The subring of group cohomology constructed by permutation representations*

David J. Green  Ian J. Leary†  Björn Schuster

21 April 1999

Abstract

Each permutation representation of a finite group $G$ can be used to pull cohomology classes back from a symmetric group to $G$. We study the ring generated by all classes that arise in this fashion, describing its variety in terms of the subgroup structure of $G$.

We also investigate the effect of restricting to special types of permutation representations, such as $GL_n(\mathbb{F}_p)$ acting on flags of subspaces.

Introduction

Each action of a finite group $G$ on a set $X$ can be used to pull back cohomology classes from the cohomology of the symmetric group on $X$ to the cohomology of $G$. For example, the characteristic classes of Segal and Stretch [6] arise in this way.

We shall study the cohomology classes that come from all actions of a fixed group $G$ by taking the ring $S_h$ they generate and investigating its variety. In Theorem 1.5 we obtain a description of this variety in terms of the group structure of $G$. Typically the inclusion of $S_h$ in the cohomology ring is not an inseparable isogeny; but it does always induce a bijection of irreducible components. Equivalently, distinct minimal prime ideals in the cohomology ring have distinct intersections with $S_h$. The idea of studying the variety of the cohomology ring originates in Quillen’s paper [5]. Our results rely on work in [4], where two of the current authors suggest an extension of Quillen’s results to certain subrings of the cohomology ring.

We also investigate what happens when we impose conditions on the $G$-sets by putting restrictions on the point stabilizers. In particular we show that, for

---

*1991 Mathematics Subject Classification 20J06.
†Partially funded by the Nuffield Foundation, grant no. SCI/180/96/127
large values of $n$, the $GL_{2n}(\mathbb{F}_p)$ actions with parabolic stabilizers give rise to a strictly smaller subring than the subring for arbitrary actions, which in turn is strictly smaller than the whole cohomology ring.

Throughout this paper, $G$ will be a finite group and $p$ a prime number. We write $H^*(G)$ for the mod-$p$ cohomology $H^*(G, \mathbb{F}_p)$ of $G$.

1 Definitions and our main theorem

First we describe the object of study precisely.

**Definition 1.1** A non-empty family $\mathcal{F}$ of subgroups of $G$ will be called *admissible* if it is closed under conjugation in $G$, and the subgroup $\bigcap_{H \in \mathcal{F}} H$ of $G$ is a $p'$-group. A $G$-set $X$ will be called an $\mathcal{F}$-set if each point stabilizer belongs to $\mathcal{F}$.

In particular, the family $\mathcal{F}_h$ consisting of all subgroups of $G$ is admissible, and all $G$-sets are $\mathcal{F}_h$-sets.

**Definition 1.2** Each finite $G$-set $X$ induces a homomorphism $\rho_X: G \to \Sigma_n$, where $n = |X|$. This induces in turn a ring homomorphism $\rho^*_X: H^*(\Sigma_n) \to H^*(G)$. Define $S_{\mathcal{F}}$ as the subring of $H^*(G)$ generated by all $\text{Im}(\rho^*_X)$ with $X$ an $\mathcal{F}$-set.

We shall now determine the variety of this ring $S_{\mathcal{F}}$. The following definition is needed to state the result.

**Definition 1.3** Denote by $\mathcal{A}_{\mathcal{F}}$ the category whose objects are the elementary abelian $p$-subgroups of $G$, with $\mathcal{A}_{\mathcal{F}}(V, W)$ the set of injective group homomorphisms $f: V \to W$ satisfying: for every $H \in \mathcal{F}$ the $V$-sets $f^!(G/H)$ and $G/H$ are isomorphic. Here $f^!(G/H)$ means the following action of $V$ on $G/H$:

$$k * gH = f(k)gH.$$  

**Remark 1.4** The category $\mathcal{A}_{\mathcal{F}_h}$ is identified in Lemma 2.2.

Recall that the variety $\text{var}(R)$ of a connected graded commutative $\mathbb{F}_p$-algebra $R$ is the functor that assigns to each algebraically closed field $k$ the topological space of ring homomorphisms from $R$ to $k$ with the Zariski topology.

**Theorem 1.5** The cohomology ring $H^*(G)$ is finitely generated as a module over $S_{\mathcal{F}}$. The restriction maps in cohomology induce a natural homeomorphism

$$\text{colim}_{V \in \mathcal{A}_{\mathcal{F}}} \text{var}(H^*(V)) \cong \text{var}(S_{\mathcal{F}}).$$

**Proof.** Let $H_1, \ldots, H_r$ be a full set of class representatives for the conjugation action of $G$ on $\mathcal{F}$. Let $X$ be the $G$-set $(G/H_1) \sqcup \cdots \sqcup (G/H_r)$, and $n = |X|$. Then
$X$ is an $\mathcal{F}$-set, and the kernel of the associated group homomorphism $\rho : G \rightarrow \Sigma_n$ is a $p'$-group by admissibility.

