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Preface

This thesis is is entitled “Change-Point Tests For Long-Range Dependent Data” and

deals with mathematical methods to analyse data.

An important issue in data analysis (such as the analysis of stock exchange prices

or temperature measurements) is the question whether the observed process changes

fundamentally at a certain time, for example whether after a certain point in time, the

prices or the temperatures tend to be higher than before. But even if one observes

an apparent change-point in the data – since all measurements are subject to random

fluctuations, it is difficult to say if there really is a change in the structure or if it is just

a random effect. Change-Point tests are mathematical methods which are designed to

discriminate between structural changes and random effects and thus to detect change-

points in random observations. In this work, I propose and analyse a class of such test

methods for a specific and relevant case of data.

In many applications, observations cannot assumed to be independent (like the

numbers when throwing a dice); for a realistic model one has to assume instead that each

event influences the following ones (like the weather at one and at the following days).

Although this dependence naturally declines by and by, in some fields (for example in

econometrics, climate research, hydrology and information technology) processes occur

where this decay is extremely slow: Even events from the distant past influence the

present behaviour of the process. This is hard to imagine and to illustrate, but is has

turned out that many processes like internet traffic and temperature measurements can

be modelled by random time series with this long-range dependence or long memory.

On the titelpage, a sample of 500 long-range dependent data is shown (fractional

Gaussian noise with Hurst parameter H = 0.8) which displays a typical characteristic

of long-range dependent processes: with its periods of mostly large and its periods of

mostly small observations, it appears to exhibit a periodic pattern, but there is none.

Unfortunately, usual methods for data analysis fail when the data is long-range

dependent, and new techniques are needed. In this work, I propose and analyse some

new mathematical methods to detect changes in observations with long memory.

I would like to express my gratitude to my supervisor Herold Dehling, who intro-

duced me to these fascinating problems and whose expertise and understanding added

considerably to my graduate experience.



iv

Over the years, I have enjoyed the support of several collegues who discussed prob-

lems and shared insights with me, particularly I like to thank Matthias Kalus and
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A.2 Itō integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
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Chapter 1

What it is about

The goal in inferential statistics is to draw inferences about underlying regularities

in an observed sample of measured data and to model the process which generated

the data, accounting for randomness, in other words to filter out the main character-

istics, the valuable information, in a vast amount of random observations – in order

to characterize, to analyze or to forcast the process. An important issue of interest

in all fields of inferential statistics is the detection of change-points, of unknown time

instants at which the underlying regularities change, because any statistical inference

naturally relies on large and homogenoeus samples of observations; a sudden change in

the characteristics of the data may disturb and adulterate the inference and may lead

to wrong conlusions. Moreover, often the change itself is of statistical interest, e.g. at

monitoring patients in intensive care and production processes in industrial plants, in

climate research and in gerenal in many kinds of data analysis, if in medicine, biology,

geoscience, quality control, signal processing, financials or other fields.

The question of interest in change-point analysis is: Is there a point at which the

general behaviour of the observed data changes significantly? Such changings can be

modelled as a variation of certain parameters of the model which describes the process

or as a gerenal change in the model.

If the process in which a change-point shall be detected is known and can be mod-

elled, parametric change-point tests are applied which strongly rely on this knowledge

of the framework. If little or none information about the measured data is available,

non-parametric methods are used which on the one hand do not require that much a

priori information about the data, but which may feature less accuracy on the other

hand, because they give more scope to the data. There is one further big classification

of change-point problems: Suppose we have observed some data and we suspect that

there could have been a change in the location:

X1, X2, . . . , Xk ∼ F (·)

Xk+1, Xk+2, . . . , Xn ∼ F (·+ ∆)



2 What it is about

Now we want to find out if there has really been a change or not, in other words we

want to know if there is such a point k and ∆ 6= 0 or if we have ∆ = 0 throughout the

whole sample. This is an offline problem: We have collected data and wish to test if

there has been a change or not. On the contrary, an online problem is a situation in

which the data are sequentially coming in, and we want to detect a change as soon as

possible after it has occurred. If the point k is already known (for example by external

reasons or indications), we only have to test if there has been a change at index k or

not, and the problem reduces to a two-sample problem.

In this work I deal with non-parametric change-point problems for long-range de-

pendent data, data which exhibit strong dependence even over long periods of time

which causes unusual behaviour and makes statistical inferences difficult (Krämer, Sib-

bertsen and Kleiber, 2002, e.g.).

• In this chapter, I will introduce the main objects and problems that I treat in

my work and qualify the research context. Mainly I present some fundamen-

tal concepts and notions from the field of long-range dependent statistics –

what long-range depence actually is, where it occurs and what the essential limit

theorems are.

• As a start and a careful approach to two-sample change-point tests, I consider

in Chapter 2 the classical two-sample Gauß test under longe-range dependent

data. By manual calculations, I derive its limit distribution√
mn

(m+ n)2−DL(m+ n)

X̄m − Ȳn
σdiff

D−→ N (0, 1)

as N →∞ with m = λN and n = (1− λ)N for a certain λ ∈ [0, 1]. Moreover, I

develop an estimator for the variance of X̄m− Ȳn. To this end, I analyse the

classical estimator for the auto-covariance and an estimator for the variance of

the sample mean, Var[X̄], which is based on aggregation over blocks. I assess the

quality of the estimators in finite sample settings via a broad set of simulations.

• In Chapter 3, I develop a “Wilcoxon-type” change-point test, a non-parametric

test which is based on the Wilcoxon two-sample test statistic. Using limit theo-

rems of the empirical process, I derive its limit behaviour under the null hypothesis

of no change, i.e. that

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

∫
R
F (x)dF (x)

)
, 0 ≤ λ ≤ 1,

converges in distribution towards the process

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x)dF (x), 0 ≤ λ ≤ 1.



3

In an extensive simulation study, I compare the performance of the test with the

classical “difference-of-means” change-point test which is based on the Gauß test

(which is also known as CUSUM test). This part of my work is based on the

article of Dehling, Rooch and Taqqu (2012).

• In Chapter 4, I go an important step further and determine the power of the

change-point tests from Chapter 3 analytically: I derive the limit behaviour of

the “Wilcoxon-type” test and of the “difference-of-means” test under

local alternatives, i.e. under the sequence of alternatives

Aτ,hn(n) : µi =

µ for i = 1, . . . , [nτ ]

µ+ hn for i = [nτ ] + 1, . . . , n,

where 0 ≤ τ ≤ 1, in other words in a model where there is a jump of height hn

after a proportion of τ in the data, which decreases with increasing sample size

n. Moreover, I compare both tests in this model by calculating their asymptotic

relative efficiency and illustrate the findings by a further set of simulations. These

results will be published in the article of Dehling, Rooch and Taqqu (2013).

• The methods used in Chapter 3 to handle the Wilcoxon statistic can be extended

to treat the general process

Uλ,n =

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)
, 0 ≤ λ ≤ 1,

with general kernels h(x, y) which satisfy some technical conditions (for the “Wilcoxon-

type” change-point test statistic, choose h(x, y) = I{x≤y}). So in Chapter 5,

I present a general approach to two-sample U-statistics of long-range

dependent data.

• In Chapter 6, I will follow a different approach to handle the above defined process

Uλ,n by a direct Hermite expansion of the kernel

h(x, y) =
∞∑

k,l=0

akl
k! l!

Hkl(x, y) =
∞∑

k,l=0

akl
k! l!

Hk(x)Hl(y).

This is an alternative approach. Following this route, severe technical problems

will arise. I will propose several techniques to handle them.

• In order to enhance the practicability of the two test produres of Chapter 3, I

first analyse in Chapter 7 the influence of an estimated long-range depen-

dence parameter on the test decisions in a simulation study, then I develop

an estimator for the first Hermite coefficient a1 := E[ξ G(ξ)] in a broad
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class of situations where only the Xi := G(ξi) are observed, and not the ξi. I will

demonstrate that

ã1 :=
1

n

n∑
i=1

ξ′(i)X(i)
P−→ a1,

where ξ′i are i.i.d. standard normal random variables and check the suitability of

this estimator via several simulations. Finally I deal with an inherent problem

from statistical application: A change-point may easily lead to tampered long-

range dependence estimation and spurious detection of long memory. I propose

different methods to estimate the long-range dependence parameter un-

der a change in the mean and analyse their quality by a large simulation

study.

1.1 Detecting change-points

For a general survey about change-point analysis, see the books of Basseville and Niki-

forov (1993), Brodsky and Darkhovsky (1993) and Csörgő and Horváth (1997). For the

case of i.i.d. observations, Antoch et al. (2008) study for example rank tests in order

to detect a change in the distribution of the data, which are a natural approach if the

distribution of the data is unknown. There are also many results for weakly depen-

dent observations (Ling, 2007; Aue et al., 2009; Wied, Krämer, Dehling, 2011), but for

long-range dependent data, much less is known.

Giraitis, Leipus and Surgailis (1996) treat general change-point problems in which

the marginal distribution of the observations changes after a certain time. They base

their change-point tests on the difference of the empirical distribution function of the

first and the remaining observations and estimate the location of the change-point

considering the uniform distance and the L2-distance between the two distribution

functions. Horváth and Kokoszka (1997) analyse an estimator for the time of change in

the mean of univariate Gaussian long-range dependent observations. Their estimator

compares the mean of the observations up to a certain time with the overall mean of

all observations; in the case of independent standard normal random variables, this

estimator is just the MLE for the time of change. Wang (2008a) extends the results

of Horváth and Kokoszka (1997) to linear models which are not necessarily Gaussian.

Wang (2003) studies certain tests for a change in the mean of multivariate long-range

dependent processes which have a representation as an instantaneous functional of a

Gaussian long-range dependent process. He analyses the asymptotic properties of some

tests which are based on the differences of means. Kokoszka and Leipus (1998) analyse

CUSUM-type estimators for the time of change in the mean under weak assumptions

on the dependence structure which also cover long-range dependence. Wang (2008b)

studies Wilcoxon-type rank statistics for testing linear moving-average stationary se-

quences that exhibit long-range dependence and which have a common distribution
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against the alternatives that there is a change in the distribution. There are also tests

for a change in the model from short to long memory (Hassler and Scheithauer, 2011).

1.2 Long-range dependence

So called long-range dependent (LRD) processes are a special class of time series which

exhibit an unusual behaviour: Although they look stationary overall, there often are

periods with very large and periods with very small observations, but one cannot recog-

nize a periodic pattern. In communication networks, one often observes bursty traffic

which, astonishingly, cannot be smoothed by aggregation – this is an effect of LRD as

well.

Moreover, the usual limit theorems do not hold: In the case of i.i.d. observations, the

variance of the sample mean grows like the number of observations n, and this holds

even for weakly correlated data, but for LRD processes the variance of the sample

mean grows like nD with a D ∈ (0, 1). And while sums of i.i.d. and weakly dependent

observations, scaled with n−1/2, are asymptotically normally distributed, sums of LRD

observations may need a stronger scaling to converge, and the limit may be non-normal

(see Theorem 1.1).

It has turned out that this strange behaviour can be explained by very slowly

decaying correlations: If a time series has correlations that decay so slowly that they

are not summable (and this is what we want to call LRD), then it shows these strange

effects. More specifically, one often calls a process long-range dependent if its auto-

correlation function obeys a power law, while a short-range dependent process possesses

an auto-correlation function that decays exponentially fast. A rigorous definition is the

following:

Definition 1.1 (Long-range dependence). A second order stationary process (Xi)i≥1

is called long-range dependent if its auto-covariances have the form

γk = Cov[Xi, Xi+k] ∼ k−DL(k), (1.1)

where D ∈ (0, 1), a(x) ∼ b(x) means a(x)/b(x)→ 1 as x tends to infinity and where L

is some slowly varying function (i.e. a function that satisfies limx→∞ L(ax)/L(x) = 1

for all a > 0). The spectral density of such an LRD process is, under some technical

conditions1, given by

f(λ) ∼ |λ|D−1L(1/λ), as λ→ 0+.

The spectral density is unbounded at zero and obeys a power-law near the origin (while

it is bounded in the case of short-range dependent processes). The exponent D is the

LRD parameter. Equivalenty, the Hurst exponent H = 1 − D/2 is often used. As

mentioned, we concentrate on the case D ∈ (0, 1), i.e. H ∈ (1/2, 1); in this case, (Xi)i≥1

1See for example the overview of Beran (2010, p. 26) and the references given there.
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exhibits LRD. For H = 1/2, the variables are independent, and for H ∈ (0, 1/2) they

exhibit short-range dependence (SRD).

In LRD time series, correlations between two observations may be small, but even

observations in the past affect present behaviour. This is why LRD is also called long

memory.

We consider a classical historic example. In the 1950s, the British hydrologist Harold

Hurst was interested in dam design and therefore in the long-term storage capacity of

reservoirs. He studied the water flow in the Nile river (Hurst, 1951, 1955) and analysed

a remarkable ancient data set, the annual minima of the water level in the Nile river at

a gauge near Cairo between 622 and 1281, which is displayed in Figure 1.1. These data

behave strange, and in fact, this can be explained by LRD: The auto-covariance func-

tion of the data, shown in Figure 1.2, decays at a power law rate. This long memory

causes the wave-like shape of the time series: Extreme large observations entail other

large observations, and extreme small observations entail other small ones. For more

statistical evidence for this type of LRD in the Nile river data, see Beran (1994, p. 21).

As indicated by the phrase “this type of LRD”, it is not mandatory to define LRD

by the decay of correlations. It has the advantage to be a handy concept, but various

other points of view are also reasonable when talking about LRD, since it is linked with

non-stationary processes, ergodic theory, self-similar processes and fractionally differ-

enced processes. Samorodnitsky (2007) discusses these concepts (and by the way notes

that in literature there can be found eleven different definitions of what exactly LRD is).

Even though it causes strange and unusual behaviour, LRD has found a very large

number of applications. Some, collected at random, are:

• Finance. Volatilities, roughly defined as the diffusion of price fluctuations, are

LRD processes (Breidt, Crato and de Lima, 1998), and there is some evidence of

a low LRD in stock market prices (Willinger, Taqqu and Teverovsky, 1999).

There is little or no evidence for the presence of LRD in the big capital markets

of the G-7 countries and in international stock market returns (Cheung and Lai,

1995), but long memory has been detected for example in the smaller Greek stock

market (Barkoulas, Baum and Travlos, 1996).

Baillie (1996) provides a survey of the major econometric work on LRD, fractional

integration and their application in economics, including an extensive list of ref-

erences. He finds substatial evidence that LRD processes describe well inflation

rates.

Cheung (1993) finds evidence for LRD in some exchange rates.

In financial time series, observations are often uncorrelated, but the auto-correlation

of their squares may be not summable; Beran (2010, p. 28) lists some references.
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Figure 1.1: Annual minima of the water level in the Nile river near Cairo.
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Figure 1.2: The empirical auto-correlation function of the Nile river data decays at

a power law rate (and not, as usual for weakly dependent observations, exponentially

fast).
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When large orders are split up and executed incrementally and the size of such

large orders follows a power law, then the signs of executed orders (to buy or

to sell) have auto-correlations that exhibit a power-law decay (Lillo, Mike and

Farmer, 2005).

• Network engineering. As the internet, an enormously complicated connection

of networks, expands fastly and as the amount of memory-intensive content like

videos increases, it is crucial to maintain a high networking performance. Here,

LRD has a considerable impact on queueing performance and is a characteristic

for some problems in data traffic engineering (Erramilli, Narayan and Willinger,

1996).

Many papers focus on long memory in network data and on its impact on the

networking performance, and indeed, LRD is an omnipresent property of data

traffic both in local area networks and in wide area networks. Evidence for LRD

can be found in many measurements of internet traffic like traffic load and packet

arrival times; for examples and references see Li and Mills (1998) or Karagiannis,

Faloutsos and Riedi (2002).

LRD in network traffic can be explained by renewal processes that exhibit heavy-

tailed interarrival distributions (Levy and Taqqu, 2000).

A short overview about detection of LRD in internet traffic beside complex scaling

and multifractal behaviour, periodicity, noise and trends is provided by Karagian-

nis, Molle and Faloutsos (2004), and Cappé et al. (2002) give a tutorial about

statistical models for analyzing long-range dependence in network traffic data.

Taqqu, Willinger and Sherman (1997) and Willinger et al. (1997) demonstrated

that the superposition of many ON/OFF sources with strictly alternating ON-

and OFF-periods and whose ON-periods or OFF-periods exhibit high variabil-

ity or infinite variance can produce aggregate network traffic that exhibits self-

similarity or LRD. This provides a physical explanation for the observed self-

similar traffic patterns in high-speed network traffic.

• Physics. Particle diffusion in an electric current across two coupled supercon-

ductors shows LRD (Geisel, Nierwetberg and Zacherl, 1985), and the dynamics

of aggregates of amphiphilic (both water-loving and fat-loving) molecules as well

(Ott et al., 1990).

• Biology. Long-range power law correlation has been found in some DNA se-

quences and it is an issue in computational molecular biology (Peng et al., 1992,

1994; Buldyrev et al., 1995).

LRD can be found in human coordination: If people are asked to sychronizing

a movement (a fingertapping e.g.) to a periodic signal, the errors exhibit long

memory, as Chen, Ding and Kelso (1997) have observed. They conjecture that

this origins in random noise and sensory delay in the nervous system.
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• Climate. LRD appears in surface air temperature: It can be detected in global

data from the Intergovernmental Panel on Climate Change (Smith, 1993), and

Caballero, Jewson and Brix (2002) show that the auto-covariance structure of

observed temperature data can be reproduced by fractionally integrated time

series; they explain the observed long memory by aggregation of several short-

memory effects.

Moreover, ground based observations and satellite measurements reveal that ozone

and temperature fluctuations in short time intervals are correlated to those in

large time intervals in a power law style (Varotsos and Kirk-Davidoff, 2006).

• And else. Many time series in political analysis (concerning variables like pres-

idential approval or the monthly index of consumer sentiment) show LRD char-

acteristics, as Lebo, Walker and Clarke (2000) write. They point out that many

time series in political science are aggregated measures of single responses and

that this aggregating of heterogenous individual-level information produces frac-

tional dynamics.

Long-range correlations appear also in human written language, beyond the short-

range correlations which result from syntactic rules and apparently regardless of

languages: They have been detected in Shakespeare’s plays (Montemurro and

Pury, 2002) and in novels in Korean langugage whose syntax differns strongly

from the English one (Bhan et al., 2006).

A short overview about probabilistic foundations and statistical models for LRD

data including extensive references is given by Beran (2010), while, even though older,

Beran (1994) provides a more detailed survey. Taqqu, Teverovsky and Willinger (1995)

and Taqqu and Teverovsky (1998) analyse a handful estimators that quantify the in-

tensity of LRD in time series. Details on the models used for simulations in this work

are presented in Section 1.3.

1.3 Two important LRD processes: fractional Brownian

motion and fractional Gaussian noise

Now I will introduce two prominent and important examples of LRD time series, the

fractional Brownian motion (fBm) and its incremental process, the fractional Gaussian

noise (fGn). To this end, we need some definitions. LRD processes are closely connected

with self-similar processes, where a change of the time scale is equivalent to a change

in the state space.
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Definition 1.2 (Self-similar). A continuous time process (Xt)t∈R is called self-similar2

with index H, if for all a > 0 and any integer k ≥ 1

(Xat1 , Xat2 , . . . , Xatk)
D
= (aHXt1 , a

HXt2 , . . . , a
HXtk), (1.2)

in other words if the finite-dimensional distributions of (Xat)t∈R are identical to the

finite-dimensional distributions of (aHXt)t∈R.

As a consequence, typical sample paths of self-similar processes look qualitatively

the same, irrespective of the time interval of observation, that is the picture stays

structually the same, irrespective of if we look from distance or if we get closer.

The notion of self-similarity was introduced into statistics by Mandelbrot and van

Ness (1968) and Mandelbrot and Wallis (1969a,b); Lamperti (1962) and Taqqu (1975)

showed that self-similar processes occur naturally as limits of partial sums of stationary

random variables, see also Pipiras and Taqqu (2011, Chap. 1.7). In nature, a fascinat-

ing richness of deterministic self-similarities can be observed, for example at leaves,

montains and waves. In 1827, the scottish botanist Robert Brown (1773–1858) exam-

ined pollen particles suspended in water under a microscope and observed an erratic

motion3. To his honour4, the most simple and important self-similar process is called

Brownian motion. Its definition is the following, see e.g. Beran (1994).

Definition 1.3 (Brownian motion). Let B(t) be a stochastic process with continuous

sample paths and such that

1. B(t) is a Gaussian process,

2. B(0) = 0 almost surely,

3. B(t) has independent increments, i.e. for all t, s > 0 and 0 ≤ u ≤ min(t, s),

B(t)−B(s) is independent of B(u),

2Because this definition refers to equality in distribution and the property can not be spotted at a

single path of Xt, one should say “statistical self-similar”, and to be entirely correct, one should say

“statistical self-affine”, because H does not need to be 1, so that the scaling in time and space to obtain

equality in distribution may be different.
3Some scientists have doubted that Brown’s microscopes were sufficient to observe these movements

(D. H. Deutsch: Did Robert Brown Observe Brownian Motion: Probably Not, Scientific American,

1991, 265, p. 20), but already in the same year, a British microscopist has repeated Brown’s experiment

(B. J. Ford: Robert Brown, Brownian Movement, and Teethmarks on the Hatbrim, The Microscope,

1991, 39, p. 161–171) and finally a recent study which analysed Brown’s original observations under

historical, botanical, microscopical and physical aspects could resolve all doubt (P. Pearle, B. Collett,

K. Bart, D. Bilderback, D. Newman, S. Samuels: What Brown saw and you can too. Am. J. Phys.,

2010, 78, p. 1278–1289).
4By the way, neither did Brown provide an explanation for the observed random motion, nor was he

the first to discover it: The Dutch biologist and chemist Jan Ingenhousz (1730–1799) described in 1785

an irregular movement of coal dust on the surface of alcohol, thus he, not Brown, is the true discoverer

of what came to be known as Brownian motion (P. W. van der Pas: The discovery of the Brownian

motion, Scientiarum Historia, 1971, 13, p. 27–35).
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4. E[B(t)−B(s)] = 0,

5. Var[B(t)−B(s)] = σ2|t− s|, for a certain σ2 ≥ 0.

Then B(t) is called Brownian motion. If σ2 = 1, it is standard Brownian motion.

Definition 1.4 (Stationary increments). A process (Xt)t∈R has stationary increments

if the processes

(Xt+c −Xt)t∈R

have the same distribution, independent of the choice of c ∈ R.

Now it is a beautiful result that there is only one unique Gaussian process which

is self-similar and which has stationary increments: the so called fractional Brownian

motion (fBm), a generalisation of the above defined usual Brownian motion.

Definition 1.5 (Fractional Brownian motion). Let a > 0 be a positive scaling constant

and B(t) a standard Brownian motion. Define a weight function wH by

wH(t, u) =


0 for t ≤ u

(t− u)H−
1
2 for 0 ≤ u < t

(t− u)H−
1
2 − (−u)H−

1
2 for u < 0

.

For 0 < H < 1 define the stochastic integral5

BH(t) = a

∫
wH(t, u) dB(u),

where the convergence of the integral is to be understood in the L2 norm with respect

to the Lebesgue measure on the real numbers. BH(t) is called fractional Brownian

motion (fBm) with self-similarity parameter H.

For H = 1
2 and a = 1, we obtain the regular Brownian motion. The main difference

between fBm and regular Brownian motion is that, while the increments in Brownian

motion are independent, they are dependent in fBm; this means for H > 1
2 , that if the

previous steps have been increasing, it is likely that the next step will be increasing

as well (for H > 1
2 , the increments of the process are positively correlated, while for

H < 1
2 they are negatively correlated and an increasing pattern in the previous steps

will more likely cause a decreasing next step).

Standard fBm has the covariance function

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H). (1.3)

Since fBm has stationary increments, it gives rise to a new stationary process.

5Here, we encounter stochastic integrals, and in fact, the theory of LRD processes is strongly related

to stochastic integration, as we will shortly see. I give a formal introduction into stochastic integration

in Appendix A.
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Definition 1.6 (Fractional Gaussian noise). Let BH(t) be a fBm, as in Definition 1.5.

Its incremental process

ξk = BH(k + 1)−BH(k), k ∈ Z,

is called fractional Gaussian noise (fGn).

Standard fGn has the auto-covariance function

γk =
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k ∈ Z, (1.4)

and for H 6= 1
2 it holds

γk ∼ H(2H − 1)k−(2−2H) =
(1−D)(2−D)

2
k−D, (1.5)

see, e.g., Samorodnitsky and Taqqu (1994). (1.5) shows the above mentioned link

between self-similarity and LRD: Fractional Gaussian noise, the incremet process of

the only self-similar Gaussian process, is an LRD process, compare to (1.1). If H = 1
2 ,

fGn is regular white noise, and since it is Gaussian, it is i.i.d..
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Figure 1.3: An example for self-similarity: Looks from different distances on one real-

ization of fractional Brownian motion with Hurst parameter H = 0.7.
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Figure 1.4: Fractional Brownian motion with different Hurst parameters, H = 0.5, 0.7

(top) and H = 0.8, 0.9 (bottom).
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f(k) = (1−D)(2−D)
2 k−D = 0.28k−0.6
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Figure 1.5: Fractional Gaussian noise with Hurst parameters H = 0.5 (top left, i.e.

white noise), H = 0.7 (top right) and H = 0.9 (bottom left). At the bottom right, the

empirical auto-correlation function of fGn with Hurst parameter H = 0.7 (i.e. D = 0.6)

is shown.
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Dm < 1 (left), respectively 1/2 < H < 1, HG = (2 − 2H)m and G(ξi) is LRD if
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1.4 Hermite polynomials

When tackling statistics of LRD observations, it has turned out to be useful to expand

the statistic whose asymptotic behaviour one is interested in in so called Hermite poly-

nomials. Since different definitions are used in different books and articles, it is not

amiss to give a review here.

