is natural to ask if the results of this paper can be extended to the
primes 2 and 3. A difficulty arises because the cohomology theory TMF fails to be
Landweber exact without inverting 6, and this in turn is related to the fact that the
associated moduli stack of elliptic curves has geometric points with automorphism
groups divisible by the primes 2 and 3. If one substitutes the group SL2(Z) with a
small enough congruence subgroup so that the associated moduli stack is actually
an algebraic space, then the corresponding f -invariant detects the 2-line of the 2
and 3-primary Adams-Novikov spectral sequences. However, the results of [Beh09]
break down, because they rely on the approximation theorem of [BL06], and the
analog of this approximation theorem for these congruence subgroups does not
hold. In fact, the approximation theorem is not even true at the prime 2 for the
full congruence subgroup SL2(Z).

We outline the organization of this paper. In Section 2, we review the f -invariant.
In Section 3, we review the spectrum Q(`), and use it to construct an invariant f ′

so that
fi/j,k = f ′(βi/j,k).

In Section 4 we show that the f -invariant is directly expressible in terms of the
invariant f ′. In Section 5, we give our sample 5-primary calculations.
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2. The f-invariant

This section reviews the f -invariant and its various aspects in homotopy theory
and geometry. Our main sources are [Lau00] and [Lau99].

Theorem 2.1. Let D be the ring of divided congruences defined by N. Katz in
[Kat73], that is, the ring of all inhomogeneous modular forms for SL2(Z) whose q-
expansion is integral, and let Mt be the subspace of modular forms of homogeneous
weight t. Then for all k > 0 there is a homomorphism

f : πS2k −→ DQ/(DZ[1/6] ⊕ (M0)Q ⊕ (Mk+1)Q)

whose kernel is the 3rd Adams-Novikov filtration for MU [1/6].

Remark 2.2. In [Lau99], the second author actually defines the f invariant to
take values in the subspace of

DQ/(DZ[1/6] ⊕ (M0)Q ⊕ (Mk+1)Q)

spanned by inhomogeneous sums of modular forms of weights between 0 and k+ 1.
Of course, there is no harm in regarding the invariant as taking values in the larger
group above.

The construction of f is closely related to the construction of the classical e-
invariant by F. Adams (see [Ada66]). Let T be a flat ring spectrum and let

s : X −→ Y

be a stable map from a finite spectrum into an arbitrary one. Suppose further that
the d-invariant of s vanishes. This simply means that s vanishes in T homology.
Then we have a short exact sequence

T∗Y −→ T∗Cs −→ T∗ΣX,

where Cs is the cofiber of s. We can think of the sequence as an extension of T∗X
by T∗Y as a T∗T -comodule. This is the classical e-invariant of s in T -theory.

Next, suppose that
e(s) ∈ ExtT∗T (T∗X,T∗Y )

vanishes, that is, the exact sequence of T∗T -comodules splits and we choose a
splitting. We also choose a T -monomorphism

ι : Y −→ I

into a T -injective spectrum I. For instance, we can take I = T ∧ Y . Then there is
a map

t : Cs −→ I

which is the image of ι∗ under the induced splitting map

[Y, I] ∼= HomT∗T (T∗Y, T∗I) −→ HomT∗T (T∗Cs, T∗I) ∼= [Cs, I].

In particular, the map t coincides with ι on Y . Let F be the fiber of the map ι.
Then s lifts to a map

s̄ : X −→ F
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which makes the diagram

Σ−1Cs

Σ−1t
��

// X
s //

s̄

��

Y

id

��
Σ−1I // F // Y

commute.

Lemma 2.3. d(s̄) = 0.

Proof. In the split exact sequence

HomT∗T (T∗ΣX,T∗ΣF ) −→ HomT∗T (T∗Cs, T∗ΣF ) −→ HomT∗T (T∗Y, T∗ΣF )

the map Σs̄∗ restricted to Cs is in the image of the splitting and hence has to vanish.
The claim follows since the map from Cs to ΣX is surjective in T -homology. �

Lemma 2.3 implies that we again get a short exact sequence

T∗F −→ T∗Cs̄ −→ T∗ΣX

which we can splice together with the short exact sequence

T∗Σ−1Y −→ T∗Σ−1I −→ T∗F.

This gives an extension of T∗Σ−1Y by T∗ΣX of length 2, that is, an element

f(s) ∈ Ext2T∗T (T∗X,T∗Y ).