Now compose $\rho$ with the regular representation $\text{reg}_{\Sigma_n}$ of $\Sigma_n$. We obtain a degree $n!$ representation of $G$. The Chern classes of $\text{reg}_{\Sigma_n} \circ \rho$ lie in $S_\mathcal{F}$ as they are images under $\rho^*$. Hence by Venkov’s proof [7] of the Evens–Venkov theorem, $H^*(P)$ is finitely generated as a module over $S_\mathcal{F}$. Therefore $H^*(G)$ is finitely generated too.

This representation $\text{reg}_{\Sigma_n} \circ \rho$ also restricts to every elementary abelian $p$-subgroup of $G$ as a (non-zero) direct sum of copies of the regular representation, and so is $p$-regular in the sense of [4]. So $S_\mathcal{F}$ contains the Chern classes of a $p$-regular representation. Moreover, the ring $S_\mathcal{F}$ is clearly homogeneously generated and closed under the action of the Steenrod algebra. By Theorem 6.1 of [4] it follows firstly that $\text{var}(S_\mathcal{F})$ is a colimit of the desired form over some category of elementary abelians; and secondly that Lemma 1.6 identifies this category as being $A_\mathcal{F}$.

Lemma 1.6 Let $V, W$ be elementary abelian subgroups of $G$, and $f : V \rightarrow W$ an injective group homomorphism. Then $f$ lies in $A_\mathcal{F}$ if and only if for every $x \in S_\mathcal{F}$, the class $\text{Res}^G_V(x) - f^* \text{Res}^G_W(x)$ lies in the nilradical of $H^*(V)$.

**Proof.** Suppose $f \in A_\mathcal{F}$. Pick any $\mathcal{F}$-set $Y$, and let $\rho : G \rightarrow \Sigma_{|Y|}$ be the associated group homomorphism. Since the $V$-sets $Y$ and $f^!(Y)$ are isomorphic, $f$ induces a map $\rho(V) \rightarrow \rho(W)$, and this is conjugation by some $\sigma \in \Sigma_{|Y|}$. Hence $\text{Res}^G_V - f^* \text{Res}^G_W$ kills $\text{Im}(\rho^*)$.

Conversely, suppose that $f \notin A_\mathcal{F}$. Recall that in the proof of Theorem 1.5 we constructed an $\mathcal{F}$-set $X$, such that the kernel of the associated group homomorphism $\rho : G \rightarrow \Sigma_{|X|}$ is a $p'$-group. By assumption on $f$ there is some $H \in \mathcal{F}$ with $f^!(G/H)$, $G/H$ non-isomorphic as $V$-sets. Define $Y$ by

$$Y = \begin{cases} X \sqcup (G/H) & \text{if } f^!(X), X \text{ isomorphic as } V\text{-sets} \\ X & \text{otherwise.} \end{cases}$$

Then $Y$ is an $\mathcal{F}$-set and $V$ acts faithfully on $Y, f^!(Y)$, but these two $V$-sets are non-isomorphic.

We have thus constructed embeddings of $V$ and $W$ in $\Sigma_{|Y|}$, such that $f$ is not induced by conjugation in $\Sigma_{|Y|}$. Therefore there is a class $\xi \in H^*(\Sigma_{|Y|})$ such that $\text{Res}_{\Sigma_{|Y|}}^V(\xi) - f^* \text{Res}_{\Sigma_{|Y|}}^W(\xi)$ is not nilpotent (apply the results of [4, §9] to the group $\Sigma_{|Y|}$). Moreover, these embeddings of $V, W$ in $\Sigma_{|Y|}$ factor through $G \rightarrow \Sigma_{|Y|}$. Pulling $\xi$ back to $H^*(G)$, we get the desired class. \hfill \blacksquare
2 Examples

**Definition 2.1** We define the hereditary category $A_h$ of $G$ to be $A_{F_h}$, where $F_h$ is the admissible family of all subgroups of $G$. Write $S_h$ for $S_{F_h}$.

Recall that $\sim_G$ denotes the equivalence relation conjugacy in $G$.

**Lemma 2.2** Let $f : V \to W$ be an injective group homomorphism between elementary abelian subgroups of $G$. Then $f$ lies in $A_h$ if and only if $f(U) \sim_G U$ for every elementary abelian $U \leq V$.

Let $F$ be an admissible family containing all nontrivial elementary abelian $p$-subgroups of $G$. Then $A_F = A_h$.