1.4.1 Definition and basic properties

Definition 1.7 (Hermite polynomials). The functions

Hk(x) = (−1)kex
2/2 d

k

dxk
e−x

2/2, k = 0, 1, 2, . . .

are called Hermite polynomials.

The first few are given by

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3.

Hermite polynomials have many interesting and important properties:

• Hk(x) is a polynom (what else when it is called polynom?) of degree k with

leading coefficient 1.

• Hk(x), k = 0, 1, 2, . . . form an orthogonal basis of the Hilbert space L2(R,N ), the

space of real functions which are square-integrable with respect to the N (0, 1)

density function:

〈Hi, Hj〉N = (2π)−1/2

∫ ∞
−∞

Hi(x)Hj(x)e−x
2/2 dx =

0 i 6= j

i! i = j

For a simple proof, see e.g. Pipiras and Taqqu (2011, Chap. 3.1).

• The Hermite polynomials in L2(Rd,N ), the Hilbert space of square-integrable

functions on Rd with respect to the independent d-dimensional standard normal

measure, can simply be defined as the product of d one-dimensional Hermite

polynomials: Hk1,...,kd(x1, . . . , xd) = Hk1(x1) · . . . ·Hkd(xd).

• Hk+1(x) = xHk(x)− kHk−1(x)

• d
dxHk(x) = kHk−1(x)
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• One may admit an additional parameter ρ and define the Hermite polynomials

by

Hk(x, ρ) = (−ρ)kex
2/2ρ d

k

dxk
e−x

2/2ρ, k = 0, 1, 2, . . . ,

the first few are

H0(x, ρ) = 1

H1(x, ρ) = x

H2(x, ρ) = x2 − ρ

H3(x, ρ) = x3 − 3ρx

H4(x, ρ) = x4 − 6ρx2 + 3ρ2.

• There are many further identities involving Hermite polynomials; for an impres-

sive overview and some references, see Weisstein (2010).

The definition above is sometimes called the “probabilists’ definition” because of

the normal weight. Widely spread is as well the “physicists’ definition”

H
(phy)
k (x) = (−1)kex

2 dk

dxk
e−x

2
,

which defines an orthogonal basis of L2(R) with respect to the weight e−x
2
. Both

definitions are related by H
(phy)
k (x) = 2k/2Hk(

√
2x).

Often Hermite functions

h̃k(x) = H
(phy)
k (x)e−x

2/2

or normalized Hermite functions

hk(x) =
1√

2kk!
√
π
H

(phy)
k (x)e−x

2/2

are considered. The hk, k = 0, 1, . . . form an orthonormal basis for L2(R, λ).

1.4.2 Relation to LRD

We will now outline the important role of Hermite polynomials in the context of LRD.

Let ξ1, . . . , ξN be Gaussian random variables with mean 0, variance 1 and covariances

(1.1); such variables exhibit long memory. Now consider the partial sum

SN =

N∑
i=1

h(ξi),

where h is a centralized function in L2(R,N ): h is measurable with Eh(ξi) = 0 and

Eh2(ξi) <∞. We will see that the asymptotic behaviour of this sum is closely associ-

ated with the asymptotic behaviour of the Hermite polynomials Hk(ξi).
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For a start we assume that h itself is already a Hermite polynomial Hk. Now the

growth of the partial sum is essentially governed by the fundamental property6

Cov [Hm(ξi), Hn(ξj)] =

m! (Cov [ξi, ξj ])
m m = n

0 otherwise
, (1.6)

and we have

Var

[
N∑
i=1

Hk(ξi)

]
=

N∑
i=1

Var[Hk(ξi)] + 2
N−1∑
j=1

(N − j) Cov [Hk(ξ1), Hk(ξ1+j)]

= Nk! + 2k!
N−1∑
j=1

(N − j)γkj

= Nk! + 2k!
N−1∑
j=1

(N − j)j−DkL(j)k. (1.7)

Now it is obvious that the limiting behaviour depends on the size of Dk. If Dk > 1,

the sum is O(N) and the variance of the partial sum grows asymptotically like N , just

like in the weak dependent or in the independent case. But if Dk < 1, the situation is

quite different: Like in (B.6) we find the asymptotic equivalence

Var

[
N∑
i=1

Hk(ξi)

]
∼ Nk! +

2k!

(1−Dk)(2−Dk)
N2−DkL(N)k

= N2−DkL(N)kk!

(
1

N1−DkL(N)k
+

2

(1−Dk)(2−Dk)

)
∼ N2−DkL(N)kk!

2

(1−Dk)(2−Dk)
.

So we see the extraordinary property of long memory statistics: The size of the

LRD parameter D and the degree of the Hermite polynomial k determine the growth

of the variance of the partial sum – for Dk > 1 we observe usual SRD behaviour, while

for Dk < 1 we observe a faster rate of growth (wich also can be taken as a definition

of LRD7):

Var

[
N∑
i=1

Hk(ξi)

]
∼

Nk!CSRD, if Dk > 1,

N2−DkL(N)k 2k!
(1−Dk)(2−Dk) , if Dk < 1,

(1.8)

6This follows from the diagram formula. With this formula one can compute expectations and

cumulants of finite families of random variables, for example expectations of Hermite polynomials of

Gaussian variables, but it is not a walk in the park. I will introduce a special version of the formula

and give some examples in Section 2.5. Without going too much into theoretical details, one can see

for example Beran (1994, eq. (3.18)) or Simon (1974, Th. 1.3), where the statement is proved for Wick

powers, random variables with special properties; Hermite polynomials – in the probabilists’ definition

with respect to the normal density measure – are a special case of Wick powers. Results on Wick

powers can also be found in Major (1981a, p. 9). A general introduction to the diagram formula is

given by Surgailis (2003).
7This is the so called LRD in the sense of Allen (Pipiras and Taqqu, 2011, Chap. 1.1).
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where CSRD is a constant. (Moreover, Dk influences the limit distribution in a broader

sense, as we will shortly see.) We will focus on the second case, because here the

variance of the partial sum grows faster than with the usual rate N , and this is the

case where also the limit distribution of the partial sum can be non-normal. The case

Dk = 1 is special; here the usual central limit theorem holds, but the norming factor

may be different than the usual
√
N , see e.g. the discussion of Theorem 8.3 in Major

(1981a), the remark in Dobrushin and Major (1979, p. 30) or Breuer and Major (1983,

p. 428).

Now we turn to a more generel kernel h(x). We represent it by its Hermite expansion

h(x) =
∑∞

k=1 ak/k! Hk(x) (the equality is to be understood as convergence in L2) with

coefficients

ak := 〈h,Hk〉N = (2π)−1/2

∫ ∞
−∞

h(x)Hk(x)e−x
2/2 dx.

Now the partial sum is

Var

[
N∑
i=1

h(ξi)

]
= Var

[ ∞∑
k=1

ak
k!

N∑
i=1

Hk(ξi)

]

=

∞∑
k=1

a2
k

k!2
Var

[
N∑
i=1

Hk(ξi)

]
+

∞∑
k 6=l

N∑
i=1

N∑
j=1

akal
k! l!

Cov [Hk(ξi), Hl(ξj)]

=
∞∑
k=1

a2
k

k!2
Var

[
N∑
i=1

Hk(ξi)

]

because of the orthogonality of the Hl, Hk. Now let m be the Hermite rank of h(x), the

smallest index among those k ∈ N with ak 6= 0. The term with the belonging coefficient

am dominates all others, because for an arbitrary k > m we have by (1.8)

a2
k Var

[∑N
j=1Hk(ξj)

]
a2
m Var

[∑N
j=1Hm(ξj)

] ∼ a2
kl!(1−Dm)(2−Dm)

a2
mm!(1−Dl)(2−Dl)

N−D(k−m)L(N)k−m → 0

as N →∞. Thus

Var

 N∑
j=1

h(ξj)

 ∼ a2
m

m!2

Nm!CSRD, if Dm > 1,

N2−DmLm(N)cm, if Dm < 1
(1.9)

with CSRD, cm ∈ R (to be more precise cm = 2m!
(1−Dm)(2−Dm)).

Finding the limit distribution of SN is challenging. What makes functionals of

LRD observations tricky is that they may have a non-normal limit. Although the most

interesting cases, thankfully, follow a normal distribution, almost all functionals of long-

range dependent observations have a limit which is neither normal nor easy (or possible)

to write down in a closed form. Dobrushin and Major (1979) and, independently, Taqqu

(1979) have derived a general representation for the limit: It can be expressed in terms

of so called multiple Wiener-Itō integrals. In Appendix A, I explain the idea behind
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these objects. We now quote a result from Dobrushin and Major (1979), which holds

in greater generality, namely for processes, see also Major (1981b).

Theorem 1.1 (Non-central limit theorem for LRD processes). Let Dm < 1. Then as

N →∞ d−1
N

btNc∑
i=1

h(ξi)


t∈[0,1]

D−→
{am
m!

Zm(t)
}
t∈[0,1]

(1.10)

with

Zm(t) = K−m/2c−1/2
m

∫ ′
Rm

eit
∑m
j=1 xj − 1

i
∑m

j=1 xj

 m∏
j=1

|xj |(D−1)/2

 dW (x1) . . . dW (xm)

(1.11)

d2
N = d2

N (m) = cmN
2−DmLm(N), (1.12)

where i is the imaginary unit and

K =

∫
R
eix|x|D−1 dx = 2Γ(D) cos(Dπ/2),

cm =
2m!

(1−Dm)(2−Dm)
.

Formula (1.11) denotes the multiple Wiener-Itō integral with respect to the random

spectral measure W of the white-noise process, where
∫ ′

means that the domain of

integration excludes the hyperdiagonals {xi = ±xj , i 6= j}, see also Dehling and Taqqu

(1989, p. 1769). The constant of proportionality cm ensures that E[Zm(1)]2 = 1. Taqqu

(1979) or Pipiras and Taqqu (2011, Chap. 3.2) give another representation.

Technical remark. The limit is – as here – often denoted as Zm(t). However, one has to pay atten-

tion, because whether a special Zm(t) is normalized (so that E[Zm(1)]2 = 1) or not, differs from article

to article (even when they are written by the same author).

For instance in the case of Hermite rank m = 1, the limit is

a1Z1(t) = a1

(
1

2Γ(D) cos(Dπ/2)

)1/2((1−D)(2−D)

2

)1/2 ∫ eitx − 1

ix
|x|(D−1)/2 dW (x)

= a1

(
Γ(3−D) sin(Dπ/2)

2π

)1/2 ∫ eitx − 1

ix
|x|(D−1)/2 dW (x)

and with D = 2− 2H

= a1

(
HΓ(2H) sin(πH)

π

)1/2 ∫ eitx − 1

ix
|x|−(H−1/2) dW (x)

= a1BH(t)
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which is a fractional Brownian motion at time t. The first equality can be shown by

Euler’s reflection formula for the Gamma function, Γ(z)Γ(1 − z) = π/ sin(πz), and a

trigonometric double-angle identitiy; the last equality is proved by Taqqu (2003, Prop.

9.2). So we receive

N−1+D
2 L(N)−1/2

btNc∑
i=1

h(ξi)
D−→ a1

(
2

2H(2H − 1)

)1/2

BH(t) (1.13)

= a1

(
2

(1−D)(2−D)

)1/2

B1−D/2(t),

which has been proven directly by Taqqu (1975, Cor. 5.1).

We have just seen how the Hermite rank of a function h influences the variance of the

partial sum SN =
∑N

i=1 h(ξi). If the underlying Gaussian process (ξ)i≥1 is LRD with

parameter D ∈ (0, 1), the partial sum SN inherits LRD-type behaviour if Dm ∈ (0, 1),

where m is the Hermite rank of h. This rate of growth, N2−Dm instead of N , is closely

related with the definition of LRD as given in Definition 1.1, see the discussion by

Pipiras and Taqqu (2011, Chap. 1.1), and in fact it can be taken as a definition for

LRD. But here, we work with Definition 1.1, so to conclude this chapter, we will now

show under which conditions a stationary Gaussian process (ξi)i≥1 passes its LRD, in

the sense of Definition 1.1, on to the transformed process (Xi)i≥1, Xi = G(ξi).

Let ξ, η be two standard normal random variables and G1, G2 ∈ L2(R,N ) two

functions. We expand G1 and G2 in Hermite polynomials

G1(x) =
∞∑
k=0

a1,k

k!
Hk(x) G2(x) =

∞∑
l=0

a2,l

l!
Hl(x)

where ai,k = E[Gi(ξ)Hk(ξ)] is the associated k-th Hermite coefficient. With these

expansions, (1.6) yields

Cov [G1(ξ), G2(η)] = E [G1(ξ)G2(η)]− E [G1(ξ)]E [G2(η)]

=

∞∑
k=0

∞∑
l=0

a1,k

k!

a2,l

l!
E [Hk(ξ)Hl(η)]− E [G1(ξ)]E [G2(η)]

=
∞∑
k=0

a1,k

k!

a2,k

k!
k! (E[ξη])k − E [G1(ξ)H0(ξ)]E [G2(η)H0(η)]

=
∞∑
k=0

a1,k

k!

a2,k

k!
k! (E[ξη])k − a1,0a2,0

=
∞∑
k=1

a1,k

k!

a2,k

k!
k! (E[ξη])k .

We have just proved the following
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Proposition 1.2. Consider a stationary Gaussian process (ξi)i≥1 with mean 0 and

variance 1 and auto-covariance as in (1.1). Let G ∈ L2(R,N ) have Hermite rank m.

Then the process (Xi)i≥1 = (G(ξi))i≥1 has auto-covariances

γG(k) = Cov[Xi, Xi+k] = Cov[G(ξi), G(ξi+k)]

=
∞∑
p=1

a2
p

p!
(E[ξiξi+k])

p ,

and the first term in this expansion dominates the others, such that

γG(k) ∼ a2
m

m!

(
L(k)k−D

)m
,

thus if 0 < Dm < 1, (G(ξi))i≥1 is LRD in the sense of Definition 1.1 with LRD

parameter DG = Dm and slowly varying function LG(k) = a2
m/m!Lm(k).

As a consequence, (ξi)i≥1 may be LRD, but (G(ξi))i≥1, e.g. (ξ2
i )i≥1 may be not.

Figure 1.6 shows the relation between the LRD parameter D of the underlying ξi’s and

the LRD parameter DG of the transformed G(ξi)’s.
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Chapter 2

The asymptotic behaviour of

X̄ − Ȳ

Before we investigate change-point tests, we consider the two-sample Gauß test which

is traditionally used to detect a difference in the location of two samples of normal dis-

tributed observations. This test follows as a special case from the ”difference-of-means“

change-point test which we will discuss later (see section 3.4.2) – it is nothing else than

the change-point test applied in a situation with a known change-point and with only

Gaussian data –, but this example illustrates the impact of LRD on statistical proce-

dures, the impact of persistent correlations, and as a basic and direct approach, it may

lead to an intuitive understanding of the subject.

So suppose we have observed some data and we suspect that after the m-th obser-

vation there has been a change in the mean:

X1, X2, . . . , Xm ∼ N (µ1, σ
2) (2.1)

Xm+1, Xm+2, . . . , Xm+n ∼ N (µ2, σ
2)

We want to find out if there really has been a change or not: We wish to test the

nullhypothesis H : µ1 = µ2 against the alternative A : µ1 6= µ2. A natural idea to do

this is to compare the means of both samples. To be in line with standard notation,

we call the second sample the Y -sample (Yk := Xm+k) and consider the data

X1, X2, . . . , Xm ∼ N (µ1, σ
2)

Y1, Y2, . . . , Yn ∼ N (µ2, σ
2).

In the i.i.d. case and with unknown variance σ2, a common test for the problem

(H,A) is the t-test which is based on the difference of the means

T =

√
mn

m+ n

X̄ − Ȳ
sX,Y
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with the weighted variance

s2
X,Y =

(m− 1)s2
x + (n− 1)s2

y

m+ n− 2
,

where s2
x and s2

y are the empirical variances of the X- and the Y -sample. From intro-

ductory mathematical statistics we know that under H, T ∼ tm+n−2, so we reject H

on a significance level of α, if |T | > tα/2, n+m−2, where tα,q is the upper α-quantile of

Student’s t-distribution with q degrees of freedom.

We will examine the LRD case with observations from a stationary Gaussian pro-

cess (Xi)i≥1 with mean 0, variance 1 and auto-covariance (1.1). One should expect

that X̄ − Ȳ shows a different behaviour in this case, since long memory requires a

stronger normalization factor and often leads to non-normal limit distributions. We

shall see that this intuition is right. But first, we need some preliminaries to handle

the covariance structure for it is given as an asymptotic equivalence and it contains a

slowly varying function.

Finally, we will estimate the variance of X̄ − Ȳ in this chapter. To this end, we will

propose an estimator for the variance of the mean X̄N =
∑N

i=1Xi and an estimator for

the auto-covariances γk = Cov[Xi, Xi+k] in a sample of N observations X1, . . . , XN , as

N tends to ∞. We base our estimator for the variance of X̄ − Ȳ on these two methods

and demonstrate that all these estimators are asymptotically unbiased.

2.1 Asymptotic equivalence and slowly varying functions

Definition 2.1 (Asymptotic equivalence). Two real functions f and g are called asymp-

totically equivalent as x→∞, written as f ∼ g, if

lim
x→∞

f(x)

g(x)
= 1.

Asymptotically equivalent functions have the same limit, if it exists, and the same

growth behaviour as x increases.

Definition 2.2 (Slowly varying function). A real function L : (0,∞)→ (0,∞) is called

slowly varying (at infinity) if for all a > 0

lim
x→∞

L(ax)

L(x)
= 1.

Any function with limx→∞ L(x) = b ∈ (0,∞) and any power of the logarithm

L(x) = logc x, c ∈ R is slowly varying. Usual powers f(x) = xc are not slowly varying.
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Technical remark. In this work, we always consider Gaussian processes (Xi)i≥1 with mean 0, vari-

ance 1 and covariances as in (1.1), i.e. γk = Cov[Xi, Xi+k] ∼ k−DL(k), where D ∈ (0, 1) is the

parameter for the long memory and L is a slowly varying function. It makes no difference if we write

γk = k−DL(k) or γk ∼ k−DL(k), because L is not exactly specified. The asymptotic equivalence

notation makes clearer that we admit covariances whose behaviour we know only asymptotically.

L does not only model disturbance or uncertaincy, it is rather there to ensure that the covariance

matrix of the process is positive-semidefinite – what a covariance matrix has to be. γk = k−D alone

does not provide a covariance matrix because it may lead to a non-positive-semidefinite matrix, as the

following example shows:

For three observations X1, X2, X3, γk = k−D and D = 0.6 we obtain as ’covariance matrix’

Σ =
(
γ|k−l|

)3
k,l=1

=

 1 2−3/5

1 1

2−3/5 1


which has the (rounded) eigenvalues 2.782, 0.340, −0.122. But for γk = log k · k−D we obtain a true

covariance matrix

Σ =
(
γ|k−l|

)3
k,l=1

=

 1 0 log 2

23/5

0 0
log 2

23/5 0 1


which now has the nice (rounded) eigenvalues 1.457, 1, 0.543.

Lemma 2.1 (Asymptotic equivalence in sums). Let (an), (bn), (αn), (βn) be sequences

of real numbers, g 6= 1 a constant and αn/βn > 0 for large n.

(i) If αn/βn → g for n→∞, then

an ∼ αn, bn ∼ βn ⇒ (an ± bn) ∼ (αn ± βn), as n→∞. (2.2)

(ii) If
∑n

k=1 αk is unbounded and strictly monotonic increasing from a certain index

n0, then

an ∼ αn ⇒
n∑
k=1

ak ∼
n∑
k=1

αk, as n→∞. (2.3)

(iii) If (ak,n), (αk,n) are two sequences which depend on the indices n and k ≤ n and

satisfy

n−1∑
k=1

(ak,n − ak,n−1) + an,n ∼
n−1∑
k=1

(αk,n − αk,n−1) + αn,n, as n→∞,

and if
∑n

k=1 αk,n is unbounded and strictly monotonic increasing from a certain index

n0, then
n∑
k=1

ak,n ∼
n∑
k=1

αk,n, as n→∞. (2.4)

Proof. (i) Let ε > 0 be given, but small enough that |g − 1| > 2ε. Choose n0 ∈ N
so big that |(an − αn)/αn| and |(bn − βn)/βn| are both smaller than ε2/(2 + g), that

|αn/βn − 1| > ε and |αn/βn − g| < 1 and that αn/βn is positive for all n ≥ n0 (we
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can find such an index n0 because from a certain point forward, an/αn and bn/βn stay

close to 1 and αn/βn stays close to g 6= 1). Then we have for all n ≥ n0∣∣∣∣(an − bn)− (αn − βn)

αn − βn

∣∣∣∣ ≤ ||an − αn|+ |bn − βn|||αn − βn|

≤ ε2

2 + g

||αn|+ |βn||
|αn − βn|

=
ε2

2 + g

∣∣∣αnβn + 1− g + g
∣∣∣∣∣∣αnβn − 1

∣∣∣
≤ ε2

2 + g

|1 + g|+ 1

ε
= ε,

and this means that an−bn
αn−βn → 1, in other words (an − bn) ∼ (αn − βn). In the exact

same manner we can verify (an + bn) ∼ (αn + βn).

(ii) This is a special case of (iii), when (ak,n), (αk,n) depend only on k.

(iii) When we have two sequences of real numbers (rn) and (sn), (sn) is strictly

increasing and unbounded, and we know the convergence of the difference quotient

(rn − rn−1)/(sn − sn−1) → c, then the Stolz-Cesàro theorem (Heuser, 2003, Th. 27.3)

ensures that rn/sn → c as well. Take rn =
∑n

k=1 ak,n and sn =
∑n

k=1 αk,n, then

lim
n→∞

rn − rn−1

sn − sn−1
= lim

n→∞

∑n−1
k=1 (ak,n − ak,n−1) + an,n∑n−1
k=1 (αk,n − αk,n−1) + αn,n

= 1,

and we receive the desired result with c = 1. A review of the proof reveals that the

Stolz-Cesàro theorem even holds if sn is not strictly monotone right from the start, but

only from a certain point on.

Example. As a counterexample where the conditions of Lemma 2.1 are not fulfilled,

consider for (i)

an = n+ 1 αn = n

bn = n βn = n+
1

n
;

clearly an ∼ αn and bn ∼ βn, but an − bn = 1 is not equivalent to αn − βn = − 1
n . For

(ii), consider any sequence an with
∑∞

k=1 ak <∞ and choose a sequence a′n < an with

a′n = o(an). Define αn := an + a′n.

Lemma 2.2 (Some properties of slowly varying functions). Consider a slowly varying

function L(x).

(i)

L(x+ a) ∼ L(x) as x→∞, for all fixed a ∈ R+ (2.5)



2.1 Asymptotic equivalence and slowly varying functions 27

(ii) If L is locally bounded (that means bounded on every compact set) and we have

γk ∼ c
Γ(1−D)k

−DL(k) =: gk with D ∈ (0, 1) and a constant c, then

n∑
k=1

γk ∼
c

Γ(2−D)
n1−DL(n). (2.6)

Proof. (i) By Karamata’s Representation Theorem (Bingham et al., 1989, Th. 1.3.1),

we can write L(x) = c(x) exp
{∫ x

d
ε(u)
u du

}
with an arbitrary d > 0 (for instance d = 1),

c(·) mesurable and c(x)→ c ∈ (0,∞), ε(x)→ 0 as x→∞. We therefore have for large

n and an arbitrarily small ε > 0

L(x+ a)

L(x)
=
c(x+ a)

c(x)
exp

{∫ x+a

x

ε(u)

u
du

}
≤ c(x+ a)

c(x)
exp

{
ε

∫ x+a

x

1

u
du

}
=
c(x+ a)

c(x)

(
x+ a

x

)ε
→ 1

and

L(x+ a)

L(x)
≥ c(x+ a)

c(x)
exp

{
−ε
∫ x+a

x

1

u
du

}
=
c(x+ a)

c(x)

(
x+ a

x

)−ε
→ 1,

so all in all L(x+ a)/L(x)→ 1.

(ii) Define the step function u(x) := γn for n ≤ x < n + 1. We obtain from the

Uniform Convergence Theorem (Bingham et al., 1989, Th. 1.2.1), which provides that

L(λx)/L(x) → 1 (as x → ∞) uniformly on each compact set of λ in (0,∞), that

L(x) ∼ L(n) for n ≤ x < n+ 1 and thus

u(x) ∼ cx−D

Γ(1−D)
L(x).

Now we know by Karamata’s Theorem that asymptotic relations are integrable (Bing-

ham et al., 1989, Prop. 1.5.8):∫ x

a
t−βL(t) dt ∼ L(x)

∫ x

a
t−β dt ∼ x1−β

1− β
L(x) as x→∞

if L(x) is locally bounded in [a,∞) and β < 1. So we can figure out the asymptotic

behaviour of
∑n

k=1 γk as follows:

n∑
k=1

γk =

∫ n

1
u(t) dt ∼ cn1−D

(1−D)Γ(1−D)
L(n)

Technical remarks. (a) As L is defined on the positive real line (0,∞), L(x − a) may formally

not be defined, but we are interested in asymptotic behaviour for x → ∞, so we can admit (fixed)

negative a in the lemma as well. If this is desired, change the variables y = x− a, and the proof covers

L(x− a) ∼ L(x) as well.

(b) As long as it is a fixed point, it is irrelevant for the asymptotic behaviour where the sum∑n
k=1 γk starts. Technically we must take care that L is locally bounded on the whole domain of

summation. To ensure this, we want L to be locally bounded everywhere. For practical use this is not

a serious restriction.
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2.2 One divided sample

At first we consider the asymptotic behaviour of the Gauß test for two samples like in

(2.1), roughly speaking one LRD time series that is cut into two samples. (Subsequent,

we will consider two independent samples which both exhibit the same LRD.)