In the case X = S2k, Y = S0 and T = TMF[ 1
6 ], the image of f(s) under the

injection
ι2 : Ext2 ↪→ DQ/(DZ[ 16 ] ⊕ (M0)Q ⊕ (Mk+1)Q)

is the second author’s f -invariant. The map ι2 will be reviewed in Section 4.
We close this section with an alternative description of the f -invariant. First

recall from [Lau00] that a framed manifold M represents a framed bordism class in
second Adams-Novikov filtration if and only if it is the corner of a (U, fr)2 manifold
W . The boundary of W is decomposed into two manifolds with boundaries W 0

and W 1. The stable tangent bundle of W comes with a splitting

TW ∼= (TW )0 ⊕ (TW )1

and the bundles (TW )i are trivialized on W i. Therefore, we get associated classes

(TW )i ∈ K(W,W i).

Let expT be the usual parameter for the universal Weierstrass cubic

y2 = 4x3 − E4x+ E6

and let
expK(x) = 1− e−x

be the standard parameter for the multiplicative formal group. Then following
theorem is a consequence of proposition 4.1.4 of [Lau00] after applying the complex
orientation of the 〈2〉-spectrum

S0 //

��

K

��
T // K ∧ T

.
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Theorem 2.4. Let s be represented by M under the Pontryagin-Thom isomor-
phism. Then we have

f(s) =

〈∏
i,j

xiyj
expK(xi) expT (yj)

, [W,∂W ]

〉
.

Here, (xi) and (yj) are the formal Chern roots of (TW )0 and (TW )1 respectively.

We remark that there also are descriptions of the f -invariant in terms of a
spectral invariant which is analogous to the classical relation between the e-invariant
and the η-invariant. We refer the reader to [vB08] and [BN].

3. The spectrum Q(`) and the invariant f ′

For a Z[1/N ]-algebra R we shall let Mk(Γ0(N))R denote the space of modular
forms of weight k over R of level Γ0(N) which are meromorphic at the cusps. For
N = 1 we shall simplify the notation by writing

(Mk)R := Mk(Γ0(1))R.

Let TMF0(N) denote the corresponding spectrum of topological modular forms
with N inverted (see [Beh06, Sec. 1.2.1], [Beh07, Sec. 5]). For primes p > 3,
π∗ TMF0(N)p is concentrated in even degrees, and we have

(3.1) π2k TMF0(N)p ∼= Mk(Γ0(N))Zp
.

Remark 3.2. One could view the isomorphism of (3.1) as a consequence of the fact
that the spectrum TMF0(N)[ 1

6 ] is equivalent to the spectrum EΓ0(N) of [Lau99],
or as a consequence of the fact that the descent spectral sequence

Hs(MΓ0(N)
ell [ 1

6 ], ω⊗t)⇒ π2t−s TMF0(N)[ 1
6 ]

is concentrated on s = 0.

Fix a pair of distinct primes p and `. In [Beh06], the first author introduced
a p-local spectrum Q(`), defined as the totalization of a certain semi-cosimplicial
spectrum

Q(`) = Tot(Q(`)•)
where Q(`)• has the form

(3.3) Q(`)• =

TMFp
→
→

TMF0(`)p
×

TMFp

→
→
→

TMF0(`)p

 .

In [Beh09, Sec. 4] the spectrum Q(`) is reinterpreted as the smooth hypercohomol-
ogy of a certain open subgroup of an adele group acting on a certain spectrum. The
semi-cosimplicial spectrum Q(`)• is actually a semi-cosimplicial E∞-ring spectrum,
so the spectrum Q(`) is an E∞-ring spectrum. In particular, there is a unit map

(3.4) η : S → Q(`).

The spectrum Q(`) is designed to be an approximation of the K(2)-local sphere.
More precisely, the spectrum Q(`)K(2) is given as the homotopy fixed points of a
subgroup

(3.5) Γ` ⊂ S2
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of the Morava stabilizer group acting on the Morava E-theory E2 [Beh07] and this
subgroup is dense if ` generates Z×p [BL06]. The spectrum Q(`) is E(2)-local. In
[Beh09, Thm. 12.1] it is proven that elements βi/j,k ∈ π∗(SE(2)) of [MRW77] are
detected by the map

SE(2) → Q(`).
(It is not known if Q(`) detects the entire divided beta family at the primes 2 and
3.)

Taking the homotopy groups of the semi-cosimplicial spectrum Q(`)• (3.3) gives
a semi-cosimplicial abelian group

(3.6) C(`)•2k :=

(Mk)Zp

→
→

Mk(Γ0(`))Zp

×
(Mk)Zp

→
→
→

Mk(Γ0(`))Zp

 .

