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Introduction

On July 19, 2006, Professor Walter Philipp passed away during a hike in the Austrian Alps as
a result of a sudden heart attack. By the time of his death, Walter Philipp had been for almost
40 years on the faculty of the University of Illinois at Urbana-Champaign, for the last couple
of years as professor emeritus. He is survived by his wife Ariane and his four children, Petra,
Robert, Anthony and André. Walter Philipp is sorely missed by his family, but also by his many
colleagues, coauthors and former students all over the world, to whom he was a loyal and caring
friend for a long time, in some cases for several decades.

Walter Philipp was born on December 14, 1936 in Vienna, Austria, where he grew up and
lived for most of the first 30 years of his life. He studied mathematics and physics at the
University of Vienna, where he obtained his Ph.D. in 1960 and his habilitation in 1967, both
in mathematics. From 1961 until 1967 he was scientific assistant at the University of Vienna.
During this period, Walter Philipp spent two years as a postdoc in the US, at the University of
Montana in Missoula and at the University of Illinois. In the fall of 1967 he joined the faculty
of the University of Illinois at Urbana-Champaign, where he would stay for the rest of his life.
Initially, Walter Philipp was on the faculty of the Mathematics Department, but in 1984 he
joined the newly created Department of Statistics at the University of Illinois. From 1990 until
1995 he was chairman of this Department. While on sabbatical leave from the University of
Illinois, Walter spent longer periods at the University of North Carolina at Chapel Hill, at MIT,
at Tufts University, at the University of Göttingen and at Imperial College, London.

Walter Philipp received numerous recognitions for his work. Most outstanding of these was
his election to membership in the Austrian Academy of Sciences.

As a student and postdoc at the University of Vienna, Walter Philipp worked under the guid-
ance of Professor Edmund Hlawka, founder of the famous postwar Austrian school of analysis
and number theory. Other former students of Professor Hlawka include Johann Cigler, Harald
Niederreiter, Wolfgang M. Schmidt, Fritz Schweiger and Robert Tichy. It was here that Wal-
ter Philipp got in touch with the classical topics from analysis and number theory that would
guide a large part of his research for the rest of his life. Uniform distribution, discrepancy of
sequences, number-theoretic transformations associated with various expansions of real num-
bers, additive number-theoretic functions, Diophantine approximation, lacunary series, became
recurrent themes in Walter Philipp’s subsequent work. He studied these themes using tech-
niques from probability theory, e.g. for mixing processes, martingales and empirical processes.
He contributed greatly to the development of several branches of probability theory and solved
much investigated, difficult problems in analysis and number theory with the help of the tools
he developed.

Themes from Analysis and Number Theory

A full understanding and appreciation of Walter Philipp’s research requires the background of
some topics from analysis and number theory. In what follows we shall briefly introduce the
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topics that were recurrent themes in Walter Philipp’s work.

Uniform distribution mod 1. A sequence (xn)n≥1 of real numbers is called uniformly dis-
tributed mod 1 if for all x ∈ [0, 1]

lim
N→∞

1
N

#{1 ≤ i ≤ N : {xi} ≤ x} = x,

where {x} denotes the fractional part of x. More generally, a sequence of vectors (xn) ⊂ Rd is
called uniformly distributed mod 1 if

lim
N→∞

1
N

#{1 ≤ i ≤ N : {xi} ∈ A} = λ(A)

for all rectangles A ⊂ [0, 1]d, where λ denotes Lebesgue measure and for x ∈ Rd the symbol {x}
is interpreted coordinatewise. The famous Weyl criterion (1916) states that a necessary and
sufficient condition for the uniform distribution of (xn) modulo 1 is

lim
N→∞

1
N

N∑

n=1

e2πi〈k,xn〉 = 0

for all k ∈ Zd \ {0}. An immediate consequence is the uniform distribution of the sequence
(nα)n≥1 ⊂ R for irrational α, but with suitable methods this leads to the uniform distribution
of many other sequences in one and higher dimension, for example, a large class of sequences of
the type {nkα} for increasing sequences (nk) of positive integers.