**Remark 2.3** This property of $A_h$ is the reason for the name hereditary.

**Proof.** We prove the first part holds for any $F$ satisfying the conditions of the second part, not just for $F_h$.

First suppose that $U$ is a subgroup of $V$ and $f(U) \not\sim_G U$. Then the $V$-set $G/U$ has a point stabilized by $U$, but $f^!(G/U)$ does not. Hence these two $V$-sets are not isomorphic, and so $f$ does not lie in $A_F$.

For the if part, consider any $H \in F$ and any $U \leq V$. The coset $gH$ is fixed by $U$ if and only if $U^g \leq H$. Since $f(U) \sim_G U$, the number of $U$-fixed points in $f^!(G/H)$ is the same as for $G/H$. It follows that the $V$-sets $f^!(G/H)$ and $G/H$ are isomorphic.

**Corollary 2.4** The category $A_h$ is the unique largest category of elementary abelians which is closed in the sense of [4, §9], and in which objects are isomorphic if and only if they are conjugate as subgroups of $G$.

**Proof.** Closure means that all inclusion and conjugation maps are contained in $A_h$; that isomorphisms lie in $A_h$ if and only if their inverses do; and that $f^U : U \to f(U)$ lies in $A_h$ for every $f : V \to W$ in $A_h$ and every $U \leq V$.

**Remark 2.5** It follows that “intersection with $S_h$” induces a bijection from the minimal primes of $H^*(G)$ to those of $S_h$. Hence the irreducible components of $\text{var}(H^*(G))$ and of $\text{var}(S_h)$ are in natural one-to-one correspondence.

**Definition 2.6** Let $G$ be the general linear group $GL_n(\mathbb{F}_p)$. We define the parabolic category $A_\pi$ to be $A_{F_\pi}$, where $F_\pi$ is the collection of all parabolic subgroups of $G$. Write $S_\pi$ for $S_{F_\pi}$.

**Proposition 2.7** The parabolic category is admissible. We have $\text{var}(S_h) \cong \text{colim}_{V \in A_h} \text{var}(H^*(V))$ and $\text{var}(S_\pi) \cong \text{colim}_{V \in A_\pi} \text{var}(H^*(V))$.
Proof. The upper triangular matrices constitute a parabolic subgroup, as do the lower triangular matrices. These two groups intersect in a $p'$-group, so $\mathcal{F}_\pi$ is admissible. Apply Theorem 1.5 for the admissible families $\mathcal{F}_h$ and $\mathcal{F}_\pi$. ■

Define the Quillen category $\mathcal{A}$ to be the category whose objects are the elementary abelian $p$-subgroups of $G$, with morphisms induced by inclusion and conjugation. It is a well-known theorem of Quillen (see [2, §9.2]) that the restriction maps induce a natural isomorphism

$$\colim_{V \in \mathcal{A}} \var(H^*(V)) \cong \var(H^*(G)).$$

It follows from [4] that the inclusion of $S_\mathcal{F}$ in $H^*(G)$ induces an isomorphism of varieties if and only if $\mathcal{A}_\mathcal{F} = \mathcal{A}_h$, and that $S_{\mathcal{F}_1}, S_{\mathcal{F}_2}$ have the same variety as each other if and only if $\mathcal{A}_{\mathcal{F}_1} = \mathcal{A}_{\mathcal{F}_2}$.

Example 2.8 Let $p$ be an odd prime, and let $1 < q < p$. For any finite group $G$ and any elementary abelian $V \leq G$, the automorphism $v \mapsto v^q$ of $V$ lies in $A_h$ by Lemma 2.2. But in general this map does not lie in $\mathcal{A}$. An example is when $G$ is abelian (and not a $p'$-group). For such groups, the inclusion of $S_h$ in $H^*(G)$ in not an inseparable isogeny.

Example 2.9 In Corollary 3.4, we shall see that for $n \geq 3$ and $G$ the group $GL_n(F_p)$, there is a rank two elementary abelian subgroup $E$ of $G$ such that not all automorphisms of $E$ lie in $\mathcal{A}$; and yet all nontrivial elements of $E$ are conjugate in $G$, which means that all automorphisms of $E$ lie in $A_h$. Hence the inclusion of $S_h$ in $H^*(G)$ is not an inseparable isogeny.

Example 2.10 In Theorem 3.6, we shall see that for $n \geq 6$ and $G$ the group $GL_n(F_p)$, there are non-conjugate rank two elementary abelian subgroups of $G$ which are isomorphic in $\mathcal{A}_\pi$. Hence the varieties of $S_\pi, S_h$ and $H^*(G)$ are all distinct.

Example 2.11 The elementary abelian $p$-subgroups of $G$ form an admissible family, as do all $p$-subgroups of $G$. If $G$ has $p$-rank at least two, then we can omit the trivial subgroup in both families.