It is shown in [Beh09, Sec. 6] that the morphisms

d0, d1 : (Mk)Zp
→Mk(Γ0(`))Zp

× (Mk)Zp
,

induced by the initial coface maps of the cosimplicial abelian group C(`)•2k, are
given on the level of q-expansions by

d0(f(q)) := (`kf(q`), `kf(q)),(3.7)

d1(f(q)) := (f(q), f(q)).(3.8)

The Bousfield-Kan spectral sequence for computing π∗Tot(Q(`)•) gives a spec-
tral sequence

(3.9) Hs(C(`)•)t ⇒ πt−sQ(`).

For p > 3, this spectral sequence collapses for dimensional reasons [Beh09, Cor. 5.2],
giving us the following lemma.

Lemma 3.10. The edge homomorphism

H2(C(`)•)t → πt−2(Q(`))

is an isomorphism for t ≡ 0 mod 4.

Lemma 3.11. There is a map of spectral sequences

Exts,tBP∗BP (BP∗, BP∗)

��

+3 πt−sS(p)

η∗

��
Hs(C(`)•)t +3 πt−sQ(`)

from the Adams-Novikov spectral sequence for the sphere to the Bousfield-Kan spec-
tral sequence for Q(`).

To prove Lemma 3.11 we shall need the following lemma.

Lemma 3.12. Suppose that R• is a semi-cosimplicial commutative S-algebra, E
is a commutative S-algebra, and φ : E → R0 is a map of commutative S-algebras.
Then there is a canonical extension of φ to a map of semi-cosimplicial commutative
S-algebras

φ• : E∧•+1 → R•
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where

E∧•+1 =

E η∧1−−→
1∧η−−→

E ∧ E

η∧1∧1−−−−→
1∧η∧1−−−−→
1∧1∧η−−−−→

E ∧ E ∧ E · · ·


is the canonical cosimplicial E-resolution of the sphere.

Proof. A semi-cosimplicial commutative S-algebra is a functor

∆inj → {commutative S-algebras},
where ∆inj is the category of finite ordered sets and order preserving injections.
Let m be the object of ∆inj given by

m = {0, 1, . . . ,m}
and for 0 ≤ i ≤ n define ιmi : 0→ m by ιmi (0) = i. The map φs is defined to be the
composite

E∧s+1 ((ιs0)∗◦φ)∧···∧((ιnn)∗◦φ)−−−−−−−−−−−−−−−→ (Rs)∧s+1 µs+1−−−→ Rs

where µs+1 denotes the s+1-fold product. The maps φs are easily seen to assemble
into a map of semi-cosimplicial spectra. �

Proof of Lemma 3.11. Lemma 3.12 implies that there exists a map of semi-
cosimplicial spectra

1• : TMF∧•+1
p → Q(`)•

and hence a map from the Bousfield-Kan spectral sequence for TMF∧•+1
p to the

Bousfield-Kan spectral sequence for Q(`)•. However, since TMF•+1
p is the canonical

TMFp-injective resolution of S, the Bousfield-Kan spectral sequence for TMF∧•+1
p

is the TMFp-Adams-Novikov spectral sequence for S. Since TMFp is complex
orientable, there is a map of ring spectra BP → TMFp, and hence a map from
the BP -Adams-Novikov spectral sequence to the TMFp-Adams-Novikov spectral
sequence. �

The short exact sequences of BP∗BP -comodules

0→ BP∗ → BP∗[p−1]→ BP∗/p
∞ → 0,

0→ BP∗/p
∞ → BP∗/p

∞[v−1
1 ]→ BP∗/(p∞, v∞1 )→ 0

give rise to long exact sequences in Ext, and the connecting homomorphisms give
a composite

(3.13) δv1,p : Ext0,t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 ))
δv1−−→ Ext1,t

BP∗BP
(BP∗, BP∗/p∞)

δp−→ Ext2,t
BP∗BP

(BP∗, BP∗).

The computations of [MRW77] imply the following lemma.

Lemma 3.14. The homomorphism δv1,p of (3.13) is an isomorphism for t > 0.