Discrepancies. Given a sequence of real numbers (xn)n≥1 uniformly distributed mod 1, one
can study the discrepancy

DN := sup
x∈[0,1]

∣∣∣∣
1
N

#{1 ≤ i ≤ N : {xi} ≤ x} − x

∣∣∣∣ .

A Glivenko-Cantelli type argument shows that DN → 0, and one may then ask for the exact
rate of convergence of DN to 0. In the case of a d-dimensional sequence (xn)n≥1, one can define
the discrepancy with respect to a class C of subsets of [0, 1]d by

DN (C) := sup
A∈C

∣∣∣∣
1
N

#{1 ≤ i ≤ N : {xi} ∈ A} − λ(A)
∣∣∣∣ .

In this case, the additional issue of the choice of suitable class C arises. Not that DN (C) → 0
does not necessary hold even if the sequence (xn)n≥1 is uniformly distributed.

θ-adic expansion of real numbers. Let θ > 1, not necessarily an integer. Every real
number ω ∈ [0, 1) can be written as an infinite series

ω =
∞∑

n=1

θ−nxn

where 0 ≤ xn < θ are integers. Clearly xn = [Tnω] where the transformation T : [0, 1] → [0, 1]
is defined by Tω := {θ ω} and [x] denotes the integer part of x. Also, Tnω =

∑∞
k=1 θ−kxn+k.
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The basic asymptotic question here is the distribution of digits in the expansion, for example,
one can ask if the limits of relative frequencies

Fk := lim
N→∞

1
N

N∑

n=1

1{xn=k}

exist. If θ is an integer, the transformation T is ergodic and has Lebesgue measure as an
invariant measure, thus the ergodic theorem implies that the limits Fk exist and are equal to
θ−1 for k = 0, 1, . . . , θ− 1 and almost every real number ω. With the usual terminology, almost
every real number is normal with respect to base θ. This statement, proved first by Borel in
1909, is a typical result in the metric theory of numbers, stating that a certain property holds for
almost every real number, without specifying the exceptional set. In fact, to determine whether
a given number ω is normal is a very hard problem and only very few normal numbers are
known explicitly. We do not know, for example, if

√
2, e or π are normal in any base. Note that

the normality of ω in base a ∈ N is equivalent to the statement that the sequence (an ω)n≥1 is
uniformly distributed mod 1.

If θ is not an integer, the transformation T is still ergodic, but Lebesgue measure is not
an invariant measure. It is known from work of Alfréd Rényi (1957) that there exists a unique
invariant measure µ which is equivalent to Lebesgue measure. In this case, the sequence (θnω)n≥1

is no longer uniformly distributed, but

lim
N→∞

1
N

#{1 ≤ n ≤ N : Tnω ≤ x} = µ([0, x]),

for almost every ω.

Continued fraction expansion. Every real number ω ∈ (0, 1] can be expressed as an
infinite continued fraction

ω =
1

x1 + 1
x2+ 1

x3+...

= [x1, x2, . . .],

where xi ∈ {1, 2, . . .}. Closely related is the transformation T : (0, 1] → (0, 1], defined by

Tω := {1/ω} .

The n-th digit in the continued fraction expansion is given by xn = [Tnω]. As in the case of the
θ-adic expansion, Tnω can be written as a function of xn+1, xn+2, . . . by

Tnω = [xn+1, xn+2, . . .].

T is an ergodic transformation with invariant measure given by the Gauss measure

µ((a, b]) =
1

log 2

∫ b

a

1
1 + x

dx.

As a consequence, the asymptotic distribution of the sequence (Tnω)n≥1 is governed by the
Gauss measure, i.e.

lim
N→∞

1
N

#{1 ≤ n ≤ N : Tnω ≤ x} =
1

log 2

∫ x

0

1
1 + t

dt.

