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BJÖRN SCHUSTER

Abstract. A few examples of 2-groups are presented whose Morava K-theory is determined by
representation theory. By contrast, a 3-primary example shows that in general relations arising

from representation theory do not suffice to calculate the Chern subring of K(n)∗(BG).

1. Introduction

Let E denote a complex oriented cohomology theory and G a finite group. As any complex oriented
theory comes with a theory of Chern classes of complex vector bundles, complex representations
offer a convenient source of E-cohomology classes of BG, the classifying space of the group G. In
many examples, one knows that Chern classes suffice to generate E∗(BG), and it is natural to ask
to what extend the relations among them follow from representation theory, too.
This question is closely related to the problem of determining the so-called Chern approximation
of E∗(BG), a concept introduced by Strickland [9]: take all non-trivial irreducible complex rep-
resentations ρ of G, assign indeterminates to the Chern classes of such ρ, and divide out by the
relations obtained from the product structure of the representation ring and all λ-operations (for
a precise definition see below). Strickland then studies the resulting object in geometric terms,
i.e., the associated formal scheme over the formal group E0CP∞.
We shall work with E = K(n), the n-th mod p Morava K-theory with coefficients K(n)∗ =
Fp[vn, v−1

n ], where vn has degree −2(pn − 1). Our calculations show that for some 2-groups G,
the K(n) Chern approximation coincides with K(n)∗(BG). To prove such results one has to
perform two steps: first, establish that K(n)∗(BG) is generated by Chern classes of complex
representations; in the cases we shall study this is already in the literature. Secondly, one has to
show that the relations implied by the structure of the representation ring RG suffice. To that
end it is enough to produce an upper bound for the rank of the resulting module (which spares
us the necessity to use Gröbner basis methods), and compare it to the rank of K(n)∗(BG), which
by step 1 is given by the Euler characteristic formula of Hopkins, Kuhn, and Ravenel [4].
Although to some extent motivated by the problem of finding the ring structure of K(n)∗(BG),
this is not the primary purpose of the present paper. For most of the groups considered here, the
multiplicative structure of K(n)∗(BG) has already been determined using more efficient transfer
methods, see [1, 3]. What interests us here is the question whether K(n)∗(BG) is already de-
termined, as K(n)∗-algebra, by the representation theory of G. For our 2-group examples this is
true; however, for the nonabelian group of order 27 and exponent 3, the answer is negative. This
latter result has been known to N. Strickland for some time.
The paper is organised as follows. We start with a brief review of Chern approximations for
K(n)-theory. The account given here is a ‘poor man’s version’ of the original, inasmuch we forego
all mention of the finer geometric structure. Next we record a few useful formulas, and the later
sections contain the calculations for the individual groups: dihedral, quaternion, semidihedral,
and quasidihedral groups, and one 3–primary example.

2. Chern approximations for K(n)

Let G be a finite group. Suppose µ and ρ are complex representations of dimension m and r,
respectively. Let σi(s) and σj(t) denote the elementary symmetric functions in s1, . . . , sm and
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t1, . . . , tr. Recall that the k-th Chern class of ρ, say, can be identified with the coefficient of Xn−k

in
∏r
i=1(X − ti). Furthermore, the coefficient of Xk in∏

1≤i≤m
1≤j≤r

(
1 +X(si +F tj)

)
is a polynomial in the σi(s) and σj(t), say Pk(σ1(s), . . . , σm(s);σ1(t), . . . , σr(t)). Here and below
we write x+F y to denote the formal sum of x and y.
Similarly, the coefficient of Xk in∏

i1<···<iq

(
1 +X(si1 +F si2 +F · · ·+F siq )

)
is a polynomial Lk in the σi(s).
The splitting principle implies that these power series determine then Chern classes of products
and exterior powers:

Proposition 2.1. (a) ck(µ⊗ ρ) = Pk
(
c1(µ), . . . , cm(µ); c1(ρ), . . . , cr(ρ)

)
.

(b) ck(λqµ) = Lk(c1(µ), . . . , cm(µ)). �

Next, recall the Adams operations on the represenation ring. Let µ be a representation of dimen-
sion m; set λt(µ) =

∑
i≥0 λ

i(µ)ti (where λ0µ = 1), and define

ψt(µ) = m− t

λ−t(µ)

d

dt
λ−t(µ) .

Then ψlµ is the coefficient of tl in ψt(µ). There are the well-known formulae linking Adams
operations and exterior powers via the Newton polynomials; in particular, ψk(µ) = µk for any line
bundle (one-dimensional representation). Hence for a direct sum of line bundles one has

ck(ψl(µ1 ⊕ · · · ⊕ µm)) = ck(µl1 ⊕ · · · ⊕ µlm) = σk
(
[l](x1), . . . , [l](xm)

)
where xi = c1(µi). Thus

Proposition 2.2. For the K(n) Chern classes one has ck(ψp
r

µ) = ck(µ)p
rn

. �

Definition 2.3 (Strickland [9]). Let G be a finite group. Let ρ1, . . . , ρk be the distinct non-trivial
irreducible complex representations of G. For each ρi, choose indeterminates cl,i, 1 ≤ l ≤ dim(ρi).
Define C(G;K(n)) to be the quotient of the K(n)∗-algebra on the cl,i by the relations imposed
by Proposition 2.1.

As a consequence of Proposition 2.2, one gets the following special case of Corollary 10.3 of [9].
Our proof is but a paraphrase of the argument given there.

Corollary 2.4. For any finite group G, the rank of C(G;K(n)) over K(n)∗ is finite.

Proof. It suffices to show that all generators of C(G;K(n)) are nilpotent. Let e be the exponent of
G and pr its p-part, i.e., e = prf with f coprime to p. Then ψe(µ) = dim(µ) for any representation
µ of G. Thus for k ≥ 1, one has 0 = ck(ψeµ) = ck(ψp

r

ψfµ) = ck(ψfµ)p
rn

. Now let c• denote the
total Chern class; since we are working modulo p, we find that

1 = c•(ψ
fµ)p

rn

= c•(p
rnψfµ) = c•(ψ

f (prnµ))

(using additivity) and thus ck(ψf (prnµ)) = 0 for all k ≥ 1. But when f is coprime to p, the series
[f ](x) is an automorphism of the formal group law; thus ckψ

f = 0 for all k > 0 iff ck = 0 for all
k > 0. This implies 1 = c•(p

rnµ) = c•(µ)p
rn

, whence the claim. �

There is an obvious map
chG : C(G;K(n)) −→ K(n)∗(BG)

assigning to ck,i the Chern class ck(ρi). In general, this map is neither injective not surjective:
an example of non-injectivity is given in Section 7, whereas it certainly fails to be onto whenever
K(n)∗(BG) is not generated by Chern classes, as happens for G = A4 at p = 2 (there are p-group
examples, too).

Definition 2.5. We call the Chern approximation of G exact if chG is an isomorphism.
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3. Some formulas

From now on we shall work with K(n)∗(−)⊗K(n)∗ Fp, i.e., we set vn = 1.
We start by giving two approximations to the formal group law of Morava K-theory.