2.2.1 Asymptotic theory

Theorem 2.3. Let (Xi)i≥1 be a stationary Gaussian process with mean 01, variance 1

and covariances

γk = Cov[Xi, Xi+k] ∼
c

Γ(1−D)
k−DL(k) =: gk

with c a constant, D ∈ (0, 1) and L a slowly varying function. Assume that we have a

series of N observations which is cut into two pieces:

X1, X2, . . . , Xm and Xm+1, Xm+2, . . . , Xm+n

with N = m + n. It is m = [λN ] and n = [(1 − λ)N ] for a λ ∈ (0, 1). We call the

second sample the Y -sample (Yk := Xm+k). Then for the difference of both sample

means holds √
mn

(m+ n)2−DL(m+ n)

X̄ − Ȳ
σdiff

D−→ N (0, 1) (2.7)

with

σ2
diff =

2c

Γ(3−D)

(
λ1−D(1− λ) + λ(1− λ)1−D − 1 + λ2−D + (1− λ)2−D)

=
2c

Γ(3−D)

(
λ1−D + (1− λ)1−D − 1

)
.

Technical remark. a) It is natural to write the limit theorem in terms of the single sample sizes

m and n, but this can be misleading, because m and n change with λ, while the above expression

erroneously suggests that only the variance σ2
diff is a function of λ. Theorem 2.3 can also be written as:

ND/2L(N)−1/2 X̄ − Ȳ
σ′diff

D−→ N (0, 1)

with

σ
′2
diff =

σ2
diff

λ(1− λ)

=
2c

Γ(3−D)

λ1−D(1− λ) + λ(1− λ)1−D − 1 + λ2−D + (1− λ)2−D

λ(1− λ)

=
2c

Γ(3−D)

(
λ1−D + (1− λ)1−D − 1

)
λ(1− λ)

.

1In a test problem for a change-point, this corresponds to the null hypothesis that there is no change

in the mean of the data: All observations have the same mean, and we can assume that this common

mean is 0. Here, we derive the (non-degenerate) asymptotic distribution of the test statistic under this

null hypothesis. In contrast, if there is a change in the mean, i.e. if E[Xi] is the same for all i, E[Yj ] is

the same for all j, but E[Xi] 6= E[Yj ] for all i, j, then the variance blows up the mean of the statistic

as well, so the expression blows up to infinity – which gives notice of the change-point.
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This variance σ
′2
diff has, in contrast to σ2

diff, the expected property that it has a minimum in λ = 0.5.

b) It may be advantageous to write σ2
diff and σ

′2
diff in the not summarized, longer form: The dif-

ference between the case of two independent samples and the case of one divided sample can easily be

seen. In the case of two independent samples, three summands of the longer representation of σ2
diff and

σ
′2
diff are lacking.

The limit behaviour of the Gauß test statistic is a special case of the ”difference-

of-means“ change-point test which we will treat in section 3.4.2 and which has been

analyzed by Csörgő and Horváth (1997, Chap. 4.3), so we source the direct proof out to

Appendix B (the proof is substantially only calculating the variance of the test statistic,

but one has to take into account asymptotic equivalences and slowly varing functions;

even though this is laborious, it is down-to-earth analysis, so it gives a feel for LRD).

2.2.2 Simulations

We will now investigate the finite sample performance of the statistic from Theorem 2.3

in a simulation study. To this end, I have simulated 10, 000 time series of fGn2 with

Hurst parameterH (respectivelyD = 2−2H) and lengthN = 10, 50, 100, 500, 1000, 2000.

In this model, the auto-covariances are

γk ∼
(

1− D

2

)
(1−D)k−D

=
c

Γ(1−D)
k−DL(k) with L(k) ≡ 1 and c =

1

2
Γ(3−D),

so Theorem 2.3 states in this situation that

T :=

√
mn

(m+ n)2−D
X̄ − Ȳ
σdiff

D−→ N (0, 1)

with

σ2
diff =

(
λ1−D(1− λ) + λ(1− λ)1−D − 1 + λ2−D + (1− λ)2−D) .

Since T is a linear statistic of X and Y , the convergence is more than a general con-

vergence in distribution: In some sense, only the variance needs to converge to 1, the

distribution is always normal. For each of the 10, 000 time series, I have calculated

T , and based on these values, I have computed the sample variance of T . All sample

variances are pretty close to 1, no matter for which split-up or for which length of

the series. The exact results are given in Appendix D.1; the R-source code is given in

Appendix C.5. In Figure 2.1, the estimated density of T is shown, compared to the

standard normal density.

To get a feel for how the variance of X̄ − Ȳ behaves for different choices of λ and

H, we write

T :=

√
mn

(m+ n)2−D
X̄ − Ȳ
σdiff

=

√
λ(1− λ)

N−D
X̄ − Ȳ
σdiff

2See Section 1.3. I have simulated fGn via a routine in the fArma package in R which uses a fast

Fourier Transform, based on the SPLUS code presented by Beran (1994).
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and then look at the sample variance of the unnormalized statistic ND/2(X̄− Ȳ ) versus

its limit σ′diff = σdiff/
√
λ(1− λ). This is shown in Figure 2.2. As one expects, the

variance is minimal for equal sample sizes (λ = 0.5) and it is smaller the stronger the

dependencies are. This can be explained intuitively: In a not so strongly dependent

series, the Y -observations have more freedom to behave different from theX’s, but when

they are very strong dependend, both samples rather do the same, so the variance is

small. The same holds for the sample sizes: If one sample is greater, the smaller one

(which is positively correlated) has less strength to countervail the fluctuations of the

first one.

2.3 Two independent samples

Now instead of one sample of observations which is cut into two pieces, we consider

two single stationary Gaussian processes (Xi)i≥1 and (Yj)j≥1 which are independent of

each other (each Xi is independent of any selection of the Yj ’s), but which have the

same long memory, and we study the performance of the difference of the means in this

situation.

2.3.1 Asymptotic theory

Theorem 2.4. Let (Xi)i≥1, (Yj)j≥1 be two stationary Gaussian processes which are

independent of each other, both with mean 0, variance 1 and covariances

Cov[Xi, Xi+k] = Cov[Yj , Yj+k] = γk ∼
c

Γ(1−D)
k−DL(k),

where c is a constant, D ∈ (0, 1) and L is a slowly varying function. Assume that we

observe X1, . . . , Xm and Y1, . . . , Yn and set m + n = N and λ = m/N , 1 − λ = n/N .

In this situation, for the difference of both sample means holds√
mn

(m+ n)2−DL(m+ n)

X̄ − Ȳ
σdiff,2

D−→ N (0, 1) (2.8)

with

σ2
diff,2 :=

2c

Γ(3−D)

(
λ1−D(1− λ) + λ(1− λ)1−D) .

Proof. The Xi and Yj are commonly Gaussian with mean 0, the numerator X̄− Ȳ is an

affine linear transformation and therefore Gaussian with mean 0 as well. We analyse

its asymptotic variance

Var[X̄ − Ȳ ] =
1

m2
Var

[
m∑
i=1

Xi

]
+

1

n2
Var

 n∑
j=1

Yj

− 2

mn

m∑
i=1

n∑
j=1

Cov[Xi, Yj ]

=
1

m2
Var

[
m∑
i=1

Xi

]
+

1

n2
Var

 n∑
j=1

Yj

 ,
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Figure 2.1: Density of X̄−Ȳ , scaled and normalized. fGn with k = 10, 000 and H = 0.7

(D = 0.6).
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Figure 2.2: Unnormalized, but scaled variance of X̄ − Ȳ . fGn with k = 10, 000 and

N = 2000 (lines: asymptotic variance, points: simulation results).
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Figure 2.3: Estimated density of the X̄ − Ȳ -statistic in two-sample case (left), unnor-

malized variance of X̄ − Ȳ for the one-sample and the two-sample case (right; lines:

asymptotic variance, points: simulation results). fGn with k = 10, 000, H = 0.7 (left),

N = 2000 (right).

and so we obtain, picking up results from the proof before:

lim
N→∞

mn

(m+ n)2−D
1

L(m+ n)
Var

[
X̄ − Ȳ

]
= lim

N→∞

mn

(m+ n)2−D
1

L(m+ n)

[
1

m2
mγ0 +

1

m2
2cm2−D L(m)

Γ(3−D)
+

1

n2
nγ0

+
1

n2
2cn2−D L(n)

Γ(3−D)

]

= lim
N→∞

λ(1− λ)

N−DL(N)

[
γ0

λN
+ 2cλ−DN−D

L(λN)

Γ(3−D)
+

γ0

(1− λ)N

+ 2c(1− λ)−DN−D
L((1− λ)N)

Γ(3−D)

]
=

2c

Γ(3−D)
λ(1− λ)

(
λ−D + (1− λ)−D

)

2.3.2 Simulations

I have simulated 10, 000 pairs of fGn time series. Theorem 2.4 states

T :=

√
mn

(m+ n)2−D
X̄ − Ȳ
σdiff,2

D−→ N (0, 1)

with

σ2
diff,2 :=

2c

Γ(3−D)

(
λ1−D(1− λ) + λ(1− λ)1−D) .
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As before, all sample variances are pretty close to their asymptotic value of 1, even

for small und unequal sample sizes. The exact results are given in Appendix D.1,

while Figure 2.3 provides an overview. The R-source code of the simulation is given in

Appendix C.6.

When we plot the unnormalized variance of X̄ − Ȳ as in the simulations before,

we see that the variance is smaller in the one-sample case. Intuitively, this is not a

surprise: Both samples are mutually positively correlated, so they behave similar and

their difference does not fluctuate that much as in the case of two independent fGn

samples.

2.4 Estimating the variance of X̄

In a next step we want to estimate Var[X̄ − Ȳ ] in Theorem 2.3. For a start we concen-

trate on the case when N observations X1, . . . , XN are given and we want to estimate

Var[X̄]. (We still we consider a stationary Gaussian process (Xi)i≥1 with E[Xi] = 0,

E[X2
i ] = 1 and auto-covariance function (1.1).) The problem here is that we want to

estimate the variance of a variable that we observe only one single time. So we enforce

several observations by an artifical segmenting of the observed data: We divide the

original time series X1, . . . , XN into N/r blocks of length r (for simplicity of notation

we assume that N/r is an integer) and take the sample mean over each block, i.e.

X
(r)
k :=

1

r

kr∑
i=(k−1)r+1

Xi, 1 ≤ k ≤ N/r.

These sample means X
(r)
k define new variables, and we can estimate their variance by

the standard sample variance

V̂ar
[
X(r)

]
:= V̂ar

[
X

(r)
k

]
:=

1

N/r

N/r∑
k=1

(
X

(r)
k

)2
−

 1

N/r

N/r∑
k=1

X
(r)
k

2

. (2.9)

This sample variance is an estimator of Var[X
(r)
k ] and it is widely used as an estimate

of the Hurst exponent H = 1 −D/2, respectively as an estimate to detect long range

dependence in a time series, known as the aggregated variance method, see for example

Teverovsky and Taqqu (1997).

2.4.1 Asymptotic behaviour of the variance-of-mean estimator

The covariances γi,j = E [XiXj ] depend only on the lag |i− j|, thus

kr∑
i,j=(k−1)r+1

i6=j

γi,j = 2
kr∑

i,j=(k−1)r+1
i<j

γi,j = 2
r∑
i=1

(r − i)γi,
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and so

E

[(
X

(r)
k

)2
]

= E

 1

r2

kr∑
i=(k−1)r+1

X2
i +

1

r2

kr∑
i,j=(k−1)r+1

i6=j

XiXj

 =
1

r
E
[
X2

1

]
+

2

r2

r∑
i=1

(r − i)γi.

(2.10)

Furthermore for l > k

E
[
X

(r)
k X

(r)
l

]
= E

 1

r2

kr∑
i=(k−1)r+1

Xi ·
lr∑

j=(l−1)r+1

Xj


=

1

r2

kr∑
i=(k−1)r+1

lr∑
j=(l−1)r+1

γi,j =
1

r2

r∑
i=1

(l−k+1)r∑
j=((l−1)−(k−1))r+1

γi,j

=
1

r2

r∑
i=1

(l−k+1)r−i∑
j=(l−k)r+1−i

γj

=
1

r2

r−1∑
j=0

γj+(l−k)r +
r−2∑
j=−1

γj+(l−k)r + . . .+
0∑

j=1−r
γj+(l−k)r


=

1

r2

(
r−1∑
i=0

(r − i)γi+(l−k)r +
r−1∑
i=1

(r − i)γ−i+(l−k)r

)
,

and so

E

 1

N/r

N/r∑
k=1

X
(r)
k

2

=
1

(N/r)2


N/r∑
k=1

E
[
X

(r)
k

]2
+ 2

∑
k<l

E
[
X

(r)
k X

(r)
l

]
=

1

(N/r)2

{
N

r

(
1

r
E
[
X2

1

]
+

2

r2

r∑
i=1

(r − i)γi

)

+
2

r2

∑
k<l

(
r−1∑
i=0

(r − i)γi+(l−k)r +
r−1∑
i=1

(r − i)γ−i+(l−k)r

)}

=
1

(N/r)2

{
N

r

(
1

r
E
[
X2

1

]
+

2

r2

r∑
i=1

(r − i)γi

)

+
2

r2

N/r−1∑
p=1

(
N

r
− p
)(r−1∑

i=0

(r − i)γi+pr +

r−1∑
i=1

(r − i)γ−i+pr

)}
,

(2.11)
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where we have used for the last transformation that all summands in the sum over

k < l only depend on the difference p := l − k. All in all, from (2.10) and (2.11) we

obtain

E
[
V̂ar

[
X(r)

]]
= E

 1

N/r

N/r∑
k=1

(
X

(r)
k

)2
−

 1

N/r

N/r∑
k=1

X
(r)
k

2
=

1

r
σ2 +

2

r2

r∑
i=1

(r − i)γi −
1

(N/r)2

{
N

r

(
1

r
σ2 +

2

r2

r∑
i=1

(r − i)γi

)

+
2

r2

N/r−1∑
p=1

(
N

r
− p
)(r−1∑

i=0

(r − i)γi+pr +
r−1∑
i=1

(r − i)γ−i+pr

)}
,

(2.12)

whose limiting behaviour we will now investigate.

Lemma 2.5. With an appropriate scaling, V̂ar[X(r)] is an asymptotically unbiased

estimator for Var
[
X̄N

]
: When r,N →∞ such that r = o(N), then

E

[( r
N

)D L(N)

L(r)
V̂ar

[
X(r)

]]
∼ Var

[
X̄N

]
.

Proof. By a short standard transformation we see

Var
[
X̄r

]
=

1

r
σ2 +

2

r2

r∑
i=1

(r − i)γi,

and by (1.8)

Var
[
X̄r

]
∼ 2

(1−D)(2−D)
r−DL(r)

(keep in mind that all limiting processes in this proof are meant to happen as r,N →∞
with r = o(N)); cγ is a constant factor. So the first two summands in (2.12), scaled

with (r/N)D, behave like this:

( r
N

)D L(N)

L(r)
Var

[
X̄r

]
∼
( r
N

)D L(N)

L(r)

2

(1−D)(2−D)
r−DL(r) ∼ Var

[
X̄N

]
. (2.13)

Similary, we have for the third summand

( r
N

)D L(N)

L(r)

1

(N/r)2

N

r

(
1

r
σ2 +

2

r2

r∑
i=1

(r − i)γi

)
=

r1+D

N1+D

L(N)

L(r)
Var

[
X̄r

]
= O

(
rL(N)

N1+D

)
→ 0. (2.14)
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The last summand in (2.12) is bounded by a term that vanishes asymptotically, and so

it must vanish, too (we are summing up positive covariances with positive weights, so

the natural lower bound is 0).

2

r2

N/r−1∑
p=1

(
N

r
− p
)(r−1∑

i=0

(r − i)γi+pr +

r−1∑
i=1

(r − i)γ−i+pr

)

=
2

r2

N/r∑
p=1

(
N

r
− p
) r−1∑

i=−(r−1)

(r − |i|)γi+pr


≤ 2

r2

N/r∑
p=1

N

r

 r−1∑
i=−(r−1)

rγi+pr

 ≤ 2N

r2

N/r∑
p=1

 r(p+1)∑
i=r(p−1)+1

γi

 =
N2

r3
o(r),

because γr → 0 as r → ∞, and so by the Stolz-Cesàro theorem 1
r

∑r(p+1)
i=r(p−1)+1 γi → 0

uniformly in p, respectively
∑r(p+1)

i=r(p−1)+1 γi = o(r) independent of the value of p, which

we will now demonstrate. By Lemma 2.1

r(p+1)∑
i=r(p−1)+1

γi =

r(p+1)∑
i=1

γi −
r(p−1)∑
i=1

γi

∼ c
(
(r(p+ 1))1−DL(r(p+ 1))− (r(p− 1))1−DL(r(p− 1))

)
≤ c′r1−DL(r)

since ((p − 1)/(p + 1))1−D 6= 1 and
(
(p+ 1)1−D − (p− 1)1−D) ≤ 21−D for all p ≥

1. Finally, note that with prefactor (N/r)−2 and scaling (r/N)DL(N)/L(r), the last

summand in (2.12) converges to 0, and the lemma is proved.

2.4.2 Simulations

To see how well V̂ar[X(r)], as defined in (2.9) and appropriately scaled, estimates

Var[X̄N ] for finite sample sizes N , we take a look at some simulations. I have sim-

ulated a time series X1, . . . , XN of fGn with Hurst parameter H = 1 − D/2. To this

time series I have applied the estimator (2.9) for different block sizes3 r: Relative block

sizes of 1/50 · N , 1/10 · N and 1/5 · N , fixed block sizes of 10, 50 and 100 and block

sizes r = Nβ for β = 0.1, 0.3, 0.5, 0.7 and 0.9. Each of these simulation was repeated

10, 000 times and the results were averaged.

3The relative and the fixed block sizes do not fulfil the requirements of the Lemma in the previous

section: r,N → ∞ with r = o(N). However, in practice we will not have infinitely many data, but

one single fixed sample size N , and then of course one chooses one single block length r – by guess, by

taking a fraction or root or whatever –, so it is definitely interesting to see how the estimator performs

with these kinds of block sizes.
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Figure 2.4: Relative simulation results V̂ar[X(r)]/Var[X̄N ] of variance estimation of X̄,

each value averaged over 10, 000 simulations, for different Hurst parameters H, sample

sizes N and block size r (top: relative, middle: fixed, bottom: r = Nβ).
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Figure 2.5: Auto-covariance estimator γ̂h, average and confidence belts (lower and

upper quartile) based on 10,000 repetitions, for different sample sizes and different

Hurst parameters H = 0.6 (· · ·), H = 0.7 (– · –), H = 0.9 (– – –).
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Figure 2.6: Auto-covariance estimator γ̂h, based on four different realizations of fGn

(N = 1000, H = 0.7), compared to the true auto-covariance (dotted). Clearly, the

estimator gets worse for larger lags.
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The simulation results, i.e. the estimated variance of X̄ relative to the true variance4,

V̂ar[X(r)]/Var[X̄N ], are shown in Figure 2.4. The exact simulation results are given in

Appendix D.2.

Some values have not been computed because the number of blocks was smaller than

2 or equal or greater than N , which does not make sense. Apparently, relative block

sizes do not perform better with increasing sample size N . As one expects, dividing

the sample in only 5 blocks yields a very poor result. It gets better when the number

of blocks is 50.

If the blocks are of size
√
N , the estimator becomes better with increasing sample

sizes (from N = 50 to N = 2000 it gains about 20 percentage points).

Fixed block sizes (the second table of each trio) get better with increasing sample

size N as well. In ordinary dimension (a few hundred observations), a block size of

r = 10 is quite respectable.

Polynomial growing block sizes also gain accuracy when N grows. While block sizes

r = N0.1 are unpractical (they tend to overestimate the true variances, in parts with

some ten percent), r = N0.3 seems to be reliable: For all sample sizes it gives a good

approximation to the true variance.

Let us finally look how the estimators handle different levels of long memory. All

types of block sizes yield poorer results when H increases. For H = 0.9, the estimated

variance is alarmingly often less than 50% of the true variance. So estimating the

variance of the mean by block techniques is obviously the more difficult, the stronger

the dependencies are.

2.5 Estimating the auto-covariance

In the following, we will need some higher and mixed moments. They can be calculated

via the diagram formula, see e.g. Major (1981a, Cor. 5.5) or Surgailis (2003).

Lemma 2.6 (Diagram formula). For zero mean Gaussian random variables X1, . . . , Xp,

p ≥ 2, with E[X2
j ] = 1 and γi,j := E [XiXj ], i, j = 1, . . . , p it holds

E
[
Hk1(X1) · · ·Hkp(Xp)

]
=


k1!···kp!

2qq!

∑′
γi1,j1 · · · γiq ,jq k1 + . . .+ kp = 2q and

0 ≤ k1, . . . , kq ≤ q

0 otherwise

,

where
∑′

denotes a sum over all indices i1, j1, · · · iq, jq with

• i1, j1, . . . , iq, jq ∈ {1, 2, . . . , p}

• i1 6= j1, . . . , iq 6= jq

4Since the auto-covariances γk of fGn are known, see (1.4), Var[X̄N ] = nγ0 + 2
∑N−1
k=1 (N − k)γk can

be calculated.
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• k1 indices are 1, k2 indices are 2, . . . , kp indices are p.

Example. We will consider some examples in order to illustrate the use of the diagram

formula and to prepare the upcoming calculations.

1. Let i, j, k, l be pairwise different indices.

E[XiXjXkXl] =
1

8
(8γi,jγk,l + 8γi,kγj,l + 8γi,lγj,k) , (2.15)

respectively in the special case when i 6= j, k = i + h 6= j and l = j + h 6= i for

h > 0

E[XiXjXi+hXj+h] =
1

2

(
γ2
i,j + γ2

h + γi,j+hγj,i+h
)
.

E[X2
iX

2
j ] = E[(X2

i − 1)(X2
j − 1)] + E

[
X2
i

]
+ E

[
X2
j

]
− 1

= E [H2(Xi)H2(Xj)] + 1 =
1

2
4γ2

i,j + 1 (2.16)

E[XiXjX
2
k ] = E [H1(Xi)H1(Xj)H2(Xk)] + E [XiXj ]

=
1

22
8γi,kγj,k + γi,j = 2γi,kγj,k + γi,j (2.17)

2. Consider Hermite polynomials Hk, k ∈ N.

E
[
Hki(Xi)Hkj (Xj)

]
=


ki!kj !
2qq!

∑′
γi1,j1 · · · γiq ,jq ki + kj = 2q and

0 ≤ ki, kj ≤ q

0 otherwise.

If ki 6= kj , E[Hki(Xi)Hkj (Xj)] = 0, since if ki + kj are even, i.e. ki + kj = 2q for

a number q ∈ N, then either ki, kj are both even or both are odd. Let w.l.o.g.

ki > kj , then ki = kj + 2k, k ∈ N. It follows ki + kj = 2kj + 2k = 2q, thus

kj + k = q, and that means ki = kj + 2k = q + k > q.

If ki = kj =: k, we have q = k and

E
[
Hki(Xi)Hkj (Xj)

]
= E [Hk(Xi)Hk(Xj)] =

k!

2k

∑′

γi1,j1 · · · γiq ,jq ,

where
∑′

denotes a sum over all indices i1, j1, · · · iq, jq such that k1 indices are 1,

k2 indices are 2, . . . , kp indices are p, in other words k indices are i and k indices

are j. Since the indices must be pairwise different, i1 6= j1, . . . , iq 6= jq, the sum is∑′
γi,j · · · γi,j and each summand consists of k factors. How many such summands

are possible? Each factor is γi,j or γj,i, so each factor has two possibilities, thus

there are 2k possible summands in
∑′

. So we obtain

E
[
Hki(Xi)Hkj (Xj)

]
= k!γki,j .

We have just established (1.6).
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3. We will now verify (1.7) as well, applying the just proved formula (1.6):

E

[
N∑
i=1

Hk(Xi)

]2

= E

[
N∑
i=1

Hk(Xi)Hk(Xi)

]
+ E

 N∑
i6=j

Hk(Xi)Hk(Xj)


= Nk! +

N∑
i6=j

k!γki,j ,

which yields (1.7) with γk = γi,i+k = Cov[Xi, Xi+k] = k−DL(k).

2.5.1 Asymptotic behaviour of the auto-covariance estimator

We will use the diagram formula to prove

Theorem 2.7. The standard estimator for the auto-covariances γh = Cov [Xi, Xi+h]

γ̂h =
1

N − h

N−h∑
i=1

XiXi+h (2.18)

is asymptotically consistent for all fixed h ∈ N as N →∞:

E [γ̂h] = γh, Var [γ̂h]→ 0

This is comforting to know.

Proof. Unbiasedness is immediate. The asymptotic zero variance requires some more

effort. First consider the case h = 0. Then

Var[γ̂0] =
1

N2
Var

[
N∑
i=1

X2
i

]
=

1

N2
Var

[
N∑
i=1

H2(Xi)

]

and this converges to 0 due to (1.8). If h > 0, we set M := N − h. We will show that

Var [γ̂h] ≤ O(M−1) +O(M−DL(M)), (2.19)

so that Var [γ̂h] → 0 not uniformly in h as N → ∞, but in some sense uniformly over

certain sets of values for N,h. We will make use of this in a later proof. Now write

Var [γ̂h] =
1

M2

E [ M∑
i=1

XiXi+h

]2

− (Mγh)2


=

1

M2

 M∑
i=1

E
[
X2
iX

2
i+h

]
+ 2

M∑
i<j

E [XiXi+hXjXj+h]

− γ2
h. (2.20)
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The first sum is bounded by O(M). We will now show that the second sum, scaled with

M−2, converges to γ2
h. In order to apply the diagram formula, we have to distinguish

two cases: i+ h = j and i+ h 6= j.