Since the spectrum TMF[ 1
6 ] is Landweber exact, the spectrum TMFp is complex

orientable. Since TMFp is p-local, it admits a p-typical complex orientation, and a
choice of p-typical complex orientation

BP → TMFp → TMF0(`)p
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sends v1 to a non-zero multiple of the Hasse invariant Ep−1 mod p. The complex
C(`)•/pk is a complex of modules over the ring Zp[vp

k−1

1 ]. The short exact sequences

0→ C(`)• → C(`)•[p−1]→ C(`)•/p∞ → 0,

0→ C(`)•/p∞ → C(`)•/p∞[v−1
1 ]→ C(`)•/(p∞, v∞1 )→ 0

give rise to long exact sequences in H∗, and the connecting homomorphisms give a
composite

δv1,p : H0(C(`)•/(p∞, v∞1 ))t
δv1−−→ H1(C(`)•/p∞)t

δp−→ H2(C(`)•)t.

Using Lemmas 3.10 and 3.14, we have the following diagram, for t > 0.

(3.15) π4t−2S(p) // π4t−2Q(`)

Ext2,4t
BP∗BP∗

(BP∗, BP∗) //

KS

f ′

**

H2(C(`)•)4t

∼=

OO

Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 ))

∼= δv1,p

OO

// H0(C(`)•/(p∞, v∞1 ))4t

δv1,p

OO

Since p is odd and Ext2,m
BP∗BP

(BP∗, BP∗) is concentrated in degrees m ≡ 0 mod 4,
the invariant f ′ may be regarded as an invariant defined on the entire 2-line of the
ANSS. Moreover, because π4t−2S(p) contains no elements of Adams-Novikov filtra-
tion less than 2, the invariant f ′ may be regarded as giving a homotopy invariant
through the composite

π4t−2S(p) → Ext2,4t
BP∗BP

(BP∗, BP∗)
f ′−→ H0(C(`)•/(p∞, v∞1 ))4t.

We shall find that this invariant f ′ is closely related to the f invariant of the second
author.

We end this section by describing some of the salient features of the invariant
f ′. Namely, we shall show:

(i) the homomorphism f ′ is a monomorphism, and if ` generates Z×p , the
homomorphism f ′ is almost an isomorphism, and

(ii) the groupsH0(C(`)•/(p∞, v∞1 ))4t admit a precise arithmetic interpretation
in terms of congruences of q-expansions of modular forms.

The injectivity and almost surjectivity of f ′.
Because v2 is invertible in C(`)•/(p∞, v∞1 ), there is a factorization

(3.16)

Ext2,4t
BP∗BP

(BP∗, BP∗)
f ′ // H0(C(`)•/(p∞, v∞1 ))4t

Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 ))

∼= δv1,p

OO

Lv2

// Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 )[v−1
2 ])

η̄

OO

Recall from [MRW77] that for t > 0 the groups

Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 )) and Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 )[v−1
2 ])
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are generated by elements βi/j,k for certain combinations of indices i, j, and k. As
usual, βi/j denotes the element βi/j,1.

Proposition 3.17.
(i) The map Lv2 of (3.16) is injective, and the cokernel is an Fp-vector space

with basis

{βpn/j : n ≥ 2, pn < j ≤ pn + pn−1 − 1}.
(ii) The map η̄ of (3.16) is injective, and if ` generates Z×p , it is an isomor-

phism.

Proof. (i) follows directly from the calculations of [MRW77]. (ii) follows from the
fact that the map η̄ factors as

Ext0,4t
BP∗BP

(BP∗, BP∗/(p∞, v∞1 )[v−1
2 ])

η̄ //

η̄′

∼=
((QQQQQQQQQQQQQQQQQ

H0(C(`)•/(p∞, v∞1 ))4t

H0
c (S2, π∗E2/(p∞, v∞1 ))Gal

4t

η̄′′

99rrrrrrrrrrrrrr

where η̄′ is the Morava change-of-rings isomorphism, and η̄′′ is given by the com-
posite

H0(C(`)•/(p∞, v∞1 ))4t
ω−→∼= H0(Γ`, π∗M2E2)Gal

4t
ν−→ H0

c (S2, π∗M2E2)Gal
4t .

Here, ω is the isomorphism given by [Beh09, Cor. 7.7] where Γ` is the subgroup
of S2 of (3.5), the spectrum M2E2 is the second monochromatic layer of E2, and
ν is the monomorphism induced by the inclusion of the subgroup. Lemma 11.1
of [Beh09] states that ν is an isomorphism if ` generates Z×p [Beh09, Lem. 11.1].
Note that the same argument in [Rav84, Thm. 6.1] computing π∗MnBP applies to
compute

π∗M2E2
∼= (π∗E2)/(p∞, v∞1 ).

�

We conclude that f ′ is injective, and if ` generates Z×p , the only generators of
H0(C(`)•/(p∞, v∞1 )) not in the image of f ′ are those corresponding to the Greek
letter elements βpn/j for j > pn.