Lemma 3.1. (i) For any p,

x1 +F x2 = x1 + x2 −
1

p

p−1∑
i=1

(
p

i

)
xp

n−1i
1 x

pn−1(p−i)
2 mod

(
(x1x2)p

2n−2)
.

If p is odd, this equality holds modulo
(
(x1 + x2)x1x2

)p2n−2

.
(ii) Let p = 2. Then

x1 +F x2 = x1 + x2 +
(
x1x2 + (x1 + x2)(x1x2)2n−1

)2n−1

mod
(
((x1 + x2)x1x2)22n−2)

.

Proof. Part (i) is stated in [2] as Lemma 5.3, and (ii) is claimed in [3] as Lemma 2.2 (ii), but, as
the referee pointed out, the explanation provided there falls short of a full proof. We therefore
give an argument which surely must be the one the authors of [3] had in mind. Since we need the
notation anyway, we also show (i), the proof being essentially the one from [2].
Specialising Theorem 4.3.9 of Ravenel’s green book [6] to the case where vn = 1 and vi = 0 for
n 6= i and simplifying it using Lemma 4.3.8. (b) gives∑F

xi =
∑
k≥0

F
wk(x1, x2, . . .)

p(n−1)k

,

for any number of variables, where the Witt polynomials wk(x1, x2, . . .) ∈ Z[x1, x2, . . .] are char-
acterised by w0 = σ1(x1, x2, . . .) and

∑
i

xp
k

i =

k∑
j=0

pjwp
k−j

j .

By construction, the Witt polynomials are symmetric, and in the case of two variables x1, x2 one
has

w1 = −1

p

p−1∑
j=1

(
p

j

)
xj1x

p−j
2 .

In particular, w1 is divisible by x1x2, and by induction, all wk(x1, x2) are in (x1x2). More precisely,
for p odd one even has w1 ∈

(
x1x2(x1+x2)

)
, whence the same holds for all wk. For p = 2, however,

w1(x1, x2) = x1x2, but still wk ∈
(
x1x2(x1 + x2)

)
for k ≥ 2. To see this, denote by qm the power

sum xm1 + xm2 . Since we are dealing with only two indeterminates, Newton’s identities reduce

to qm+1 = (x1 + x2)qm − x1x2qm−1. By induction, this gives q2k = (x1 + x2)2k

+ 2(x1x2)2k−1

mod
(
x1x2(x1 + x2)

)
, hence

2kwk(x1, x2) = q2k −
k−1∑
i=0

2iw2k−i

i

= (x1 + x2)2k

+ 2(x1x2)2k−1

− w2k

0 − 2w2k−1

1 mod
(
x1x2(x1 + x2)

)
= 0 mod

(
x1x2(x1 + x2)) .

Thus

x1 +F x2 = (x1 + x2) +F

(
−1

p

p−1∑
i=1

(
p

i

)
xp−i1 xi2

)pn−1

mod
(
(x1x2)p

2n−2)
.

Writing now y1 = w0(x1, x2) and y2 = w1(x1, x2)p
n−1

, repeating the same argument leads to

x1 +F x2 = w0(y1, y2) +F w1(y1, y2)p
n−1

mod
(
(y1y2)p

2n−2)
,
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so certainly modulo (x1x2)p
2n−2

. But modulo p, one has

w1(y1, y2)p
n−1

=
(
−1

p

p−1∑
i=1

(
p

i

)
(x1 + x2)p−iw1(x1, x2)p

n−1i
)pn−1

and this is zero modulo (x1x2)p
2n−2

; the claim follows. For p odd, the second claim of (i) follows
from the same calculation, since w1(x1, x2) is in

(
x1x2(x1 + x2)

)
.

Let now p = 2. Then, as w2(x1, x2) = x1x2, we can no longer argue as before. On the other hand,
by part (i),

w0(y1, y2) +F w1(y1, y2)2n−1

= w0(y1, y2) + w1(y1, y2)2n−1

+ w0(y1, y2)2n−1

w1(y1, y2)22n−2

modulo
(
w0(y1, y2)22n−2

w1(y1, y2)23n−3)
, so in particular modulo

(
(x1x2(x1 + x2))22n−2)

. But the

third summand is also in
(
(x1x2(x1 + x2))22n−2)

, so we finally arrive at

x1 +F x2 = w0(y1, y2) + w1(y1, y2)2n−1

mod
(
(x1x2(x1 + x2))22n−2)

= x1 + x2 + (x1x2)2n−1

+
(
(x1 + x2)(x1x2)2n−1)2n−1

mod
(
x1x2(x1 + x2)22n−2)

as claimed. �

Lemma 3.2. Let p = 2 and ε, τ ∈ RG be of dimension 1 and 2, respectively. Assume further that
ε2 = 1. Set y = c1(ε) and ci = ci(τ) (i = 1, 2). Then

(i) y2n

= 0;

(ii) c1(ετ) = c1 + (yc1)2n−1

;

(iii) c2(ετ) = y2 + yc1 + c2 + y2n−1+1c2
n−1

1 + y2n−1
n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2 .

If in addition ετ = τ , then

(iv) (yc1)2n−1

= 0;
(v) yc21 = y3.

(vi) yc1 = y2 +

n−1∑
k=1

y2n−2k+1c2
k−1

2 .

Proof. (i) is immediate from [2](y) = y2n

. For (ii), write τ = ξ1 + ξ2 as a sum of line bundles and
xi = c1(ξi). By the splitting principle, we may calculate in F2[y]/(y2n

)⊗ F2[x1, x2]Σ2 , identifying
c1 with x2 + x2 and c2 with x1x2. Then by (i),

c1(ετ) = (y +F x1) + (y +F x2) = (x1 + x2) + y2n−1

(x1 + x2)2n−1

= c1 + (yc1)2n−1

using Lemma 3.1 (i). Similarly,

c2(ετ) = (y +F x2)(y +F x2)

= y2 + y(x1 + x2) + x1x2 + y2n−1+1(x1 + x2)2n−1

+ y2n−1

(x2n−1

1 x2 + x1x
2n−1

2 )

which gives (iii). Part (iv) is clear. Furthermore, if ετ = τ , (iii) reads as

c1 = y + y2n−1−1
n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2 mod ann(y)

whence

c21 = y2 + y2n−2c21

n−1∑
k=1

c2
n−2k+1

1 c2
k

2 = y2 mod ann(y)

which implies (v). Finally, (vi) is a consequence of (iii) and (v). �

We also record the following formulas, which can be verified in similar style using Lemma 3.1 (ii).