2

M∑
i<j

E [XiXi+hXjXj+h] = 2

M−h∑
i=1

E
[
XiX

2
jXj+h

]
+ 2

M∑
i<j,j 6=i+h

E [XiXi+hXjXj+h]

= O(M) + 2
M−1∑

k=1,k 6=h
(M − k)(γ2

k + γ2
h + γk+hγ|k−h|),

where in the last step we have used that the covariances in the sum over i < j depend

only on the lag k = j− i, and below the diagonal {i = j} there are (M−k) indices (i, j)

with lag k. Now γk = E[XiXi+k] ≤ (E[X2
i ]E[X2

i+k])
1/2 = 1, and so we can roughly

estimate

M−1∑
k=1,k 6=h

(M − k)γ2
k ≤

M∑
k=1

(M − k)γk ∼ c ·M2−DL(M)

where c is a constant, due to (B.6) which follows from Karamata’s Theorem, similar to

(2.6). The same upper bound holds for
∑M−1

k=1,k 6=h(M − k)γk+hγ|k−h|, and so both sums

are o(M2). Finally note that

2
M−1∑

k=1,k 6=h
(M − k) ≤ 2

M∑
k=1

(M − k) = 2

(
M2 − M(M + 1)

2

)
,

thus

Var [γ̂h] ≤ O(M−1) +O(M−DL(M)) +

∣∣∣∣2(1− M(M + 1)

2M2

)
− 1

∣∣∣∣ ,
which proves (2.19).

2.5.2 Simulations

By Theorem 2.7, the standard auto-covariance estimator

γ̂h =
1

N − h

N−h∑
i=1

XiXi+h,

as defined in (2.18), is asymptotically unbiased. We will now investigate its performance

in finite sample situations by a simulation study. To this end, we have simulated

samples of fGn of length N (with N = 50, 100, 500, 1000). fGn has the exact auto-

covariances (1.4). For each sample we have calculated the estimated auto-covariances

γ̂h, h = 1, . . . , N − 1. Each simulation was repeated 10,000 times; so based on these

10,000 repetitions, for each lag h, we have calculated an average value of γ̂h and the

lower and upper quartile. The results are presented in Figure 2.5, where the simulation

results are shown, relative to the true auto-covariance (1.4).
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The larger the sample size N is, the less fluctuates the average and the narrower

is the confidence belt. The estimation is better for larger LRD parameters H, but it

tends to underestimate the true value. The maximum lag at which to calculate the

auto-covariance was restricted to

hmax := min(10 log10(N), N − 1), (2.21)

where N is the number of observations (this is the default setting for estimating auto-

covariances in R), since the estimator gets worse for large lags h, because the larger the

lag, the less data is available on which the estimation is based. This is illustrated by

Figure 2.6 where γ̂h is shown, based on different realizations of fGn.

2.6 Estimating the variance of X̄ − Ȳ

Now we are prepared to estimate the variance of X̄m − Ȳn in the situation of Theo-

rem 2.3. We will estimate

Var
[
X̄m − Ȳn

]
= Var

[
X̄m

]
+ Var

[
Ȳn
]
− 2

mn

m∑
i=1

m+n−i∑
j=m+1−i

γj ,

by

V̂ar
[
X̄m − Ȳn

]
:=
( r
m

)D L(m)

L(r)
V̂ar

[
X(r)

]
+
( r
n

)D L(n)

L(r)
V̂ar

[
Y (r)

]
− 2

mn

m∑
i=1

m+n−i∑
j=m+1−i

γ̂j ,

(2.22)

where V̂ar
[
X(r)

]
and V̂ar

[
Y (r)

]
are defined in (2.9) and γ̂j is defined in (2.18).

2.6.1 Asymptotic behaviour of the variance estimator for X̄ − Ȳ

Theorem 2.8. The estimator (2.22) is asymptotically unbiased:

E
[
V̂ar

[
X̄m − Ȳn

]]
∼ Var

[
X̄m − Ȳn

]
with m = [λN ], n = [(1− λ)N ], λ ∈ (0, 1), and r = o(N) as r,N →∞.

Proof. We already know from the preceding theorems that

E

[( r
m

)D L(m)

L(r)
V̂ar

[
X(r)

]]
∼ Var

[
X̄m

]
E

[( r
n

)D L(n)

L(r)
V̂ar

[
Y (r)

]]
∼ Var

[
Ȳn
]

E

 2

mn

m∑
i=1

m+n−i∑
j=m+1−i

γ̂j

 =
2

mn

m∑
i=1

m+n−i∑
j=m+1−i

γj ,
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so in order to establish the first statement of the theorem, we only have to show the

asymptotic equivalence of the sum of the expressions on the left hand side and of the

sum of the expressions on the right-hand side. We employ Lemma 2.1 twice. At first,

if λ 6= 1/2

Var
[
X̄m

]
Var

[
Ȳn
] ∼ m−D

n−D
=

(
1− λ
λ

)D
=

(
1

λ
− 1

)D
6= 1

by (1.8), like on page 35, so we obtain

E

[( r
m

)D L(m)

L(r)
V̂ar

[
X(r)

]
+
( r
n

)D L(n)

L(r)
V̂ar

[
Y (r)

]]
∼ Var

[
X̄m

]
+ Var

[
Ȳn
]
. (2.23)

If λ = 1/2, the sample of observations is cut in half, and because of the stationarity of

the process (Xi)i≥1, both halfs (X1, . . . , X[N/2]) and (X[N/2]+1, . . . , XN ) have the same

asymptotic probabilistic properties. So

E

[( r
n

)D L(n)

L(r)
V̂ar

[
Y (r)

]]
∼ E

[( r
m

)D L(m)

L(r)
V̂ar

[
X(r)

]]
Var

[
X̄m

]
∼ Var

[
Ȳn
]
,

and (2.23) holds as well.

Second, we obtain the equivalence of all three summands (recall (B.5) on page 198);

we have

lim
N→∞

Var
[
X̄m

]
+ Var

[
Ȳn
]

2
mn

∑m
i=1

∑m+n−i
j=m+1−i γj

= lim
N→∞

2C(m−DL(m) + n−DL(n))
2
nmN

2−DCL(N) · (1− λ2−D − (1− λ)2−D)

=
λ−D + (1− λ)−D

1
λ(1−λ) (1− λ2−D − (1− λ)2−D)

,

because L(λN)/L(N) → 1 for any λ ∈ (0, 1). We will now show that this always

exceeds 1, such that the condition of Lemma 2.1 is fulfilled. λ2−D > λ2 and λ−D > 1

for all λ ∈ (0, 1), thus

lim
N→∞

Var
[
X̄m

]
+ Var

[
Ȳn
]

2
mn

∑m
i=1

∑m+n−i
j=m+1−i γj

>
2λ(1− λ)

1− λ2 − (1− λ)2
= 1.

2.6.2 Simulations

We have just shown that the estimator V̂ar
[
X̄m − Ȳn

]
for Var

[
X̄m − Ȳn

]
, as defined

in (2.22), is asymptotically unbiased. We will now take a look at its finite sample

behaviour. For this purpose, we have simulated N observations of standard fGn with

Hurst parameter H (for N = 500, 1000 and H = 0.7, 0.9) and divided the sample
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Figure 2.7: V̂ar
[
X̄m − Ȳn

]
/Var[X̄m − Ȳn] for different sample lengths N and LRD

parameters N , based on the usual auto-covariance estimator γ̂h.
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Figure 2.8: V̂ar
[
X̄m − Ȳn

]
/Var[X̄m − Ȳn] for different sample lengths N and LRD

parameters N , based on a trimmed auto-covariance estimator γ̂h,trim (the usual auto-

covariance estimator γ̂h, but set to 0 for large lags).



46 The asymptotic behaviour of X̄ − Ȳ
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Figure 2.9: Relative estimation
∑
γ̂h/

∑
γh (1) and the resulting estimation

V̂ar
[
X̄m − Ȳn

]
/Var[X̄m − Ȳn] (2) for fGn with split point λ = 0.3. Var[X̄m] and

Var[Ȳn] have been estimated with V̂ar[X(r)], using polynomial block size with β = 0.3.

(3) and (4) show the same, but γ̂h,trim was used instead of γ̂h.

after the [λN ]-th observation (for λ = 0.05, 0.1, 0.3, 0.5, i.e. for sample size N = 500

after observation m = 25, 50, 150, 250 and for sample size N = 1000 after observation

m = 50, 100, 300, 500). In our simulation, we have compared these simulations of

V̂ar
[
X̄m − Ȳn

]
with the respective true variance

Var
[
X̄m − Ȳn

]
=

1

m2
Var

[
m∑
i=1

Xi

]
+

1

n2
Var

 n∑
j=1

Yj

− 2

mn

m∑
i=1

N−i∑
j=m+1−i

γj

=
1

m2

(
m+ 2

m−1∑
k=1

(m− k)γk

)
+

1

n2

(
n+ 2

n−1∑
k=1

(n− k)γk

)

− 2

mn

m∑
i=1

N−i∑
j=m+1−i

γj ,

where the γk, the exact auto-covariances of fGn, are known and thus can be calculated,

see (1.4). The result of this comparison is shown in Figure 2.7.

V̂ar
[
X̄m − Ȳn

]
tends to underestimate the true variance Var[X̄m− Ȳn], for H = 0.9

much more than for H = 0.7. This can be explained as follows: For H = 0.7, the

estimation of Var[X̄m] and Var[Ȳn] is reliable (remember Figure 2.4), so this is due

to an overestimation of
∑
γh by

∑
γ̂h. The left half of Figure 2.9 shows the effect

of summing up the single estimations γ̂h: For a certain set of parameters, it displays

the boxplot of 2
mn

∑m
i=1

∑m+n−i
j=m+1−i γ̂j relative to the true value 2

mn

∑m
i=1

∑m+n−i
j=m+1−i γj

(first plot, each for H = 0.7, 0.9) and the resulting estimate V̂ar
[
X̄m − Ȳn

]
relative to
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the true value Var
[
X̄m − Ȳn

]
(second plot, each for H = 0.7, 0.9). Indeed, we observe

a huge variance for
∑
γ̂h with more upper outliers than lower ones. When H = 0.9,

then Var[X̄m] and Var[Ȳn] are underestimated (as shown in Figure 2.4), and moreover,

as Figure 2.9 demonstrates,
∑
γ̂h heavily overestimates

∑
γh, and we have only upper

outliers. In consequence, recall the definition (2.22), V̂ar
[
X̄m − Ȳn

]
gets much too

small.

An improvement can simply be obtained by adjusting the auto-covariance estimator

γ̂h which is involved in V̂ar
[
X̄m − Ȳn

]
and which is bad for large lags, as we have

just illustrated in Figure 2.6; a natural idea is to trimm it. If we estimate the auto-

covariances γh by

γ̂h,trim =

γ̂h if h ≤ hmax

0 else
,

with hmax as in (2.21), and use this as auto-covariance estimator in V̂ar
[
X̄m − Ȳn

]
, the

estimation gets better: As shown in Figure 2.8, the confidence belts become narrower,

and especially for H = 0.9, the average gets closer to the true variance (even though

it now exceeds it). The right half of Figure 2.9 confirms that trimming improves the

estimation of
∑
γh by

∑
γ̂h: Now, we do not obtain this broad range of outliers, and

as a consequence V̂ar
[
X̄m − Ȳn

]
yields better results.
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Chapter 3

A “Wilcoxon-type” change-point

test

In this chapter we develop a non-parametric change-point test for changes in the mean of

LRD processes that have a representation as an instantaneous functional of a stationary

Gaussian process. We aim at a test which is based on the Wilcoxon two-sample test

statistic, roughly speaking a “Wilcoxon-type” test.

Wilcoxon’s rank statistic can be represented as a U -statistic, so a natural approach

is to rely on the work of Dehling and Taqqu (1989) who derived a limit theorem for

one-sample U -statistics of LRD data. Unfortunately, the technical requirements forbid

to extend the method as a whole to the Wilcoxon two-sample test statistic; the crucial

point is that the kernel of the U -statistic has to have bounded variation, but h(x, y) =

I{x≤y}, which is the kernel that leads to Wilcoxon’s two-sample test statistic, does not

have this property.

In this chapter, we will thus make a different approach: We represent the Wilcoxon

two-sample test statistic as a functional of the one-dimensional empirical process and

apply to this the limit theorem of Dehling and Taqqu (1989). This part of this work is

based on the article of Dehling, Rooch and Taqqu (2012).

In what follows, we define our test and derive its asymptotic distribution under

the null hypothesis that no change occured. In a subsequent simulation study, we also

compare its power with the power of a test which is based on differences of means in a

simulation study. We will see that for Gaussian data, the non-parametric change-point

test has only a slightly smaller power, while for heavy-tailed data it outperforms the

“difference-of-means” test. Motivated by these observations, we will compare the power

of both tests analytically; this is carried out in the next chapter.
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3.1 Setting the scene

We consider observations (Xi)i≥1 of the type

Xi = µi + εi,

where (µi)i≥1 are unknown means and (εi)i≥1 is an instantaneous functional of a

stationary Gaussian process with non-summable covariances, i.e.

εi = G(ξi), i ≥ 1,

where (ξi)i≥1 is a mean-zero Gaussian process with E(ξ2
i ) = 1 and long-range depen-

dence, that is, with auto-covariance function (1.1). G is a measurable transformation

which fulfills some technical requirements.

Definition 3.1 (Centralized/normalized Lp(R)-functions). Let ξ ∼ N (0, 1) be a stan-

dard normal random variable. We define

G1 = G1(R,N ) := {G : R→ R measurable | E[G(ξ)] = 0} ⊂ L1(R,N ),

the class of (with respect to the standard normal measure) centralized and integrable

functions, and

G2 = G2(R,N ) := {G : R→ R measurable | E[G(ξ)] = 0, E[G2(ξ)] = 1} ⊂ L2(R,N ),

the class of (with respect to the standard normal measure) normalized and square-

integrable functions.

Any transformation G : R → R which is measurable with mean zero and finite

variance under standard normal measure can be normalized by dividing the standard

deviation, so it can be considered as a function in G2. In the following, G is either in

G1 or in G2. So after all, the observations (Xi)i≥1 are always assumed to be an LRD

stationary process with mean zero.

Based on the observations X1, . . . , Xn, we wish to test the hypothesis

H : µ1 = . . . = µn (3.1)

that there is no change in the means of the data against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1} (3.2)

that there is an index after which the level shifts. We shall refer to this test problem

as (H,A).

A usual approach to change-point tests is to start with a two-sample problem where

the change-point is known; in this case, for a given k ∈ {1, . . . , n− 1}, the alternative

is

Ak : µ1 = . . . = µk 6= µk+1 = . . . = µn.
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For such a test problem (H,Ak), a commonly used non-parametric test is the Wilcoxon

two-sample rank test. It rejects for large and small values of the test statistic

Wk,n =
k∑
i=1

n∑
j=k+1

I{Xi≤Xj}

which counts the number of times the second part of the sample exceeds the first

part of the sample. This is the Mann-Whitney representation of Wilcoxon’s rank test

statistic as a U -statistic (Lehmann, 1975). From this two-sample problem (H,Ak)

with a known change-point, one passes over to the change-point problem (H,A),

where one does not know k, by considering a functional of the vector of test statis-

tics W1,n, . . . ,Wn−1,n. A common procedure is to reject the null hypothesis for large

values of Wn = maxk=1,...,n−1 |Wk,n|. This is what we will do (but of course, other

functions of W1,n, . . . ,Wn−1,n are also possible).

In order to set the critical values of the test, we need to know the asymptotic

distribution of Wn under the null hypothesis of no change (the exact distribution is

hard to obtain, so we have to settle for an asymptotic test), so we want to obtain the

asymptotic distribution for a large sample size and consider the process

W[nλ],n =

[nλ]∑
i=1

n∑
j=[nλ]+1

I{Xi≤Xj}, 0 ≤ λ ≤ 1,

parametrized by λ. After centering and scaling, where F denotes the c.d.f. of the

Xi = G(ξi) and dn is defined in (1.12), we obtain the process

Wn(λ) =
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

∫
R
F (x)dF (x)

)
, 0 ≤ λ ≤ 1. (3.3)

Technical remark. The centering constant
∫
R F (x)dF (x) equals E[I{X1≤X′1}], where X ′1 is an inde-

pendent copy of X1. It is the proper normalization as the dependence between Xi and Xj vanishes

asymptotically when |j − i| → ∞. Of course, this is only an heuristic argument, but in the course

of the proof we will see that it is just the right centering constant. If the distribution function F is

continuous,
∫
R F (x)dF (x) = 1

2
.

Under the null hypothesis of no change in the mean, the distribution of Wn(λ) does

not depend on the common mean µ := µ1 = . . . = µn, so we may assume without loss

of generality that µ = 0 and hence that Xi = G(ξi).

3.2 The limit distribution under the null hypothesis

Our aim is to analyse the asymptotic distribution of the process (Wn(λ))0≤λ≤1. Since

it has the representation of a U -statistic, a natural idea to handle it is to extend the



52 A “Wilcoxon-type” change-point test

method of Dehling and Taqqu (1989) who treat one-sample U -statistics of LRD data,

but as mentioned in the introduction of the chapter, this approach fails due to the

technical requirements: The kernel h(x, y) = I{x<y} does not have bounded variation

(we prove this in few words on page 210; an overview about the concept of bounded

variation in higher dimensions, which may be needed for this, is given in Appendix B.3).

Nevertheless, to analyse the asymptotic distribution of the process (Wn(λ))0≤λ≤1, we

can apply the empirical process invariance principle of Dehling and Taqqu (1989) to

the sequence (G(ξi))i≥1, and this approach succeeds.

We consider the Hermite expansion

I{G(ξi)≤x} − F (x) =
∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq is the q-th order Hermite polynomial and where Jq(x) = E[Hq(ξi)I{G(ξi)≤x}]

is the belonging Hermite coefficient (depending on x).

Definition 3.2 (Hermite rank of class of functions). We define the Hermite rank of

the class of functions {I{G(ξi)≤x} − F (x), x ∈ R} by

m := min{q ≥ 1 : Jq(x) 6= 0 for some x ∈ R}. (3.4)

Theorem 3.1. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero,

variance 1 and auto-covariance function (1.1) with 0 < D < 1
m . For G ∈ G1, we define

Xk = G(ξk).

Assume that Xk has a continuous distribution function F . Let m denote the Hermite

rank of the class of functions I{G(ξi)≤x} − F (x), x ∈ R, as defined in (3.4), and let

dn > 0 satisfy (1.12). Then

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

∫
R
F (x)dF (x)

)
, 0 ≤ λ ≤ 1, (3.5)

converges in distribution towards the process

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x)dF (x), 0 ≤ λ ≤ 1.

Details to the process (Zm(λ))λ≥0 are given in Section 1.4.2 and in the paper of

Dehling and Taqqu (1989). The process is a so called Hermite process, and it is self-

similar with parameter1

H = 1− mD

2
∈
(

1

2
, 1

)
.

Zm(λ) is not Gaussian when m ≥ 2. When m = 1, Z1(λ) is the standard Gaussian

fBm BH(λ).

1Do not confuse the index H, which is called Hurst parameter, with the other H’s used in this work

to denote for example hypothesis and Hermite polynomial.
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Proof. We introduce the empirical distribution functions of the first k and the last

(n− k) observations, respectively:

Fk(x) =
1

k

k∑
i=1

I{Xi≤x}

Fk+1,n(x) =
1

n− k

n∑
i=k+1

I{Xi≤x}

Thus we have [nλ]F[nλ](x) =
∑[nλ]

i=1 I{Xi≤x} and (n−[nλ])F[nλ]+1,n(x) =
∑n

i=[nλ]+1 I{Xi≤x},

and we obtain the following representation:

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

∫
R
F (x)dF (x)

)
(3.6)

= [nλ]
n∑

j=[nλ]+1

(
F[nλ](Xj)−

∫
R
F (x)dF (x)

)

= [nλ](n− [nλ])

(∫
R
F[nλ](x)dF[nλ]+1,n(x)−

∫
R
F (x)dF (x)

)
= [nλ](n− [nλ])

∫
R

(F[nλ](x)− F (x))dF[nλ]+1,n(x)

+ [nλ](n− [nλ])

∫
R
F (x)d(F[nλ]+1,n − F )(x)

= [nλ](n− [nλ])

∫
R

(F[nλ](x)− F (x))dF[nλ]+1,n(x)

− [nλ](n− [nλ])

∫
R

(F[nλ]+1,n(x)− F (x))dF (x).

In the final step, we have used integration by parts, namely
∫
RGdF = 1−

∫
R F dG, if F

and G are two distribution functions. We now apply the empirical process non-central

limit theorem of Dehling and Taqqu (1989) which states that

(
d−1
n [nλ](F[nλ](x)− F (x))

)
x∈[−∞,∞], λ∈[0,1]

D−→ (J(x)Z(λ))x∈[−∞,∞], λ∈[0,1], (3.7)

where

J(x) = Jm(x) and Z(λ) = Zm(λ)/m!.

By the Dudley-Wichura version of Skorohod’s representation theorem (Shorack and

Wellner, 1986, Th. 2.3.4) we may assume without loss of generality that convergence

holds almost surely with respect to the supremum norm on the function space D([0, 1]×
[−∞,∞]), i.e.

sup
λ,x

∣∣d−1
n [nλ](Fnλ(x)− F (x))− J(x)Z(λ)

∣∣ −→ 0 a.s.. (3.8)
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Technical remark. The theorem states: If we have weak convergence, we can find an equivalent

process which converges almost surely. In detail, let (M,d) denote a metric space and let MB
d be the

σ-field generated by the collection of all open balls B = {y | d(x, y) < r} ⊂ M for some x ∈ M and

some r > 0. Now if we have weak convergence of a random process Xn →w X0 on (M,MB
d , d), then we

can find equivalent variables Xn =D X
′
n (which may live on another probability space) which converge

almost surely, as long as the limit variable is concentrated on a separable subset of M : d(X ′n, X
′
0)→a.s. 0

as n → ∞, as long as P0(Ms) = 1 for a MB
d -measurable subset Ms ⊂ M that is d-seperable, i.e. that

has a countable subset d-dense in M .

First, notice that the equivalent process may have another common distribution. But we are only

interested in weak convergence of the process, so we do not need to care about it.

Second, the convergence in (3.7) happens in D((−∞,∞) × [0, 1]) which is not separable, but the

limit J(x)Z(λ) can be regarded as an element of C((−∞,∞)× [0, 1]) which is. To see this, note that

Z(λ) can be assumed to be a version with continuous sample paths, and that J(x) does not have jumps

as long as Xk has a continuous c.d.f. F (t) = P (G(Y ) ≤ t):

J(t) =

∫
I{G(y)≤t}Hq(y) dΦ(y) =

∫
{y|G(y)≤t}

Hq(y) dPY (y) =

∫
{ω|G(Y (ω))≤t}

Hq(Y (ω)) dP (ω),

so the domain of integration (more precisely: its measure under P ) changes continuously with t, and

Hq is smooth.

(3.8) is a result on the e.d.f. of the first [λn] observations. We can deduce a similar

result on the e.d.f. of the remaining n− [λn] observations X[nλ]+1, . . . , Xn:

sup
λ,x

∣∣d−1
n (n− [nλ])(F[nλ]+1,n(x)− F (x))− J(x)(Z(1)− Z(λ))

∣∣ −→ 0 a.s.. (3.9)

To see this, consider the empirical processes of all n and of the initial [λn] observations,

n (Fn(x)− F (x)) =

n∑
i=1

(
I{Xi≤x} − F (x)

)
[nλ]

(
F[nλ](x)− F (x)

)
=

[nλ]∑
i=1

(
I{Xi≤x} − F (x)

)
.

By definition, we have

(n− [nλ])
(
F[nλ]+1,n(x)− F (x)

)
=

n∑
i=[nλ]+1

(
I{Xi≤x} − F (x)

)
,

and this equals (take the difference on both sides between the two lines above)

n (Fn(x)− F (x))− [nλ]
(
F[nλ](x)− F (x)

)
,

so we can deduce (3.9) in this way:

sup
λ,x

d−1
n (n− [λn])

∣∣(F[nλ+1,n](x)− F (x)
)
− J(x) (Z(1)− Z(λ))

∣∣
≤ sup

λ,x
d−1
n

(
n |(Fn(x)− F (x))− J(x)Z(1)|+ [nλ]

∣∣(F[nλ](x)− F (x)
)
− J(x)Z(λ)

∣∣) ,
and both terms vanish by (3.8).
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Thus we get, for the first term in the right-hand side of (3.6),

1

ndn
[nλ](n− [nλ])

∫
R

(F[nλ](x)− F (x))dF[nλ]+1,n(x)− (1− λ)

∫
R
J(x)Z(λ)dF (x)

(3.10)

=
n− [nλ]

n

∫
R
d−1
n [nλ](F[nλ](x)− F (x))dF[nλ]+1,n(x)− n− [nλ]

n

∫
R
J(x)Z(λ)dF (x)

+

{
n− [nλ]

n
− (1− λ)

}∫
R
J(x)Z(λ)dF (x)

=
n− [nλ]

n

∫
R

{
d−1
n [nλ](F[nλ](x)− F (x))− J(x)Z(λ)

}
dF[nλ]+1,n(x)

+
n− [nλ]

n

∫
R
J(x)Z(λ)d(F[nλ]+1,n − F )(x)

+

{
n− [nλ]

n
− (1− λ)

}∫
R
J(x)Z(λ)dF (x).

The first term on the right-hand side converges to 0 almost surely by (3.8). The third

term converges to zero as

sup
0≤λ≤1

∣∣∣∣n− [nλ]

n
− (1− λ)

∣∣∣∣→ 0,

because with nλ− 1 ≤ [nλ] ≤ nλ+ 1, we obtain

∣∣∣∣n− [nλ]

n
− (1− λ)

∣∣∣∣ =

∣∣∣∣λ− [nλ]

n

∣∣∣∣ ≤ ∣∣∣∣λ− nλ+ 1

n

∣∣∣∣ =
1

n
.