From here, one obtains that the integer k occurs in the continued fraction expansion of a random
number ω with relative frequency 1

log 2

(
log k

k+1 − log k+1
k+2

)
, a fact already conjectured by Gauss.
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Additive functions in number theory. A function f : N −→ R is called additive if

f(mn) = f(m) + f(n),

whenever m and n are coprimes. A simple example of an additive function is ω(n), the number
of prime divisors of n. Hardy and Ramanujan studied this function and showed that ω(n) is
of the order log log n. More precisely, if PN denotes the uniform distribution on the first N
integers, then

PN

(
n ≤ N :

∣∣∣∣
ω(n)

log log N
− 1

∣∣∣∣ ≥ ε

)
−→ 0

for any ε > 0. Turán observed that the Hardy-Ramanujan theorem is a simple consequence of
an easily verifiable inequality for the second moment of ω(n) and Chebychev’s inequality and
thus initiated the subject of probabilistic number theory. The Hardy-Ramanujan theorem was
later strengthened by Erdős and Kac, who proved a central limit theorem

PN

(
n ≤ N :

ω(n)− log log N√
log log N

≤ x

)
−→

∫ x

−∞
e−y2/2dy.

Diophantine Approximation. Let f be a positive, continuous, nonincreasing function on
R+. By a classical result of Khinchin, for almost all real α the inequality

|qα− p| ≤ f(q)
q

(1)

has infinitely many or only finitely many solutions in integers p, q according as
∑ f(k)

k diverges
or converges. Probabilistically, this is the Borel-Cantelli lemma for certain dependent events;
the main difficulty is to deal with the dependence in the case

∑ f(k)
k = ∞. Khinchin’s result

has been generalized and improved upon in many directions by Cassels, W. M. Schmidt, Erdős,
LeVeque, Szüsz, Gallagher, Ennola, Billingsley and many others. The simplest proof depends
on a connection of the problem with continued fraction theory. Call a fraction p/q a best
approximation to α if it minimizes |q′α−p′| over fractions p′/q′ with denominator q′ not exceeding
q. The successive best approximations to α are the convergents pn(α)/qn(α), n=1, 2, . . . of its
continued fraction expansion and thus the value of |qα − p| for the n-th in the series of best
approximation is dn(α) = |qn(α)α − pn(α)|. Thus the study of number of solutions of (1) is
equivalent to the study of growth of the sequence dn(α). Khinchin proved that

1
n

log dn(α) → − π2

log 2

for almost every α.

Lacunary sequences. Probabilistic methods play an important role in harmonic analysis
and there is a profound connection between probability theory and trigonometric series. From
a purely probabilistic point of view, the trigonometric system (cos 2πnx, sin 2πnx)n≥1 is a se-
quence of orthogonal (i.e. uncorrelated) random variables over [0, 1], which, however, are strongly
dependent. For example, the r.v.’s sin 2πnx have the same distribution, but their partial sums∑

n≤N sin 2πnx remain bounded for any fixed x, a behavior very different from that of i.i.d.
random variables. However, it has been known for a long time that for rapidly increasing (nk),
the sequences (sin 2πnkx)n≥1 and (cos 2πnkx)n≥1 behave like sequences of independent random
variables. For example, Salem and Zygmund (1947) proved that if (nk) satisfies the Hadamard
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gap condition nk+1/nk ≥ q > 1 (k = 1, 2, . . .), then (sin 2πnkx)n≥1 obeys the central limit
theorem, i.e.

lim
N→∞

λ{x ∈ (0, 1) :
∑

k≤N

sin 2πnkx < t
√

N/2} = (2π)−1/2

∫ t

−∞
e−u2/2du. (2)

Erdős (1962) proved that the CLT (2) remains valid if the Hadamard gap condition is weakened
to nk+1/nk ≥ 1 + ck/

√
k, ck → ∞ and this result is sharp. Similar results hold if sinnkx is

replaced by f(nkx), where f is a real measurable function satisfying

f(x + 1) = f(x),
∫ 1

0
f(x)dx = 0,

∫ 1

0
f2(x)dx < ∞.