The arithmetic interpretation of the groups H0(C(`)•/(p∞, v∞1 )).
The groups H0(C(`)•/(p∞, v∞1 ))4t are computed by the colimit of groups

H0(C(`)•/(p∞, v∞1 ))4t = colim
k

colim
j=spk−1

s≥1

B2t/j,k

where
B2t/j,k = H0(C(`)•/(pk, vj1))4t+2j(p−1).

Using the fact that v1 corresponds, modulo p, to a non-zero multiple of the Hasse
invariant Ep−1 in the ring of modular forms, we have

B2t/j,k = ker

M2t+j(p−1)

(pk, Ejp−1)
d0−d1−−−−→

M2t+j(p−1)

(pk,Ej
p−1)

⊕
M2t+j(p−1)(Γ0(`))

(pk,Ej
p−1)

 .
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Serre [Kat73, Prop. 4.4.2] showed that two modular forms f1 and f2 over Z/pk
are linked by multiplication by Ejp−1 (for j ≡ 0 mod pk−1) if and only if the
corresponding q-expansions satisfy

f1(q) ≡ f2(q) mod pk.

Using this, and (3.7)-(3.8), the following theorem is proven in [Beh09].

Theorem 3.18 ([Beh09, Thm. 11.3]). There is a one-to-one correspondence be-
tween the additive generators of order pk in Bt/j,k and the modular forms f ∈
Mt+j(p−1) (modulo pk) satisfying

(1) We have t ≡ 0 mod (p− 1)pk−1.
(2) The q-expansion f(q) is not congruent to 0 mod p.
(3) We have ordq f(q) > t

12 or ordq f(q) = t−2
12 .

(4) There does not exist a form f ′ ∈ Mt′ such that f ′(q) ≡ f(q) mod pk for
t′ < t+ j(p− 1).

(5)` There exists a form
g ∈Mt(Γ0(`))

satisfying
f(q`)− f(q) ≡ g(q) mod pk.

Remark 3.19. It follows from [Beh09, Cor. 11.7], that a modular form satisfying
(1)–(5) corresponding to f ′(x) is independent of the choice of the prime `.

4. The relation between f and f ′

Let ` be a generator of Z×p . We start with a cohomology class

x ∈ Ext2,2t
BP∗BP

(BP∗, BP∗)

with corresponding invariant

(4.1) f ′(x) ∈ Bt/j,k = H0(C•(`)/(pk, vj1))2t+2j(p−1).

Note that since p is odd, t must be even. By Theorem 3.18, a representative of f ′(x)
is a Z/pk modular form ϕ of weight t+ j(p− 1) for SL2(Z) which satisfies certain
congruences. We view ϕ as a divided congruence, more precisely, as an element of

D ⊗ Z/pk.

Theorem 4.2. The f -invariant of the class x is given by

p−kE−jp−1(ϕ− q0(ϕ))

where q0 is the 0th Fourier coefficient, and j, k are given by (4.1).

The proof of Theorem 4.2 will be deferred to the end of the section.

Remark 4.3. For t > 0, Theorem 3.18(3) implies that there exists a representative
ϕ of f ′(x) with q0(ϕ) = 0. Since the modular form fi/j,k of [Beh09] is such a
representative of f ′(βi/j,k), Theorem 4.2 implies that

f(βi/j,k) =
fi/j,k

pkEjp−1

.
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Corollary 4.4. The class
pkEjp−1f(x)

is congruent to a Z/pk-modular form ϕ of weight t+ j(p− 1) up to modular forms
of weights j(p− 1) and t+ j(p− 1). Moreover, ϕ satisfies the conditions (1)-(5) of
3.18.

Remark 4.5. We pause to explain how the expression in Theorem 4.2 may be
regarded as an element of the subgroup

DQ

DZ(p) + (M0)Q + (Mt)Q
⊂ DQ

DZ[1/6] + (M0)Q + (Mt)Q

in a way that more clearly accounts for the indeterminacy of the f -invariant. Katz
showed that D is a dense subspace of V, the ring of generalized p-adic modular
functions [Kat75]. The ring V has an action by the group Z×p through Diamond
operators, and the weight t subspace Vt is canonically identified by

Vt ∼= (M∗)Zp [E−1
p−1]t.

We therefore have
DQ

DZ(p) + (M0)Q + (Mt)Q
∼=

VQ

V + (M0)Qp + (Mt)Qp

.

Taking the weight t subspace we get

(Vt)Q

Vt + (Mt)Qp

∼=

(
(M∗)Qp [E−1

p−1]

(M∗)Zp [E−1
p−1] + (M∗)Qp

)
t

=

(
(M∗)Zp

(p∞, E∞p−1)

)
t

.

