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Abstract

We study the question of whether the Morava K-theory of the classifying space
of an elementary abelian group V is a permutation module (in either of two distinct
senses, defined below) for the automorphism group of V . We use Brauer characters
and computer calculations. Our algorithm for finding permutation submodules of
modules for p-groups may be of independent interest.

1. Introduction

Let p be a prime, let K(n)∗ denote the nth Morava K-theory, V an elementary
abelian p-group, or equivalently an Fp-vector space, and GL(V ) the group of au-
tomorphisms of V . Then GL(V ) acts naturally on the classifying space BV of V
and hence on h∗(BV ) for any cohomology theory h. In the case when h = K(n),
K(n)∗(BV ) is a finitely generated free module over the coefficient ring K(n)∗ whose
structure is known [9], and it is natural to ask what may be said about its structure
as a module for the group ring K(n)∗[GL(V )]. The Morava K-theory of arbitrary
finite groups is not known, and there is no direct construction of Morava K-theory
itself. We hope that a better understanding of K(n)∗(BV ) may lead to progress
with these questions.

For any ring R, and finite group G, we say that an R-free R[G]-module M is a
permutation module if there is an R-basis for M which is permuted by the action
of G. Call such an R-basis a permutation basis for M . If S is a G-set, write R[S]
for the permutation module with permutation basis S. If M is a graded module
for the graded ring R[G] (where elements of G are given grading zero), we call M a
graded permutation module if it is a permutation module with a permutation basis
consisting of homogeneous elements.

If M is a graded module for K(n)∗[G], and Gp is a Sylow p-subgroup of G, the
following four conditions on M are progressively weaker, in the sense that each is
implied by the previous one.

(1) M is a graded permutation module;
(2) M is a permutation module;
(3) M is a direct summand of a permutation module;
(4) as a K(n)∗[Gp]-module, M is a graded permutation module.
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The implications (1) =⇒ (2) =⇒ (3) are obvious, and hold for M a graded
R[G]-module for any R. The implication (3) =⇒ (4) is explained below in Sections
2 and 7.

One might hope for K(n)∗(BV ) to satisfy condition (1) for G = GL(V ), i.e., for
K(n)∗(BV ) to be a graded permutation module for the group ring K(n)∗[GL(V )].
This would be useful for the following reason: The ordinary cohomology of a group
with coefficients in any permutation module is determined by the Eckmann-Shapiro
lemma. Hence if K(n)∗(BV ) is a graded permutation module for GL(V ), and H is a
group expressed as an extension with kernel V , the E2 page of the Atiyah-Hirzebruch
spectral sequence converging to K(n)∗(BH) is easily computable. Even condition
(4) would be very useful, as it would facilitate the computation of the E2-page of the
Atiyah-Hirzebruch spectral sequence for any p-group H expressed as an extension
with kernel V .

The recent work of I. Kriz on Morava K-theory, including his dramatic discovery
of a 3-group G such that K(2)∗(BG) is not concentrated in even degrees, has em-
phasised the importance of studying the Aut(H)-module structure of K(n)∗(BH)
[6]. For example, Kriz has shown that for any prime p and any cyclic p-subgroup
C of GL(V ), K(n)∗(BV ) is a (graded) permutation module for C. He uses this
result to deduce that for p odd and G a split extension with kernel V and quotient
C, K(n)∗(BG) is concentrated in even degrees. N. Yagita has another proof of this
result [17].

It should be noted that if the dimension of V is at least three, there are infin-
itely many indecomposable graded K(n)∗[GL(V )]-modules, of which only finitely
many occur as summands of modules satisfying condition (4), which suggests that
a ‘random’ module will not satisfy any of the conditions. On the other hand, work
of Hopkins, Kuhn and Ravenel [4] shows that for certain generalized cohomology
theories h∗, h∗(BV ) is a permutation module for h∗[GL(V )]. Amongst these h∗ are
theories closely related to K(n)∗, albeit that their coefficient rings are torsion-free
and contain an inverse for p.

A result due to Kuhn [7] shows that K(n)∗(BV ) has the same Brauer charac-
ter as the permutation module K(n)∗[Hom(V, (Fp)n)] for GL(V ). We shall show
however that in general K(n)∗(BV ) does not have the same Brauer character as a
graded permutation module for K(n)∗[GL(V )]. Note that Brauer characters give
no information whatsoever concerning the structure of K(n)∗(BV ) as a module for
the Sylow p-subgroup of GL(V ). We give an algorithm to determine, for any p-
group G, whether an Fp[G]-module is a permutation module, and use this algorithm
and computer calculations to determine in some cases whether K(n)∗(BV ) satisfies
condition (4) above.

The main results of this paper are summarised in the following four statements.
Before making them, we fix some notation.

Definition. Throughout the paper, let p be a prime, K(n)∗ the nth Morava K-
theory (at the prime p), and let V be a vector space over the field of p elements of
dimension d. Let GL(V ) act on the right of V , which will have the advantage that
the modules we consider will be left modules. Let U(V ) be a Sylow p-subgroup of
GL(V ).
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Theorem 1.1. Let p be a prime, let V be a vector space of dimension d over Fp,
and let K(n)∗ stand for the nth Morava K-theory.
(a) If p is odd, then K(n)∗(BV ) is not a graded permutation module for GL(V ).
(b) If p = 2 and n = 1, then for any d, K(n)∗(BV ) is a graded permutation module
for GL(V ).
(c) For p = 2, n > 1 and d ≥ 4, K(n)∗(BV ) is not a graded permutation module for
GL(V ) if d is greater or equal to the smallest prime divisor of n.
(d) For p = 2 and d = 3, K(n)∗(BV ) is not a graded permutation module if n is a
multiple of three, or if n is 2, 4, or 5.
(e) For p = 2 and d = 2, K(n)∗(BV ) is a graded permutation module for GL(V ) if
and only if n is odd.