For example, if f ∈ Lip (α), α > 0 and nk+1/nk → ∞, then the CLT and LIL hold for f(nkx).
(Takahashi (1961, 1963)). If we assume only nk+1/nk ≥ q > 1, both the CLT and LIL can
fail, a fact discovered by Erdős and Fortet. By a result of Gaposhkin (1970), given a sequence
(nk) satisfying the Hadamard gap condition, f(nkx) satisfies the CLT and LIL for all smooth
periodic functions f if and only if for any fixed nonzero integers a, b, the number of solution of
the Diophantine equation ν = ank ± bnl (k, l ≥ 1) is O(1) uniformly in ν > 0.

Walter Philipp’s work

Given that Walter Philipp published close to 80 research papers, it is impossible to mention every
single result he ever obtained. We will instead try to focus on the main lines of his research.
Philipp’s earliest work, originating from his Ph.D. thesis, concerns uniform distribution mod 1.
Weyl (1916) had shown that the sequence (an ω)n≥1 is uniformly distributed modulo 1 for almost
all ω ∈ [0, 1], if (an)n≥1 ⊂ R is a sequence of positive numbers satisfying an+1 − an ≥ δ > 0
(n = 1, 2, . . .) for some δ > 0. Walter Philipp studied this question for d-dimensional sequences,
i.e. for the sequence (Anω)n≥1 where ω ∈ Rd and (An)n≥1 is a sequence of d-dimensional matrices
satisfying some growth condition. As a corollary, uniform distribution of the sequence (Anω)n≥1

for almost all ω ∈ Rd can be obtained, provided the matrix has all eigenvalues strictly larger
than 1.

In 1967 Walter Philipp published the first in a series of papers on the asymptotic behavior
of weakly dependent stochastic processes. This topic would dominate his research interests for
the next 15 years and keep his close attention for the rest of his life. In the second half of
the 1960s and during all of the 1970s Walter Philipp was internationally recognized as a leader
in the development of new limit theory for weakly dependent processes and their applications
to problems in analysis and number theory. In this period the focus of his research changed
substantially: instead of an analyst and number theorist using tools from probability theory he
became a probabilist applying his results to problems in analysis and number theory.

In all of the topics from analysis and number theory mentioned above, there are sequences
of random variables in the background, most of them defined on the probability space [0, 1],
equipped with some measure equivalent to Lebesgue measure. In Weyl’s almost sure equidis-
tribution theory, we have the random variables ω 7→ an ω. In each of the different expansions
of real numbers ω ∈ (0, 1], the n-th digit maps ω → xn = xn(ω) are random variables, and so
are the n-th iterates ω 7→ Tnω. With the notable exception of the digits in the expansion to an
integer base a, none of these random variables are independent. But the dependence is weak, in
some sense yet to be defined. Walter Philipp soon realized that the theory of weakly dependent
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stochastic processes, then only recently created by publications of Rosenblatt (1956), Ibragi-
mov (1962) and Billingsley (1968), provides the right framework for the problems he wanted to
attack.

There is no such thing as a universal definition of weak dependence that would imply the
validity of all limit theorems known for independent processes. There are many notions, each
of them allowing, under additional technical assumptions, the proof of some of the classical
limit theorems of probability theory. The stronger the notion, the more limit theorems can be
established, but at the same time fewer examples satisfy the conditions. The earliest and classical
notions of weak dependence are α-mixing (also called strong mixing, but not to be confused with
the same notion in ergodic theory) and φ-mixing (also called uniform mixing). Let (Xn)n≥1 be
a stochastic process, and define for integers k, l with k ≤ l the σ-fields F l

k = σ(Xk, . . . , Xl). We
then define the mixing coefficients

α(k) := sup
n≥1

sup
A∈Fn

1 , B∈F∞n+k

|P (A ∩B)− P (A)P (B)| ,

φ(k) := sup
n≥1

sup
A∈Fn

1 ,B∈F∞n+k,P (A)>0

|P (A ∩B)− P (A)P (B)|
P (A)

.