Lemma 3.3. Let p = 2 and τ ∈ RG of dimension 2. Set ci = ci(τ). Then
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(i) c1(τ2) = c2
n

1 ;

(ii) c2(τ2) = c21 + c2
n

1 c2
2n−1

2 mod (c1c2)22n−1

;

(iii) c3(τ2) = c2
n+2

1 + c2
n

1 c2
n

2 + c2
n+1

1 c2
2n−1

2 mod c2
2n−1+2n

1 c2
2n−1

2

= c2
n

1 c2
n

2 mod c2
n+1

1 ;

(iv) c4(τ2) = c21c
2n

2 + c2
n+1

2 + c2
n

1 c2
2n−1+2n

2 mod c2
2n−1

1 ;

(v) c1(λ2τ) = c1 + c2
n−1

2 + c2
n−1

1 c2
2n−2

2 mod (c1c2)22n−2

. �

4. D8 and Q8

We start with dihedral and quaternion groups of order 8. Not only is this the simplest case, it shall
also furnish us with certain identities useful later on. The quaternion case was already treated in
detail in section 15 of Strickland’s paper [9] and is only included here since it does not mean any
extra effort.
Both groups have isomorphic complex representation rings, but they differ in the λ-structure. To
fix notation, we use the following presentations of D8 and Q8: both are two generator groups, on
g1, g2, say, with relators

g2
1 , g

2
2 , [g1, g2]2 for D8,

g4
1 , g

2
1g

2
2 , g1g

−1
2 g1g2 for Q8.

There are 4 one-dimensional representations and one irreducible of dimension two. Let γj be

defined by γj(gk) = (−1)δjk (j, k = 1, 2), and ∆ = IndG〈g1g2〉(β) where β(g1g2) = i. Then one has

γ2
j = 1, γj∆ = ∆, ∆2 = 1 + γ1 + γ2 + γ1γ2, and

λ2∆ =

{
γ1γ2 for D8,

1 for Q8.

Let yi = c1(γi) (i = 1, 2) and cj = cj(∆) (j = 1, 2). Then it is known that K(n)∗(BG) is
multiplicatively generated by y1, y2, and c2, see [10, 8]. The first relations are easy: from γ2

i = 1
we immediately obtain

(4.1) y2n

1 = 0 , y2n

2 = 0 .

Now to γi∆ = ∆: by Lemma 3.2, one obtains

(4.2) (yic1)2n−1

= 0 .

and

(4.3) yic1 = y2
i +

n−1∑
k=1

y2n−2k+1
i c2

k−1

2 .

We intend to use ∆2 = 1 +γ1 +γ2 +γ1γ2 next: one has c1(∆2) = c1(∆)2n

by Lemma 3.3(i), hence

(4.4) c2
n

1 = y1 + y2 + (y1 +F y2) = (y1y2)2n−1

.

Now (4.3) can be restated as

(4.3’) c1 + yi +

n−1∑
k=1

y2n−2k

i c2
k−1

2 ∈ ann(yi)

Using (4.1), raising this to the power 2n yields c2
n

1 ∈ ann(yi), which in turn implies

(4.5) yi(y1y2)2n

= yic
2n

1 = 0

and thus, using (4.3) again,
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c2
n+1

1 = (y1y2)2n−1

c1 = y2n−1−1
1 y2n−1

2

(
y2

1 +

n−1∑
k=1

y2n−2k+1
1 c2

k−1

2

)
= y2n−1+1

1 y2n−1

2 = y1c
2n

1 = 0 .

(4.6)

By Lemma 3.2 (v),

(4.7) yic
2
1 = y3

i

which implies y3
1y2 = y1y2c

2
1 = y1y

3
2 . This gives

y1y2c1 = y2
1y2 +

n−1∑
k=1

y2n−2k+1
1 y2c

2k−1

2 = y2
1y2 +

n−1∑
k=1

y1y
2n−2k−1
2 c2

k−1

2

= y2
1y2 + y1y2c1 + y1y

2
2 ,

hence

(4.8) y2
1y2 = y1y

2
2 .

Furthermore, since we may calculate modulo c2
n+1

1 by (4.6), Lemma 3.3 implies

c2(∆2) = c21 + c2
n

1 c2
2n−1

2 .

On the other hand

c2(1 + γ1 + γ2 + γ1γ2) = y1y2 + (y1 + y2)(y1 + y2 + y2n−1

1 y2n−1

2 ) = y2
1 + y1y2 + y2

2

using (4.8), thus

(4.9) c21 = y2
1 + y1y2 + y2

2 + (y1y2)2n−1

c2
2n−1

2 .

Also, modulo c2
n+1

1 one has c3(∆2) = c2
n

1 c2
n

2 and

c3(1 + γ1 + γ2 + γ1γ2) = y1y2(y1 + y2 + (y1y2)2n−1

) = y2
1y2 + y1y

2
2 + y1y2c

2n

1 = 0 ,

leading to

(4.10) (y1y2)2n−1

c2
n

2 = 0 and c21 = y2
1 + y1y2 + y2

2 .

So far, everything worked for either D8 or Q8. Now that we shall use exterior powers, things will
start to differ. We have

c1(λ2∆) = c1 + c2
n−1

2 + c2
n−1

1 c2
2n−2

2

since we may calculate modulo c2
n

1 c2
n

2 by (4.10), and

c1(γ1γ2) = y1 + y2 + (y1y2)2n−1

,

hence

(4.11) c1 =

{
y1 + y2 + (y1y2)2n−1

+ c2
n−1

2 + c2
n−1

1 c2
2n−2

2 for D8,

c2
n−1

2 + c2
n−1

1 c2
2n−2

2 for Q8.

Together with (4.10) this gives

(4.12) y2
1 + y1y2 + y2

2 = c21 =

{
c2

n

2 + y2
1 + y2

2 for D8,

c2
n

2 for Q8;

or

(4.13) c2
n

2 =

{
y1y2 for D8,

y2
1 + y1y2 + y2

2 for Q8.

For the dihedral group, equations (4.8), (4.10), and (4.13) furthermore imply

c2
n−1

1 c2
2n−2

2 = (y2
1 + y1y2 + y2

2)2n−2

(y1y2)2n−2

=
(
(y2

1 + y2
2)y1y2

)2n−2

+ (y1y2)2n−1

= (y1y2)2n−1
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whence (4.11) reads as

(4.14) c1 =

{
y1 + y2 + c2

n−1

2 for D8,

c2
n−1

2 + c2
2n−1

2 for Q8.

Finally, plugging all this into (4.3) results in

(4.15)

n∑
k=1

y2n−2k+1
i c2

k−1

2 =

{
y1y2 for D8,

y2
i for Q8.

Summing up, we get the following relations:

(i) y2n

i ;

(ii) c2
n

2 =

{
y1y2 for D8,

y2
1 + y1y2 + y2

2 for Q8;

(iii)
∑n
k=1 y

2n−2k+1
i c2

k−1

2 =

{
y1y2 for D8,

y2
i for Q8.

Furthermore, in (4.14) we have also identified c1. Note that these relations imply all the others

proved along the way, as well as c2
2n−1+2n−1

2 = 0.
It remains to check that these relations produce a module of the correct rank, which according to
the Euler characteristic formula of Hopkins et al. [4, Theorem B (Part 2)],

χn,p(G) =
∑
A<G

µ(A)

[G : A]
χn,p(A)

where summation is over the abelian subgroups of G and µ is a Möbius function on the poset
of abelian subgroups, should be 3

24n − 1
22n. From the relations one easily reads off that the set

(which works for either group)

B := {yi1ck2 , y
j
2c
l
2, c

m
2 | 1 ≤ i, j < 2n, 0 ≤ k, l < 2n−1, 0 ≤ m < 1

24n + 1
22n}

generates C(G;K(n)): by relation (ii), we can eliminate any monomial divisible by y1y2, and (iii)

says that yj+1
i c2

n−1+k
2 is in the span of B, for any j, k ≥ 0.