The expression p−kE−jp−1φ clearly may be regarded as an element of the group above.

Let T be TMF[ 1
6 ] and

M (2) = π∗T ∧ T
be the Hopf algebroid of cooperations of T . An element of M (2) is a modular form
in two variables which is meromorphic at ∞ and has (away from 6) an integral
Fourier expansion (see [Lau99]).

Consider the map of semi-cosimplicial spectra

1• : TMF∧•+1
p → Q(`)•

of Lemma 3.12. Applying the functor π∗(−), we get a map of semi-cosimplicial
abelian groups

π2k(T •+1
p ) = M

(•+1)
k → C•(`)2k

which in low degrees gives the following commutative diagram.

(Mk)Zp

d0−d1 //

=

��

(M (2)
k )Zp

φ

��
(Mk)Zp

d0−d1 // Mk(Γ0(`))Zp × (Mk)Zp

.
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Lemma 4.6. The induced map in cohomology

H0(M (•+1)
∗ /(p∞, E∞p−1)) −→ H0(C•(`)/(p∞, v∞1 ))

is an isomorphism.

Proof. By [HS05], there is a change-of-rings isomorphism

H0(M (•+1)
∗ /(p∞, E∞p−1)) = Ext0

TMF∗ TMFp
(π∗TMFp, π∗ TMFp /(p∞, E∞p−1))

∼= Ext0
BP∗BP (BP∗, BP∗/(p∞, v∞1 )[v−1

2 ]).

The lemma follows from the isomorphism η̄ of Proposition 3.17. �

Next we explain how to get from an element in

H0(M∗/(p∞, E∞p−1)) ∼= Ext0
M(2)(M∗,M∗/(p∞, E∞p−1))

to a congruence in
DQ/(DZ[1/6] ⊕ (M0)Q ⊕ (Mk)Q).

For this, we first describe how a class ϕ in

Ext0
M(2)(M∗,M∗/(p∞, E∞p−1))

gives rise to a class in
Ext2

M(2)(M∗,M∗).
We use the geometric boundary theorem

Theorem 4.7. [Rav86] Write E∗(X) for the E∗-term of the T -based Adams
Novikov spectral sequence which conditionally converges to the homotopy of the
T -nilpotent completion of X. Let

W
f−→ X

g−→ Y
h−→ ΣW

be a cofiber sequence of finite spectra with T∗(h) = 0. Assume further that [s] ∈
Et,∗+t2 (Y ) converges to s. Then δ [s] converges to h∗(s) where δ is the connecting
homomorphism to the short exact sequence of chain complexes

0 −→ E1(W ) −→ E1(X) −→ E1(Y ) −→ 0.

For a multi index I let

M(I) = M(i0, . . . , in−1)

be the generalized Moore spectrum with

BP∗M(I) = Σ−||I||−nBP∗/(pi0 , vi11 , . . . , v
in−1
n−1 )

where
||I|| =

∑
j

2ij(pj − 1)

Each M(I) admits a self map

Σ2in(pn−1)M(I) −→M(I)

which induces multiplication by vinn . Its fiber is M(I, in). We apply the geometric
boundary theorem to the sequences

Σ2i1(p−1)M(i0)
vi
1 // M(i0) // ΣM(i0, i1) // Σ2i1(p−1)+1M(i0)
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and

S
pi0

// S // ΣM(i0) // S1 .

For
ϕ ∈ E0

2(M(i0, i1)) = Ext0
M(2)(M∗,M∗/(pi0 , Ei1p−1))

we have

δϕ =

[
d0ϕ− d1ϕ

Ei1p−1

]
∈ E1

2(M(i0)) = Ext1
M(2)(M∗,M∗/pi0)

and

δδϕ =

[
p−i0

2∑
i=0

(−1)idi
[
d0ϕ− d1ϕ

Ei1p−1

]]
∈ E2

2(S) = Ext2
M(2)(M∗,M∗)

where di denote the differentials of the cobar complex

(Ω•T )2k = π2kT
•+1 ∼= M

(•+1)
k .

The maps of ring spectra

T
q0 // KZ[1/6]

ch0
// HQ

induce the following map of semi-cosimplicial spectra.