The process (Xn)n≥1 is called α-mixing if limn→∞ α(n) = 0 and φ-mixing if limn→∞ φ(n) = 0.
Rosenblatt (1956) and Ibragimov (1962) established central limit theorems for α- and φ-mixing
random variables, requiring a combination of moment conditions and conditions on the speed
at which the mixing rates converge to zero. Later, several other related mixing concepts (ψ, ρ
mixing, absolute regularity, etc.) were introduced and studied in detail. For stationary φ-mixing
processes (Xn), Ibragimov conjectured that the central limit theorem holds if EX2

1 < ∞ and
Var (

∑n
k=1 Xk) → ∞, but until today this conjecture has not been verified. This conjecture

inspired some of Walter Philipp’s deepest results in the field of mixing random variables: his
1984 joint paper with Dehling and Denker, giving a necessary and sufficient condition for the
CLT for ρ-mixing sequences without any rate or moment conditions and his 1998 joint paper
with Berkes, giving a complete characterization of the law of the iterated logarithm and the
domain of partial attraction of the Gaussian law for φ-mixing sequences, again without any
moment or rate conditions.

In his first papers on limit theorems for weakly dependent processes, culminating his 1975
AMS memoir with William Stout, Philipp solved the central limit problem (characterizing the
limit distributions of arrays with corresponding criteria for convergence to specific limits) in
the case of bounded variances, proved Berry-Esseen bounds for the speed of convergence in the
CLT and obtained laws of the iterated logarithm under various weak dependence conditions.
In addition to the mixing conditions already mentioned, he studied the ψ-mixing coefficients
defined by

φ(k) := sup
n≥1

sup
A∈Fn

1 ,B∈F∞k+n

|P (A ∩B)− P (A)P (B)|
P (A)P (B)

,

and ψ-mixing processes. The notion of ψ-mixing is stronger than any of the other mixing
conditions and ψ-mixing processes satisfy most of the classical i.i.d. limit theorems. The digits
of a random number ω ∈ (0, 1] in the continued fraction expansion form a ψ-mixing process. A
second weak dependence condition investigated by Walter Philipp is a correlation condition for
mixed products, requiring that for all integers 0 ≤ i1 < . . . < ir, 1 ≤ j ≤ r, pν ≥ 0
∣∣∣E

(
Xp1

i1
· . . . ·Xpr

ir

)−E
(
Xp1

i1
· . . . ·Xpj

ij

)
E

(
X

pj+1

ij+1
· . . . ·Xpr

ir

)∣∣∣ ≤ L(j)c(ij+1−ij) sup
1≤i≤ir

E|Xi|
∑

pν .
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The standard method to prove limit theorems for mixing processes, employed in the pioneering
works of Rosenblatt (1956) and Ibragimov (1962), was the Bernstein blocking technique, giving
an approximation of the characteristic function of partial sums of mixing sequences by the
characteristic function of independent random variables via suitable correlation inequalities.
This method leads to sharp results in the case of the CLT and LIL, but its applicability beyond
them is rather limited: for example, upper-lower class refinements of the LIL require delicate
tail estimates for the considered r.v.’s which are beyond the scope of the method. In his 1975
AMS Memoir with William Stout, Walter Philipp showed that sufficiently separated block sums
of weakly dependent sequences are, after suitable centering, close to a martingale difference
sequence, and thus using Skorohod embedding and Strassen’s strong approximation technique,
the partial sums of such sequences can be closely approximated by a Wiener process. This
observation not only opens the way to prove a vast class of refined asymptotic results for mixing
sequences, but the near martingale property can be easily verified for several other types of weak
dependent processes for which the previous theory does not work, or leads to great difficulties:
Markov processes, retarded mixing sequences, Gaussian processes, lacunary series, etc. In his
1979 joint paper with Berkes, Philipp made a further important step in the study of weak
dependent behavior, showing that block sums of weakly dependent processes can be directly
approximated by independent random variables, via the Strassen-Dudley existence theorem.
This observation frees the investigations from moment conditions and works not only for real
valued random variables, but for random variables taking values in abstract spaces. In the
context of Banach space valued random variables, this method yields new results even for i.i.d.
random variables, as a 1980 joint paper of Philipp and Kuelbs shows. This paper was the
first in a long series of papers of Walter Philipp dealing with limit theorems of independent
and weakly dependent B-valued random variables and Hilbert space valued martingales. The
infinite dimensional setup also opens the way to study unform Glivenko-Cantelli type results and
uniform limit theorems for random variables indexed by sets, a popular and much studied topic
in the 1970’s and 1980’s. Walter Philipp’s contribution in this field is very substantial; see e.g.
his profound joint paper with Dudley (1982). In his last paper written in 2006, Walter Philipp
returns again to this topic, showing that metric entropy can be used to provide deep information
on pseudorandom behavior and in the theory of uniform distribution. This paper completes a
long circle in Philipp’s mathematical work and at the same time opens a new direction in the
study of weakly dependent behavior.