Regarding the second term, note that
∫
R J(x)dF (x) = E(J(Xi)) and hence

n− [nλ]

n

∫
R
J(x)Z(λ)d(F[nλ]+1,n − F )(x)

= Z(λ)
1

n

n∑
i=[nλ]+1

(J(Xi)− EJ(Xi))

= Z(λ)

 1

n

n∑
i=1

(J(Xi)− E(J(Xi)))−
1

n

[nλ]∑
i=1

(J(Xi)− E(J(Xi)))

 .
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By the ergodic theorem2 , 1
n

∑n
i=1(J(Xi) − E(J(Xi))) → 0, almost surely. Hence∑n

i=1(J(Xi)− E(J(Xi))) = o(n) and thus

max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(J(Xi)− E(J(Xi)))

∣∣∣∣∣ = o(n), as n→∞, a.s.,

otherwise 1
n

∑n
i=1(J(Xi)−E(J(Xi))) would possess a subsequence which does not con-

vergece to 0. Hence (3.10) converges to zero almost surely, uniformly in λ ∈ [0, 1].

Regarding the second term on the right-hand side of (3.6) we obtain

1

ndn
[nλ](n− [nλ])

∫
R

(F[nλ]+1,n − F (x))dF (x)− λ
∫
R
J(x)(Z(1)− Z(λ))dF (x) (3.11)

=
[nλ]

n

∫
R

{
d−1
n (n− [nλ])(F[λn]+1,n(x)− F (x))− J(x)(Z(1)− Z(λ))

}
dF (x)

−
(
λ− [nλ]

n

)∫
R
J(x)(Z(1)− Z(λ))dF (x).

Both terms on the right-hand side converge to zero a.s., uniformly in λ ∈ [0, 1].

For the first term, this follows from (3.9). For the second term, this holds since

sup0≤λ≤1

∣∣∣ [nλ]
n − λ

∣∣∣ → 0, as n → ∞, as shown above. Using (3.6) and the fact that

the right-hand sides of (3.10) and (3.11) converge to zero uniformly in 0 ≤ λ ≤ 1, we

have proved that the normalized Wilcoxon two-sample test statistic (3.5) converges in

distribution towards∫
R

(1− λ)Z(λ)J(x)dF (x)−
∫
R
λ(Z(1)− Z(λ))J(x)dF (x), 0 ≤ λ ≤ 1,

which equals

(Z(λ)− λZ(1))

∫
R
J(x)dF (x),

and thus we have established Theorem 3.1.

In this proof we have used an integration by parts in order to express our test

statistic as a functional of the empirical process. Recall that a similar integration

by parts technique was used by Dehling and Taqqu (1989, 1991); but here, we use a

one-dimensional integration by parts formula, whereas Dehling and Taqqu use a two-

dimensional integration by parts, because the latter would not work here, since the

kernel I{x≤y} does not have locally bounded variation, see section B.3.2, page 210.

2A stationary, mean zero Gaussian process (ξi)i≥1 is ergodic if and only if its spectral measure

F (dλ) is continous, i.e. that the spectral measure of each point λ is zero (Rozanov, 1967, Ex. 6.2).

Moreover, if (ξi)i≥1 is a stationary, ergodic process and f : RN → R a measurable function, the process

(Xi)i≥1 defined as Xi = f(ξi, ξi+1, ξi+2, . . .) is ergodic, too, especially if f(t1, t2, . . .) = f(t1) is only

a function of the first variable. To see this, let A be shift-invariant with respect to the measure PX .

Then PX(A) = Pξ({(ξi) | (Xi) = (f(ξi)) ∈ A}) and {(ξi) | (Xi) = (f(ξi)) ∈ A} is shift-invariant:

{(ξi) | (Xi) = (f(ξi)) ∈ A} = {(ξi) | (f(ξi−1)) ∈ A} = {(ξi+1) | (f(ξi)) ∈ A},

Thus PX(A) is 0 or 1, and thus, (Xi)i≥1 is ergodic.
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3.3 The limit distribution in special situations

3.3.1 The Wilcoxon two-sample test

As a corollary to Theorem 3.1, we obtain for fixed λ ∈ [0, 1] the asymptotic distribution

of the Wilcoxon two-sample test, where the two samples are

X1, . . . , X[nλ]

X[nλ]+1, . . . , Xn.

After centering and scaling, the corresponding test statistic is

Un =
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

∫
R
F (x)dF (x)

)
.

Corollary (to Theorem 3.1). Un converges in distribution to

1

m!

(
Zm(λ)− λZm(1)

)∫
R
Jm(x)dF (x)

which equals

1

m!

(
(1− λ)Zm(λ)− λ(Zm(1)− Zm(λ))

)∫
R
Jm(x)dF (x).

3.3.2 Two independent samples

Now we assume that we observe samples from two independent LRD processes (Xi)i≥1

and (X ′i)i≥1 with identical joint distributions. In this case, the samples are

X1, . . . , X[nλ]

X ′1, . . . , X
′
n−[nλ].

The two-sample Wilcoxon test statistic for the problem (H,A), see (3.1) and (3.2) and

compare to (3.3), for this case is

W ′n =
1

ndn

[nλ]∑
i=1

n−[nλ]∑
j=1

(
I{Xi≤X′j} −

∫
R
F (x)dF (x)

)
.

By going through the proof above and making appropriate changes where needed, we

can derive a result on the normalized two-sample Wilcoxon test statistic for independent

LRD samples:

Theorem 3.2. W ′n converges in distribution towards the process

1

m!

(
(1− λ)Zm(λ)− λZ ′m(1− λ)

) ∫
R
Jm(x)dF (x),

where (Z ′m(λ))0≤λ≤1 is an independent copy of (Zm(λ))0≤λ≤1.
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Note that the limit distributions in the two models (Theorem 3.1 and Theorem 3.2)

are different, as the joint distribution of (Zm(λ), Zm(1)−Zm(λ)) is different from that

of (Zm(λ), Z ′m(1 − λ)). This is a result of the fact that the Hermite process does not

have independent increments. This is in contrast to the short-range dependent case,

where the Wilcoxon two-sample test statistic has the same distribution in both models

(Dehling and Fried, 2010). Roughly speaking, the dependence washes away in the limit

for short-range dependence, but not for long-range dependence.

Proof. Instead of the e.d.f. F[λn]+1,n of the last n − [λn] observations we now have to

consider the e.d.f. of the n− [λn] observations of the second sample,

Fn−[λn](x) =
1

n− [λn]

n−[λn]∑
i=1

I{X′i≤x},

which has the same probabilistic properties as the e.d.f. of the first sample because of

the identical joint distribution (and thus, we can denote it by the same symbol, if we

bear in mind, that it does not rely on the same random variables Xk, but on copies of

them). We obtain

1

ndn

[λn]∑
i=1

n−[λn]∑
j=1

(
I{Xi≤X′j} −

∫
F (x) dF (x)

)
=

[λn](n− [λn])

ndn

∫ (
F[λn] − F

)
(x) dFn−[λn](x)

− [λn](n− [λn])

ndn

∫ (
Fn−[λn] − F

)
(x) dF (x).

Exactly as in the proof for one divided sample, one can show that the first term on the

right-hand side converges to (1− λ)Z(λ)
∫
J(x) dF (x). For the second term, note that

d−1
n (n− [λn])

(
Fn−[λn] − F

)
(x)

= d−1
n [(1− λ)n]

(
F[(1−λ)n](x)− F (x)

)
+ d−1

n ([(1− λ)n]− (n− [λn]))F (x)

− d−1
n

(
[(1− λ)n]F[(1−λ)n](x)− (n− [λn])Fn−[λn](x)

)
.

The first term converges uniformly in x and λ to J(x)Z ′(1 − λ), due to (3.8), where

Z ′ is an independent copy of (Z(λ))0≤λ≤1. The second term vanishes uniformly, since

([(1− λ)n]− (n− [λn]))F (x) is elementarily bounded between −2 and 2. And in the

third term we have by definition

[(1− λ)n]F[(1−λ)n](x)− (n− [λn])Fn−[λn](x) =

[(1−λ)n]∑
i=n−[λn]+1

I{X′i≤x},

a sum that has not more than two summands (in fact, it is exactly one for all n and

λ).
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3.4 Application

We still consider the model Xi = µi +G(ξi), i = 1, . . . , n, where (ξi)i≥1 is a mean-zero

Gaussian process with Var[ξi] = 1 and auto-covariance function (1.1) and a transfor-

mation G : R→ R, G ∈ G1 or G ∈ G2. We assume that the Xi have a continuous c.d.f.

F . We wish to test the hypothesis

H : µ1 = . . . = µn

against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1}.

In what follows, we will develop two tests for the test problem (H,A): a “Wilcoxon-

type” test, based on the well-known Wilcoxon’s rank test and Theorem 3.1, and a

“difference-of-means” test.

3.4.1 “Wilcoxon-type” test

The change-point test based on Wilcoxon’s rank test will reject the null hypothesis for

large values of

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ . (3.12)

It is intuitively clear that a strictly monotonely increasing transformation G does

not disturb the order of the underlying data (ξi)i≥1. As a consequence, Wn stays the

same – no matter if we apply it to the Xi’s or the original fGn ξi’s. This stays true

for strictly monotonely decreasing transformations which just invert the order of the

underlying data (ξi)i≥1. We state this fact as

Lemma 3.3. The test statistic Wn is invariant under strictly monotone transforma-

tions of the data, i.e.

max
1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{G(Xi)≤G(Xj)} −

1

2

)∣∣∣∣∣∣ = max
1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣
for all strictly monotone functions G : R→ R.

Proof. If G is strictly increasing, this is obvious, as G(Xi) ≤ G(Xj) if and only if

Xi ≤ Xj . If G is strictly decreasing, G(Xi) ≤ G(Xj) if and only if Xj ≤ Xi, and thus

I{G(Xi)≤G(Xj)} = 1− I{Xi≤Xj}.

Hence we get

k∑
i=1

n∑
j=k+1

(
I{G(Xi)≤G(Xj)} −

1

2

)
= −

k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)
,

and the lemma is proved.
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Since Xi = µi +G(ξi), under the null hypothesis that all µi are the same, the test

statistic is

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{G(ξi)≤G(ξj)} −

1

2

)∣∣∣∣∣∣ . (3.13)

Theorem 3.1 and the continuous mapping theorem yield that, under the null hypothesis,

Wn converges in distribution, as n→∞, to

sup
0≤λ≤1

∣∣∣∣Zm(λ)

m!
− λZm(1)

m!

∣∣∣∣ ∣∣∣∣∫
R
Jm(x)dF (x)

∣∣∣∣ .
In order to set critical values for the asymptotic test based on Wn, we need to calculate

the distribution of this expression.

In what follows, we will assume that G is a strictly monotone function. In this case,

combining (3.13) and Lemma 3.3 we get that

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{ξi≤ξj} −

1

2

)∣∣∣∣∣∣ .
Note that in this case,

J1(x) = E(ξI{ξ≤x}) =

∫ x

−∞
tϕ(t)dt = −ϕ(x),

where ϕ(t) = 1√
2π
e−t

2/2 denotes the standard normal density function. In the last step,

we have used the fact that ϕ′(t) = −t ϕ(t). Thus J1(x) 6= 0 for all x and hence the class

of functions {I{ξ≤x}, x ∈ R} has Hermite rank m = 1. Moreover, as F is the normal

distribution function we obtain∫
R
J1(x)dF (x) = −

∫
R
ϕ(x)ϕ(x)dx =

∫
R
−(ϕ(s))2ds = − 1

2
√
π
. (3.14)

We have thus proved the following theorem.

Theorem 3.4. Let (ξi)i≥1 be a stationary Gaussian process with mean zero, variance 1

and auto-covariance function (1.1) with 0 < D < 1. Moreover, let G ∈ G1 be a strictly

monotone function and define Xi = µi + G(ξi). Then, under the null hypothesis H:

µ1 = . . . = µn, the test statistic Wn, as defined in (3.12), converges in distribution

towards
1

2
√
π

sup
0≤λ≤1

|Z1(λ)− λZ1(1)|,

where (Z1(λ))λ≥0 denotes the standard fBm process with Hurst parameter H = 1 −
D/2 ∈ (1/2, 1).

We have evaluated the distribution of sup0≤λ≤1 |Z(λ)−λZ(1)| in the following way:

1. Create one vector of a fBm Z(t) at times t = 0, 0.001, 0.002, . . . , 0.999, 1. (We

have done this using a routine in the fArma package in R which simulates fBm

from a numerical approximation of the stochastic integral.)
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Figure 3.1: Probability density (left) and distribution function (right) of

sup0≤λ≤1 |Z(λ)− λZ(1)|; calculations based on 10, 000 simulation runs.

2. For each of these times t = 0, 0.001, 0.002, . . . , 0.999, 1, calculate |Z(t)− tZ(1)|.

3. Store the maximum of these 1001 values; interpret this as one observation of

sup0≤λ≤1 |Z(λ)− λZ(1)|.

By repeating these steps 10.000 times, one obtains a sample of observations. Their

empirical upper α-quantile estimates the α-quantile of sup0≤λ≤1 |Z(λ) − λZ(1)|. For-

mally, we have simulated 10, 000 realizations of a standard fBm (Z(j)(t))0≤t≤1, 1 ≤
j ≤ 10, 000, t = i

1000 , 0 ≤ i ≤ 1000, and for each realization, we have calcu-

lated Mj := max1≤i≤1000 |Z(j)( i
1000) − i

1000Z
(j)(1)| as a numerical approximation to

sup0≤λ≤1 |Z(j)(λ)− λZ(j)(1)|. The empirical distribution

FM (x) :=
1

10, 000
#{1 ≤ j ≤ 10, 000 : Mj ≤ x}

of these 10, 000 maxima was used as approximation to the distribution of sup0≤λ≤1 |Z(λ)−
λZ(1)|; see Figure 3.1 for the estimated probability density and the empirical distribu-

tion function, for the Hurst parameter H = 0.7, and see Appendix C.7 for the source

code. We have calculated the corresponding upper α-quantiles

qα := inf{x : FM (x) ≥ 1− α} (3.15)

for H = 0.6, 0.7, 0.9 (that is, D = 2− 2H = 0.8, 0.6, 0.2); see Table 3.1.

3.4.2 “Difference-of-means” test

As an alternative, we also consider a test based on differences of means of the observa-

tions. We consider the test statistic

Dn := max
1≤k≤n−1

|Dk,n| , (3.16)
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H / α 0.10 0.05 0.01

0.6 0.98 1.10 1.34

0.7 0.77 0.87 1.06

0.9 0.38 0.44 0.54

Table 3.1: Upper α-quantiles of sup0≤λ≤1 |Z(λ)− λZ(1)|, where Z is a standard fBm,

for different LRD parameters H, based on 10, 000 repetitions.

where

Dk,n :=
1

ndn

k∑
i=1

n∑
j=k+1

(Xi −Xj) .

One would reject the null hypothesis (3.1) if Dn is large. To obtain the asymptotic

distribution of the test statistic, we apply the functional non-central limit theorem of

Taqqu (1979) and obtain that

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(Xi −Xj) =
1

ndn

(n− [λn])

[nλ]∑
i=1

G(ξi)− [λn]

n∑
j=[nλ]+1

G(ξj)


w−→ am

(
(1− λ)

Zm(λ)

m!
− λ

(
Zm(1)

m!
− Zm(λ)

m!

))
= am

1

m!
(Zm(λ)− λZm(1)),

where m denotes the Hermite rank of G(ξ) and where am = E[G(ξ)Hm(ξ)] is the

Hermite coefficient. Applying the continuous mapping theorem, we obtain the following

theorem concerning the asymptotic distribution of the Dn.

Theorem 3.5. Let (ξi)i≥1 be a stationary Gaussian process with mean zero, variance

1 and auto-covariance function (1.1) with 0 < D < 1/m. Moreover, let G ∈ G2 and

define Xi = µi + G(ξi). Then, under the null hypothesis H : µ1 = . . . = µn, the test

statistic Dn, as defined in (3.16), converges in distribution towards

|am|
m!

sup
0≤λ≤1

|Zm(λ)− λZm(1)|,

where (Zm(λ)) denotes the m-th order Hermite process with Hurst parameter H =

1−Dm/2 ∈ (1/2, 1).

Note that Horváth and Kokoszka (1997) analyse an estimator for the time of change

in the mean of Gaussian LRD observations. Their estimator compares the mean of the

observations up to a certain time with the overall mean of all observations which in the

case of independent standard normal random variables is just the MLE for the time of
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change. The test of Horváth and Kokoszka (1997) is the same as our “difference-of-

means” test because

[λn]∑
i=1

n∑
j=[λn]+1

(Xi −Xj) = n

[λn]∑
i=1

(Xi − X̄n).

Note that they admit a further scaling parameter, but they only deal with Gaussian

observations.

Corollary. For a strictly monotone function G, the Hermite rank is 1 and the test

statistic Dn converges under the null hypothesis towards

|a1| sup
0≤λ≤1

|Z1(λ)− λZ1(1)|,

where Z1 is the standard fBm BH(λ) with index H = 1−D/2.

Proof. If G is strictly increasing, we obtain

E[G(ξ)H1(ξ)] =

∫
R
G(s)H1(s)ϕ(s)ds =

∫ ∞
0

sϕ(s)(G(s)−G(−s))ds > 0.

Similarly, for a stricly decreasing function G we obtain E[G(ξ)H1(ξ)] < 0. So in both

cases the Hermite rank is 1.

Note that in this case of a strictly monotone transformation G, up to a norming

constant, the limit distribution of the “difference-of-means” test is the same as for the

test based on Wilxocon’s rank statistic.

3.5 “Difference-of-means“ test under fGn

In the next section, we will analyse the level and the power of both tests, the “Wilcoxon-

type” test and the “difference-of-means” test, in a finite sample situation by a simulation

study. But before, we will concentrate on a special case in which we can analytically

calculate a lower bound for the power of the “difference-of-means” test: We assume

that we observe fGn, i.e. we consider the model

Xi = µi + ξi, i = 1, . . . , n.

In this situation, the distribution of the “difference-of-means” test statistic Dn, as

defined in (3.16), is not explicitly known, but one can calculate the exact distribution

of

Dk,n =
1

ndn

k∑
i=1

n∑
j=k+1

(Xi −Xj).
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To this end, recall that fGn can be obtained by differencing fBm, that is ξk = BH(k)−
BH(k − 1), where (BH(t))t≥0 is the standard fBm with Hurst parameter H, which we

denoted Z1. Its covariance, see (1.3), is given by

E [Z1(λ1)Z1(λ2)] =
1

2

(
λ2H

1 + λ2H
2 − |λ1 − λ2|2H

)
.

Consider the alternative that there is a jump of height h after the [λn]-th observa-

tion:

Hλ,h : E[Xi] = 0 for i = 1, . . . , [nλ] and E[Xi] = h for i = [nλ] + 1, . . . , n (3.17)

We shall compute the exact distribution of Dk,n under Hλ,h and thus obtain a lower

bound for the power of Dn, since

P (Dn ≥ qα) ≥ P (D[nλ],n ≥ qα),

where {Dn ≥ qα} is the rejection region and qα is given in (3.15).

First note that dn = nH , because of (1.5) and (1.12), and thus ndn = n1+H , where

H is again the Hurst coefficient. Dk,n has a normal distribution with mean

E[Dk,n] =
1

n1+H

k∑
i=1

n∑
j=k+1

(E[Xi]− E[Xj ]).

Thus a small calculation shows that

E[Dk,n] =

{
− 1
n1+H k (n− [nλ])h if k ≤ [nλ]

− 1
n1+H (n− k) [nλ]h if k ≥ [nλ].

Note that max1≤k≤n−1 |E[Dk,n]| = |E[D[nλ],n]| = 1
n1+H (n − [nλ]) [nλ]h ∼ n1−Hλ (1 −

λ)h. Since the variance of Dk,n is not changed by the level shift, we get

Var[Dk,n] = Var

 1

n1+H

k∑
i=1

n∑
j=k+1

(ξi − ξj)


= Var

 1

n1+H

(n− k)
k∑
i=1

ξi − k
n∑

j=k+1

ξj


= Var

[
1

n1+H
((n− k)BH(k)− k(BH(n)−BH(k)))

]
= Var

[
1

n1+H
(nBH(k)− kBH(n))

]
.
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By the self-similarity of fractional Brownian motion, we finally get

Var[Dk,n] = Var

[
BH

(
k

n

)
− k

n
BH(1)

]
= Var

[
BH

(
k

n

)]
+
k2

n2
Var[BH(1)]− 2

k

n
Cov

[
BH

(
k

n

)
, BH(1)

]
=

(
k

n

)2H

+
k2

n2
− k

n

((
k

n

)2H

+ 1−
(

1− k

n

)2H
)

=

(
k

n

)2H

+

(
k

n

)2

−
(
k

n

)2H+1

− k

n
+
k

n

(
1− k

n

)2H

=

(
k

n

)2H (
1− k

n

)
− k

n

(
1− k

n

)
+
k

n

(
1− k

n

)2H

.

Defining

σ2(λ) = λ2H(1− λ)− λ(1− λ) + λ(1− λ)2H ,

we thus obtain

Var[Dk,n] = σ2(k/n).

The variance is maximal for k = n/2, in which case we obtain for H = 0.7 e.g.

Var[Dn/2,n] =
1

22H
− 1

4
≈ 0.13.

The distribution of Dk,n gives a lower bound for the power of the “difference-of-means”

test at the alternative Hλ,h considered above. We have

P (Dn ≥ qα) ≥ P (|D[nλ],n| ≥ qα)

= P (D[nλ],n ≤ −qα) + P (D[nλ],n ≥ qα)

= P

(
D[nλ],n + n1−Hλ(1− λ)h√

σ2(λ)
≤ −qα + n1−Hλ(1− λ)h√

σ2(λ)

)

+ P

(
D[nλ],n + n1−Hλ(1− λ)h√

σ2(λ)
≥ qα + n1−Hλ(1− λ)h√

σ2(λ)

)

≈ Φ

(
−qα + n1−Hλ(1− λ)h√

σ2(λ)

)
+ 1− Φ

(
qα + n1−Hλ(1− λ)h√

σ2(λ)

)
,

where Φ is the c.d.f. of a standard normal random variable. E.g., for H = 0.7, λ = 1
2 ,

we get q0.05 = 0.87 using Table 3.1 and thus

P (Dn ≥ q0.05) ≥ Φ

(
−0.87 + n0.3h/4√

σ2(1/2)

)
≈ Φ(−2.42 + 0.70hn0.3).

In this way, for sample size n = 500 and level shift h = 1 we get Φ(2.07) ≈ 0.98 as

lower bound on the power of the “difference-of-means” test. For the same sample size,

but h = 0.5, we get the lower bound Φ(−0.18) ≈ 0.43. Compare this to the simulation

results in Table D.11.
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3.6 Simulations

In this section, we will present the results of a simulation study which compares the

“Wilcoxon-type” rank test (3.12) with the “difference-of-means” test (3.16). We first

analyse whether the tests reach their asymptotic level when applied in a finite sample

setting, for sample sizes ranging from n = 10 to n = 1, 000. Secondly, we compare the

power of the two tests for sample size n = 500 at various different alternatives

Ak : µ1 = . . . = µk 6= µk+1 = . . . = µn.

We let both the break point k and the level shift h := µk+1 − µk vary. Specifically, we

choose k = 25, 50, 150, 250 and h = 0.5, 1, 2.

As data, we have taken simulated realizations ξ1, . . . , ξn of a fGn process with Hurst

parameter H, respectively D = 2− 2H, see (1.5) and (1.4); to these fGn data, we have

applied several transformations G, ranging from mild ones which produce symmetric

data to boisterous ones which generate heavy tails. We have repeated each simulation

10, 000 times.

3.6.1 Normally distributed data

In our first simulations, we took

G(t) = t,

so that (Xi)i≥1 is fGn. F is then the c.d.f. Φ of a standard normal random variable.

Since G is strictly increasing, Theorem 3.4 yields that, under the null hypothesis, Wn

has approximately the same distribution as

1

2
√
π

sup
0≤λ≤1

|Z1(λ)− λZ1(1)|.

Since G is the first Hermite polynomial, its Hermite rank is m = 1 and the associated

Hermite coefficient is a1 = 1. Hence, Theorem 3.5 yields that, under the null hypothesis,

the test statistic Dn has approximately the same distribution as

sup
λ∈[0,1]

|Z1(λ)− λZ1(1)| .

We have calculated asymptotic critical values for both tests by using the upper 5%-

quantiles of supλ∈[0,1] |Z1(λ)− λZ1(1)|, as given in Table 3.1. Thus the “Wilcoxon-type”

test rejected the null hypothesis when Wn ≥ 1
2
√
π
qα, while the “difference-of-means”

test rejected when Dn ≥ qα, where qα is given in (3.15).

We have checked whether the tests reach their asymptotic level of 5% and counted

the number of (false) rejections of the null hypothesis in 10, 000 simulations, where the

null hypothesis was true. We see in Figure 3.3 that both tests perform well already

for moderate sample sizes of n = 50, with the notable exception of the “Wilcoxon-

type” test when H = 0.9, i.e. when we have very strong dependence. In that case, the



3.6 Simulations 67

x

0 100 200 300 400 500

-
2

0
2

4

a
d
d
.
b
r
e
a
k
(
x
,
 
0
.
3
,
 
0
.
5
)

0 100 200 300 400 500

-
2

0
2

4

a
d
d
.
b
r
e
a
k
(
x
,
 
0
.
3
,
 
1
)

0 100 200 300 400 500

-
2

0
2

4

a
d
d
.
b
r
e
a
k
(
x
,
 
0
.
3
,
 
2
)

0 100 200 300 400 500
-
2

0
2

4

Figure 3.2: fGn without breaks (top left) and with a jump after observation 150 (this

is [λn] with λ = 0.3) of height h = 0.5 (top right), h = 1 (bottom left) and h = 2

(bottom right).

convergence in Theorem 3.4 appears to be very slow so that the asymptotic critical

values are misleading when applied in a finite sample setting. The exact simulation

results are given in Table D.10 in Appendix D.