Theorem 1.2. The K(n)∗[GL(V )]-modules K(n)∗(BV ) and K(n)∗[Hom(V, (Fp)n)]
are (ungraded) isomorphic in the following cases:
(a) For n = 1, for any p and d.
(b) For d = 2, p = 2, and any n.
And are isomorphic as K(n)∗[SL(V )]-modules in the case:
(c) d = 2, p = 3, n = 1, 2 or 3.

Theorem 1.3. K(n)∗(BV ) is not a permutation module for K(n)∗[U(V )] in the
following cases:
(a) d = 3, p = 3, n = 2,
(b) d = 3, p = 5, n = 2.
In the following cases, as well as those implied by Theorems 1.1 and 1.2, K(n)∗(BV )
is a graded permutation module for K(n)∗[U(V )]:
(c) d = 3, p = 2, n = 2, 3 or 4.

Work of Kriz [6] shows that for any V , K(n)∗(BV ) is a (graded) permutation
module for any subgroup of GL(V ) of order p. In the cases covered by Theorem 1.3,
the group U(V ) has order p3, and for p > 2 it contains no element of order p2. The
gap between Theorem 1.3 and a special case of Kriz’s result is filled by:

Theorem 1.4. Let d = 3, let p = 3 or 5, and let H be any subgroup of GL(V ) of
order p2. Then K(2)∗(BV ) is not a permutation module for H.

Statements 1.1(b) and 1.2(a) are corollaries of Kuhn’s description of the mod-p
K-theory of BG [8]. Our interest in these questions was aroused by [2], in which it
is shown that in the case V = (Z/2)2, K(n)∗(BV ) is a graded permutation module
for n = 3 but is not a graded permutation module for n = 2, i.e., the cases n = 2
and n = 3 of 1.1(e).

The remaining sections of the paper are organised as follows. In Section 2 we
describe K(n)∗(BV ), the action of GL(V ), and the process of reduction to questions
concerning finite-dimensional Fp-vector spaces. This material is well-known to many
topologists, but we hope that its inclusion will make the rest of the paper accessible
to the reader who knows nothing about Morava K-theory. We also include some
remarks concerning K(n)∗[Hom(V, (Fp)n)]. In Section 3 we prove those of our results
that require only Brauer character methods. In Section 4 we deduce 1.1(b) and 1.2(a)
from Kuhn’s work on mod-p K-theory and give a second proof of 1.1(b). Section 5
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studies F2[GL2(F2)]-modules, and contains proofs of 1.1(e) and 1.2(b). In Section 6
we describe how to decompose F3[SL2(F3)]-modules, and outline the proof of 1.2(c).
In Section 7 we describe our algorithm for determining when a module for a p-
group is a permutation module, and outline the proofs of the rest of the results we
have obtained using computer calculations. The algorithm of Section 7 may be of
independent interest. Section 8 contains the tables of computer output relevant to
Sections 6 and 7, together with some final remarks.

2. Preliminaries

Fix a prime p. The nth Morava K-theory, K(n)∗ (which depends on p as well
as on the positive integer n), is a generalized cohomology theory whose coeffi-
cient ring is the ring Fp[vn, v−1

n ] of Laurent polynomials in vn, which has degree
−2(pn − 1). All graded modules for this ring are free, which implies that there is
a good Künneth theorem for K(n)∗. For any graded K(n)∗-module M , let M be
the quotient M/(1− vn)M . Then M is an Fp-vector space, naturally graded by the
cyclic group Z/2(pn − 1). If M is a graded K(n)∗[G]-module for some finite group
G, then M is naturally a Z/2(pn − 1)-graded Fp[G]-module, and M is determined
up to isomorphism by M . It is easy to see that M is a (graded) permutation module
for K(n)∗[G] if and only if M is a (Z/2(pn − 1)-graded) permutation module for
Fp[G].

For C a cyclic group of order pm, it may be shown [9] that the Morava K-theory
of BC is a truncated polynomial ring on a generator of degree two:

K(n)∗(BC) = K(n)∗[x]/(xpmn

).

The generator x is a Chern class in the sense that it is the image of a certain
element of K(n)2(BU(1)) under the map induced by an inclusion of C in the unitary
group U(1). From the Künneth theorem mentioned above it follows that if V is an
elementary abelian p-group of rank d, then

K(n)∗(BV ) = K(n)∗[x1, . . . , xd]/(xpn

1 , . . . , xpn

d ),

where x1, . . . , xd are Chern classes of d 1-dimensional representations of V whose
kernels intersect trivially. The Chern class of a representation is natural, and the d
representations taken above must generate the representation ring of V . Thus the
action of GL(V ) on K(n)∗(BV ) may be computed from its action on Hom(V,U(1))
together with an expression for the Chern class of a tensor product ρ ⊗ θ of two
1-dimensional representations in terms of the Chern classes of ρ and θ.

For any generalized cohomology theory h∗ such that h∗(BU(1)) is a power series
ring h∗[[x]] (Morava K-theory has this property), Chern classes may be defined, and
there is a power series x+F y ∈ h∗[[x, y]] expressing the Chern class of a tensor prod-
uct of line bundles in terms of the two Chern classes. This power series is called the
formal group law for h∗, because it satisfies the axioms for a 1-dimensional commu-
tative formal group law over the ring h∗. Since each Chern class in K(n)∗(BV ) is
nilpotent of class pn, we need only determine x+F y modulo (xpn

, ypn

). This is the
content of the following proposition, which is well-known, but for which we can find
no reference.
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Proposition 2.1. Modulo the ideal generated by xpn

and ypn

, the formal sum x+F y
for K(n)∗ is

x+F y = x + y − vn(
p−1∑
i=1

1
p

(
p

i

)
xipn−1

y(p−i)pn−1
).