The cardinality of this set, which gives an upper bound for the rank of the Chern approximation,
is indeed equal to the rank of K(n)∗(BG). Since this is all that is required, we have:

Theorem 4.1. Let G be either D8 or Q8. Then

(a) K(n)∗(BG) ∼= C(G;K(n));
(b) K(n)∗(BG) is multiplicatively generated by the classes y1, y2, c2 subject to the relations

(i)-(iii) above. �

Remark. Note that our relations coincide with those obtained by Bakuradze and Vershinin in [3].
They use slightly different generators though, their x corresponds to our y1 and c to y1 +F y2.

5. Dihedral, quaternion, and semidihedral groups

In order to prove a statement like part (a) of Theorem 4.1, it is certainly not necessary to determine
the complete multiplicative structure.
Suppose one already knew that K(n)∗(BG) was generated by Chern classes of representations. It
then suffices to produce, using only formal consequences of the ring structure of RG plus Adams
and/or exterior power operations, enough relations among the Chern classes of all irreducible
representations so that the rank of the result is equal to the Euler characteristic of G. This is the
course we shall follow from now on; for the assumption on generation by Chern classes we refer to
[7, 11],
Let

G = 〈s, t | s2m+1

= 1, t2 = se, tst−1 = sr〉
where e ∈ {0, 2m} and r ∈ {−1, 2m − 1}. Then G ∼= D2m+2 , the dihedral group of order 2m+2,
for e = 0 and r = −1, whereas e = 2m, r = −1 corresponds to the generalised quaternion group
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Q2m+2 and e = 0, r = 2m − 1 to the semidihedral group SD2m+2 . Except for this last case, m = 1
is allowed.
All three types have the same K(n) Euler characteristic

χn,2(G) =
1

2
2(m+1)n + 4n − 1

2
2n ;

this again follows with the Euler characteristic formula of [4], keeping in mind the following easily
verified facts: (i) G has an index two cyclic subgroup, (ii) every other maximal abelian subgroup
has order four, (iii) there are 2m + 3 conjugacy classes of elements, and (iv) χ0,p(G) = 1 and
χ1,p(G) is the number of conjugacy classes of p-elements of G, for any group G and prime p.
Indeed, from (i) and (ii) one has

χn,2(G) =
1

2
2(m+1)n + α4n + β2n

for some α, β, and solving the equations χ0,2(G) = 1 and χ1,2(G) = 2m + 3 gives the claimed
formula.
Furthermore, it is shown e.g. in [7] that K(n)∗(BG) is concentrated in even degrees.

Let A = 〈s〉 ∼= C2m+1 and ρ : A → C× denote a generator of RA with ρ(s) = exp(πi/2m). Define
linear characters η1 and η2 by

η1(s) = −1, η1(t) = 1; η2(s) = −1, η2(t) = −1;

the seemingly asymmetric definition will allow us to use the results of the previous section to start
inductive arguments. Then 1, η1, η2, and η1η2 are the linear characters of G. Furthermore, set

σk = IndGA(ρk) (k ∈ Z) .

Note that σ0 = 1 + η1η2 and σ2m = η1 + η2 for any of the three types, and σ2m+r = σ2m−r
for G dihedral or quaternion, or G semidihedral and r even, whereas σ2k+1 = σ2m−(2k+1) for G

semidihedral and 0 ≤ k < 2m−2.
The irreducible two-dimensional complex representations of G are

σi (1 ≤ i < 2m) for G = D2m+2 or Q2m+2 ,

and

σ2j (1 ≤ j < 2m−1) , σ±(2k+1) (0 ≤ k < 2m−2) for G = SD2m+2 .

The next two lemmas give the product structure and Adams and exterior power operations;
verification is a routine exercise using complex characters.

Lemma 5.1. (a) Let G be either dihedral or quaternion. Then ηiσk = σ2m−k (0 ≤ k ≤ 2m,
i = 1, 2), and σjσk = σk+j + σk−j for j ≤ k.

(b) Let G be semidihedral, i = 1, 2, and 0 ≤ j ≤ k. Then

ηiσk =

{
σ2m−k for k even, 0 ≤ k ≤ 2m,

σ−k for k odd, |k| < 2m−1.

σjσk =

{
σk+j + σk−j for j or k even,

σk+j + σ2m−k+j for j, k odd. �

Lemma 5.2. ψkσ1 = σk for k odd and all three types. Furthermore,

ψ2σk =


1− η1η2 + σ2k for G ∼= D2m+2 , or G ∼= SD2m+2 and k even,

(−1)k(1− η1η2) + σ2k for G ∼= Q2m+2 ,

η1 − η2 + σ2|k| for G ∼= SD2m+2 and k odd;

λ2σk =


η1η2 for G ∼= D2m+2 or k even,

η2 for G ∼= SD2m+2 and k odd,

1 for G ∼= Q2m+2 and k odd. �
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Now Adams operations can be recovered from exterior powers, thus setting σ = σ1, one has:

Corollary 5.3. (a) RD2m+2 and RSD2m+2 are generated by η1 and σ as Λ-rings.
(b) RQ2m+2 is generated by η1, η2 and σ as Λ-ring. �

Theorem 5.4. Let G be either D2m+2 , Q2m+2 , or SD2m+2 , m ≥ 2. Then C(G,K(n)) ∼=
K(n)∗(BG).

Proof. Let yi = c1(ηi) and ck = ck(σ), k = 1, 2. It is known e.g. from our earlier paper [7] that
K(n)∗(BG) is generated by y1, y2 and c2, so all we have to show is that C(G,K(n)) has the
correct rank.
Since G/〈s4〉 ∼= D8, we may assume the following relations obtained in Section 4:

(5.1) y2n

1 = 0, y2n

2 = 0, y2
1y2 = y1y

2
2 .

Lemma 5.2 implies ψ2m

σ = 1−η1η2+η1+η2; applying c1 and c2 to this identity yields, using (5.1),

c2
mn

1 = y1 +F y2 + y1 + y2 = (y1y2)2n−1

(5.2.a)

and consequently

c2
mn

2 = c2
mn

1 (y1 +F y2) + y1y2 = y1y2(5.2.b)

since c2
nm

1 (y1 +F y2) = (y1y2)2n−1(
y1 + y2 + (y1y2)2n−1)

= 0 by Lemma 3.1 (i) and (5.1).

The identities for λ2σ in turn yield, according to Lemma 3.3 (v),

(5.3) c1 = Y + c2
n−1

2 + c2
n−1

1 c2
2n−2

2 mod (c1c2)22n−2

with

Y =


y1 +F y2 for G = D2m+2 ,

0 for G = Q2m+2 ,

y2 for G = SD2m+2 .