In all these cases, the category $\mathcal{A}_\mathcal{F}$ is equal to $\mathcal{A}_h$ by Lemma 2.2. Hence inclusion of $S_\mathcal{F}$ in $S_h$ is an inseparable isogeny.

Example 2.12 Following Alperin [1], we define a subgroup $H$ of an abstract finite group $G$ to be parabolic if $H = N_G(O_p(H))$. That is, the parabolics are the normalizers of the $p$-stubborn subgroups. For $G = GL_n(F_p)$, this coincides with the normal definition of parabolic subgroup.

If $O_p(G) = 1$ then the parabolic subgroups and the $p$-stubborn subgroups each form admissible families, since Sylow $p$-subgroups are $p$-stubborn and $O_p(G)$ is the intersection of all Sylow $p$-subgroups.
For $p = 11$ the sporadic finite simple group $J_4$ has the trivial intersection property: distinct Sylow $p$-subgroups intersect trivially. Hence the parabolic subgroups are the admissible family consisting of $J_4$ itself and the Sylow normalizers. The action of any order $p$ cyclic subgroup on cosets of a Sylow normalizer has one fixed point, with the remaining orbits having length $p$. As there are two distinct conjugacy classes of order $p$ cyclics, the parabolic category is larger than the hereditary category. The cohomology of $J_4$ at the prime 11 was computed in [3].

Example 2.13 In general the subring $S_h$ is far larger than the subring generated by Chern classes of permutation representations: i.e., the subring generated by all images of $H^*(BU(n))$ under homomorphisms $G \to \Sigma_n \to U(n)$, where $\Sigma_n$ is embedded in $U(n)$ as the permutation matrices.

In [4] it was shown that the variety for this subring is the colimit over the category $A_P$, where $f : V \to W$ lies in $A_P$ if and only if $f(U) \sim G U$ for every cyclic subgroup $U$ of $V$. This category is in general far larger than $A_h$. For example, there are elementary abelian $p$-groups of rank two in $GL_3(\mathbb{F}_p)$ that are not conjugate (and hence not isomorphic in $A_h$), but are isomorphic in $A_P$.

3 An extended example

Fred Cohen asked the third author about the subring of $H^*(GL_n(\mathbb{F}_p))$ generated by the permutation representations on flags. In our language, the question concerns the subring $S_\pi$. This question provided the starting point for the current paper. We provide a partial answer to this question by comparing the varieties for $H^*(GL_n(\mathbb{F}_p))$, $S_h$ and $S_\pi$, which is equivalent to comparing the categories $A$, $A_h$ and $A_\pi$. Recall that there are inclusions

$$A \subseteq A_h \subseteq A_\pi.$$ 

Let $G$ be the general linear group $GL_{2n}(\mathbb{F}_p)$. We show that all three categories are distinct for $n \geq 6$. The most time consuming part is showing that $A_\pi$ differs from $A_h$ for such $n$. By Corollary 2.4 it suffices to show that there are elementary abelian $p$-subgroups of $G$ which are isomorphic in $A_\pi$ but not conjugate in $G$. We shall find rank 2 examples using modular representation theory.

Let $p$ be a prime number, and let $A, B$ be generators for the rank 2 elementary abelian $p$-group $V \cong C_p \times C_p$. To each matrix $J \in GL_n(\mathbb{F}_p)$, there is an associated representation $\rho_J : V \to GL_{2n}(\mathbb{F}_p)$ defined by

$$A \overset{\rho_J}{\mapsto} \begin{pmatrix} I & I \\ 0 & I \end{pmatrix}, \quad B \overset{\rho_J}{\mapsto} \begin{pmatrix} I & J \\ 0 & I \end{pmatrix},$$

where $I \in GL_n(\mathbb{F}_p)$ is the identity matrix. The following lemma is well-known in the modular representation theory of $V$. 

6
Lemma 3.1 Let \( J, J' \in \text{GL}_n(\mathbb{F}_p) \). Then the representations \( \rho_J, \rho_{J'} \) are isomorphic if and only if \( J, J' \) are conjugate in \( \text{GL}_n(\mathbb{F}_p) \).

Proof. The centralizer of \((\begin{smallmatrix} I & I \\ 0 & I \end{smallmatrix})\) consists of all matrices of the form \((\begin{smallmatrix} A & B \\ 0 & A \end{smallmatrix})\). The conjugate of \((\begin{smallmatrix} I & J \\ 0 & I \end{smallmatrix})\) under such a matrix is \((\begin{smallmatrix} I & J' \\ 0 & I \end{smallmatrix})\) with \( J' = AJA^{-1} \).