In order to analyze how well the tests detect break points, we have introduced a

level shift h at time [nλ], i.e. we consider the time series

Xi =

ξi for i = 1, . . . , [nλ]

ξi + h for i = [nλ] + 1, . . . , n
,

i.e. the alternative Hλ,h as in (3.17). We have done this for several choices of λ and h,

for sample size n = 500. As Figure 3.4 shows, both tests detect breaks very well – and

the better, the larger the level shift is and the more in the middle the shift takes place.

When the break occurs in the middle, both tests perform equally well. Breaks at the

beginning are better detected by the “difference-of-means” test. Exact values are given

in Table D.11 in Appendix D.
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Figure 3.3: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for fGn time series with LRD parameter H; 10, 000 simulation runs. Both tests

have asymptotically level 5%.
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Figure 3.4: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green) for n = 500 observations of fGn with LRD parameter H = 0.7, different

break points [λn] and different level shifts h. Both tests have asymptotically level 5%.

The calculations are based on 10,000 simulation runs.
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Figure 3.5: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Laplace(0,4)-transformed fGn with LRD parameter H; 10, 000

simulation runs. Both tests have asymptotically level 5%.
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Figure 3.6: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green) for n = 500 observations of standardised Laplace(0,4)-transformed fGn

with LRD parameter H = 0.7, different break points [λn] and different level shifts

h. Both tests have asymptotically level 5%. The calculations are based on 10,000

simulation runs.
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Figure 3.7: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Pareto(3,1)-transformed fGn with LRD parameter H; 10, 000

simulation runs. Both tests have asymptotically level 5%.
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Figure 3.8: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green) for n = 500 observations of standardised Pareto(3,1)-transformed fGn with

LRD parameter H = 0.7, different break points [λn] and different level shifts h. Both

tests have asymptotically level 5%. The calculations are based on 10,000 simulation

runs.
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3.6.2 Symmetric, normal-tailed data

In the second set of simulations, we generated Laplace (or double exponential) dis-

tributed data. The Laplace(µ, b) distribution has c.d.f. and p.d.f.

Fµ,b(x) =

1
2 exp

(x−µ
b

)
if x < µ

1− 1
2 exp

(
−x−µ

b

)
if x ≥ µ

=
1

2

[
1 + sgn(x− µ)

(
1− exp

(
−|x− µ|

b

))]
fµ,b(x) =

1

2b
exp

(
−|x− µ|

b

)
where µ is the location (mean, median and mode) and b is a shape parameter influencing

the variance:

E[X] = µ Var[X] = 2b2

The Laplace distribution is symmetric and normal-tailed. In order to obtain Laplace(µ, b)-

distributed X = G(ξ), we take G to be the quantile transform

G(t) = µ− b sgn

(
Φ(t)− 1

2

)
log

(
1− 2

∣∣∣∣Φ(t)− 1

2

∣∣∣∣) .
Note that Φ(ξi) is U [0, 1] distributed, that sgn

(
Φ(t)− 1

2

)
= sgn(t) and that

{G(s) ≤ x} =

{
µ− b sgn(s) log

(
1− 2

∣∣∣∣Φ(s)− 1

2

∣∣∣∣) ≤ x}
=

({
log

(
1− 2

(
Φ(s)− 1

2

))
≥ −x− µ

b

}
∩ {s ≥ 0}

)
∪
({

1 + 2

(
Φ(s)− 1

2

)
≤ exp

(
x− µ
b

)}
∩ {s < 0}

)
=

({
1− 1

2
exp

(
−x− µ

b

)
≥ Φ(s)

}
∩ {s ≥ 0}

)
∪
({

Φ(s) ≤ 1

2
exp

(
x− µ
b

)}
∩ {s < 0}

)
.

Now observe that on {s ≥ 0} it holds Φ(s) ≥ 1/2 and thus
{

1− 1
2 exp

(
−x−µ

b

)
≥ Φ(s)

}
is non-empty for x ≥ µ. Analogously, on {s < 0} it holds Φ(s) < 1/2 and so the set{

Φ(s) ≤ 1
2 exp

(x−µ
b

)}
is non-empty for x < µ. From this, we obtain

P (G(ξi) ≤ x) =

∫
{1− 1

2
exp(−x−µb )≥Φ(s)}∩{x≥µ}

dΦ(s) +

∫
{Φ(s)≤ 1

2
exp(x−µb )}∩{x<µ}

dΦ(s)

=

1
2 exp

(x−µ
b

)
if x < µ

1− 1
2 exp

(
−x−µ

b

)
if x ≥ µ

= Fµ,b(x).
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We choose µ = 0 and b = 4 (but since we are interested in standardised data, the choice

of b is irrelevant). We standardise and consider the transformation

Gst(t) =
−b sgn

(
Φ(t)− 1

2

)
log
(
1− 2

∣∣Φ(t)− 1
2

∣∣)
√

2b2

=


1√
2

log(2Φ(t)) if t ≤ 0

− 1√
2

log (2(1− Φ(t))) else
.

Note that in this case, the p.d.f. of the data is

fst(x) = f0,2−1/2(x) =
1√
2

exp
(
−|
√

2x|
)
.

We will now compare the “Wilcoxon-type” test and the “difference-of-means” test.

Since Gst is strictly monotone, the Hermite rank of the class of functions I{Gst(ξi)≤x}−
F (x) and the Hermit rank of Gst are both 1, by the arguments following Lemma 3.3 and

Theorem 3.5. Theorem 3.4 yields that, under the null hypothesis, Wn has approximately

the same distribution as
1

2
√
π

sup
0≤λ≤1

|Z1(λ)− λZ1(1)|.

For the “difference-of-means” test we need the first Hermite coefficient of Gst. With

numerical integration and using that tGst(t) and φ(t) are axially symmetric we obtain:

a1 = E[ξGst(ξ)] = 2 · 1√
2

∫ 0

−∞
t log(2Φ(t))φ(t) dt ≈ 0.981344

Hence, Theorem 3.5 yields that, under the null hypothesis, Dn has approximately the

same distribution as

0.981 sup
λ∈[0,1]

|Z1(λ)− λZ1(1)| .

As before with the upper 5%-quantiles of supλ∈[0,1] |Z1(λ)− λZ1(1)| from Table 3.1,

the “Wilcoxon-type” test rejected the null hypothesis when Wn ≥ 1
2
√
π
qα, while the

“difference-of-means” test rejected when Dn ≥ 0.981qα, where qα is given in (3.15).

We see in Figure 3.5 (and in Table D.12) that for H = 0.9, that is for very

strongly dependent data, the “Wilcoxon-type” test converges slowly while the level

of the “difference-of-means” is rather close to its asymptotic limit of 5%3. As Fig-

3Note that the level of the test under Laplace distributed data (and as well under the Pareto

distributed data which we will consider in a short while) is exactly the same as under fGn, as a

consequence of the invariance of the “Wilcoxon-type” test, see Lemma 3.3. Of course, the power of the

“Wilcoxon-type” test here is not the same as for untransformed fGn. This is caused by the interaction of

the transform G and the shift: G does not disturb the order of the observations, but it alters the amount

of the increments; when we now shift a part of the time series, the order of the resulting data may be

different from the order of fGn after the same shift. As illustration, consider for simplicity a situation

when four fGn observations are ascending: ξ1 < ξ2 < ξ3 < ξ4. Then any positive shift will not change

the value of the test-statistic Wn since it does not change the order of the data (Wn = 2/(ndn)). But

if we apply a strictly decreasing transformation G so that G(ξ1) > G(ξ2) > G(ξ3) > G(ξ4), and if the

shift afterwards lifts the last two observations up, but only so far that G(ξ3) + h > G(ξ2) > G(ξ4) + h,

then the order of the data is mixed up which results in a different Wn (Wn = 1.5/(ndn)).
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ure 3.6 shows (exact values are given in Table D.13), the “Wilcoxon-type” test is better

in detecting small jumps, both tests perform similar when the jump is of the same order

of magnitude as the variance of the data, and the “difference-of-means” test is better

when the jump is big.

3.6.3 Heavy-tailed data

In the third set of simulations we took Pareto distributed data. The Pareto(β, k)

distribution has distribution function

Fβ,k(x) =

1−
(
k
x

)β
if x ≥ k

0 else,

where the scale parameter k is the smallest possible value for x and where β is a shape

parameter. It has a finite expected value when β > 1 and finite variance when β > 2.

The expected value and the variance are given by

µ = E[X] =
βk

β − 1
, β > 1

σ2 = Var[X] =
βk2

(β − 1)2(β − 2)
, β > 2.

In order to obtain Pareto(β, k)-distributed X = G(ξ), we take G to be the quantile

transform, i.e. G(t) = k (Φ(t))−1/β where Φ denotes the standard normal c.d.f., so that

for x ≥ k

P (Xi ≥ x) = P (G(ξi) ≥ x) = P
(

(Φ(ξi))
−1/β ≥ x

k

)
= P

(
ξi ≤ Φ−1

((
k

x

)β))
=

(
k

x

)β
.

Since we want the Xi to be standardized to have mean 0 and variance 1, we will in fact

take

G(t) =

(
βk2

(β − 1)2(β − 2)

)−1/2(
k(Φ(t))−1/β − βk

β − 1

)
(3.18)

The corresponding distribution function is then

Fβ,k,st(z) =

1−
(

k
σz+µ

)β
if z ≥ k−µ

σ

0 else
(3.19)

and its density function is

fβ,k,st(z) =

kββσ(σz + µ)−β−1 if z ≥ k−µ
σ

0 else
. (3.20)
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Pareto(3, 1) Data: We first performed simulations with Pareto(3, 1) data, i.e. heavy-

tailed data with finite variance. In this case, β = 3, k = 1 and we have E[X] = 3
2 and

Var[X] = 3
4 . For a better comparison with the simulations involving fGn, we also

standardize the data, i.e. we consider, see (3.18),

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
.

The probability density function of the standardized X is given by (see (3.20)),

f3,1,st(x) =

3
√

3
4

(√
3
4 x+ 3

2

)−4

if x ≥ −
√

1
3

0 else.

G is strictly decreasing, and by the above results following Lemma 3.3 and Theorem 3.5,

the Hermite rank of the class of functions {I{G(ξi)≤x} − F (x), x ∈ R} is m = 1,

the Hermite rank of G itself is m = 1 and |
∫
R J1(x) dF (x)| = (2

√
π)−1, see (3.14).

Numerical integration yields

a1 = E[ξG(ξ)] =

√
4

3

∫ ∞
−∞

sΦ(s)−1/3ϕ(s) ds ≈ −0.6784.

Figure 3.7 shows the observed level of the tests, for various sample sizes and various

Hurst parameters (for exact simulation results, see Table D.14). For sample sizes up to

n = 1, 000, the ”difference-of-means” test has a level larger than 10%. We conjecture

that this is due to the slow convergence in Theorem 3.5, which is supported by the

simulation results with sample sizes n = 2, 000 and n = 10, 000; see Table D.14.

Figure 3.8 gives the observed power of the ”difference-of-means” test and of the

“Wilcoxon-type” test, for sample size n = 500 and various values of the break points and

height of level shift. The results show that the “Wilcoxon-type” test has larger power

than the ”difference-of-means” test for a small level shift h, but that the ”difference-of-

means” test outperforms the “Wilcoxon-type” test for larger level shifts. For the exact

simulation results, see Table D.15.

However, the above comparison is not meaningful, since the ”difference-of-means”

test has a realized level of approximately 10% while the “Wilcoxon-type” test has level

close to 5%, see Figure 3.7, respectively Table D.14. Thus we have calculated the

finite sample 5%-quantiles of the distribution of the “difference-of-means” test, using

a Monte-Carlo simulation, see Table 3.2. For example, for n = 500 and H = 0.7, the

corresponding critical value is 0.70. Thus we reject the null hypothesis of no break

point if the “difference-of-means” test statistic is greater than 0.70.

The value of 0.70 should be contrasted to the asymptotic (n = ∞) value of 0.59.

(This asymptotic value was obtained as follows: According to Theorem 3.5, Dn is under

the null hypothesis asymptotically distributed like |a1| sup0≤λ≤1 |Z(λ)− λZ(1)|, so the

asymptotic upper α-quantiles of Dn can be calculated as |a1|qα, where qα is the upper

α-quantile of the distribution of sup0≤λ≤1 |Z(λ)− λZ(1)|, as tabulated in Table 3.1.)
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Figure 3.9: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green), based on the finite sample quantiles, for n = 500 observations of stan-

dardised Pareto(3,1)-transformed fGn with LRD parameter H = 0.7, different break

points [λn] and different level shifts h. Both tests have asymptotically level 5%. The

calculations are based on 10,000 simulation runs.
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Figure 3.10: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Pareto(2,1)-transformed fGn with LRD parameter H; 10, 000

simulation runs. Both tests have asymptotically level 5%.
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Figure 3.11: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green) for n = 500 observations of standardised Pareto(2,1)-transformed fGn with

LRD parameter H = 0.7, different break points [λn] and different level shifts h. Both

tests have asymptotically level 5%. The calculations are based on 10,000 simulation

runs.
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Figure 3.12: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green), based on the finite sample quantiles, for n = 500 observations of stan-

dardised Pareto(2,1)-transformed fGn with LRD parameter H = 0.7, different break

points [λn] and different level shifts h. Both tests have asymptotically level 5%. The

calculations are based on 10,000 simulation runs.
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H / n 10 50 100 500 1,000 2,000 10,000 ∞
0.6 1.02 1.04 1.02 0.93 0.90 0.88 0.85 0.75

0.7 0.84 0.82 0.79 0.70 0.68 0.65 0.62 0.59

0.9 0.47 0.47 0.44 0.43 0.42 0.41 0.38 0.30

Table 3.2: 5%-quantiles of the finite sample distribution of the “difference-of-means”

test under the null hypothesis for Pareto(3,1)-transformed fGn with different LRD pa-

rameter H and different sample sizes n. The calculations are based on 10,000 simulation

runs.

We have then calculated the power of the ”difference-of-means” test in a further

simulation, with n = 500, H = 0.7 and the finite sample quantile critical value of 0.70

instead of the asymptotic value of 0.59 (see Table 3.2). Table D.16 in Appendix D shows

the power of the test. We can now compare the results of the “Wilcoxon-type” test

with the finite sample “difference-of-means” test results; this is shown in Figure 3.9.

We see that the “Wilcoxon-type” test has better power than the ”difference-of-means”

test, except for large level shifts at an early time. Such changes are detected more

often by the ”difference-of-means” test. For exact values, compare the right-hand side

of Table D.15 with Table D.16.

Pareto(2, 1) Data: We now choose k = 1 and β = 2, so that the X have finite

expectation, but infinite variance. In order to have centered data, we take

G(t) =
1√
Φ(t)

− 2.

We will now compare both tests, i.e. the “Wilcoxon-type” test and the “difference-

of-means” test, although the latter can strictly speaking not be applied because it

requires data with finite variance, respectively G ∈ G2 ⊂ L2(R,N ). By Theorem 3.4,

under the null hypothesis of no change, the “Wilcoxon-type” test statistic Wn converges

in distribution towards
1

2
√
π

sup
0≤λ≤1

|Z1(λ)− λZ1(1)|.

As a consequence of Lemma 3.3, even the finite sample distribution of Wn is the same as

for normally distributed data. Figure 3.10 gives the measured level of the “Wilcoxon-

type” test (the asymptotic level is 5%) and Figure 3.11 suggests it has good power,

especially for small shifts in the middle of the observations.

Let us now consider the “difference-of-means” test. Again note that, strictly speak-

ing, Theorem 3.5 cannot be applied in the case of the Pareto data with β = 2 because

it requires the variance of the data to be finite. It is interesting nevertheless to use the

asymptotic test suggested by Theorem 3.5. Since G is strictly monotone, the Hermite
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rank of G is m = 1 as well, by the Corollary following Theorem 3.5. Using numerical

integration, we have calculated

a1 = E [ξG(ξ)] =

∫ ∞
−∞

s(Φ(s)−1/2 − 2)ϕ(s) ds =

∫ ∞
−∞

sΦ(s)−1/2ϕ(s) ds ≈ −1.40861.

We clearly see in Figure 3.10 that the “difference-of-means” test very often falsely rejects

the null hypothesis, that is detects breaks where there are none, while the “Wilcoxon-

type” test is robust. Figure 3.11 shows that both tests have good power, but again, the

“Wilcoxon-type” test is clearly better, especially for small shifts in the middle of the

observations. For an exact comparison, see Table D.17 and Table D.15 in Appendix D.

As in the situation with Pareto(3,1) distributed data, the “difference-of-means”

test rejects the null hypothesis much too often (see Figure 3.10, it does not reach its

asymptotic level of 5%, it does not even seem to converge), so the power comparison is

again not meaningful.

So we have calculated the finite sample 5%-quantiles of the distribution of the

“difference-of-means” test here as well; the results are shown in Table D.16. Based

on these critical values, the test can be compared to the “Wilcoxon-type” test. In

this comparison, the “difference-of-means” test shows an even poorer performance, see

Figure 3.12.



Chapter 4

Power of some change-point tests

In Chapter 3, we have studied two tests for the change-point problem (H,A) as defined

in (3.1) and (3.2): The first test, the “Wilcoxon-type” test, rejects the null hypothesis

H for large values of the statistic

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ , (4.1)

the second test, the “difference-of-means” test rejects H for large values of

Dn :=
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(Xj −Xi)

∣∣∣∣∣∣ . (4.2)

Note that for reasons of comparability, we like to define the kernel of Dn with a negative

sign here, in contrast to definition (3.16). In Chapter 3, we have derived the limit

distribution of both tests under the null hypothesis that no change occured and we

have simulated the behaviour of both tests under several alternatives (for data with a

jump in the mean of different heights and at various positions). Now we compute the

power of the above tests analytically under a local alternative. This chapter is based

on the article of Dehling, Rooch and Taqqu (2013).

We consider the following sequence of alternatives

Aτ,hn(n) : µi =

µ for i = 1, . . . , [nτ ]

µ+ hn for i = [nτ ] + 1, . . . , n,
(4.3)

where 0 ≤ τ ≤ 1, in other words we consider a model where there is a jump of height hn

after a proportion of τ in the data. Note that the height hn of the level shift depends on

the sample size n; we will have to choose hn in a certain way to obtain a non-degenerate

limit distribution.



80 Power of some change-point tests

4.1 Power of the “difference-of-means” test under local

alternatives

We first investigate the asymptotic distribution of the process

Dn(λ) :=
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(Xj −Xi), 0 ≤ λ ≤ 1, (4.4)

under Aτ,hn(n), as defined in (4.3). Since the statistic Dn(λ) splits up the data into two

blocks at time [nλ] + 1, while the local alternative Aτ,hn(n) involves a jump at [nτ ] + 1,

we expect to obtain an interplay between λ and τ in the limit.

Under the general alternative A, as defined in (3.2), we obtain

Dn(λ) =
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(G(ξj)−G(ξi)) +
1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi), (4.5)

and under the local alternative Aτ,hn(n) (which is included in A), the second term is

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) =

 hn
ndn

[λn](n− [τn]) for λ ≤ τ
hn
ndn

(n− [λn])[τn] for λ ≥ τ.
. (4.6)

We can write this in a shorter form, using the function δτ : [0, 1]→ R which we define

as

δτ (λ) =

λ(1− τ) for λ ≤ τ

(1− λ)τ for λ ≥ τ
; (4.7)

note that δτ (λ) takes its maximum value τ(1− τ) at λ = τ . Now we obtain for large n

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) ∼
nhn
dn

δτ (λ).

Thus, in order for the second term in (4.5) to converge as n → ∞, we have to choose

the level shift hn ∼ c dn/n, where c is a constant. When n is large, this is exactly the

order of the level shift that can be detected with a non-trivial power (i.e. a power which

is neither 0 nor 1).

Theorem 4.1. Let G ∈ G2 be a transformation with Hermite rank m, as defined in

Section 1.4.2, and let (ξi)i≥1 be a stationary Gaussian process with mean zero, variance

1 and auto-covariance function as in (1.1) with 0 < D < 1
m . For observations Xi =

µi +G(ξi), under the local alternative Aτ,hn(n) with

hn =
dn
n
c (4.8)
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for an arbitrary constant c, the process (Dn(λ))0≤λ≤1 converges in distribution to the

process
am
m!

(λZm(1)− Zm(λ)) + c δτ (λ), (4.9)

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter H =

1 − Dm
2 ∈ (1

2 , 1), and where am is the m-th Hermite coefficient of G, as defined in

Section 1.4.2.

Proof. We use decomposition (4.5). The first term on the right-hand side has the same

distribution as Dn(λ) under the null hypothesis, and thus it converges in distribution

to am
m! (λZm(1) − Zm(λ)), see Theorem 3.5. Regarding the second term, we obtain by

(4.8) and (4.6)

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(µj − µi) =

 c
n2 [λn](n− [τn]) for λ ≤ τ
c
n2 (n− [λn])[τn] for λ ≥ τ.

→ c δτ (λ),

uniformly in λ ∈ [0, 1], as n→∞.

Remark. (i) For c = 0, which means hn = 0, the local alternative Aτ,hn(n) is identical

to the null hypothesis H, and in fact, Theorem 4.1 reproduces the limit distribution of

Dn under the null hypothesis. Thus, Theorem 4.1 is a generalization of Theorem 3.5.

(ii) Under the local alternative, i.e. when c 6= 0, the limit process is the sum of a

fractional bridge process (like in Theorem 3.1 and Theorem 3.5) and the deterministic

function c δτ .

(iii) As a corollary to Theorem 4.1, we can determine the asymptotic distribution of

test statistics based on the process (Dn(λ))0≤λ≤1 by applying the continuous mapping

theorem. For example, we get that Dn, as defined in (4.2) converges in distribution to

sup
0≤λ≤1

|λZm(1)− Zm(λ) + c δτ (λ)|.

This limit distribution depends on the constant c. For c = 0, we obtain the limit

distribution under the null hypthesis, see Theorem 3.5. Increasing the value of |c| leads

to a shift of the distribution to the right.

(iv) For a given break position τ ∈ [0, 1], the function δτ (λ) takes its maximum value

in λ = τ , and this maximum value equals τ(1− τ). Thus, for values of τ close to 0 and

close to 1, τ(1− τ) is close to 0, and thus the effect of adding the term cδτ (λ) is rather

small. As a result, the power of the test is small at level shifts that occur very early or

very late in the process.

(v) The higher the level shift and the closer λ is to τ , the easier it is to detect the level

shift.

Theorem 4.1 can be applied in order to make power calculations for the change-

point test that rejects for large values of Dn. If we denote by qα the upper α-quantile
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of the distribution of sup0≤λ≤1 |λZ(1) − Z(λ)|, where Z(λ) = Zm(λ)/m!, our test will

reject the null hypothesis H when Dn ≥ amqα, where am is the m-th Hermite coefficient

of G, see Theorem 3.5. By construction, this test has asymptotic level α, i.e. the test

rejects H with probability α if the null hypothesis H holds. If n is large and

h = hn =
dn
n
c,

the power of the test at the alternative Aτ,h(n) is by (4.9) approximately given by

P

(
sup

0≤λ≤1
|λZm(1)− Zm(λ) + c δτ (λ)| ≥ qα

)
.

We may apply Theorem 4.1 as well in order to determine the size of a level shift at

time [τn] that can be detected with a given probability β. To this end, we calculate c

such that

P

(
sup

0≤λ≤1
|λZm(1)− Zm(λ) + c δτ (λ)| ≥ qα

)
= β.

Choosing then h = dn
n c, we get that the asymptotic power of the test at the alternative

Aτ,h(n) is equal to β. Thus, a level shift of this size can be detected with probability

β with a test that has level α.

4.2 Power of the “Wilcoxon-type” test under local alter-

natives

Theorem 4.2. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero,

variance 1 and auto-covariance function (1.1) with 0 ≤ D < 1
m . Moreover, let G ∈ G1,

and assume that G(ξi) has continuous distribution function F (x). Let m denote the

Hermite rank of the class of functions I{G(ξi)≤x}−F (x), x ∈ R. Then, under Aτ,hn, as

defined in (4.3), if hn → 0 as n→∞

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

1

2

)
− n

dn
δτ (λ)

∫
R

(F (x+ hn)− F (x)) dF (x), (4.10)

indexed by 0 ≤ λ ≤ 1, converges in distribution towards the process

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x) dF (x), 0 ≤ λ ≤ 1,

where (Zm(λ))λ≥0 denotes the m-th order Hermite process with Hurst parameter H =

1− Dm
2 ∈ (1

2 , 1) and where Jm(x) = E
[
Hm(ξi)I{G(ξi)≤x}

]
.

Remark. (i) Note that we make no assumption about the exact order of the sequence

(hn)n≥1. Theorem 4.2 holds under the very general assumption that hn → 0 as n→∞.
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(ii) If we choose (hn)n≥1 as in (4.8), the centering constants in (4.10) converge, provided

some technical assumptions are satisfied. To see this, observe that

n

dn
δτ (λ)

∫
R

(F (x+ hn)− F (x)) dF (x) =
nhn
dn

δτ (λ)

∫
R

F (x+ hn)− F (x)

hn
dF (x)

→ c δτ (λ)

∫
R
f(x) dF (x)

= c δτ (λ)

∫
R
f2(x) dx.

The convergence in the next to last step requires some justification; it holds for example

if F is differentiable with bounded derivative f(x).

Corollary. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero, vari-

ance 1 and auto-covariance function as in (1.1) with 0 ≤ D < 1
m . Moreover, let G ∈ G1,

and assume that G(ξk) has a distribution function F (x) with bounded density f(x). Let

m denote the Hermite rank of the class of functions I{G(ξi)≤x} − F (x), x ∈ R. Then,

under the sequence of alternatives Aτ,hn, as defined in (4.3), with hn = cdnn we obtain

that

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
I{Xi≤Xj} −

1

2

)
(4.11)

converges in distribution to the process

1

m!
(Zm(λ)− λZm(1))

∫
R
Jm(x) dF (x) + cδτ (λ)

∫
R
f2(x) dx, 0 ≤ λ ≤ 1.