The importance of Walter Philipp’s contributions to the asymptotic theory for weakly de-
pendent processes can only be appreciated in the light of the many applications to problems
in analysis and number theory. Some early applications are given in two papers entitled Some
metrical theorems in number theory which are entirely devoted to such applications. In these
papers Walter Philipp investigated the distribution of the sequence (Tnω)n≥1 for the maps
T : (0, 1] → (0, 1] associated with the θ-adic expansion and the continued fraction expansion. If
(In)n≥1 is a sequence of intervals, In ⊂ (0, 1], one can study the quantity

A(N,ω) :=
N∑

n=1

1{T nω∈In}.

If µ denotes the invariant measure associated with T , then the expected value of A(N, ω) becomes

φ(N) =
N∑

n=1

µ(In).

If all the intervals are identical, i.e. In = I, we obtain from the ergodic theorem that A(N, ω) =
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φ(N) + o(N). Walter Philipp sharpened this result considerably by showing that for any ε > 0,

A(N, ω) = φ(N) + O(φ1/2(N) log3/2+ε φ(N)), (3)

for almost all ω ∈ (0, 1]. While the accuracy of this approximation is limited by the second
order method used in the proof, shortly thereafter Philipp went much further: he observed that
the considered sequences (Tnω)n≥1 are φ-mixing with exponential rate and thus using blocking
techniques and applying some of his asymptotic theorems obtained earlier, one can prove a whole
series of highly attracting limit theorems for the digits in various expansions and Diophantine
approximation, which not only improve several earlier results in the literature, but actually
provide the precise asymptotics in a number of important questions of metric number theory.
Let us formulate a few such results here. Let x = [a1(x), a2(x), . . .] be the continued fraction
expansion of x ∈ (0, 1) and let ϕ(n) → ∞ be a sequence of integers with

∑ 1
ϕ(n) = ∞. Denote

by A(N,x) the number of integers n ≤ N with an(x) ≥ ϕ(n) and put

φ(N) =
1

log 2

∑

n≤N

log
(

1 +
1

ϕ(n)

)
.

Then

λ

{
x :

A(N,x)− φ(N)√
φ(N)

< z

}
→ 1√

2π

∫ z

−∞
exp(−t2/2)dt

and for almost all x

lim sup
N→∞

|A(N, x)− φ(N)|√
2φ(N) log log φ(N)

= 1.

Also, letting LN (x) = max1≤k≤N an(x), Philipp proved

lim inf
N→∞

log log N

N
LN (x) =

1
log 2

for almost all x, verifying an old conjecture of Erdős. Further, let f be a continuous, positive,
nonincreasing function on R+ such that

φ(N) = 2
∑

k≤N

f(k)
k

→∞

and let Nα,f (n) denote the number of solutions of (1) in integers q ≤ n and p. Then under mild
additional regularity conditions on f , Walter Philipp proved

λ

{
x :

Nα,f (n)− φ(N)√
φ(N)

< z

}
→ 1√

2π

∫ z

−∞
exp(−t2/2)dt

and for almost all α

lim sup
N→∞

|Nα,f (n)− φ(n)|√
2φ(n) log log φ(n)

= 1.