T
η∧1 //
1∧η //

1

��

T ∧ T
η∧1∧1 //
1∧η∧1 //
1∧1∧η //

q0∧1

��

T ∧ T ∧ T

ch0◦q0∧q0∧1

��
T

η∧1 //
q0∧η // KZ[1/6] ∧ T

η∧1∧1 //
ch0∧η∧1 //
ch0∧q0∧η //

HQ ∧KZ[1/6] ∧ T

Taking π2k(−), and using [Lau99, Thm. 2.7], we get the following map of semi-
cosimplicial abelian groups

(Ω•T )2k

ρ

��

M
(1)
k

d0 //
d1 //

= ρ0

��

M
(2)
k

d0 //
d1 //
d2 //

ρ1

��

M
(3)
k

ρ2

��
(Ω•T,K,H)2k

(Mk)
Z[

1
6 ]

d0 //
d1 // DZ[

1
6 ]

d0 //
d1 //
d2 //

DQ

In (Ω•T,K,H)2k, we have

d1(D
Z[

1
6 ]

) ⊆ (Mk)Q ⊆ DQ,

d2(D
Z[

1
6 ]

) ⊆ (M0)Q ⊆ DQ.

Therefore, by modding out by these subgroups of DQ, we get a map:

(Ω•T )2k

ρ̄

��

M
(1)
k

d0 //
d1 //

= ρ̄0

��

M
(2)
k

d0 //
d1 //
d2 //

ρ̄1

��

M
(3)
k

ρ̄2

��
(Ω̄•T,K,H)2k

(Mk)
Z[

1
6 ]

d0 //
d1 // DZ[

1
6 ]

d0 //
d1 //
d2 //

DQ/((M0)Q + (Mk)Q)
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The first coface maps of the semi-cosimplicial abelian group (Ω̄•T,K,H)2k are given
by

d0 = ι, d1 = q0

and the second ones by
d0 = ι, d1 = d2 = 0

where ι the canonical inclusion. The induced map in cohomology is the inclusion

ι2 : Ext2
M(2)(M∗,M∗) ↪→ DQ/((D)Z[1/6] ⊕ (M0)Q ⊕ (Mk)Q).

Hence we have
ρ̄∗δδϕ = p−i0E−i1p−1(ϕ− q0(ϕ))

and the proof of the theorem is completed.

5. Examples at p = 5

Below are some computations of the q-expansions of the modular forms fi/j,k
representing f ′(βi/j,k) at p = 5. The q-expansions of the corresponding f invariants,
by Theorem 4.2, are given by

f(βi/j,k) = p−kE−jp−1fi/j,k(q).

The computations were performed using the MAGMA computer algebra system,
with ` = 2, as follows.

(i) A basis {Fα(q)} of q-expansions of forms in M24i satisfying Theo-
rem 3.18(3) was generated.

(ii) A basis {Gβ(q)} of q-expansions of holomorphic forms inM24i−4j(Γ0(`))Z/5k

was generated.
(iii) Basic linear algebra is used to calculate a basis of linear combinations∑

α aαFα such that∑
α

aα(Fα(q2)− Fα(q)) ≡
∑
β

bβGβ(q) mod 5k.

Note 5.1. The following modular forms are normalized so that the leading term
has coefficient 1. Therefore, they may differ from the f ′-invariants of βi/j,k by a
multiple in Z×p .

f1/1,1 = ∆2 =

q^2 + 2*q^3 + q^7 + q^12 + 2*q^13 + q^17 + 2*q^18 +
2*q^22 + 2*q^23 + 3*q^28 + q^32 + 4*q^33 + q^37 +
2*q^42 + 2*q^43 + q^47 + 2*q^48 + q^52 + 2*q^53 +
2*q^62 + 2*q^63 + q^67 + 3*q^68 + 2*q^73 + 2*q^77 +
4*q^78 + 2*q^82 + 2*q^83 + q^92 + 4*q^93 + q^97 +
3*q^98 + O(q^100) mod 5
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f2/1,1 = ∆4 =

q^4 + 4*q^5 + 4*q^6 + 2*q^9 + 4*q^10 + 3*q^14 +
3*q^15 + 3*q^16 + 4*q^19 + 2*q^20 + 3*q^21 + 2*q^24
+ 2*q^26 + q^29 + 3*q^30 + 2*q^34 + 4*q^35 + 3*q^36
+ 3*q^39 + 2*q^44 + 3*q^45 + q^51 + 4*q^54 + 3*q^55
+ q^56 + 2*q^59 + 4*q^60 + 2*q^64 + 3*q^65 + 3*q^66
+ 4*q^69 + 4*q^70 + 2*q^76 + q^79 + 4*q^80 + 4*q^81
+ q^84 + 4*q^85 + q^86 + 3*q^89 + 3*q^90 + q^91 +
4*q^94 + 4*q^96 + 4*q^99 + O(q^100) mod 5