Sketch proof. First we recall the formal sum for BP ∗, Brown-Peterson cohomology
[15]. Let l be the power series

l(x) =
∑
i≥0

mix
pi

,

where m0 = 1, but the remaining mi’s are viewed as indeterminates, and let e(x) be
the compositional inverse to l, i.e., a power series such that e(l(x)) = l(e(x)) = x.
The BP ∗ formal sum is the power series e(l(x) + l(y)). The K(n)∗ formal sum may
be obtained as follows: Take the BP ∗ formal sum, replace the indeterminates mi by
indeterminates vi using the relation

vj = pmj −
j−1∑
i=1

miv
pi

j−i,

set vi = 0 for i 6= n, by which point all the coefficients lie in Z(p), and take the
reduction modulo p. To calculate the K(n)∗ formal sum, it is helpful to set vi = 0
for i 6= n as early as possible, and one may as well set vn = 1, since every term in
x+F y has degree 2. Solving for the mi’s in terms of the vi’s gives

mi = 0 if n does not divide i,

mni = 1/pi.

Thus to compute x+F y, let e′(x) be the compositional inverse to

l′(x) =
∑
i≥0

xpni

/pi,

and then x+F y is the mod-p reduction of e′(l′(x) + l′(y)). It is easy to see that

e′(x) ≡ x− xpn

/p modulo x2pn

,

and so
x+F y ≡ x + y − (x + y)pn

/p modulo (xpn

, ypn

, p).

The claimed result follows.

Using the reduction M 7→ M as at the start of this section and Proposition 2.1,
the study of the graded K(n)∗[GL(V )]-module structure of K(n)∗(BV ) reduces to
the study of the Z/(pn − 1)-graded Fp[GLd(Fp)]-module K∗

n,d defined below.
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As an Fp-algebra,

K∗
n,d

∼= Fp[x1, . . . , xd]/(xpn

1 , . . . , xpn

d ).

Each xi has degree 1, and the GLd(Fp)-action is compatible with the product. The
action of the matrix (aij) ∈ GLd(Fp) is given by

xj 7→ e′
(∑

i

l′(xi)aij

)
,

where e′ and l′ are as in the proof of Proposition 2.1. (Recall that for any V we
take GL(V ) to act on the right of V , and hence obtain a left K(n)∗[GL(V )]-module
structure on K(n)∗(BV ).)

Note that we have halved the original degrees because K(n)∗(BV ) is concen-
trated in even degrees. Until recently it was an open problem whether a similar
statement holds for arbitrary finite groups, although some cases had been verified
[9,5,13,14,11]. Kriz has recently announced that this is not the case [6].

If we are only interested in Brauer characters, or equivalently composition factors,
then a further simplification may be made, see [7]. Let L∗n,d denote the algebra of
polynomial functions on (Fp)d, modulo the ideal of pnth powers of elements of
positive degree. Grade L∗n,d by Z/(pn − 1), and let GLd(Fp) act on L∗n,d by its
natural action on the polynomial functions. Thus L∗n,d is a truncated polynomial
algebra Fp[x1, . . . , xd]/(xpn

1 , . . . , xpn

d ), cyclically graded, and having the standard
action of GLd(Fp).

Lemma 2.2. K∗
n,d has a series of (graded) submodules such that the direct sum of

the corresponding quotients is isomorphic to L∗n,d. In particular, K∗
n,d and L∗n,d have

the same composition factors (as graded modules).

Proof. For each degree k, take the basis consisting of monomials of length congruent
to k modulo pn − 1, and arrange them in blocks with respect to length. For any g,
the matrix of its action on Lk

n,d with respect to this basis consists of square blocks
along the diagonal, whereas the corresponding matrix for the action on Kk

n,d has
some extra entries below the blocks.

The permutation module K(n)∗[Hom(V, (Fp)n)] occurs in the statement of The-
orem 1.2, so we complete this preliminary section with some remarks concerning
this module. If φ is a homomorphism from V to Fn

p , then g ∈ GL(V ) acts by
composition, i.e.,

gφ(v) = φ(vg).

Since we view GL(V ) as acting on the right of V , this makes Hom(V, (Fp)n) into a
left GL(V )-set. The GL(V )-orbits in Hom(V, (Fp)n) may be described as follows.
For W a subspace of V , let H(W ) ≤ GL(V ) be

H(W ) = {g ∈ GL(V ) : vg − v ∈ W ∀v ∈ V }.
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For example, H({0}) = {1}, and H(V ) = GL(V ). For 0 ≤ i ≤ dim(V ), let Hi be
H(Wi) for some Wi of dimension i. Thus Hi is defined only up to conjugacy, but
this suffices to determine the isomorphism type of the GL(V )-set GL(V )/Hi. Now
let φ be an element of Hom(V, (Fp)n). The stabilizer of φ in GL(V ) is the subgroup
H(ker(φ)), and the orbit of φ consists of all φ′ such that Im(φ′) = Im(φ). It follows
that as GL(V )-sets,

Hom(V, (Fp)n) ∼=
∐

0≤i≤dim(V )

m(n, i) ·G/Hi,

where m(n, i) is the number of subspaces of (Fp)n of dimension i. Thus to decompose
the module Fp[Hom(V, (Fp)n)], it suffices to decompose each Fp[GL(V )/Hi].

3. Brauer characters

In this section we shall prove most of the negative results of Theorem 1.1. Firstly,
we describe how to compute the values of the modular characters afforded by the
modules Lk

n,d. As a general reference, see [3], in particular §17. Fix an embedding
of the multiplicative group of the algebraic closure of Fp in the group of roots of 1 in
C. Let g be a p-regular element of GL(V ), i.e., an element whose order is coprime
to p, and let λ1, λ2, . . . , λd denote the images in C of the eigenvalues of its action
on V ∗. Then the Brauer character of g is

χV ∗(g) = λ1 + λ2 + · · ·+ λd .

Two Fp[G]-modules have the same Brauer character if and only if they have the
same composition factors. To compute the character of Lk

n,d we proceed as follows:
an argument similar to the one used to prove Molien’s theorem (see e.g. [3], p. 329)
shows that the character of a truncated polynomial algebra has a generating function

fg(t) =
d∏

i=1

(1− (λit)pn

1− λit

)
.