Next, apply c2 to η1η2σ = σ. Writing z = y1 +F y2 = c1(η1η2), note that by (5.1) one has
zj = (y1 + y2)j for j > 1. Thus by Lemma 3.2 again,

zc1 = z2 + S where S =

n−1∑
k=1

z2n−2k+1c2
k−1

2 =

n−1∑
k=1

(y1 + y2)2n−2k+1c2
k−1

2 .

Thus (y1 + y2)c1 = (y1 + y2)2 + (y1y2)2n−1

c1 + S. But

(y1y2)2n−1

c1 = y2n−1
1 y2c1 = y2n−1

1 (y1c1 + (y1 + y2)2 + (y1y2)2n−1

c1 + S) = 0 ,

hence

(5.4) c2
mn+1

1 = 0

and

(5.5) zc1 = (y1 + y2)c1 = (y1 + y2)2 + S .

As in the previous section, zc21 = z3 by Lemma 3.2 (v). With (5.5) this implies (y1 + y2)c2
n

1 =

zc2
n

1 = z2n

c1 = 0; in particular, c2
2n−2

1 ∈ ann(y1 + y2) since n ≥ 2. Thus (5.3) gives

(y1 + y2)c1 = (y1 + y2)
(
Y + c2

n−1

2 + c2
n−1

1 c2
2n−2

2

)
Together with (5.5) one obtains

(5.6) (y1 + y2)c2
n−1

2 = (y1 + y2)2 + S + (y1 + y2)
(
Y + c2

n−1

1 c2
2n−2

2

)
or

c2
n−1

2 = y1 + y2 +

n−1∑
k=1

(y1 + y2)2n−2k

c2
k−1

2 + Y + c2
n−1

1 c2
2n−2

2 mod ann(y1 + y2)

whence
c2

2n−2

2 = (y1 + y2)2n−1

+ Y 2n−1

= (z + Y )2n−1

mod ann(y1 + y2) .
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and thus (y1 + y2)c2
n−1

1 c2
2n−2

2 = z2n−1+1(z + Y )2n−1

= 0 for all three cases. This means we can
rewrite (5.6) as

(5.7) (y1 + y2)c2
n−1

2 = S + Y ′ with Y ′ =


0 for G = D2m+2 ,

y2
1 + y2

2 for G = Q2m+2 ,

y2
1 + y1y2 for G = SD2m+2 .

Together with (5.2.b) one then obtains

(5.8) c2
(m+1)n−1+2n−1

2 = (y1y2c2)2n−1

= y2n−1
1 (y1c

2n−1

2 + S + Y ′) = 0

Finally, let ρ =
(
ψ2m−1−1σ

)
·
(
ψ2m−1

σ
)
. Lemma 5.2 says that ρ is equal to both ρ′ = σ+ η1σ and

ρ′′ = σ + η2σ. Now c2(ρ) can be expressed as a polynomial in Y and c2: Arguing as before with
the splitting principle, we may assume that the two-dimensional representation ρ is a sum ξ1 + ξ2
of line bundles, whence(

ψ2m−1−1σ
)
·
(
ψ2m−1

σ
)

=
(
ξ2m−1−1
1 + ξ2m−1−1

2

)
·
(
ξ2m−1

1 + ξ2m−1

2

)
.

The second Chern class of this expression is a power series in x1 = c1(ξ1) and x2 = c1(ξ2), which
is symmetric in x1 and x2 and thus can be identified with a power series in c1 and c2. Since all
classes are nilpotent, one is left with a polynomial in c1 and c2. By virtue of (5.3) and nilpotence
again, c1 can be written as a polynomial in Y and c2, so the same holds for c2(ρ).
On the other hand, by Lemma 3.2 yet again,

c2(σ + ηjσ) = yjc1 + y2
j + c21 + y2n−1

j c2
n−1+1

1 + y2n−1+1
j c2

n−1

1

+ y2n−1

j

n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2

(5.9)

for j = 1, 2.
Case 1: G = Q2m+2 . Then Y = 0, so c2(ρ) is a polynomial pQ(c2) in c2. By (5.3) and (5.9),

c2(ρ′) = y2
1 + y1c

2n−1

2 mod
(
c2

n

2

)
,

c2(ρ′′) = y2
2 + y2c

2n−1

2 mod
(
c2

n

2

)
,

thus one obtains

y1c
2n−1

2 = y2
1 + pQ(c2) mod

(
c2

n

2

)
,(5.10.a)

y2c
2n−1

2 = y2
2 + pQ(c2) mod

(
c2

n

2

)
.(5.10.b)

Since all generators are nilpotent, this implies that y1c
2n−1

2 and y2c
2n−1

2 are linear combinations of
monomials yri c

s
2 with s < 2n−1 whenever r > 0.

Thus we arrive at the following generating set for C(Q,K(n)):{
yji c

k
2 | i = 1, 2, 1 ≤ j < 2n, 0 ≤ k < 2n−1

}
∪
{
cl2 | 0 ≤ l < 2(m+1)n−1 + 2n−1

}
This set has χn,2(G) elements.
Case 2: For G dihedral or semidihedral, it turns out to be more convenient to replace one of
the generators y1, y2 with z = y1 +F y2; we shall only treat dihedral groups in detail. So let
G = D2m+2 , then one has Y = y1 +F y2 = z and

(5.3’) c1 = y1 + y2 + c2
n−1

2 mod
(
c2

2n−2

2

)
= z + c2

n−1

2 mod
(
c2

2n−2

2

)
.

Consequently, c2(ρ) is a polynomial pD(z, c2) in z and c2, and we replace the generator y2 by z.
The relevant relations established above then take the form

y2n

1 = 0 , z2n

= 0 , y2
1z = y1z

2(5.1’)

c2
mn

1 = (y1z)
2n−1

(5.2.a’)

c2
mn

2 = y1z + y2
1(5.2.b’)
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and in particular

(5.7’) zc2
n−1

2 =

n−1∑
k=1

z2n−2k+1c2
k−1

2

This means that any polynomial in z and c2 can be expressed in terms of monomials zicj2 with
j < 2n−1 whenever i > 0.
Now equation (5.9) implies, together with (5.1’) and (5.2.b’)

c2(ρ′) = y2
1 + c21 + y1c1 + (y1c1)2n−1

(y1 + c1) + y2n−1

1

n−1∑
k=1

c2
n−1−2k+1

1 c2
k−1

2

= y1(z + c2
n−1

2 ) + z2 + y2
1 + (y1z + y1c

2n−1

2 )(y1 + y + c2
n−1

2 )