Lemma 3.2 For any matrix \( M \in \text{GL}_n(\mathbb{F}_p) \), the matrix \((\begin{smallmatrix} I & M \\ 0 & I \end{smallmatrix})\) is conjugate in \( \text{GL}_{2n}(\mathbb{F}_p) \) to \((\begin{smallmatrix} I & I \\ 0 & I \end{smallmatrix})\).

Proof. Conjugate on the right by \((\begin{smallmatrix} M & 0 \\ 0 & I \end{smallmatrix})\).

First we compare the categories \( \mathcal{A}_h \) and \( \mathcal{A} \).

Lemma 3.3 Suppose there is a primitive element \( \theta \in \mathbb{F}_{p^n}/\mathbb{F}_p \) with minimal polynomial \( f \) such that \( \theta + 1 \) is not a root of \( f \). Then the Quillen category \( \mathcal{A} \) for \( G = \text{GL}_{2n}(\mathbb{F}_p) \) is strictly smaller than the hereditary category \( \mathcal{A}_h \).

Proof. Let \( J \in \text{GL}_n(\mathbb{F}_p) \) be the matrix in rational canonical form with characteristic polynomial \( f \). Since \( f \) is irreducible, \( J \) has no eigenvalues in \( \mathbb{F}_p \). In particular, this means that \( I + J \) lies in \( \text{GL}_n(\mathbb{F}_p) \). The condition on the roots of \( f \) means that \( J \) and \( I + J \) have distinct characteristic polynomials, and so are non-conjugate in \( \text{GL}_n(\mathbb{F}_p) \).

Let \( E \) be \( \text{Im}(\rho_J) \), the rank 2 elementary abelian generated by \( a = \rho_J(A) \) and \( b = \rho_J(B) \). Hence

\[
a = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix}, \quad b = \begin{pmatrix} I & J \\ 0 & I \end{pmatrix}, \quad ab = \begin{pmatrix} I & I + J \\ 0 & I \end{pmatrix}.
\]

Let \( \phi \) be the automorphism of \( E \) which fixes \( a \) and sends \( b \) to \( ab \). By the proof of Lemma 3.1 we see that \( \phi \not\in \mathcal{A} \), since \( J \) and \( I + J \) are not conjugate. To see that \( \phi \in \mathcal{A}_h \), it suffices by Lemma 2.2 to show that \( e, \phi(e) \) are conjugate in \( G = \text{GL}_{2n}(\mathbb{F}_p) \) for each nontrivial \( e \in E \). But this follows from Lemma 3.2.

Corollary 3.4 Set \( n_0 = 2 \) for \( p \geq 3 \) and \( n_0 = 3 \) for \( p = 2 \). For \( G = \text{GL}_{2n}(\mathbb{F}_p) \) and \( n \geq n_0 \), the Quillen category \( \mathcal{A} \) is strictly smaller than the hereditary category \( \mathcal{A}_h \).

Proof. We show that there is a \( \theta \) satisfying the conditions of Lemma 3.3. The Galois group of \( \mathbb{F}_{p^n}/\mathbb{F}_p \) is cyclic of order \( n \), generated by the Frobenius automorphism. Hence \( \theta \in \mathbb{F}_{p^n} \) has the same minimal polynomial as \( \theta + 1 \) if and only if \( \theta \) is a root of \( x^{p^m} - x - 1 \) for some \( m < n \). Therefore there are at least \( p^n - p^{n-1} - p^{n-2} - \cdots - p \) elements \( \theta \) of \( \mathbb{F}_{p^n} \) such that \( \theta, \theta + 1 \) do not have the same minimal polynomial. If \( p \geq 3 \) and \( n \geq 2 \) then this exceeds \( p^{n-1} \), and there are at most \( p^{n-1} \) non-primitive elements of \( \mathbb{F}_{p^n}/\mathbb{F}_p \): hence there exists a \( \theta \) of the required form.
Now suppose that $p$ is 2. The roots of $x^{2^n} - x - 1$ all lie in $\mathbb{F}_{2^m}$, and so can only be primitive elements of $\mathbb{F}_{2^n}/\mathbb{F}_2$ if $n \mid 2m$. Since $m < n$, this can only happen if $n = 2m$. So the number of $\theta \in \mathbb{F}_{2^n}/\mathbb{F}_2$ such that $\theta, \theta + 1$ have distinct minimal polynomials exceeds $2^{n-1}$ provided $n > 2$, and there are at most $2^{n-1}$ non-primitives. Again, the required $\theta$ exists. 

Now we compare the categories $A_s$ and $A_h$. To each irreducible degree $n$ monic polynomial $f \in \mathbb{F}_p[x]$ there is an associated $(n \times n)$-matrix $J_f$ in rational canonical form. Define the representation $\rho_f: V \to GL_{2n}(\mathbb{F}_p)$ to be $\rho_f$. By Lemma 3.1, distinct $f$ give rise to non-isomorphic representations.