Then the character of L∗n,d evaluated at g is simply fg(1), whereas for each degree
k (recall that we are grading cyclically) one has

χLk
n,d

(g) =
1

pn − 1

∑
τ

τ−kfg(τ) , (3.1)

where the sum ranges over all (pn − 1)-st roots of unity—to see this, recall that the
sum, over all mth roots of unity λ, of λk is equal to zero if m does not divide k, and
equal to m if m does divide k.

Proof of 1.1(a). Let D be the subgroup of diagonal matrices in GLd(Fp), so that
D is isomorphic to a direct product of d cyclic groups of order p− 1. In K∗

n,d, each
monomial in x1, . . . , xd is an eigenvector for D, and the monomials fixed by D are
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those in which the exponent of each xi is divisible by p− 1. Hence if p− 1 does not
divide k, then Kk

n,d cannot be a permutation module for D because it contains no
D-fixed point.

Proof of 1.1(c). As already said above, this is done by computing the character
values on certain 2-regular elements of GL(V ). We shall first look at the case where
d equals a prime divisor q of the fixed number n. Consider an element, gq say, of
GLq(F2) which permutes the 2q − 1 nontrivial elements of (F2)q cyclically. (To
see that there is always such an element consider the action of the multiplicative
group of F2q on the additive group of F2q .) The set of eigenvalues of gq contains a
primitive (2q − 1)st root of unity, and is closed under the action of the Galois group
Gal(F2q/F2). Hence the Brauer lifts of the eigenvalues of gq are λ, λ2, . . . , λ2q−1

for some primitive (2q − 1)-st root of unity λ ∈ C. Consequently, the generating
function for the character afforded by L∗n,q is given by

fgq (t) =
q−1∏
i=0

(1− (λ2i

t)2
n

1− λ2it

)
.

If τ is a (2n − 1)-st root of unity, one gets

fgq (τ) =

{
2n if τ ∈ {λ−2i

, i = 0, 1, . . . q − 1}
1 otherwise.

Thus evaluating the formula (3.1) for the character afforded by Lk
n,q yields

χLk
n,q

(gq) =
1

2n − 1

∑
τ 6=λ−2i

τk +
2n

2n − 1

q−1∑
i=0

λ2ik

which is equal to 
q + 1 for k = 0
q−1∑
i=0

λ2ik for k 6= 0.

Specializing to the case k = 1, this sum is never zero, since the powers λi for i
coprime to 2q − 1 form a Q-basis for Q[λ]. For q > 2 the sum is not a rational,
because it is not fixed by the whole Galois group Gal(Q[λ]/Q). In the case q = 2, one
obtains −1 (the sum of the two primitive third roots of unity). Since permutation
modules have positive integer character values, this shows that K(n)∗(BVq) is not a
graded GLq(F2)-permutation module. To proceed with vector spaces of dimension
bigger than q we consider the cases q > 2 and q = 2 separately. In the first case we
use the following lemma to conclude that the character still takes non-integer values
on certain elements of GL(V ). Let g be an (arbitrary) 2-regular element of GLd(F2)
and Ir the r × r identity matrix. If we denote by g × Ir the element of GLd+r(F2)
which acts like g on the first d generators of L∗n,d+r and trivially on the last r, one
has
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Lemma 3.2. χLk
n,d+r

(g × Ir) = χLk
n,d

(g) +
(
(2nr − 1)/(2n − 1)

)
χL(g) .

Proof. The generating function for g × Ir is obtained from the one for g as the
product with r factors (1 + t + t2 + . . . + t2

n−1), thus

χLk
n,d+r

(g × Ir) =
1

2n − 1

∑
τ

τ−kfg×Ir (τ)

=
1

2n − 1

∑
τ 6=1

τ−kfg(τ)
(1− τ2n

1− τ

)r

+
2nr

2n − 1
fg(1)

= χLk
n,d

(g) +
(2nr − 1

2n − 1
)
fg(1) .

Thus gq × Ir will do the trick when V has rank q + r. This fails for q = 2, whence
we choose the element g′ which consists of d/2 copies of g2 =

(
0 1
1 1

)
arranged along

the diagonal if d is even, and add an extra diagonal entry 1 if d is odd. Then a
computation similar to the one carried out in the previous lemma shows that for
k 6≡ 0 mod 3,

χLk
n,d

(g′) =


−2nd/2 − 1

2n − 1
if d is even

−2n(d−1)/2 − 1
2n − 1

+ 1 if d is odd

For d > 3 these numbers are negative.

The other parts of Theorem 1.1 that may be proved using Brauer characters are
some cases of 1.1(d) and both implications of 1.1(e). The details are similar to the
above proof so we shall not give them. In the case when V has rank 3, evaluation
of the Brauer character of an element of GL(V ) of order 7 shows that L1

n,3 is not a
GL(V )-permutation module if 3 divides n. Similarly, when V has rank 2, the Brauer
character of an element of GL(V ) of order 3 on L1

n,2 is negative if n is even. When V
has rank 2 and n is odd, it may be shown that for each k, any GL(V )-module having
the same Brauer character as Lk

n,2 is a permutation module. This shows that for n

odd, Kk
n,2 is a permutation module, but does not specify which one. In Section 5

we shall describe the isomorphism type of Kk
n,2 and Lk

n,2 for all n and k, giving an
alternative proof of 1.1(e).

4. On K(1)

Here we describe how those parts of Theorems 1.1 and 1.2 that concern K(1)∗

(i.e., 1.1(b) and 1.2(a)) follow from Kuhn’s description of the mod-p K-theory of
finite groups [8]. An ‘elementary’ proof, working directly with the description of
K∗

1,d in the previous section, would be more in keeping with the rest of the paper.
We give such a proof in the case p = 2.