+ y2n−1

1 c1

n−1∑
k=1

z2n−1−2k

c2
k−1

2 mod
(
c2

n

2

)
= z2 + y1c

2n−1

2 +

n−1∑
k=1

(y2n−2k+1
1 c2

k−1

2 + y2n−2k

1 c2
k−1+2n−1

2 mod
(
c2

n

2

)
= z2 + y1c

2n−1

2 +

n−1∑
k=1

y2n−2k+1
1 c2

k−1

2 mod
(
c2

n−1+1
2

)
Thus equating c2(ρ) and c2(ρ′) yields an equation

(5.11) y1c
2n−1

2 =

n−1∑
k=1

y2n−2k+1
1 c2

k−1

2 + z2 + pD(z, c2) mod
(
c2

n−1+1
2

)
which as before allows us to express y1c

n−1
2 in terms of monomials yi1c

j
2 and zkcl2 with j < 2n−1

for i > 0 and l < 2n−1 for k > 0, and the set{
yi1c

k
2 , z

jcl2 | 1 ≤ i, j < 2n, 0 ≤ k, l < 2n−1
}
∪
{
cr2 | 0 ≤ r < 2(m+1)n−1 + 2n−1

}
with χn,2(G) elements generates. �

Remark. A complete set of relations would be y2n

1 = 0, y2n

2 = 0, y1y2 = c2
mn

2 ,

(y1 + y2)c2
n−1

2 =

n−1∑
i=1

(y1 + y2)2n−2i+1c2
i−1

2 +


0 for G = D2m+2 ,

y2
1 + y2

2 for G = Q2m+2 ,

y2
1 + y1y2 for G = SD2m+2 ,

and

y1c
2n−1

2 =

n−1∑
j=1

y2n−2j+1
1 c2

j−1

2 +

mn∑
k=1

c
(2mn+1)2n−1−(2n−1)2k−1

2

+

n−1∑
l=1

c
2mn−1(2n−2l+1)+2l−1

2 +

{
0 for G = D2m+2 ,

y2
1 + y1y2 for G = Q2m+2 , SD2m+2 .

Such relations were obtained in [3] (in slightly different form).

6. Quasidihedral groups

The quasidihedral group QD2m+2 of order 2m+2 has a presentation

G = QD2m+2 = 〈s, t | s2m+1

= t2 = 1, tst = s2m+1〉 .

Its centre Z = 〈s2〉 is cyclic of order 2m, the commutator subgroup 〈s2m〉 has index 2. The maximal
abelian subgoups are C = 〈s〉, C ′ = 〈st〉, both cyclic of order 2m+1, and 〈s2, t〉 ∼= C2m × C2 with



12 BJÖRN SCHUSTER

common intersection Z. Thus the K(n) Euler characteristic is

χn,2(G) =
3

2
2(m+1)n − 1

2
2mn .

There are 2m+1 linear characters ζrηs, 0 ≤ r < 2m, s = 0, 1, defined by

ζ(s) = exp(πi/2m−1) , ζ(t) = 1 , and η(s) = 1 , η(t) = −1 ,

respectively. For reasons to be explained below, we also consider ξ := ζ2m−1

. Furthermore,
the group has 2m−1 irreducible representations of dimension 2: let ρ ∈ RC be a generator,
ρ(s) = exp(πi/2m), set

σj = IndGC(ρ2j+1) , 0 ≤ j < 2m−1 .

This accounts for all irreducible representations. The product structure of RG is given by

ζσj = σj+1 , ησj = σj ,

σ2
0 = ζ(1 + ξ + η + ηξ) ;

also note that ξσj = σj . Thus RG is generated by η, ζ, and σ := σ0. Finally, one has λ2σ = ηξζ.
Now set

x = c1(ξ) , y = c1(η) , z = c1(ζ) , c1 = c1(σ) , c2 = c2(σ) .

(Then x = z2(m−1)n

.)
From now on let n ≥ 2. Since η2 = ξ2 = 1 and ησ = ξσ = σ, Lemma 3.2 implies

(6.1) y2n

= 0 , x2n

= 0 ;

xc1 = x2 +

n−1∑
k=1

x2n−2k+1c2
k−1

2 ;(6.2.a)

yc1 = y2 +

n−1∑
k=1

y2n−2k+1c2
k−1

2 .(6.2.b)

With Lemma 3.3 (i), the identity σ2 = ζ(1 + η + ξ + ηξ) gives

(6.3) c2
n

1 = z + (y +F z) + (x+F z) + (x+F y +F z) = (xy)2n−1

;

the same identity arises from ψ2σ + ξηζ = ζ + ξζ + ηζ. As in the previous section, this implies

x(xy)2n−1

= y(xy)2n−1

= 0 and hence

(6.4) c2
n+1

1 = 0

and xc21 = x3 as well as yc21 = y3, and finally

(6.5) x2y = xy2 .

Now apply c2 and c3 to the relation for σ2; since we may calculate modulo c2
n+1

1 , Lemma 3.3
yields

(6.6) c21 = x2 + xy + y2 + c2
n

1 (z + z2n

+ c2
2n−1

2 )

and c2
n

1 c2
n

2 = c2
n

2 z2

Next, we use λ2σ = ξηζ and Lemma 3.3 (v). Applying c1 to this identity shows one can dispense

with z. Furthermore, since c2
n+1

1 = 0, one has

(6.7) x = c1(ξ) = c1((λ2σ)2m−1

) = [2m−1]c1(λ2σ) =

{
c2

mn−1

2 for m > 2,

c2
n

1 + c2
2n−1

2 for m = 2.

Thus the Chern approximation is generated by y, c1, c2 — just as K(n)∗(BQD2m+2), according
to [11]. Another generating set would be {y, z, c2}). More precisely, from

c1 + c2
n−1

2 + c2
n−1

2 c2
2n−1

2 = c1(λ2σ) = c1(ξηζ) = x+F y +F z
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one obtains first

z = c1 + x+ y + ((x+ y)z)2n−1

+ c2
n

1 + c2
n−1

2 + c2
n−1

1 c2
2n−2

2

= c1 + x+ y + (x+ y)2n−1

(c2
n−1

1 + c2
2n−2

2 ) + c2
n

1 + c2
n−1

2 + c2
n−1

1 c2
2n−2

2

and then, using the above expression (6.6) for c21,

(6.8) z = c1 + x+ y + (x+ y)2n−1

c2
2n−2

2 + c2
n

1 + c2
n−1

2 + c2
n−1

1 c2
2n−2

2 .

Plugging this back into (6.6) finally yields

(6.9) c21 = x2 + xy + y2 + c2
n

1 c2
n−1

2 = x2 + xy + y2 + (xy)2n−1

c2
n−1

2

The resulting module is thus generated by the set

{c1ci2 | 0 ≤ i < 2mn−1} ∪ {cj2 | 0 ≤ j < 2(m+1)n−1}

∪ {ykcl2 | 1 ≤ k < 2n, 0 ≤ l < 2mn−1}

∪ {ycr2 | 2mn−1 ≤ r < 2(m+1)n−1}

of cardinality 3 · 2(m+1)n−1 − 2mn−1 = χn,2(QD2m+2). (This set was already shown to be a basis
in [1].) We conclude

Theorem 6.1. The Chern approximation for quasidihedral groups is exact. �

Precise relations for K(n)∗(BQD2m+2) ∼= C(QD2m+2 ;K(n)) are implicit in (6.1) - (6.9). They
were originally obtained in [1] using transfer methods and λ-operations.

7. A 3-primary example

In this section we present a calculation of C(G;K(2)) for G the nonabelian group of order 27
and exponent 3, to a significant extent aided by MAPLE. We shall indicate for each individual
MAPLE computation which approximation to the formal group law was used and why it suffices.
A presentation of G is

G = 〈a, b, c | a3 = b3 = c3 = [a, c] = [b, c] = 1, bab−1 = ac〉 ,

the centre Z of G is 〈c〉 ∼= C3 with elementary abelian quotient. There are four maximal abelian
subgroups, 〈a, c〉, 〈b, c〉, 〈ab, c〉, 〈a2b, c〉, all elementary abelian of rank two and intersecting in the
centre. Consequently,

χn,3(G) =
4

3
9n − 1

3
3n .