**Proposition 3.5** Let $H$ be a parabolic subgroup of $GL_{2n}(\mathbb{F}_p)$, and let $f$ be an irreducible degree $n$ polynomial. The embedding $\rho_f$ turns $G/H$ into a $V$-set. The isomorphism type of this $V$-set does not depend on $f$.

**Theorem 3.6** Set $n_0 = 5$ for $p \geq 5$ and $n_0 = 6$ for $p = 2, 3$. For $G = GL_{2n}(\mathbb{F}_p)$ and $n \geq n_0$, there are rank two elementary abelian subgroups of $G$ which are isomorphic in the parabolic category $A_e$ without being conjugate in $G$.

**Proof.** For any pair $f, g$ of irreducible degree $n$ monic polynomials over $\mathbb{F}_p$, the isomorphism

$$\rho_g \circ \rho_f^{-1}: \text{Im}(\rho_f) \longrightarrow \text{Im}(\rho_g)$$

lies in $A_s$ by Proposition 3.5. As distinct irreducible polynomials give rise to non-isomorphic representations, the number of irreducible $g$ such that $\text{Im}(\rho_g)$ is conjugate to a given $\text{Im}(\rho_f)$ cannot exceed $|\text{Aut}(V)| = (p^2 - 1)(p^2 - p)$. But for $n \geq n_0$ there are always more irreducibles than this. For the total number of irreducibles is equal to $\pi_n/n$, where $\pi_n$ is the number of primitive elements in $\mathbb{F}_{p^n}/\mathbb{F}_p$. We have $\pi_5 = p^5 - p$, $\pi_6 = p^6 - p^3 - p^2 + p$ and $\pi_n \geq p^n - p^{n-2}$ for $n \geq 7$. It is then straightforward to check that $\pi_n/n > (p^2 - 1)(p^2 - p)$ for $n \geq n_0$. 

We now derive some results needed in the proof of Proposition 3.5. We take $f$ to be a degree $n$ irreducible polynomial over $\mathbb{F}_p$, and $J = J_f$ to be the associated matrix in rational canonical form.

**Lemma 3.7** Let $W$ be a proper subspace of $\mathbb{F}_p^n$. Define $m, r$ by $m = \dim(W)$ and $m + r = \dim(W + JW)$. Then there is partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of $m$ with length $r$ (so $\lambda_i \geq 1$) and elements $w_1, \ldots, w_r$ of $W$, such that

1. The $J^a w_i$ for $1 \leq i \leq r$ and $0 \leq a \leq \lambda_i - 1$ are a basis for $W$, and
2. The $J^a w_i$ for $1 \leq i \leq r$ and $0 \leq a \leq \lambda_i$ are a basis for $W + JW$.
We call such an \( r \)-tuple \( w_1, \ldots, w_r \) a \((J, \lambda)\)-basis for \( W \).

Furthermore, \( \lambda \) is uniquely determined by \( J, W \); and the number of \((J, \lambda)\)-bases for \( W \) depends solely on \( \lambda \).

Observe that \( m + r \leq n \) and that \( r \leq m \). Since \( J \) is the rational canonical form associated to an irreducible polynomial, there are no \( J \)-invariant subspaces other than 0 and \( \mathbb{F}_p^n \). Hence \( r = 0 \) if and only if \( m = 0 \).

**Proof.** The proof is by induction on \( m \). The case \( m = 0 \) is clear. Now suppose that \( m > 0 \) and the result has been proved for \( \dim(W) \leq m - 1 \). Set \( W' = W \cap J^{-1}W \), so \( \dim(W') = m - r \). Define \( r' \) by \( r' = \dim(W' + JW') - \dim(W') \).

As \( m > 0 \) we have \( m - r \leq m - 1 \), so can apply the result to \( W' \). Thus we obtain a length \( r' \) partition \( \lambda' = (\lambda'_1, \ldots, \lambda'_{r'}) \) of \( m - r \) and an \( r' \)-tuple \( w'_1, \ldots, w'_{r'} \in W' \).

For \( 1 \leq i \leq r' \) set \( \lambda_i = \lambda'_i + 1 \) and \( w_i = w'_i \). Observe that

\[
\dim(W) - \dim(W' + JW') = r - r'.
\]

Pick a basis \( w_{r'+1}, \ldots, w_r \) for any complement of \( W' + JW' \) in \( W \), and set \( \lambda_i = 1 \) for \( r' < i \leq r \). Then \( \lambda \) is a length \( r \) partition of \( n \), and the \( J^a w_i \) for \( 1 \leq i \leq r \) and \( 0 \leq a \leq \lambda_i - 1 \) are a basis for \( W \).