Proof of 1.1(b) and 1.2(a). First, note that for p = 2, v1 has degree −2, so that the
‘cyclically graded’ modules K∗

1,d are in fact concentrated in a single degree. Hence
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1.2(a) implies 1.1(b). To prove 1.2(a) recall [15] that the spectrum representing
mod-p K-theory splits as a wedge of one copy of each of the 0th, 2nd, . . . , (2p− 4)th
suspensions of the spectrum representing K(1)∗. Since K(1)∗(BV ) is concentrated
in even degrees it follows that K∗

1,d is naturally isomorphic to K0(BV ;Fp). In [8] it
is shown that for any p-group G, K0(BG;Fp) is naturally isomorphic to Fp⊗R(G),
where R(G) is the (complex) representation ring of G. The case G = V gives 1.2(a),
because as a GL(V )-module, Fp ⊗R(V ) is isomorphic to Fp[Hom(V,Fp)].

Alternative proof, p = 2. In this case, K∗
1,d is isomorphic to an exterior algebra

Λ[x1, . . . , xd] = F2[x1, . . . , xd]/(x2
i ). The monomial 1 generates a trivial GL(V )-

summand. Let H be the subgroup of GL(V ) fixing x1. Then H is the subgroup
of GL(V ) stabilizing some hyperplane W and inducing the identity map on the
quotient V/W . There is a GL(V )-set isomorphism

Hom(V,F2) ∼= GL(V )/GL(V )qGL(V )/H,

so it will suffice to show that the submodule M generated by x1 contains each
monomial in Λ[x1, . . . , xd] of strictly positive length. The permutation matrices
permute the monomials of any given length transitively. Assume that M contains
all the monomials of length i (this holds for i = 1), and let g ∈ GL(V ) be such that

gx1 = x1, . . . , gxi−1 = xi−1, gxi = xi+F xi+1.

Then
g(x1 . . . xi) + x1 . . . xi + x1 . . . xi−1xi+1 = x1 . . . xixi+1 ∈ M,

so M contains all monomials of length i + 1.

It should be possible to give an ‘elementary’ proof of 1.2(a) for p > 2 by consid-
ering the element x1 + x2

1 + · · ·+ xp−1
1 , but we have not done so.

5. When V has order four

Here we shall prove Theorems 1.1(e) and 1.2(b), which concern K(n)∗(BV ) for V
of dimension two over F2. We determine the structure of Lk

n,2 as a GL2(F2)-module,
and deduce that Kk

n,2 and Lk
n,2 are isomorphic. Note that it is also possible to prove

1.1(e) using the methods of Section 3 without determining the isomorphism type of
Kk

n,2. Throughout this section, let V = (F2)2.
There are three isomorphism types of indecomposable F2[GL(V )]-modules: the

1-dimensional trivial module T ; the natural module V which is both simple and
projective (and is the Steinberg module for GL(V )); and a module N expressible as
a non-split extension of T by T , which is the projective cover of T . Each module is
self-dual. There are four conjugacy classes of subgroups of GL(V ). The transitive
permutation modules are the following four modules:

T, N, T ⊕ V, N ⊕ 2V.

Let S∗[V ∗] stand for the algebra of polynomial functions on V as a graded GL(V )-
module.
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Proposition 5.1. The generating functions PT , PN and PV for the number of each
indecomposable GL(V )-summand of S∗[V ∗] are the following power series:

PT (t) =
1

1− t2
, PN (t) =

t3

(1− t2)(1− t3)
, PV (t) =

t

(1− t)(1− t3)
.

Proof. Recall that the ring of invariants S∗[V ∗]GL(V ) is a free polynomial ring on two
generators of degrees two and three (see [16]). The Poincaré series for S∗[V ∗], and
the ring of invariants, together with the generating function for the Brauer character
of an element of GL(V ) of order three give the three equations below, whose solution
is as claimed.

PT + 2PN + 2PV =
1

(1− t)2

PT + PN =
1

(1− t2)(1− t3)

PT + 2PN − PV =
1− t

1− t3

Proposition 5.2. Let k be an element of Z/(2n−1). The direct sum decomposition
for the module Lk

n,2 is:

2T ⊕ (2n − 2)/6 N ⊕ (2n + 1)/3 V for n odd, k = 0,

T ⊕ (2n − 2)/6 N ⊕ (2n + 1)/3 V for n odd, k 6= 0,

2T ⊕ (2n + 2)/6 N ⊕ (2n − 1)/3 V for n even, k = 0,

T ⊕ (2n + 2)/6 N ⊕ (2n − 1)/3 V for n even, k 6= 0, k ≡ 0 mod 3,

T ⊕ (2n − 4)/6 N ⊕ (2n + 2)/3 V for n even, k 6≡ 0 mod 3.

Proof. Let L̃∗ be the truncated symmetric algebra L∗n,2, but graded over the integers
rather than over the integers modulo 2n−1. Then L̃k = {0} for k > 2(2n−1), and for
k = 2(2n− 1), L̃k is isomorphic to T , generated by x2n−1

1 x2n−1
2 . For 0 < k < 2n− 1,

viewing k as either an integer or an integer modulo 2n − 1 as appropriate, Lk
n,2 is

isomorphic to L̃k ⊕ L̃2n−1+k, while L0
n,2 is isomorphic to L̃0 ⊕ L̃2n−1 ⊕ L̃2(2n−1) ∼=

2T ⊕ L̃2n−1. For 0 ≤ k ≤ 2n− 1, L̃k is isomorphic to Sk[V ∗]. The product structure
on L̃∗ gives a duality pairing

L̃k × L̃2(2n−1)−k → L̃2(2n−1) ∼= T,

and since all GL(V )-modules are self-dual it follows that for 2n ≤ k ≤ 2(2n − 1),
L̃k ∼= S2(2n−1)−k[V ∗]. The claimed description of Lk

n,2 follows from Proposition 5.1.
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Corollary 5.3. For each n and each k ∈ Z/(2n−1), Kk
n,2 and Lk

n,2 are isomorphic.

Proof. For k 6= 0 Kk
n,2 has odd dimension, so must contain at least one direct

summand isomorphic to T . It is easy to see that 1 generates a summand of K0
n,2,

and the same dimension argument applied to a complement of this summand shows
that K0

n,2 contains at least two summands isomorphic to T . On the other hand, V

and N are projective, and (Lemma 2.2) Kk
n,2 has a filtration such that the sum of

the factors is isomorphic to Lk
n,2. Hence Kk

n,2 has at least as many N summands
and V summands as Lk

n,2. This accounts for all the summands of Kk
n,2.