A further much studied connection between probability theory and number theory is the
distribution of values of additive functions. Walter Philipp’s contribution in his field can be
found in his 1971 AMS Memoir written with the ambitious goal to unify probabilistic number
theory and to deduce at least the most typical results as special cases of limit theorems for mixing
random variables. Because of the very different type of weak dependence conditions in number
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theory, there is little hope that all applications of probability to number theory could be put
in a general framework. But at least for applications in Diophantine approximation, continued
fraction and related expansions, discrepancies and the distribution of additive functions, Walter
Philipp succeeded in this program to a remarkable degree. He also studied weak convergence of
additive function paths to Brownian motion, extending earlier results of Billingsley.

The basic motivation for the introduction of mixing conditions was to understand the asymp-
totic properties of weakly dependent structures in stochastics and driven by its intrinsic needs,
the theory made a tremendous progress starting from the 60’s and by now it is a closed, com-
plete and beautiful theory, giving a nearly complete answer for the basic asymptotic questions
connected with mixing structures. For a comprehensive treatise of the theory see the recent
monograph of R. Bradley (2007).

While questions on weak dependence kept Walter Philipp’s attention in his whole career,
this did not prevent him from making fundamental contributions in other areas of probability
theory, e.g. in the classical theory of independent random variables. In a short paper with M.
Lacey in 1990 he proved that if (Xn) is a sequence of i.i.d. random variables with mean 0 and
variance 1 then letting Sn =

∑n
k=1 Xk we have

lim
N→∞

1
log N

N∑

k=1

1
k
I

{
Sk√

k
≤ x

}
=

1√
2π

∫ x

−∞
e−t2/2dt

with probability 1 for all x ∈ R. This remarkable ’pathwise’ form of the central limit theorem
was already stated (without proof and without specifying conditions) by Lévy in 1937 and was
proved by Brosamler and Schatte in 1988 under the assumption of higher moments. Due to
these papers, almost sure central limit theory became extremely popular overnight and has not
lost its attraction until today. The paper of Philipp and Lacey not only yields the final, optimal
form of this theorem, but the method they used became the basic method in this field.

In a series of three papers, published in the mid 1980s jointly with Dehling and Denker, Wal-
ter Philipp investigated the asymptotic behavior of degenerate U -statistics. Given a symmetric
function h : Rm → R and an i.i.d. process (Xn)n≥1, the m-variate U -statistic with kernel h is
defined as

Un(h) =
∑

1≤i1<...<im≤n

h(Xi1 , . . . , Xim).

The kernel is called degenerate if E(h(X,x2, . . . , xm)) = 0 for almost all x2, . . . , xm. Dehling,
Denker and Philipp proved a strong approximation of Un(h) by m-fold Wiener-Itô integrals

In(h) =
∫

. . .

∫
h(x1, . . . , xm) dW (x1) . . . dW (xm),

where W (t) is a mean-zero Gaussian process. The results of this research enabled Dehling in
a subsequent paper to establish the functional law of the iterated logarithm for degenerate U -
statistics and for multiple Wiener-Ito integrals. In the course of their work, Dehling, Denker
and Philipp also investigated the empirical U -process, defined by

√
n

1(
n
m

) (#{1 ≤ i1 < . . . < im ≤ n : h(Xi1 , . . . , Xim) ≤ t} − P (h(X1, . . . , Xm) ≤ t))t∈R ,

and established an almost sure invariance principle for this process.
The investigations on the asymptotic behavior of degenerate U -statistics lead directly to

questions concerning the asymptotic behavior of certain Hilbert space valued martingales. For
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the U -statistic applications, a bounded law of the iterated logarithm was sufficient. In later
work, carried out jointly with Monrad, Walter Philipp established a Skorohod embedding of
Hilbert space valued martingales.