Moreover, the \( J^a \lambda_i w_i \) for \( 1 \leq i \leq r' \) are a basis for a complement of \( W' \) in \( W' + JW' \); and \( w_{r'+1}, \ldots, w_r \) are a basis for a complement of \( W' + JW' \) in \( W \).

Hence the \( J^{a-1} \lambda_i w_i \) for \( 1 \leq i \leq r \) are a basis for a complement of \( W' \) in \( W \). By definition of \( W' \), this means that the \( J^{a-1} \lambda_i w_i \) for \( 1 \leq i \leq r \) are a basis for a complement of \( W \) in \( W' \). So the \( w_i \) constitute a \((J, \lambda)\)-basis.

Conversely, suppose that \( \mu - m \) has length \( r \), and that \( v_1, \ldots, v_r \) is a \((J, \mu)\)-base for \( W \). The elements \( J^a v_i \) for \( 0 \leq a \leq \mu_i - 2 \) are a basis for \( W' \), the \( J^{\mu_i - 2} v_i \) with \( \mu_i \geq 2 \) extend this to a basis for \( W' + JW' \), and the \( v_i \) with \( \mu_i = 1 \) extend this to a basis for \( W \). Hence the number of \( i \) with \( \mu_i = 1 \) is equal to \( \dim(W) - \dim(W' + JW') \). Passing to \( W' \), we deduce by induction that \( \lambda \) and \( \mu \) are equal; and that \( \lambda \) alone determines the number of \((J, \lambda)\)-bases \( w_1, \ldots, w_r \).

**Lemma 3.8** Fix \( J \) and fix partitions \( \lambda, \lambda' \). For any proper \( W \subset \mathbb{F}_p^n \) with partition \( \lambda \), the number of subspaces \( W' \) of \( W \) with partition \( \lambda' \) depends solely on \( \lambda, \lambda' \).

**Proof.** Denote by \( w_i, w'_i \) the elements of a \((J, \lambda)\)-base for \( W, W' \) respectively. Set \( m = \dim(W) \) and \( r = \dim(W + JW) - m \), as in Lemma 3.7.

Construct a basis \( b_1, \ldots, b_n \) for \( \mathbb{F}_p^n \) as follows:

- \( b_1, \ldots, b_m \) is the the basis \( w_1, Jw_1, \ldots, J^{\lambda_1 - 1} w_1, w_2, \ldots, J^{\lambda_r - 1} w_r \) for \( W \) given by Lemma 3.7;
- \( b_{m+1}, \ldots, b_{m+r} \) is the corresponding extension \( J^{\lambda_1} w_1, \ldots, J^{\lambda_r} w_r \) to a basis for \( W + JW \).

9
• $b_{m+r+1}, \ldots, b_n$ is any extension to a basis for $F_p^n$.

Consider the matrix of $J$ for this basis: the first $m$ columns describe the action on $W$, and depend solely on $\lambda$. Hence the number of $(J, \lambda')$-bases giving rise to a subspace of $W$ with partition $\lambda'$ is independent of $J$. Moreover, the number of $(J, \lambda')$-bases for any such $W'$ depends solely on $\lambda'$, by Lemma 3.7.

**Corollary 3.9** Let $\lambda$ be a partition of $m < n$. The number of proper subspaces $W$ of $F_p^n$ with partition $\lambda$ is independent of $f$.

**Proof.** The codimension 1 subspaces of $F_p^n$ all have partition $(n-1)$: so by Lemma 3.8 each contains the same number of such $W$, and this number is independent of $f$.

**Corollary 3.10** Fix $0 \leq m_0 < m_1 < \cdots < m_s$ and partitions $\lambda^i \vdash m_i$. The number of flags $W_0 \subset W_1 \subset \cdots \subset W_s$ of proper subspaces of $F_p^n$ in which $W_i$ has partition $\lambda^i$ is independent of $f$.

**Proof.** The case $s = 1$ is Corollary 3.9. The general case is by induction on $s$ using Lemma 3.8.

**Proof of Proposition 3.5.** We must show that for each parabolic subgroup $H \leq G$, the isomorphism class of the $V$-set structure induced on $G/H$ by $\rho_f$ does not depend on $f$. Now, two finite $V$-sets $X, Y$ are isomorphic if and only if for each subgroup $U$ of $V$, the sets $X^U, Y^U$ have the same cardinality.

The case $U = 1$ is clear. For the cyclic subgroups, observe that since $J$ has no invariant subspaces and therefore no eigenvectors, the matrix $\lambda I + \mu J$ is invertible for all $(\lambda, \mu) \in F_p^2 \setminus \{0\}$. Therefore by Lemma 3.2, all nontrivial elements of $\text{Im}(\rho_f)$ are conjugate in $GL_{2n}(F_p)$ to each other, and so the number of fixed cosets is independent of $f$.