The proof of 1.1(e) follows easily from the given description of K∗
n,2. For 1.2(b),

recall from the end of Section 2 that

Hom(V, (F2)n) =GL(V )/GL(V )

q (2n − 1) ·GL(V )/H1

q (2n − 1)(2n − 2)/6 ·GL(V )/{1},

where H1 is a subgroup of GL(V ) of order two, and that

F2[GL(V )/H1] ∼= T ⊕ V, F2[GL(V )/{1}] ∼= N ⊕ 2V.

The argument used in the proof of Corollary 5.3 shows that for any p, n, and k
such that Lk

n,2 contains at most one non-projective summand, Kk
n,2

∼= Lk
n,2. For odd

primes this does not always occur however. If 0 < k < pn − 1 then Lk
n,2 splits as

a direct sum of submodules of dimensions k + 1 and pn − k − 2 coming from the
standard Z-grading on the truncated polynomial algebra. If k is not congruent to
either −1 or −2 modulo p, the dimensions of these summands are not divisible by
p, and hence Lk

n,2 contains at least two non-projective indecomposable summands.
The calculations described in the next section show that for p = 3, n = 2, 3 and
0 < k < 3n − 1, the module Kk

n,2 has exactly one non-projective indecomposable
summand. It follows that for p = 3, Kk

n,2 and Lk
n,2 are not necessarily isomorphic.

6. When V has order nine

Our results concerning the SL2(F3)-module structure of K∗
n,2 in the case when

p = 3 were obtained by computer. We wrote a Maple program to generate matrices
representing the action of a pair of generators for SL2(F3) on Kk

n,2. These matrices
were fed to a GAP [10] program which, given a matrix representation of SL2(F3),
outputs a list of its indecomposable summands. In fact the output from the Maple
program needed a little editing before being read into the GAP program. This was
done by a third program, although it could equally have been done by hand.

Using standard techniques of representation theory [1,3], the following facts may
be verified. For V = (F3)2, there are three simple F3[SL(V )]-modules: the trivial
module T , the natural module V , and a simple projective module P = S2(V ) of
dimension three. There are three blocks. The blocks containing T and V each
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contain three indecomposable modules, each of which is uniserial. This data may be
summarised as follows:

block of T = I1 : T � I2 � T, T � I3 � I2,

block of V = I4 : V � I5 � V, V � I6 � I5,

block of P = I7 : contains no other indecomposables.

Letting τ stand for the element of order two in SL(V ) and σ for the sum of the
six elements of SL(V ) of order four, the block idempotents are

bT = 2 + 2τ + 2σ, bV = 2 + τ, bP = σ.

The modules in any single block are distinguishable by their restrictions to a cyclic
subgroup of SL(V ) of order three. Thus if α is an element of SL(V ) of order three,
and M is an SL(V )-module, the direct summands of M are determined by the ranks
of the elements of End(M) representing the actions of the following seven elements
of F3[SL(V )]:

bT , (1− α)bT , (1− α)2bT , bV , (1− α)bV , (1− α)2bV , bP .

More precisely, if the seven ranks are r1, . . . , r7, and ni stands for the number of
factors of M isomorphic to Ii, then

n1 = r1 − 2r2 + r3, n2 = r2 − 2r3, n3 = r3, n4 = r5 − 2r6,

n5 = r4 − 2r5 + r6, n6 = (2r5 − r4)/2, n7 = r7/3.

Our GAP program reads in matrices representing the action on M of a certain
pair of generators for SL(V ), and calculates n1, . . . , n7 by first finding r1, . . . , r7 as
above.

Recall from the end of Section 2 that there is an isomorphism of (right) GL(V )-
sets:

Hom(V, (F3)n) =GL(V )/GL(V )

q (3n − 1)/2 ·GL(V )/H1

q (3n − 1)(3n − 3)/48 ·GL(V )/{1},
where H1 is the subgroup stabilizing a line L in V and acting trivially on V/L. As
SL(V )-modules, it may be checked that

F3[GL(V )/GL(V )] ∼= I1,

F3[GL(V )/L(V )] ∼= I1 ⊕ I5 ⊕ I7,

F3[GL(V )/{1}] ∼= 2I3 ⊕ 4I6 ⊕ 6I7.

From this information together with the results given in Table 8.1 it is easy to check
the claim of Theorem 1.2(c).

There are fourteen indecomposable GL(V )-modules in four blocks, two of which
contain a single simple projective module. The six indecomposables in the block
containing V are comparatively hard to distinguish, which is the reason why we
considered only SL(V ).
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7. Permutation modules for p-groups

In this section we shall describe the computer programs used in the proofs of
Theorem 1.3, Theorem 1.4, and the cases n = 2, 4, and 5 of 1.1(d). In Sections
5 and 6 our programs made use of the fact that there were only finitely many
indecomposable modules. If G is a group whose Sylow p-subgroup is not cyclic, then
Fp[G] has infinitely many indecomposable modules, so the same sort of methods
cannot work. Here we shall describe an algorithm which may be used to determine,
for any p-group G, whether an Fp[G]-module is a permutation module, and if so
to decompose it. (For a precise statement, see Proposition 7.1 below.) As before,
we use a Maple program to generate matrices representing the action of a Sylow p-
subgroup of GLd(Fp) on Kk

n,d for various p, k, n, and d, and we use a GAP program
working with our algorithm to decompose these modules.

Our algorithm relies on the following fact [3]: For G a p-group, any transitive
permutation module for Fp[G] has a unique minimal submodule, which is the triv-
ial module generated by the sum of the elements of a permutation basis. This
implies that any transitive permutation module is indecomposable. Note that the
Krull-Schmidt theorem and the indecomposability of transitive permutation mod-
ules together imply that if a graded Fp[G]-module is a permutation module, then it
is also a graded permutation module.