There are several ways to calculate its Morava K-theory; either use the split extension 〈a, c〉 → C →
C3 (as done by Kriz [5]), or the central extension 〈c〉 → G→ Cp×Cp (as in Tezuka-Yagita [10] for
BP -cohomology). It turns out that K(n)∗(BG) is generated by Chern classes (or by transferred
Euler classes). Thus this group has the chance of having an exact Chern approximation; we shall
however see that this is not so.
First recall the complex representation theory of G. Define linear characters η1, η2 by

η1(a) = ω, η1(b) = η1(c) = 1, η2(b) = ω, η1(a) = η2(c) = 1

where ω is a primitive third root of unity. Furthermore, let V = 〈a, c〉 ≤ G, define γ ∈ RV by

γ(a) = 1, γ(c) = ω, and set σk = IndGV (γk) for k = 1, 2. The structure of RG as a Λ-ring is
recorded in the following lemma.

Lemma 7.1. (a) The irreducible complex representations of G are ηi1η
j
2, 0 ≤ i, j ≤ 2, and

σ1, σ2.
(b) η3

j = 1, ηjσk = σk (j, k = 1, 2); σ2
1 = 3σ2, σ2

2 = 3σ1, σ1σ2 =
∑

0≤i,j≤2 η
i
1η
j
2.

(c) ψ2σ1 = λ2σ1 = σ2, ψ2σ2 = λ2σ2 = σ1, λ3σ1 = λ3σ2 = 1. �
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Thus η1, η2 and σ := σ1 generate RG as a Λ-ring. Set y1 = c1(η1), y2 = c1(η2), and ck = ck(σ),
then K(n)∗(BG) is generated by these classes.
The first relations are easy: ψ3ηj = 1 = ψ3σ imply

y9
1 = 0, y9

2 = 0, c9k = 0 (k = 1, 2, 3) .

Writing (formally) σ = ξ1 + ξ2 + ξ3 as a sum of line bundles, and setting xi = c1(ξi), we may
calculate c1(λ3σ) as c1(ξ1ξ2ξ3). The Witt polynomials wk being polynomials in Chern classes they
satisfy w9

k = 0, too. Since λ3σ = 1, Ravenel’s formula (see Section 3) gives

0 =
∑
n≥0

F
wk(x1, x2, x3)3k

= w0(x1, x2, x2) +F w1(x1, x2, x2)3

Now w0 = c1 and w1 = −c1c2 + c3, thus

(7.1) c1 = −c33 .

Next, we evaluate Chern classes of the identities ηjσ = σ, j = 1, 2.
Modulo (c1 + c33, c

9
2, c

9
3), one has

c1(ηjσ) = c1 − y3
j c

3
2

c2(ηjσ) = c2 + yjc
3
3 + y3

j (c22c3 − c32c33c53) + y4
j c

3
2 + y6

j (−c22 + c62 − c2c63 − c43)

c3(ηjσ) = c3 + yjc2 − y2
j c

3
3 + y3

j (1− c2c23 − c22c43 + c83) + y4
j (c22c3 − c32c33 − c53)

−y5
j c

3
2 + y6

j (−c2c3 − c22c33 + c52c3 − c32c53 + c73)

+y7
j (−c22 + c62 − c2c63 − c43)

These expressions were obtained with MAPLE. Since y9
j = 0, it suffices to work with the approx-

imation (i) of Lemma 3.1 for this computation.
We let MAPLE carry out the calculation in a polynomial ring, use a simple routine to express
symmetric polynomials in terms of elementary symmetric functions, i.e. Chern classes, and reduce
modulo relations already obtained. Subsequent computer calculations always follow the same
pattern. In particular, when calculating Chern classes of exterior powers or Adams operations, we
can express the representations in question as sums of line bundles and caclulate in a polynomial
algebra.
The equation for c1 immediately implies

(7.2) y3
1c

3
2 = y3

2c
3
2 = 0 .

Using this identity, the equation c2(ηjσ) = c2 simplifies to

0 = yjc
3
3 + y3

j (c22c3 − c53)− y6
j (c22 + c2c

6
3 + c43) ,

i.e. c33 = y2
j (c53 − c22c3) + y5

j (c22 + c2c
6
3 + c43) mod ann(yj). Squaring this latter identity yields

c63 = y4
j (c42c

2
3 + c22c

6
3) = y4

j c
3
2c

6
3 = y6

j c
4
2c

6
3 = 0 mod ann(yj) or yjc

6
3 = 0. Continuing to calculate

modulo ann(yj) one obtains

c53 = y2
j (c73 − c22c33) + y5

j (c22c
2
3 + c63) = −y2

j c
2
2c

3
3 + y5

j c
2
2c

3
3 mod ann(yj)

= −y2
j c

2
2

[
y2
j (c53 − c22c3) + y5

j (c22 + c43)
]

+ y5
j c

2
2c

3
3 mod ann(yj)

= −y4
j c

2
2c

5
3 − y7

j c
2
2c

4
3 + y5

j c
2
2c

2
c mod ann(yj)

= −y4
j c

2
2

[
−y4

j c
2
2c

5
3 − y7

j c
2
2c

4
3 + y5

j c
2
2c

2
3

]
− y7

j c
2
2c3
[
y2
j (c53 − c22c3) + y5

j (c22 + c43)
]

+ y5
j c

2
2c

2
3 mod ann(yj)

= y5
j c

2
2c

2
3 mod ann(yj)

Thus yjc
5
3 = y6

j c
2
2c

2
3 and by a similar calculation, y6

j c
4
3 = −y8

j c
2
2c

2
3, hence

(7.3) yjc
3
3 = −y3

j c
2
2c3 + y6

j c
2
2 .

These relations furthermore imply y7
j c

3
3 = y4

j c
5
3 = 0 and yjc

2
2c

3
3 = 0.
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The identity for the third Chern class now simplifies to

0 = yjc2 − y2
j c

3
3 + y3

j (1− c2c23) + y4
j c

2
2c3 − y6

j c2c3 + y7
j c

2
2

= yjc2 + y4
j c

3
2c3 − y7

j c
2
2 + y3

j (1− c2c23) + y4
j c

2
2c3 − y6

j c2c3 + y7
j c

2
2

= yjc2 + y3
j − y3

j c2c
2
3 + y4

j c
2
2c3 − y6

j c2c3

Applying the resulting equation for yjc2 repeatedly then gives

(7.4) yjc2 = −y3
j − y5

j c
2
3

which together with (7.3) implies

(7.5) yjc
3
3 = −y7

j c3 .