Proof of Theorem 4.2. We use the same techniques as in the proof of Theorem 3.1,

where we derived the limit distribution of the “Wilcoxon-type” test statistic under the

null hypothesis; more precisely we will decompose the test statistic (4.10) into a term

whose distribution is the same both under the null hypothesis as well as under the

alternative, and a second term which, after proper centering, converges to zero.

We express our test statistic as a functional of the e.d.f. Fk(x) of the first k ob-

servations G(ξ1), . . . , G(ξk) and of the e.d.f. Fk,l(x) which is based on the observations

G(ξk), . . . , G(ξl). Recall that under the local alternative, we have

Xi =

{
G(ξi) + µ for i = 1, . . . , [nτ ]

G(ξi) + µ+ hn for i = [nτ ] + 1, . . . , n.
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Thus we obtain for λ ≤ τ
[nλ]∑
i=1

n∑
j=[nλ]+1

I{Xi≤Xj}

=

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

I{G(ξi)+µ≤G(ξj)+µ} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξi)+µ≤G(ξj)+µ+hn}

=

[nλ]∑
i=1

[nτ ]∑
j=[nλ]+1

I{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξi)≤G(ξj)+hn}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

(
I{G(ξi)≤G(ξj)+hn} − I{G(ξi)≤G(ξj)}

)

=

[nλ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)} +

[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn}. (4.12)

In the same way, we obtain for λ ≥ τ
[nλ]∑
i=1

n∑
j=[nλ]+1

I{Xi≤Xj}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)+µ≤G(ξj)+µ+hn} +

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

I{G(ξi)+µ+hn≤G(ξj)+µ+hn}

=

[nτ ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)+hn} +

[nλ]∑
i=[nτ ]+1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)}

=

[nλ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)} +

[nτ ]∑
i=1

n∑
j=[nλ]+1

(
I{G(ξi)≤G(ξj)+hn} − I{G(ξi)≤G(ξj)}

)

=

[nλ]∑
i=1

n∑
j=[nλ]+1

I{G(ξi)≤G(ξj)} +

[nτ ]∑
i=1

n∑
j=[nλ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn}. (4.13)

We recognize that for the first term on the right-hand side of (4.12) and (4.13), we each

get the asymptotic distribution via Theorem 3.1. Thus, in order to prove Theorem 4.2,

it suffices to show that the following two terms,

1

ndn
sup

0≤λ≤τ

∣∣∣∣∣∣
[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn} − n
2λ(1−τ)

∫
R

(F (x+ hn)−F (x)) dF (x)

∣∣∣∣∣∣
(4.14)

and

1

ndn
sup
τ≤λ≤1

∣∣∣∣∣∣
[nτ ]∑
i=1

n∑
j=[nλ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn} − n
2τ(1−λ)

∫
R

(F (x+ hn)−F (x)) dF (x)

∣∣∣∣∣∣
(4.15)
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both converge to zero in probability. We first show this for (4.14). Observe that

[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn} − n
2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ]
n∑

j=[nτ ]+1

(
F[nλ](G(ξj) + hn)− F[nλ](G(ξj))

)
− n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)

− n2λ(1− τ)

∫
R

(F (x+ hn)− F (x)) dF (x)

= [nλ](n−[nτ ])
(∫

R
(F[nλ](x+ hn)− F[nλ](x)) dF[nτ ]+1,n(x)

−
∫
R

(F (x+ hn)− F (x)) dF (x)
)

+
(
[nλ](n− [nτ ])− n2λ(1− τ)

) ∫
R

(F (x+ hn)− F (x)) dF (x).

Note that by the basic estimate nλ− 1 ≤ [nλ] ≤ nλ+ 1 we obtain

[nλ](n− [nτ ])− n2λ(1− τ)

= [nλ]n(1− τ) + [nλ](n− [nτ ]− n(1− τ))− n2λ(1− τ)

= nλn(1− τ) + n(1− τ) ([nλ]− nλ) + [nλ] (n− [nτ ]− n(1− τ))− n2λ(1− τ)

= [nλ] (nτ − [nτ ]) + (1− τ)n ([nλ]− nλ)

≤ [nλ] + (1− τ)n = O(n).

Together with |
∫
R(F (x+ hn)− F (x))dF (x)| ≤ 1, this yields

1

ndn

(
[nλ](n− [nτ ])− n2λ(1− τ)

) ∫
R

(F (x+ hn)− F (x)) dF (x) = O

(
1

dn

)
→ 0,

as n → ∞. Hence, in order to show that (4.14) converges to zero in probability, it

suffices to show that

[nλ](n− [nτ ])

ndn

(∫
R

(F[nλ](x+ hn)− F[nλ](x))dF[nτ ]+1,n(x)−
∫
R

(F (x+ hn)− F (x))dF (x)

)
(4.16)
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converges to zero in probability. In order to prove this, we rewrite the difference of the

integrals in (4.16) as

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
dF[nτ ]+1,n(x)−

∫
R

(F (x+ hn)− F (x)) dF (x) (4.17)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

+

∫
R

(F (x+ hn)− F (x)) d(F[nτ ]+1,n − F )(x)

=

∫
R

(
F[nλ](x+ hn)− F[nλ](x)

)
− (F (x+ hn)− F (x)) dF[nτ ]+1,n(x)

−
∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x)),

where we have used integration by parts in the final step. Thus, in order to prove that

(4.16) converges to zero, it suffices to show that the following two terms converge in

probability, as n→ 0,

1

dn
[nλ]

∫
R

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
dF[nτ ]+1,n(x)→ 0 (4.18)

1

dn
(n− [nτ ])

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))→ 0.

(4.19)

In order to prove (4.18) and (4.19), we now employ the empirical process non-central

limit theorem (3.8), just like in the proof for the limit under the null hypothesis. Note

that by definition of the e.d.f., for any λ ≤ τ

([nτ ]− [nλ])(F[nλ]+1,[nτ ](x)− F (x)) = [nτ ](F[nτ ](x)− F (x))− [nλ](F[nλ](x)− F (x)).

Hence, we may deduce from (3.8) the following limit theorem for the e.d.f. of the

observations X[nλ]+1, . . . , X[nτ ],

sup
0≤λ≤τ, x∈R

∣∣d−1
n ([nτ ]− [nλ])(F[nλ]+1,[nτ ](x)− F (x))− J(x)(Z(τ)− Z(λ))

∣∣→ 0, (4.20)

almost surely. For τ = 1, this is

sup
0≤λ≤1, x∈R

∣∣d−1
n (n− [nλ])(F[nλ]+1,n − F (x))− J(x)(Z(1)− Z(λ))

∣∣→ 0, (4.21)
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almost surely. Now we return to (4.18), which is to show, and write∣∣∣∣∫
R

1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
dF[nτ ]+1,n(x)

∣∣∣∣ (4.22)

≤
∣∣∣∣∫

R
(J(x+ hn)− J(x))Z(λ) dF[nτ ]+1,n(x)

∣∣∣∣
+ sup
x∈R,0≤λ≤1

∣∣∣∣ 1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
− (J(x+ hn)− J(x))Z(λ)

∣∣∣∣
≤
∣∣∣∣∫

R
(J(x+ hn)− J(x)) dF[nτ ]+1,n(x)

∣∣∣∣ sup
0≤λ≤1

|Z(λ)|

+ sup
x∈R,0≤λ≤1

∣∣∣∣ 1

dn
[nλ]

(
(F[nλ](x+ hn)− F[nλ](x))− (F (x+ hn)− F (x))

)
− (J(x+ hn)− J(x))Z(λ)

∣∣∣∣.
The second term on the right-hand side converges to zero by (3.8). Concerning the first

term, note that

J(x) =

∫
R
I{G(y)≤x}Hm(y)ϕ(y) dy = −

∫
R
I{x≤G(y)}Hm(y)ϕ(y) dy, (4.23)

where ϕ(y) = 1√
2π
e−y

2/2 denotes the standard normal density function. For the second

identity, we have used the fact that G(ξ), by assumption, has a continuous distribution

and that
∫
RHm(y)ϕ(y) dy = 0 for m ≥ 1. Using (4.23), we thus obtain∫

R
J(x) dF[nτ ]+1,n(x) = −

∫
R

∫
R
I{x≤G(y)}Hm(y)ϕ(y) dy dF[nτ ]+1,n(x) (4.24)

= −
∫
R

(∫
R
I{x≤G(y)} dF[nτ ]+1,n(x)

)
Hm(y)ϕ(y) dy

= −
∫
R
F[nτ ]+1,n(G(y))Hm(y)ϕ(y) dy,

and, using analogous arguments,∫
R
J(x+ hn) dF[nτ ]+1,n(x) = −

∫
R
F[nτ ]+1,n(G(y)− hn)Hm(y)ϕ(y) dy. (4.25)

By the Glivenko-Cantelli theorem, applied to the stationary, ergodic process (G(ξi))i≥1,

we get supx∈R |Fn(x)− F (x)| → 0, almost surely. Since

F[nτ ]+1,n(x) =
n

n− [nτ ]
Fn(x)− [nτ ]

n− [nτ ]
F[nτ ](x),

and thus∣∣F[nτ ]+1,n(x)− F (x)
∣∣ ≤ ∣∣∣∣ n

n− [nτ ]
(Fn(x)− F (x))

∣∣∣∣+

∣∣∣∣ [nτ ]

n− [nτ ]
(F[nτ ](x)− F (x))

∣∣∣∣
+

∣∣∣∣( [nτ ]

n− [nτ ]
− n

n− [nτ ]

)
F (x) + F (x)

∣∣∣∣ ,
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we get that, almost surely,

sup
x∈R

∣∣F[nτ ]+1,n(x)− F (x)
∣∣→ 0. (4.26)

Returning to the first term on the right-hand side of (4.22), we obtain, using (4.24)

and (4.25), ∣∣∣∣∫
R

(J(x+ hn)− J(x)) dF[nτ ]+1,n(x)

∣∣∣∣
=

∣∣∣∣∫
R

(
F[nτ ]+1,n(G(y)− hn)− F[nτ ]+1,n(G(y))

)
Hm(y)ϕ(y) dy

∣∣∣∣
≤
∫
R
|F (G(y)− hn)− F (G(y))| |Hm(y)|ϕ(y) dy

+ 2 sup
x

∣∣F[nτ ]+1,n(x)− F (x)
∣∣ ∫

R
|Hm(y)|ϕ(y) dy.

Both terms on the right-hand side converge to zero; the second one by (4.26), the

first one by continuity of F and Lebesgue’s dominated convergence theorem, since F is

bounded by 1. In both cases, we have made use of the fact that
∫
|Hm(y)|ϕ(y) dy <∞.

Thus we have finally established (4.18). In order to prove (4.19), we observe that

1

dn
(n− [nτ ])

∫
R

(
F[nτ ]+1,n(x)− F (x)

)
d(F (x+ hn)− F (x))

≤
∣∣∣∣∫

R
J(x)(Z(1)− Z(τ))d(F (x+ hn)− F (x))

∣∣∣∣
+ sup
x∈R

∣∣∣∣ 1

dn
(n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(1)− Z(τ))

∣∣∣∣
≤
∣∣∣∣∫

R
J(x) d(F (x+ hn)− F (x))

∣∣∣∣ |Z(1)− Z(τ)|

+ sup
x∈R

∣∣∣∣ 1

dn
(n− [nτ ])(F[nτ ]+1,n(x)− F (x))− J(x)(Z(1)− Z(τ))

∣∣∣∣ .
The second term on the right-hand side converges to zero by (4.21). Concerning the

first term, note that∫
R
J(x) d(F (x+ hn)− F (x)) = E [J(G(ξi)− hn)− J(G(ξi))] .

Applying Lebesgue’s dominated convergence theorem and making use of the fact that,

by assumption, J is continuous, we obtain that
∫
R J(x) d(F (x + hn) − F (x)) → 0. In

this way, we have finally proved that (4.14) converges to zero, in probability. By similar

arguments, we can prove this for (4.15), which finally ends the proof of Theorem 4.2.

4.3 Asymptotic Relative Efficiency

In this section, we calculate the asymptotic relative efficiency (ARE) of the “Wilcoxon-

type” test, based on (4.1), over the “difference-of-means” test, based on (4.2). To do
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so, we calculate the number of observations needed to detect a small level shift h at

time [τn] with a test of given (asymptotic) level α and given (asymptotic) power β,

both for the “Wilcoxon-type” test and the “difference-of-means” test, and denote these

numbers by nW and nD, respectively. We then define the asymptotic relative efficiency

of the “Wilcoxon-type” test over the “difference-of-means” test by

ARE(W,D) = lim
h→0

nD
nW

. (4.27)

It will turn out that this limit exists and that the ARE does not depend on the choice

of τ, α, β. An ARE less than 1 means that the “Wilcoxon-type” test needs on large

scale more observations than the “difference-of-means” test in order to detect a given

jump on the same level with the same power; this is what we call less efficient.

As preparation, we first calculate a quantity that is related to the ARE, namely the

ratio of the sizes of level shifts that can be detected by the two tests, based on the same

number of observations n, again for given values of τ, α, β. We denote the corresponding

level shifts by hW (n) and hD(n), respectively, assuming that these numbers depend on

n in the following way

hW (n) = cW
dn
n

hD(n) = cD
dn
n
,

as specified in Theorem 4.1 and Theorem 4.2. In order to simplify the following con-

siderations, we take a one-sided change-point test, thus rejecting the hypothesis of no

change-point for large values of

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi)

and

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

I{Xi≤Xj},

respectively. These are the appropriate tests when testing against the alternative of

a non-negative level shift. In order to obtain tests that have asymptotically level α,

the “difference-of-means” test and the “Wilcoxon-type” test reject the null hypothesis

when the test statistics

m!

ndn am
max

1≤k≤n−1

k∑
i=1

n∑
j=k+1

(Xj −Xi) (4.28)

and

m!

ndn
∫
R Jm(x)dF (x)

max
1≤k≤n−1

k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)
(4.29)
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exceed the upper α quantile qα of the distribution of sup0≤λ≤1(Zm(λ) − λZm(1)), see

Theorem 3.5 and Theorem 3.1 and keep in mind that we changed the sign of the kernel of

the “difference-of-means” test statistic here. Under the sequence of alternatives Aτ,hD(n)

and Aτ,hW (n), respectively, the asymptotic distribution of the above test statistics is

given by

sup
0≤λ≤1

(
Zm(λ)− λZm(1) +

cDm!

am
δτ (λ)

)
and

sup
0≤λ≤1

(
Zm(λ)− λZm(1) +

cW m!
∫
f2(x)dx∫

R Jm(x)dF (x)
δτ (λ)

)
,

respectively, see Theorem 4.1 and Theorem 4.2 (or Corollary 4.2). Thus, the asymptotic

power of these tests, based on (4.28) and (4.29), is given by the following formulae,

P

(
sup

0≤λ≤1

(
Zm(λ)− λZm(1) +

cDm!

am
δτ (λ)

)
≥ qα

)
(4.30)

and

P

(
sup

0≤λ≤1

(
Zm(λ)− λZm(1) +

cW m!
∫
f2(x)dx∫

R Jm(x)dF (x)
δτ (λ)

)
≥ qα

)
. (4.31)

Thus, if we want the two tests to have identical power, we have to choose cD and cW

in such a way that
cDm!

am
δτ (λ) =

cW m!
∫
f2(x)dx∫

R Jm(x)dF (x)
δτ (λ),

which yields

hD(n)

hW (n)
=
cD
cW

=
am
∫
R f

2(x)dx∫
R Jm(x)dF (x)

.

This quantity gives the ratio of the height of a level shift that can be detected by a

“difference-of-means” test over the height that can be detected by a “Wilcoxon-type”

test, when both tests are assumed to have the same level α, the same power β and the

shifts are taking place at the same time [nτ ]. In addition, we assume that the tests are

based on the same number of observations n, which is supposed to be large.

Example. For the case of Gaussian data, i.e. when G(t) = t, we have m = 1, a1 = −1

(the minus sign arises because we consider for the “difference-of-means” test statistic

the kernel y− x, instead of x− y like in Section 3.4.2) and
∫
R J1(x)dF (x) = − 1

2
√
π

, see

(3.14). Thus we obtain

hD(n)

hW (n)
=
cD
cW

= 2
√
π

∫
R

1

2π
e−x

2
dx =

∫
R

1√
π
e−x

2
dx = 1. (4.32)

Hence, both tests can asymptotically, as n→∞, detect level shifts of the same height.

This is surprising, because according to conventional statistical wisdom, a Gauß-type

test such as the “difference-of-means” test should outperform a rank test when the

underlying data have a normal distribution; this is at least the case for independent

observations.
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In order to calculate the ARE now, we need to consider the ratio of the sample sizes

nW and nD corresponding to a given level shift hn. We will thus study the probability

ψ(t) := P

(
sup

0≤λ≤1
(Zm(λ)− λZm(1) + t δτ (λ)) ≥ qα

)
as a function of t, for fixed values of τ and α. The function ψ is monotonically increasing.

We define the generalized inverse

ψ−(β) := inf{t ≥ 0 : ψ(t) ≥ β}.

Thus, we get

P

(
sup

0≤λ≤1

(
Zm(λ)− λZm(1) + ψ−(β) δτ (λ)

)
≥ qα

)
≥ β, (4.33)

and, in fact, for given τ , α and β, ψ−(β) is the smallest number having this property.

With the help of the function ψ−(β), we can apply Theorem 4.1 and Theorem 4.2

in order to calculate the number of observations needed to detect a level shift of a given

height. By comparing (4.30) and (4.33), we can detect a level shift of size h at time

[nτ ] with the “difference-of-means” test of (asymptotic) level α and power β based on

n observations, if hD(n) = dn
n cD, where cD satisfies cDm!

am
= ψ−(β). Hence we obtain

that hD(n) has to satisfy

hD(n) =
dn
n

am
m!

ψ−(β).

Similarly, by comparing (4.31) and (4.33), we get for the “Wilcoxon-type” test that n

has to satisfy

hW (n) =
dn
n

∫
R Jm(x) dF (x)

m!
∫
R f

2(x) dx
ψ−(β).

Solving these two equations for n and denoting the resulting numbers of observations

by nD and nW , respectively, we obtain

nD =

(
hDm!

ψ−(β)Lm/2(n)am

)−2/Dm

nW =

(
hW m!

∫
R f

2(x) dx

ψ−(β)Lm/2(n)
∫
R Jm(x) dF (x)

)−2/Dm

,

and thus we have established the following theorem.

Theorem 4.3. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero,

variance 1 and auto-covariance function (1.1) with 0 ≤ D < 1
m . Moreover, let G ∈ G2,

and assume that G(ξi) has continuous distribution function F (x). Let m denote the

Hermite rank of the class of functions I{G(ξi)≤x} −F (x), x ∈ R. Then, the ARE of the

“Wilcoxon-type” test over the “difference-of-means” test, as defined in (4.27), is given

by

ARE(W,D) =

(
am

∫
R f

2(x)dx∫
R Jm(x)dF (x)

)2/Dm

. (4.34)
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Here, am is the m-th Hermite coefficient of G(·), as defined in Section 1.4.2, and Jm(x)

is the m-th Hermite coefficient of the class I{G(·)≤x} − F (x), x ∈ R. The “Wilcoxon-

type” test and the “difference-of-means” test are based on (4.28) and (4.29), respec-

tively.

Example. (i) In the case of Gaussian observations, i.e. G(t) = t, we have m = 1,

a1 = −1, f(x) = ϕ(x) = (2π)−1/2e−x
2/2 and

∫
R J(x) dF (x) = −(2

√
π)−1, like in (3.14),

so after all we obtain

ARE(W,D) = 1.

(ii) When we consider the transformation

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
,

we obtain, according to Section 3.6.3, standardized Pareto(3,1) data with p.d.f. and

c.d.f.

f3,1,st(x) =

3
√

3
4

(√
3
4 x+ 3

2

)−4

if x ≥ −
√

1
3

0 else

and

F3,1,st(x) =

1−
(

1√
3/4t+3/2

)3

t ≥ 1−3/2√
3/4

0 else

,

and the Hermite rank m equals 1. With numerical integration we obtain

ARE(W,D) ≈ (−2.678)2/D .

We will illustrate these findings by a set of computer simulations in Section 4.6.

4.4 ARE for i.i.d. data

We have shown that in the case of LRD data, the ARE of the “Wilcoxon-type” test and

the “difference-of-means” test is 1 for Gaussian data. In this section, we will compare

this surprising result with the case of i.i.d. Gaussian data. We will find that in this

case, the ARE is 3
π , i.e. the “Wilcoxon-type” test is less efficient than the “difference-

of-means” test.

We consider i.i.d. observations X1, . . . , Xn with Xi ∼ N (0, 1) and the U -statistic

Uk =

k∑
i=1

n∑
j=k+1

h(Xi, Xj).
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As kernel we will choose hD(x, y) = y − x and hW (x, y) = I{x≤y} − 1
2 , in other words

we consider

U
(D)
k =

k∑
i=1

n∑
j=k+1

hD(Xi, Xj) =
k∑
i=1

n∑
j=k+1

(Xj −Xi),

U
(W )
k =

k∑
i=1

n∑
j=k+1

hW (Xi, Xj) =

k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)
.

Both kernels hD, hW are antisymmetric, i.e. they satisfy h(x, y) = −h(y, x), so in order

to determine the limit behaviour of U
(D)
k and U

(W )
k , we can apply the limit theorems

of Csörgő and Horváth (1988).

Theorem 4.4. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Under

the null hypothesis of no change in the mean, it holds

sup
0≤λ≤1

∣∣∣∣ 1

n3/2
U

(D)
[λn] − BB1,n(λ)

∣∣∣∣ = oP (1) (4.35)

and

sup
0≤λ≤1

∣∣∣∣∣∣ 1

n3/2
√

1
12

U
(W )
[λn] − BB2,n(λ)

∣∣∣∣∣∣ = oP (1), (4.36)

where (BBi,n(λ))0≤λ≤1, i = 1, 2, is a sequence of Brownian bridges with mean E[BBi,n(λ)] =

0 and auto-covariance E[BBi,n(s) BBi,n(t)] = min(s, t)− st.

Proof. By Theorem 4.1 of Csörgő and Horváth (1988), it holds under the null hypothesis

H that

sup
0≤λ≤1

∣∣∣∣ 1

n3/2σ
U[λn] − BBn(λ)

∣∣∣∣ = oP (1)

where (BBn(λ))0≤λ≤1 is a sequence of Brownian bridges like BB1,n and BB2,n above

and where σ2 = E[h̃2(X1)] with h̃(t) = E[h(t,X1)]. The kernel h has to fulfill

E[h2(X1, X2)] < ∞ which is the case for hD(x, y) = y − x and hW (x, y) = I{x≤y} − 1
2

and Gaussian Xi.

Theorem 4.5. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Under

the sequence of alternatives Aτ,hn(n), as defined in (4.3), and with hn = 1√
n
c, where c

is a constant, it holds(
1

n3/2
U

(D)
[λn]

)
0≤λ≤1

→ (BB1(λ) + cδτ (λ))0≤λ≤1 (4.37)
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and

 1

n3/2
√

1
12

U
(W )
[λn]


0≤λ≤1

→

BB2(λ) +
c

2
√
π ·
√

1
12

δτ (λ)


0≤λ≤1

(4.38)

in distribution, where (BBi(λ))0≤λ≤1 is a Brownian bridge, i = 1, 2, and δτ (λ) is defined

in (4.7).

Proof. First, we prove (4.37). Like for the case of LRD observations, we decompose

the statistic, so that we obtain under the sequence of alternatives Aτ,hn(n)

1

n3/2
U

(D)
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(εj − εi) +
1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(µj − µi).

By Theorem 4.4, the first term on the right-hand side converges to a Brownian bridge

BB(λ). For the second term we have like in the proof for LRD observations

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(µj − µi) ∼
√
nhnδτ (λ),

and in order for the right-hand side to converge, we have to choose hn = 1√
n
c.

Now prove (4.38). Again like for LRD observations, we decompose the statistic into

one term that converges like under the null hypothesis and one term which converges

to a constant. Under the sequence of alternatives Aτ,hn(n) and for the case λ ≤ τ , this

decomposition is

1

n3/2
U

(W )
[λn] =

1

n3/2

[λn]∑
i=1

n∑
j=[λn]+1

(
I{εi≤εj} −

1

2

)
+

1

n3/2

[λn]∑
i=1

n∑
j=[τn]+1

I{εj<εi≤εj+hn}. (4.39)

The first term converges uniformly to a Brownian Bridge, like under the null hypothesis.

We will show that, if the observations εi = G(ξi) are i.i.d. with c.d.f. F which has two

bounded derivatives F ′ = f and F ′′, the second term converges uniformly to cλ(1 −
τ)
∫
R f

2(x) dx, which is cδτ (λ)
∫
R f

2(x) dx for the case λ ≤ τ . In the case of standard

normally distributed G(ξi), i.e. for F = Φ and f = ϕ, this function is c(2
√
π)−1δτ (λ).

To this end, we consider the following sequence of Hoeffding decompositions for the

sequence of kernels hn(x, y) = I{y<x≤y+hn}:

hn(x, y) = ϑn + h1,n(x) + h2,n(y) + h3,n(x, y) (4.40)
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Let X,Y ∼ F be i.i.d. random variables. Then we define

ϑn := E[hn(X,Y )]

= P (Y ≤ X ≤ Y + hn)

=

∫
R

(∫ y+hn

y
f(x) dx

)
f(y) dy

=

∫
R

(F (y + hn)− F (y)) f(y) dy

= hn

∫
R

F (y + hn)− F (y)

hn
f(y) dy

∼ hn
∫
R
f2(y) dy,

where in the last step we have used that F (y+hn)−F (y)/hn → f(y) and the dominated

convergence theorem. Moreover, we set

h1,n(x) := E[hn(x, Y )]− ϑn
= E[I{Y <x≤Y+hn}]− ϑn
= F (x)− F (x− hn)− ϑn

and

h2,n(y) := E[hn(X, y)]− ϑn
= E[I{y<X≤y+hn}]− ϑn
= F (y + hn)− F (y)− ϑn

and

h3,n(x, y) := hn(x, y)− h1,n(x)− h2,n(y)− ϑn
= I{y<x≤y+hn} − F (x) + F (x− hn) + ϑn − F (y + hn) + F (y).