Proposition 7.1. Let G1, . . . , Gn be subgroups of a p-group G, where the order of
Gi+1 is at least the order of Gi, and let M be a (finitely generated) Fp[G]-module. Let
m1, . . . , mn be the integers whose calculation is described below. Then M contains
a submodule M ′, where

M ′ ∼= m1Fp[G/G1]⊕ · · · ⊕mnFp[G/Gn],

and M ′ has maximal dimension among all submodules of M isomorphic to a direct
sum of copies of the Fp[G/Gi].

To compute mi, proceed as follows. Let M0 be the zero submodule of M . If Mi−1

has been defined, let

Mi = Mi−1 + Im
(( ∑

g∈G/Gi

g
)

: MGi → M
)
,

where the sum ranges over a transversal to Gi in G, MGi denotes the Gi-fixed points
of M , and the sum is an element of Fp[G] viewed as an element of End(M). Now
define

mi = dim Mi − dim Mi−1.

Without loss of generality, it may be assumed that no two of G1, . . . , Gn are
conjugate. The dimension of M ′ is equal to the sum

∑
i mi|G : Gi|. If G1, . . . , Gn

contains a representative of each conjugacy class of subgroups of G, then dim M ′ =
dim M if and only if M is a permutation module.

Proof. First, recall that the socle, Soc(N), of a module N is the smallest submodule
of N containing every minimal submodule. The following statement is easy to prove,
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and will be useful below. If L is a submodule of M , and f : N → M is a module
homomorphism, then f is injective if and only if its restriction to Soc(N) is injective.
If f is injective, then Soc(f(N)) = f(Soc(N)), and the sum L+ f(N) in M is direct
if and only if the sum Soc(L) + f(Soc(N)) is direct.

Module homomorphisms from Fp[G/Gi] to M are naturally bijective with ele-
ments of MGi , where the element x corresponds to the homomorphism θx sending
1·Gi to x. The socle of Fp[G/Gi] is a trivial submodule generated by

∑
g∈G/Gi

g ·Gi,
so its image under θx is generated by

∑
g∈G/Gi

g · x. It follows that any submodule
of M isomorphic to a direct sum of copies of the modules Fp[G/G1], . . . ,Fp[G/Gi]
has socle contained in Mi, and in particular consists of at most dim Mi summands.
This shows that any submodule of M isomorphic to a direct sum of Fp[G/Gi]’s has
dimension less than or equal to

∑
i mi|G : Gi|, but it remains to exhibit a submodule

M ′ having this dimension.
Define M ′

0 to be the zero submodule of M , and assume that for some j with
1 ≤ j ≤ n we have constructed a submodule M ′

j−1 of M with

M ′
j−1

∼= m1Fp[G/G1]⊕ · · · ⊕mj−1Fp[G/Gj−1].

Let x1, . . . , xmj ∈ MGj be such that the images
∑

g∈G/Gj
g · xi form a basis for a

complement to Mj−1 in Mj . Taking L = Mj−1, N = mjFp[G/Gj ], and f : N → M
the map sending the elements (0, . . . , 1 · Gj , . . . , 0) to the xi’s, the statements in
the first paragraph of the proof show that f is injective, and that M ′

j defined as the
submodule of M spanned by Mj−1 and the xi’s is isomorphic to M ′

j−1⊕mjFp[G/Gj ].
Now M ′ may be taken to be M ′

n.

The data in Tables 8.2–8.6 of the next section were obtained using the algorithm
described above.

8. Tables and final remarks

For each p, n, and d, let K̃∗
n,d be the direct summand of K∗

n,d corresponding
to the reduced Morava K-theory K̃(n)∗(B(Fp)d). Thus K̃k

n,d = Kk
n,d for k 6= 0,

and K0
n,d = K̃0

n,d ⊕ T , where T is the trivial Fp[GL(V )]-submodule of dimension
one spanned by the monomial 1. The Fp-dimension of K̃k

n,d is (pnd − 1)/(pn − 1).
Table 8.1 describes the SL2(F3)-module structure of K̃k

n,2 (for p = 3) in terms of
the indecomposable modules I1, . . . , I7 as described in Section 6.

Let V have dimension d = 3 over Fp. Let l be a line in V , and let π be a plane in
V containing l. The group GL(V ) acts on the set of all such pairs, and the stabilizer
of the pair (l, π) contains a unique Sylow p-subgroup U(V ) of GL(V ) (and is in fact
equal to the normalizer of U(V )). Let C be a generator for the centre of U(V ), which
is cyclic of order p. Let A be a non-central element of U(V ) stabilizing every line
in π, and let B be a non-central element of U(V ) stabilizing every plane containing
l. Then A and B generate U(V ), and after replacing C by a power if necessary, the
commutator of A and B is equal to C. If we identify V with (Fp)3, and take U(V )
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Table 8.1: The SL2(F3)-summands of K̃k
n,2.

n k I1 I2 I3 I4 I5 I6 I7

1 0 1 0 0 0 0 0 1
1 1 0 0 0 0 1 0 0
2 0,4 1 0 1 0 0 0 2
2 1,3,5,7 0 0 0 0 1 1 0
2 2,6 1 0 0 0 0 0 3
3 even 1 0 2 0 0 0 7
3 odd 0 0 0 0 1 4 0

to be the upper triangular matrices, then we may take

A =

 1 1 0
0 1 0
0 0 1

 B =

 1 0 0
0 1 1
0 0 1

 .

(Recall that V is to be viewed as the space of row vectors with a right GL(V )-action.)