Rewriting now (7.4) as c2 = −y2
j−y4

j c
3
3 mod ann(yj), taking the square and using (7.5) furthermore

yields yjc
2
2 = y5

j − y7
j c

2
3 = y5

j + yjc
4
3, whence

y5
1y2 − y1y

5
2 = (y1c

2
2 + y1c

4
3)y2 − y1(y2c

2
2 + y2c

4
3) = 0

and then

(7.6) y3
1y2 − y1y

3
2 = (−y1c2 − y5

1c
2
3)y2 − y1(−y2c2 − y5

2c
2
3) = −(y5

1y2 − y1y
5
2)c23 = 0 .

Next, we use σ2 = 3σ · λ2σ in the form ψ2σ = λ2σ. Another MAPLE computation shows that
modulo (c1 + c33, c

9
2, c

9
3),

c2(λ2σ) = c2 , c2(ψ2σ) = c2 + c52 + c32c
4
3 + c42c

6
3 − c63 ,

c3(λ2σ) = −c3 , c3(ψ2σ) = −c3 + c2c
3
3 − c42c3 + c52c

3
3 + c62c

5
3 − c82c3 .

For this and the next MAPLE computation it suffices to use an approximation to the formal group
law which is accurate up to degree 40 (where the coordinate of the formal group is given degree 1,
so that ci has degree i); this is good enough since the the highest degree nonzero monomial is
c82c

8
3. Such an approximation can be obtained by using Witt polynomials.

The representation ring identity thus gives

c52 = c63 − c32c43 − c42c63(7.7.a)

c2c
3
3 = c42c3(7.7.b)

(for the second equality, observe that c2c
3
3 = c42c3 − c52c

3
3 − c62c

5
3 + c82c3 yields c52c

3
3 = c82c3 and

c62c
3
3 = 0). Combining (7.7.a) and (7.7.b) furthermore yields

(7.8) c62 = 0 and c52 = c63 .

It remains to analyse σ · λ2σ =
∑

0≤i,j≤2 η
i
1η
j
2 =: Σ. With the aid of MAPLE once again one

obtains ck(σ · λ2σ) = 0 for k = 1, 3, 5, 7, 8, 9 and

c2(σ · λ2σ) = c52 + c32c
4
3 + c42c

6
3 + c63(7.9.a)

c4(σ · λ2σ) = c52c
6
3 − c62(1 + c83) + c82c

4
3(7.9.b)

c6(σ · λ2σ) = −c22c63 + c32(1 + c83)− c52c43 + c72(7.9.c)

modulo (c31 + c3, c
9
2, c

9
3), which in light of (7.8) become

(7.10) ck(σ · λ2σ) =


−c63 for k = 2,

c32 for k = 6,

0 otherwise.
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On the other hand, another MAPLE computation (here clearly the approximation of Lemma 3.1 (i)
to the formal group law suffices) gives ck(Σ) = 0 for k odd and

c2(Σ) = y6
1y

4
2 + y4

1y
6
2 = −y8

1y
2
2

c4(Σ) = −y6
1y

6
2 = 0

c6(Σ) = −y6
1 − y6

2 − y4
1y

2
2 − y2

1y
4
2 − y8

1y
6
2 − y6

1y
8
2 = −y6

1 − y6
2 + y4

1y
2
2

c8(Σ) = y6
1y

2
2 + y4

1y
4
2 + y2

1y
6
2 + y8

1y
8
2 = 0

where we also used (7.6). Consequently, c63 = y8
2y

2
2 and c32 = −y6

1 − y6
2 + y4

1y
3
2 . This exhausts what

we can obtain from RG. Now define a set G := {f1, f2, . . . , f10} by

f1 = y9
1 , f2 = y9

2 , f3 = y1y
3
2 − y3

1y2 , f4 = y1c
3
3 + y7

1c3 , f5 = y2c
3
3 + y7

2c3 ,

f6 = y1c2 + y3
1 + y5

1c
2
3 , f7 = y2c2 + y3

2 + y5
2c

2
3 , f8 = c63 − y8

1y
2
2 ,

f9 = c2c
3
3 − (y8

1 + y8
2 − y6

1y
2
2)c3 , f10 = c32 + y6

1 + y6
2 − y4

1y
2
2

Then G generates the relations ideal. With respect to lexicographic ordering and c2 > c3 > y2 > y1,
the set G ist indeed a Gröbner basis; it is not hard to check by hand that all syzygies between
the fi reduce to zero modulo G (or one may trouble MAPLE once more). As a sample calculation
we consider the syzygy s9,10 between f9 and f10: the leading terms are g9 = c2c

3
3 and g10 = c32,

respectively, thus

s9,10 = c22(c2c
3
3 − y8

1c3 − y8
2c3 + y6

1y
2
2c3)− c33(c32 + y6

1 + y6
2 − y4

1y
2
2)

= −y8
1c

2
2c3 − y8

2c
2
2c3 + y6

1y
2
2c

2
2c3 − y6

1c
3
3 − y6

2c
3
3 + y4

1y
2
2c

3
3

whose summands are divisible by the leading monomials g6 = y1c2, g7 = y2c2, g4 = y1c
3
3 and

g5 = y2c
3
3, whence

s9,10 ≡ y10
1 c2c3 + y12

1 c2c
3
3 + y10

2 c2c3 + y12
2 c2c

3
3 − y8

1y
2
2c2c3

− y10
1 y2

2c2c
3
3 + y12

1 c3 + y12
2 c3 − y10

1 y2
2c3

≡ −y8
1y

2
2c2c3 ≡ −y7

1y
2
2c3(−y3

1 − y5
1c

2
3) ≡ 0 ;

the other cases are similar (and shorter).
Thus one has an additive isomorphism

C(G;K(2))⊗K(2)∗ F3
∼= F3[y1, y2]/(y9

1 , y
9
2 , y1y

3
2 − y3

1y2)⊗ F3[c3]/(c33)

⊕ F3{c33, c43, c53, c2, c2c3, c2c23, c22, c22c3, c22c23} .

Proposition 7.2. Let G be the nonabelian group of order 27 and exponent 3. Then C(G;K(2))
has rank 108. �

Remark. A similar result was communicated to the author by N. P. Strickland. In the same article
where Chern approximations are introduced, he also develops an associated ‘generalised character
theory’. In the case at hand, the vector space of ‘generalised characters’ also has rank 108.

To determine the ring structure of K(2)∗(BG) for this G, one may proceed by the following
observations: firstly, K(2)∗(BG) is clearly a quotient of its Chern approximation. Secondly, the
spectral sequence calculations alluded to above also give the distribution of additive generators:
K(n)∗(BG) is ‘equidistributed’ in the sense that rankK(n)∗ K(n)2i(BG) = rankK(n)∗ K(n)0(BG)−
1 for all i 6≡ 0 mod 2(pn−1). Finally, one may calulate the restrictions to the maximal subgroups.
Taken together with the equalities yjc

2
2 = y5

j − y6
j c

2
3 deduced from f6 and f7 one obtains

f̃10 := c22 − (y4
1 + y4

2 − y2
1y

2
2) + (y6

1 + y6
2 − y4

1y
2
2)c23 = 0 .

Proposition 7.3. K(2)∗(BG) ∼= K(2)∗[y1, y2, c2, c3]/(f1, . . . , f9, f̃10). �
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