f3/1,1 = ∆6 =

q^6 + q^7 + 2*q^8 + 3*q^9 + 3*q^11 + 2*q^12 + 2*q^13
+ q^16 + 4*q^17 + q^18 + 4*q^19 + 2*q^22 + 4*q^24 +
3*q^26 + 3*q^27 + 3*q^28 + 3*q^29 + 4*q^31 + 4*q^32
+ 4*q^33 + 4*q^34 + q^36 + q^37 + 4*q^38 + 3*q^39 +
4*q^41 + q^42 + 4*q^44 + 4*q^46 + 4*q^48 + 4*q^49 +
q^51 + 2*q^53 + 4*q^54 + 3*q^56 + 4*q^58 + q^62 +
4*q^63 + 3*q^64 + 3*q^66 + 4*q^67 + 3*q^68 + q^69 +
2*q^72 + 4*q^73 + q^74 + q^76 + 4*q^77 + 3*q^78 +
4*q^79 + q^82 + 3*q^84 + 2*q^86 + q^87 + 4*q^88 +
4*q^89 + 3*q^91 + q^92 + 2*q^93 + 4*q^94 + 3*q^96 +
3*q^97 + q^98 + 2*q^99 + O(q^100) mod 5

f4/1,1 = ∆8 =

q^8 + 3*q^9 + 4*q^10 + 2*q^11 + q^12 + 4*q^13 + 4*q^14
+ 3*q^15 + 2*q^16 + q^19 + 3*q^21 + 4*q^22 + 2*q^24
+ 4*q^26 + 4*q^27 + 4*q^28 + 4*q^29 + 3*q^31 +
4*q^33 + q^34 + 4*q^35 + 3*q^37 + q^38 + 2*q^39 +
q^43 + 3*q^44 + 2*q^47 + 4*q^51 + 2*q^52 + q^53 +
3*q^54 + q^56 + q^57 + 3*q^58 + 2*q^59 + 4*q^60 +
4*q^61 + 2*q^63 + 3*q^65 + 2*q^66 + q^67 + 4*q^68 +
2*q^69 + 2*q^71 + q^73 + q^74 + 2*q^76 + 2*q^78 +
3*q^79 + 2*q^81 + 3*q^82 + 4*q^85 + 4*q^86 + q^87 +
q^89 + 3*q^90 + q^91 + 3*q^92 + 3*q^93 + 3*q^94 +
4*q^97 + 3*q^98 + 4*q^99 + O(q^100) mod 5
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f5/5,1 = ∆10 =

q^10 + 2*q^15 + q^35 + q^60 + 2*q^65 + q^85 + 2*q^90
+ O(q^100) mod 5

f25/29,1 = ∆50 + 4∆42E24
4 + 3∆41E27

4 =

3*q^41 + 2*q^42 + 4*q^43 + 4*q^44 + 3*q^47 + 2*q^48 +
3*q^49 + q^50 + q^51 + q^52 + 2*q^54 + q^56 + 4*q^58
+ q^59 + 4*q^61 + 4*q^62 + q^63 + 3*q^64 + q^66 +
4*q^67 + 3*q^68 + 3*q^69 + q^71 + q^74 + 2*q^75 +
2*q^76 + 3*q^78 + 4*q^79 + 2*q^81 + 3*q^82 + 2*q^83
+ 4*q^84 + 2*q^88 + 3*q^89 + 4*q^91 + q^92 + 2*q^94
+ 2*q^96 + q^98 + q^102 + q^104 + 4*q^106 + 3*q^107
+ 3*q^108 + 2*q^109 + 4*q^111 + 4*q^112 + 4*q^114 +
3*q^116 + 2*q^118 + 2*q^119 + q^121 + 4*q^122 +
3*q^123 + q^124 + q^126 + 2*q^127 + q^129 + 4*q^132
+ q^134 + 4*q^136 + 4*q^138 + q^139 + q^141 +
3*q^143 + q^144 + q^147 + 3*q^149 + O(q^150) mod 5

f25/5,2 = ∆50 =

q^50 + 10*q^55 + 15*q^60 + 5*q^65 + 5*q^70 + 12*q^75 +
15*q^80 + 20*q^85 + 10*q^90 + 5*q^95 + 15*q^100 +
10*q^105 + 20*q^110 + 5*q^115 + 20*q^125 + 20*q^135
+ 15*q^140 + 20*q^145 + 10*q^150 + O(q^151) mod 25
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