Table 8.2: The D8-summands of K̃k
n,3.

n k P1 P2 P3 P4 P5 P6 P7 P8

1 0 0 1 0 0 0 0 1 1
2 0 0 2 2 1 0 0 0 1
2 1,2 1 1 1 0 0 1 1 1
3 0 4 4 4 2 0 0 0 1
3 1,6 6 1 3 0 0 3 1 1
3 2,5 5 3 3 1 0 1 1 1
3 3,4 5 2 4 1 0 2 0 1
4 0 24 8 8 4 0 0 0 1
4 1,14 28 1 7 0 0 7 1 1
4 2,13 25 7 7 3 0 1 1 1
4 3,12 27 2 8 1 0 6 0 1
4 4,11 25 6 8 3 0 2 0 1
4 5,10 27 3 7 1 0 5 1 1
4 6,9 26 5 7 2 0 3 1 1
4 7,8 26 4 8 2 0 4 0 1
5 0 112 16 16 8 0 0 0 1
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Table 8.3: A maximal Syl3(GL3(F3))-permutation submodule of K̃k
n,3.

n k dim. M ′ P1 P2 P5 P6 P7 P10 P11

1 0,1 13 0 1 0 0 0 1 1
2 0 91 1 3 3 1 0 0 1
2 1 65 1 1 2 0 3 0 2
2 2 71 1 2 2 0 1 1 2
2 3 73 1 2 2 0 1 2 1
2 4 57 1 1 1 0 2 1 3
2 5 65 1 2 1 0 1 2 2
2 6 67 1 2 1 0 2 2 1
2 7 73 1 2 2 0 2 1 1

Table 8.4: A maximal Syl5(GL3(F5))-permutation submodule of K̃k
n,3.

n k dim. M ′ P1 P2 P7 P8 P9 P14 P15

1 0–3 31 0 1 0 0 0 1 1
2 0 651 3 5 5 1 0 0 1
2 1 527 3 1 4 0 5 0 2
2 2 447 2 3 4 0 3 1 2
2 3 467 2 4 4 0 2 1 2
2 4 587 3 4 4 0 1 1 2
2 5 591 3 4 4 0 1 2 1

For p = 2 the group U(V ) has 8 conjugacy classes of subgroups, which we list in
the following order:

{1}, 〈A〉, 〈B〉, 〈C〉, 〈AB〉, 〈A,C〉, 〈B,C〉, U(V ).

Let P1, . . . , P8 be the corresponding transitive permutation modules, so that P1 is
the free module and P8 is the trivial module. Similarly, for p > 2, U(V ) has 2p + 5
conjugacy classes of subgroups, which we list as:

{1}, 〈A〉, 〈AB〉, . . . , 〈ABp−1〉, 〈B〉, 〈C〉,
〈A,C〉, 〈AB,C〉, . . . , 〈ABp−1, C〉, 〈B,C〉, U(V ).

Again we let P1, . . . , P2p+5 be the corresponding transitive permutation modules.
Tables 8.2, 8.3, and 8.4 describe maximal U(V )-permutation submodules M ′ of

K̃k
n,3 in the cases p = 2, 3, and 5 respectively. These submodules were found using
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the algorithm of Proposition 7.1, with the conjugacy classes of subgroups of U(V )
listed in the order given above. The permutation modules omitted from Tables
8.3 and 8.4 never arose as summands of any such M ′. In Table 8.2 the dimension of
M ′ is omitted since in these cases M ′ was always the whole of K̃k

n,3, with dimension
22n + 2n + 1. The dimensions of K̃k

1,3 and K̃k
2,3 are 13 and 91 respectively for p = 3,

and 31 and 651 respectively for p = 5. Table 8.4 in the case n = 2 is incomplete in
the sense that not all values of k have been considered. This is because each row
required over 24 hours’ computing time.

Note that for fixed p and n, the modules Kk
n,3 tend not to be isomorphic to each

other, except when n = 1, and isomorphic in pairs when p = 2. For each p, the ring
structure gives rise to a duality

Kk
n,3 ×KN−k

n,3 → Fp ⊆ KN
n,3,

where N = pn − 1. This explains the observed fact that whenever Kk
n,3 is a permu-

tation module, then KN−k
n,3

∼= Kk
n,3.

We find it intriguing that in the case p = 2 we have been unable to find pairs (n, k)
such that Kk

n,3 is not a U(V )-permutation module. Note also that for each n and
p considered, K0

n,3 is a U(V )-permutation module, although it is easy to show that
usually K0

n,3 cannot be a GL(V )-permutation module by comparing the information
in the tables with the information given by Brauer characters. (This technique may
be used to prove the cases n = 2, 4 and 5 of Theorem 1.1(d), which we leave as an
exercise.)

Finally, in Tables 8.5 and 8.6 we give just enough information to prove Theo-
rem 1.4, in the cases p = 3 and p = 5 respectively. That is, for each subgroup H
of U(V ) of order p2, we give the dimension of a maximal H-permutation submod-
ule M ′′ of K1

2,3. The dimension of K1
2,3 is 91 for p = 3 and 651 for p = 5. Only one of

the subgroups 〈AB,C〉, . . . , 〈ABp−1, C〉 is listed in these tables, because these sub-
groups are all conjugate in GL(V ) and so give rise to M ′′’s of the same dimension.
The programs were run separately for each of these groups however, as a check.

Table 8.5: A maximal H-permutation submodule of K1
2,3 (p = 3).

Subgroup H dim. M ′′

〈A,C〉 69
〈AB,C〉 84
〈B,C〉 87

Kriz’s example of a 3-group G such that K(2)∗(BG) is not concentrated in even
degrees is the Sylow 3-subgroup of GL4(F3) [6]. This group is expressible as the
split extension with kernel (F3)3 and quotient the Sylow 3-subgroup of GL3(F3),
with the natural action. There may be a connection between our result that K∗

2,3 is
not a permutation module for the Sylow 3-subgroup of GL3(F3) and the fact that
K(2)∗(BG) is not entirely even. If so, then Theorem 1.4 suggests if H is a split
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Table 8.6: A maximal H-permutation submodule of K1
2,3 (p = 5).

Subgroup H dim. M ′′

〈A,C〉 535
〈AB,C〉 628
〈B,C〉 643

extension with kernel (F3)3 and quotient a subgroup of GL3(F3) of order nine, then
possibly K(2)∗(BH) is not entirely even. Such H include the extraspecial group of
order 35 and exponent 3.
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