Only the hardest case remains to be proved: that the number of cosets fixed by $V$ itself is independent of $f$. Recall that the parabolic subgroups in $GL_{2n}$ are the flag stabilizers. Define the type of a flag $X_0 \subset X_1 \subset \cdots \subset X_t$ of subspaces of $F_{2n}^p$ to be the $(t+1)$-tuple $(\dim(X_0), \ldots, \dim(X_t))$. The flags of any given type are permuted transitively by $GL_{2n}(F_p)$. Our task is to show that the number of $V$-invariant flags of any given type does not depend on the choice of irreducible polynomial $f$.

Associated to the block matrices is a splitting of $F_{2n}^p$ as $F_p^n \oplus F_p^n$. Let $i: F_p^n \to F_{2n}^p$ be inclusion as the first factor, and $j: F_p^{2n} \to F_p^n$ projection onto the second factor. Let $X$ be an invariant subspace of $F_{2n}^p$, and set $W = j(X), Z = i^{-1}(X)$. Then

$$
\begin{pmatrix}
I & I \\
0 & I
\end{pmatrix}
\begin{pmatrix} z \\
w
\end{pmatrix} =
\begin{pmatrix} z + w \\
w
\end{pmatrix},

\begin{pmatrix}
I & J \\
0 & I
\end{pmatrix}
\begin{pmatrix} z \\
w
\end{pmatrix} =
\begin{pmatrix} z + Jw \\
w
\end{pmatrix}.
$$
We deduce that $X$ is invariant if and only if $W + JW \subseteq Z$. In particular, the only invariant subspace with $W$ equal to $F^n_p$ is $F^{2n}_p$.

Clearly we may restrict our attention to invariant flags of proper subspaces. Based on Lemma 3.7, we define the fine type of an invariant flag $X_0 \subset X_1 \subset \cdots \subset X_t$ of proper subspaces to be $(d_0, \ldots, d_t; \lambda^0, \ldots, \lambda^t)$, where $d_i = \dim(X_i)$, and $\lambda^i$ is the partition associated to $W_i$. Of course, the fine type of a flag determines its type. But by Lemma 3.11, the number of flags of a given fine type is independent of $f$.

**Lemma 3.11** The number of invariant flags $X_0 \subset X_1 \subset \cdots \subset X_t$ of proper subspaces with given fine type $(d_0, \ldots, d_t; \lambda^0, \ldots, \lambda^t)$ does not depend on $f$.

**Proof.** An invariant subspace $X$ determines $W, Z$ and a linear map $\alpha: W \rightarrow F^{n_p}/Z$ defined by $w + \alpha(w) \subseteq X \subseteq F^{2n_p} = F^n_p \oplus F^{n_p}$. Conversely, any such triple $W, Z, \alpha$ with $W + JW \subseteq Z$ determines an invariant $X$. For an invariant flag we also require that $W_i \subseteq W_j$ and $Z_i \subseteq Z_j$ for $i < j$; and that $\alpha_i(w) + Z_j = \alpha_j(w)$ for all $w \in W_i$.

By Corollary 3.10, the number of flags $W_0 \subseteq W_1 \subseteq \cdots \subseteq W_t$ with partition type $(\lambda^0, \ldots, \lambda^t)$ is independent of $f$. The number of flags $Z_0 \subseteq \cdots \subseteq Z_t$ in $F^n_p$ such that $W_i + JW_i \subseteq Z_i$ and $\dim(Z_i) = d_i - \dim(W_i)$ does not depend on the flag $W_i$ or on $f$: for the type $\tau$ of the flag $W_i + JW_i$ is determined, and all flags of type $\tau$ are in the same orbit. Given flags $W_i$ and $Z_i$, the number of choices for the $\alpha_i$ is independent of $f$: pick $\alpha_1$ first, and pick $\alpha_{i+1}$ to be any extension of $\alpha_i$.

**Remark 3.12** Theorem 3.6 can be interpreted in terms of prime ideals. For an elementary abelian $p$-group $V \leq G$, the classes in $H^*(G)$ with nilpotent restriction to $V$ constitute a prime ideal $p_V$. Let $V, W$ be elementary abelian subgroups of $G$ which are isomorphic in $A_\pi$ but not conjugate in $G$. Then $p_V \cap S_h$ and $p_W \cap S_h$ are distinct prime ideals in $S_h$, but $p_V \cap S_\pi$ and $p_W \cap S_\pi$ are the same prime ideal of $S_\pi$. In the specific case constructed, $V, W$ have $p$-rank 2 and lie in an elementary abelian subgroup of rank $n^2$, the $p$-rank of $G$. Hence $p_V$ and $p_W$ have height $n^2 - 2$.

**References**