Another favorite topic of Walter Philipp’s research was lacunary series: he investigated such
series already in his early papers in the 1960’s and in his very last papers in 2006 he returned
once more to this topic. By a well known theorem of H. Weyl (1916) quoted above, given any
sequence (nk) of positive numbers with nk+1 − nk ≥ δ > 0 (k = 1, 2, . . .), the sequence {nkω}
is uniformly distributed mod 1 for almost all ω. In contrast to the simplicity of this result,
proving sharp bounds for the discrepancy of {nkω} is very difficult, and the only precise results
known before 1970 were the results of Khinchin (1923) and Kesten’s (1964) for the case nk = k.
Kesten’s result states that the discrepancy DN (ω) of the sequence {kω} satisfies

lim
N→∞

log N log log N

N
DN (ω) =

2
π2

in probability.

In 1975 Walter Philipp proved that if (nk) is a sequence of integers satisfying the Hadamard gap
condition nk+1/nk ≥ q > 1, then the discrepancy DN (ω) of the sequence {nkω} satisfies the law
of the iterated logarithm, i.e.

C1 ≤ lim sup
N→∞

√
N

log log N
DN (ω) ≤ C2 (4)

for almost all ω, where C1 > 0 is an absolute constant and C2 = C2(q) = 166 + 664(q1/2− 1)−1.
This remarkable result verified a long standing conjecture of Erdős and Gál, and showed that,
as far as its discrepancies are concerned, {nkω} behaves like a sequence of independent random
variables. For the partial sums of sinnkx such phenomena have already been observed by Salem
and Zygmund in 1947, but the discrepancy situation is much more delicate: as in a later paper
Philipp (1994) showed, for a suitable sequence nk the limsup in (4) is greater than C log log 1

q
with an absolute constant C and thus for q close to 1 the limsup can be as large as we wish.
Very recently, Fukuyama (2008) succeeded in computing the limsup for the sequences nk = θk,
θ > 1.

For sequences (nk) growing slower than exponentially, the LIL (4) is generally false, and the
behavior of the discrepancy of {nkω} becomes very complicated. R. C. Baker (1981) proved that
for any nk, NDN (ω) = O((log N)3/2+ε) for almost all ω and Philipp and Berkes (1994) showed
that the constant 3/2 here cannot be replaced by any number less than 1/2. Despite these fairly
precise results on the extremal behavior of discrepancies, the exact order of magnitude of DN (ω)
for ”concrete” nk remains open. In one of his last papers, written jointly with Berkes and Tichy,
Walter Philipp made a substantial step in clearing up this phenomenon as well: he showed that
the asymptotic behavior of the discrepancy of {nkω} is intimately connected with the number
of solutions of Diophantine equations of the type a1nk1 + · · · + apnkp = b. The discovery of
this remarkable arithmetical connection is again a characteristic achievement of Walter Philipp,
linking probabilistic phenomena with asymptotic results in analysis and number theory.

In conclusion we mention an interesting result of Philipp on the extremal behavior of expo-
nential sums. From Carleson’s convergence theorem for Fourier series in L2 it follows that if f
is a nondecreasing positive function on R+ satisfying

∞∑

k=1

1
kf(k)2

< ∞ (5)
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then for any increasing sequence (nk) of positive integers we have
∣∣∣∣∣

N∑

k=1

e2πinkx

∣∣∣∣∣ = O(N1/2f(N)) a.e. (6)

In particular, we have for any (nk)
∣∣∣∣∣

N∑

k=1

e2πinkx

∣∣∣∣∣ = O(N1/2(log N)1/2+ε) a.e.

for any ε > 0. As early as 1930, Walfisz proved that for nk = k2 the left hand side of (6) exceeds
N1/2(log N)1/4 for infinitely many N , but this does not reach Carleson’s upper bound. Walter
Philipp proved that if f is a nondecreasing positive function on R+ satisfying mild regularity
conditions such that the sum in (5) diverges, then the exponential sum in (6) exceeds N1/2f(N)
a.e. for infinitely many N . This provides a complete solution of the problem of extremal speed of
exponential sums and provides yet another example for the power of weak dependence techniques
in problems of classical analysis.
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