We will now show that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(h1,n(εi) + h2,n(εj) + h3,n(εi, εj))

∣∣∣∣∣∣→ 0 (4.41)

in probability, and from this it follows by the sequence of Hoeffding decompositions

(4.40) that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

(hn(εi, εj)− ϑn)

∣∣∣∣∣∣→ 0

i.e. that the second term in (4.39) converges uniformly to

lim
n→∞

1

n3/2
[λn](n− [τn])ϑn = λ(1− τ)c

∫
R
f2(x) dx.
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We use the triangle inequality and show the uniform convergence to 0 for each of

the three terms in (4.41) seperately. Since the parameter λ occurs only in the floor

function value [λn], the supremum is in fact a maximum, and the h1,n(εi) are i.i.d.

random variables, so we can use Kolmogorov’s inequality. We obtain for the first term

in (4.41)

P

 sup
0≤λ≤τ

n− [τn]

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

h1,n(εi)

∣∣∣∣∣∣ > s

 ≤ 1

s2

n2(1− τ)2

n3

[τn]∑
i=1

Var[h1,n(εi)]. (4.42)

Now consider an independent copy ε of the εi and the Taylor expansion of F around

the value of ε,

F (t) = F (ε) + F ′(ε)(t− ε) +
F ′′(ε+ δ)

2
(t− ε)2,

where the last term is the Lagrange remainder and thus ε+ δ is between ε and t. Then

we obtain

1

h2
n

Var[h1,n(ε)] = Var

[
F (ε)− F (ε− hn)

hn

]
= Var

[
f(ε) + F ′′(ε+ δ)

hn
2

]
= Var [f(ε)] + Var

[
F ′′(ε+ δ)

hn
2

]
+ 2

(
E[f(ε)F ′′(ε+ δ)hn]− E[f(ε)]E[F ′′(ε+ δ)hn]

)
,

and since f = F ′ and F ′′ are bounded by assumption, we receive Var[h1,n(ε)] = O(h2
n)

and the right-hand side of (4.42) converges to 0 as n increases.

In the same manner, we obtain

P

 sup
0≤λ≤τ

[λn]

n3/2

∣∣∣∣∣∣
n∑

j=[τn]+1

h2,n(εj)

∣∣∣∣∣∣ > s

 ≤ 1

s2

n2λ2

n3

n∑
j=1

Var[h2,n(εj)]→ 0. (4.43)

Finally, we have to show that

sup
0≤λ≤τ

1

n3/2

∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[τn]+1

h3,n(εi, εj)

∣∣∣∣∣∣→ 0 (4.44)

in probability. We set temporarily l := [λn] and T := [τn] and obtain from Chebyshev’s

inequality

P

 max
0≤l≤T

1

n3/2

∣∣∣∣∣∣
l∑

i=1

n∑
j=T+1

h3,n(εi, εj)

∣∣∣∣∣∣ > s

 ≤ 1

s2
Var

 max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

 .
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Now for any collection of random variables Y1, . . . , Yk, it holds E[max{Y 2
1 , . . . Y

2
k }] ≤∑k

i=1EY
2
i , such that

1

s2
Var

 max
0≤l≤T

1

n3/2

l∑
i=1

n∑
j=T+1

h3,n(εi, εj)

 ≤ 1

s2

1

n3

T∑
l=1

Var

 l∑
i=1

n∑
j=T+1

h3,n(εi, εj)


=

1

s2

1

n3

T∑
l=1

l∑
i=1

n∑
j=T+1

Var [h3,n(εi, εj)] ,

where in the last step we have used that h3,n(εi, εj) are uncorrelated by Hoeffding’s

decomposition. Now for two i.i.d. random variables ε, η, we have, like above with the

Taylor expansion of F :

Var [h3,n(ε, η)] = Var
[
I{η<ε≤η+hn} − F (ε) + F (ε− hn) + ϑn − F (η + hn) + F (η)

]
= Var

[
I{η<ε≤η+hn} − hn (f(ε) +OP (hn)) + hn (f(η) +OP (hn))

]
= Var

[
I{η<ε≤η+hn}

]
+ Var [hn (f(ε) + f(η) +OP (hn))]

+ 2 Cov
[
I{η<ε≤η+hn}, hn (f(ε) + f(η) +OP (hn))

]
≤ (ϑn − ϑ2

n) + h2
nO(1) + 2

√
(ϑn − ϑ2

n) · h2
nO(1)

= O(hn).

We have just shown that

P

 max
0≤l≤T

1

n3/2

∣∣∣∣∣∣
l∑

i=1

n∑
j=T+1

h3,n(εi, εj)

∣∣∣∣∣∣ > s

 ≤ 1

s2
O(hn),

which proves (4.44). So we have proven (4.39) for the case λ ≤ τ . The proof for λ > τ

is similar.

Now the stage is set to calculate the ARE of the “Wilcoxon-type” test based on

U
(W )
[λn] and the “difference-of-means” test based on U

(D)
[λn], as defined in the section about

the ARE in the LRD case. Let qα denote the upper α-quantile of the distribution of

sup0≤λ≤1 BB(λ). By Theorem 4.5, the power of both tests is given by

P

(
sup

0≤λ≤1
(BB(λ) + cDδτ (λ)) ≥ qα

)
(4.45)

and

P

(
sup

0≤λ≤1

(
BB(λ) + cW

1

σ · 2
√
π
δτ (λ)

)
≥ qα

)
(4.46)

where σ2 = 1/12 and we assume that

hW (n) =
cW√
n
, hD(n) =

cD√
n
.
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Thus if we want both tests to have identical power, we must ensure that cD = cW /(σ ·
2
√
π), in other words

hD(n)

hW (n)
=
cD
cW

=
1

σ · 2
√
π
.

Now we define, quite similar to the proof for LRD observations, the probability

ψ(t) := P

(
sup

0≤λ≤1
(BB(λ) + t δτ (λ)) ≥ qα

)
,

for whose generalized inverse ψ− holds

P

(
sup

0≤λ≤1

(
BB(λ) + ψ−(β) δτ (λ)

)
≥ qα

)
≥ β. (4.47)

Now we compare (4.47) and (4.45) conclude: We can detect a level shift of size h at

time [nτ ] with the “difference-of-means” test of (asymptotic) level α and power β based

on n observations, if hD(n) = cD√
n

and where cD satisfies cD = ψ−(β); hence we obtain

that hD(n) has to satisfy

hD(n) =
1√
n
ψ−(β).

In the same manner, we get for the Wilcoxon test the conditions hW (n) = cW√
n

and

cW /(σ2
√
π) = ψ−(β) and thus

hW (n) =
σ2
√
π√
n
ψ−(β).

Solving these two equations for n again and denoting the resulting numbers of obser-

vations by nD and nW , respectively, we obtain

nD =

(
1

hD
ψ−(β)

)2

nW =

(
2σ
√
π

hW
ψ−(β)

)2

,

and thus we have established the following theorem.

Theorem 4.6. Let X1, . . . , Xn be i.i.d. random variables with Xi ∼ N (0, 1). Then

ARE(W,D) = lim
h→0

nD
nW

= (2σ
√
π)−2 =

3

π
, (4.48)

where D, W denote the one-sided “difference-of-means”-test, respectively the one-sided

“Wilcoxon-type” test, for the test problem (H,Aτ,hn).
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4.5 ARE of Wilcoxon and Gauß test for the two-sample

problem

Previously, we did not specify the position of the level shift, and we observed that the

ARE of the “Wilcoxon type” test and the “difference-of-means” test for a change point

equals 1 in the case of LRD Gaussian data and that it is 3
π for i.i.d. Gaussian data. Now

we show that this effect is already present in the 2-sample problem, where we assume

that the position of the level shift is known. In this situation, the “Wilcoxon type” test

and the “difference-of-means” test are known as the Wilcoxon test and the Gauß test.

We show that for LRD observations, the ARE of these two tests equals one, in contrast

to i.i.d. observations where the ARE of both tests equals 3
π , i.e. where the Wilcoxon

test is less efficient than the Gauß test – which is common knowledge in statistics.

For simplicity, we consider equal (and even) sample size for both samples. Our

observations are

Xi =

ξi, for i = 1, . . . , [n/2]

ξi + h, for i = [n/2] + 1, . . . , n,
(4.49)

where (ξi)i≥1 is fGn with Hurst coefficient H. We consider two statistics for testing the

hypothesis h = 0 against the alternative h > 0,

D(LRD)
n =

1

nH+1
√

1
22H − 1

4

[n/2]∑
i=1

n∑
j=[n/2]+1

(Xj −Xi) (4.50)

W (LRD)
n =

1

nH+1
√

1
22H − 1

4

∫
R J(x)dF (x)

[n/2]∑
i=1

n∑
j=[n/2]+1

(
I{Xi≤Xj} −

1

2

)
, (4.51)

compare to (4.28) and (4.29). Here, in the case of fGn, which has the covariance

structure (1.5), the appropriate scaling is ndn = n2−D/2 = nH+1, because D = 2−2H.

The normalization will prove to be the right one.

Proposition 4.7. Under the above assumptions (i.e. fGn with a shift in the mean),

D
(LRD)
n is normally distributed:

D(LRD)
n ∼ N

 1/4 · n2h

nH+1
√

1
22H − 1

4

, 1

 .

Moreover, W
(LRD)
n is asymptotically normally distributed:

W (LRD)
n ≈ N

 1/4 · n2h
∫
f2(x)dx

nH+1
∫
J(x)dF (x)

√
1

22H − 1
4

, 1

 ,

where f(x) = ϕ(x) is the standard normal p.d.f. and F (x) = Φ(x) is the standard

normal c.d.f..
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Remark. Note that the results of Proposition 4.7 hold in similar form in greater

generality, not just for the Gaussian case, as long as m = 1. Then, by the previous

Theorems 4.1 and 4.2, D
(LRD)
n and W

(LRD)
n are asymptotically normally distributed,

one only may obtain different parameters: For W
(LRD)
n , the first Hermite coefficient

a1 of G(·) may be differernt, and for W
(LRD)
n , one may obtain different f and F (the

respective p.d.f. and c.d.f. of the observationsXi) and a different first Hermite coefficient

J(x) of the class of functions {I{G(·)≤x}, x ∈ R}. We give the proof only for fGn which

is a simple model for Gaussian data. For other Gaussian or non-Gaussian data, which

still staisfy m = 1, the proof can easily be adapted.

Proof. D
(LRD)
n is a linear function of Gaussian variables and thus normally distributed

itself. The variance 1
22H − 1

4 of the two-sample Gauß test statistic can be calculated

quite easily; this is carried out in Section 6.3.1. The mean is also clear by some easy

calculation.

The second part involves going through the proof of Theorem 4.2. In virtue of

(4.12) and Theorem 3.1, W
(LRD)
n is asymptotically normally distributed, and by (4.14)

we see that for any choice of λ (here we have λ = τ = 1/2)

1

nH+1

[nλ]∑
i=1

n∑
j=[nτ ]+1

I{G(ξj)<G(ξi)≤G(ξj)+hn}

is asymptotically close to

n2

nH+1
λ(1− τ)

∫
R

(F (x+ h)− F (x)) dF (x)

=
n2h

nH+1
λ(1− τ)

∫
R

F (x+ h)− F (x)

h
dF (x)

≈ n2h

nH+1

1

4

∫
R
f2(x) dx

like in the remark following Theorem 4.2 with λ(1− τ) = δτ (λ) = δ1/2(1/2) = 1/4. For

the standardization of the Wilcoxon test statistic, note that in the case of a strictly

monotone transformation G, the limit distribution of the “difference-of-means” test is –

up to a norming constant – the same as for the test based on Wilcoxon’s rank statistic,

or see e.g. for Gaussian data Section 6.3.2, such that we finally obtain

E
[
W (LRD)
n

]
= E

∑[n/2]
i=1

∑n
j=[n/2]+1

(
I{Xi≤Xj} −

1
2

)
nH+1

√
1

22H − 1
4

∫
R J(x)dF (x)


≈
E
[

1
nH+1

∑[n/2]
i=1

∑n
j=[n/2]+1 I{G(ξj)<G(ξi)≤G(ξj)+hn}

]
√

1
22H − 1

4

∫
R J(x)dF (x)

≈
n2h
nH+1

1
4

∫
R f

2(x) dx√
1

22H − 1
4

∫
R J(x)dF (x)

.
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So we clearly see that the ARE of the “Wilcoxon-type” test over the “difference-

of-means” of 1 in the case of LRD data can already be observed in the two-sample

situation with the Wilcoxon test and the Gauß test.

4.6 Simulations

We have rigorously proven that for Gaussian data, the “difference-of-means” test and

the “Wilcoxon-type” test show asymptotically the same performance: Their ARE is

1. For Pareto(3,1) distributed data, we obtained an ARE of approximately (2.68)2/D.

Now we illustrate these findings by three simulation studies.

• In Section 4.6.1, we repeat the power simulations from Section 3.6.1 for fGn, but

with sample size n = 2, 000 instead of n = 500. These new simulations were

computationally intensive because the Wilcoxon test takes a long time due to the

comparison/ordering of the data.

• Second, we show in Section 4.6.3 that the asymptotic relative efficiency of 1 can

already be observed in two-sample problems: We compare the “difference-of-

means” two-sample test, also known as the Gauß test, and the Wilcoxon two-

sample test in situations with fGn which possesses a level shift of size hn =

cn−D/2, according to our theoretical power considerations above.

• Finally, we consider in Section 4.6.4 both two-sample tests also under Pareto(3,1)

distributed data in order to illustrate the ARE of around (2.68)2/D.

4.6.1 Power of change-point tests

We consider realizations ξ1, . . . , ξn of a fGn process with Hurst parameter H = 0.7

(D = 0.6) and observations

Xi =

G(ξi) for i = 1, . . . , [nλ]

G(ξi) + h for i = [nλ] + 1, . . . , n
,

for a function G ∈ G2, the class of (with respect to the standard normal measure)

normalized and square-integrable functions. Here, we choose G(t) = t in order to

obtain Gaussian observations X1, . . . , Xn. In other words, we consider data which

follow the alternative

Aλ,h :

E[Xi] = 0 for i = 1, . . . , [nλ]

E[Xi] = h for i = [nλ] + 1, . . . , n.

We let both the break point k = [λn] and the level shift h := µk+1−µk vary; specifically,

we choose k = 100, 200, 600, 1000 and h = 0.5, 1, 2. For each of these situations, we

compare the power of the “difference-of-means” test and the “Wilcoxon-type” test in the
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h \ λ 0.05 0.1 0.3 0.5

0.5 1.024 1.041 1.006 0.999

1 1.165 1.377 1.005 1.000

2 2.199 1.265 1.000 1.000

h \ λ 0.05 0.1 0.3 0.5

0.5 1.019 1.069 1.003 0.997

1 1.201 1.153 1.000 1.000

2 2.579 1.000 1.000 1.000

Table 4.1: Power of the “difference-of-means” test relative to the power of the

“Wilcoxon-type” test, βD/βW , for n = 500 (left) and n = 2, 000 (right) observations

of fGn with LRD parameter H = 0.7, different break points [λn] and different level

shifts h. Both tests have asymptotically level 5%. The calculations are based on 10,000

simulation runs.

test problem (H,A), see (3.1) and (3.2). In contrast to the simulations in Section 3.6.1,

we have here a sample size of n = 2, 000 instead of n = 500. We have repeated each

simulation 10, 000 times.

Since our theoretical considerations yield an ARE of 1, we expect that both tests

detect jumps equally well – that means that both tests, set on the same level, detect

jumps of the same height and at the same position in the same number of observations

with the same relative frequency. And indeed, we can clearly see in Figure 4.1 that

the power of both tests approximately coincides at many points; differences can be

spot only when the break is large or occurs early in the data. Table 4.1 renders this

impression more precisely: Here, the quotient of the power of the “difference-of-means”

test and the “Wilcoxon-type” test is given, and indeed, it is only in the lower left

quarter not close to 1.

Figure 4.2 illustrates how an increased sample size influences the power of the

“difference-of-means” test and the “Wilcoxon-type” test. Here the relative change in

the power (β2000−β500)/β500 is displayed for both tests, where βn denotes the power in

a simulation with n observations. As one can expect, there is a significant increase in

the power for small and for early level shifts which traditionally are hard to detect. For

level shifts that are easy to detect, like big jumps or jumps in the middle, there is no

big difference in the test performance, when the sample size is increased from n = 500

to n = 2, 000.

4.6.2 Power of two-sample tests, setting

Now we consider data X1, . . . , Xn of the form

Xi =

G(ξi) for i = 1, . . . , [n2 ]

G(ξi) + hn for i = [n2 ] + 1, . . . , n,

where (ξi)i≥1 is standard fGn, G ∈ G2 and hn > 0 is a certain positive jump, i.e. in the

language of change-point tests, we assume to know the location τ = 1/2 of the change-

point. At first we consider G(t) = t which produces fGn as observations, afterwards
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Figure 4.1: Power of “difference-of-means” test (blue) and power of “Wilcoxon-type”

test (green) for n = 2, 000 observations of fGn with LRD parameter H = 0.7, different

break points [λn] and different level shifts h. Both tests have asymptotically level 5%.

The calculations are based on 10,000 simulation runs.

0.0 0.1 0.2 0.3 0.4 0.5

0
.
0

0
.
5

1.
0

1
.
5

2.
0

Lambda

R
e
l
.
 
I
n
c
r
e
a
s
e
 
P
o
w
e
r h=0.5

h=1
h=2

Diff
Wilcoxon

Figure 4.2: Relative change of the power of the “difference-of-means” test (blue) and

of the “Wilcoxon-type” test (green) if the sample size increases from n = 500 to n =

2, 000. The simulation is based on fGn with LRD parameter H = 0.7, different break

points [λn], different level shifts h and each 10, 000 simulation runs. Both tests have

asymptotically level 5%.
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we look at a transformation G which yields standardised Pareto(3,1) distributed data.

As jump height we choose

hn = c
dn
n

= cn−D/2

and analyse how well this jump can be detected, both by the two-sample Gauß test

and by the two-sample Wilcoxon test: We test

H : hn = 0 against A1/2,hn : hn > 0.

For the Gauß test, we use the statistic

D1/2,n =
1

ndn

[n/2]∑
i=1

n∑
j=[n/2]+1

(Xj −Xi).

Here we have m = 1, since G is strictly monotone, thus we obtain by Theorem 3.5

D1/2,n
D−→ −a1

(
Z1(1/2)− 1

2
Z1(1)

)
D
= −a1N (0, σ2

0.5)

with

σ2
0.5 := Var

[
Z1(1/2)− 1

2
Z1(1)

]
=

1

22H
− 1

4
, (4.52)

because Z1 is fBm. So the two-sample Gauß test rejects H if

D1/2,n

|a1|σ0.5
> zα, (4.53)

where zα denotes the upper α-quantile of the standard normal distribution. By Theo-

rem 4.1, we obtain under the alternative the convergence

D1/2,n

a1σ0.5

D−→ N (0, 1) +
c

4a1σ0.5
.

For the Wilcoxon test, we compute the statistic

W1/2,n =
1

ndn

[n/2]∑
i=1

n∑
j=[n/2]+1

(
I{Xi≤Xj} −

1

2

)
.

By Theorem 3.4, it holds under the null hypothesis of no change

2
√
πW1/2,n

σ0.5

D−→ N (0, 1),

with σ0.5 as in (4.52), and the two-sample Wilcoxon test rejects H if

2
√
πW1/2,n

σ0.5
> zα, (4.54)

where zα still denotes the upper α-quantile of the standard normal distribution. In

Theorem 4.2 we have shown that under the alternative

2
√
πW1/2,n

σ0.5

D−→ N (0, 1) +
c 2
√
π

4σ0.5

∫
R
f2(x) dx,

where f denotes the p.d.f. of the observations Xi.

In what follows, we will compare these two tests based on D1/2,n and W1/2,n, as set

in (4.53) and (4.54), in two different data situations.
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4.6.3 Power of two-sample tests, Gaussian observations

Using the fArma package in R, we have simulated n = 50, 100, 500, 1000, 2000 realiza-

tions ξ1, . . . , ξn of fGn with Hurst parameter H = 0.7 (respectively D = 0.6). At first,

we have considered observations Xi = G(ξi) with G(t) = t, i.e. fGn. To the second

sample of observations, X[n/2]+1, . . . , Xn, we have added a constant, depending on n,

hn = c
dn
n

= cn−D/2 =



0.102c if n = 2, 000

0.126c if n = 1, 000

0.155c if n = 500

0.251c if n = 100

0.309c if n = 50.

(4.55)

To these data, we have applied the two-sample Gauß test and the 2-sample Wilcoxon

test, as set in (4.53) and (4.54). Here, the first Hermite coefficient of G is a1 = 1 and∫
R f

2(x) dx = (2
√
π)−1 since f is the standard normal p.d.f.. Under 10,000 simulation

runs, we have counted the number of true rejections as an estimate of the power of the

respective test; the results are shown in Table 4.2. In Table 4.3, their quotient is given;

it is close to 1. Our theoretical findings state that

ARE = lim
n→∞

nD
nW

=

(
a1

∫
R f

2(x) dx∫
R J1(x)f(x) dx

)2/D

= 1,

which means that both tests, set on the same level, need on large scale the same number

of observations in order to detect the same jump with a given probability. And indeed,

for the same number of observations and on the same level both tests detect the same

jump nearly equally often. So our theoretical findings that the ARE is 1 for Gaussian

data can already be seen in two sample situations.

Note that the simulations also illustrate that the special form of hn (which is defined

in (4.55) and provided by our limit theorem) is just right: According to our theoretical

findings, a jump(-sequence) of height c hn leads to a non-degenerate limit of the test

statistic. And indeed, for a fixed c, the observed power of each test is nearly the same

for all sample sizes n which is a plausible evidence that the test statistic under data

with jump c hn approaches a certain non-degenerate limit.

4.6.4 Power of two-sample tests, Pareto(3,1) observations

To n realizations ξ1, . . . , ξn of fGn we have now applied the transformation

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
,

which produces observations Xi = G(ξi) which follow a standardised Pareto(3,1) distri-

bution. To the second sample of observations, X[n/2]+1, . . . , Xn, we have again added a
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c \ n 50 100 500 1000 2000

0.5 0.097 0.097 0.093 0.102 0.094

1 0.174 0.168 0.168 0.178 0.169

2 0.402 0.403 0.396 0.404 0.403

4 0.875 0.867 0.872 0.874 0.872

c \ n 50 100 500 1000 2000

0.5 0.110 0.104 0.096 0.103 0.093

1 0.192 0.180 0.173 0.182 0.171

2 0.414 0.411 0.403 0.407 0.404

4 0.876 0.870 0.872 0.875 0.870

Table 4.2: Power of the two-sample Gauß test (upper table) and the two-sample

Wilcoxon test (lower table), based on 10, 000 repetitions of a fGn series of length n

with Hurst parameter H = 0.7 (D=0.6) and with a jump of height hn = cn−D/2 at the

half.

c \ n 50 100 500 1000 2000

0.5 0.886 0.933 0.967 0.991 1.013

1 0.907 0.931 0.972 0.981 0.986

2 0.969 0.979 0.983 0.992 0.998

4 0.998 0.997 0.999 1.000 1.002

Table 4.3: The power of the two-sample Gauß test relative to the power of the two-

sample Wilcoxon test, βD/βW , as given in Table 4.2.

constant hn, as defined in (4.55). To these data, we have applied the two-sample Gauß

test and the 2-sample Wilcoxon test, as set in (4.53) and (4.54). Here, the first Hermite

coefficient of G is (obtained by numerical integration) a1 ≈ −0.678.

Now our theoretical considerations predict for this situation

ARE = lim
n→∞

nD
nW

=

(
a1

∫
R f

2(x) dx∫
R J1(x)f(x) dx

)2/D

≈ (2.67754)2/0.6 ≈ 26.655.

This means that the two-sample Gauß test needs approximately 26.655 times as many

observations as the two-sample Wilcoxon test to detect the same jump on the same

level with the same probability. In order to reveal this behaviour, we have therefore

analysed the power of the Wilcoxon test for n = 10, 50, 100, 200 observations and the

power of the Gauß test for n = 266, 1332, 2666, 5330 observations.

As above, we want to check if the height of the jump(-sequence) c hn, as provided

by our theory, is appropriate to lead to a non-degenerate limit, so again we add a jump
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of height c hn. But in order to check if the calculated ARE can be seen in simulations,

we need to apply both tests to the same kind of jumps. Observe that

hnW = c n
−D/2
W = c

( nD
ARE

)−D/2
= c n

−D/2
D 2.67754,

so in order to have the same jump heights for both tests, we choose for the Wilcoxon

two-sample test c = c′/2.67754 whenever we choose for the two-sample Gauß test c = c′

for any c′.

The simulation results are shown in Table 4.4. We observe at first that for each test

the power stays for all n in the same order of magnitude for a fixed c. This confirms

that the jump height c hn leads to a non-degenerate limit. However, in contrast to

the simulations under Gaussian data, we observe some gradual changes which may

indicate the underlying convergence to the limit. This convergence may also explain

why the power of both tests is not fully equal, as expected. But one can regognize an

approximation, the tendency is clear: Indeed, the Gauß test needs quite a number of

observations more to detect the same jump on the same level with the same probability

– as predicted by our calculation around 25 times as many.

c \ n 266 1332 2666 5330

0.5 0.144 0.144 0.137 0.141

1 0.273 0.276 0.273 0.273

2 0.664 0.655 0.658 0.657

4 0.981 0.987 0.988 0.990

c \ n 10 50 100 200

0.5/2.67754 0.189 0.131 0.136 0.130

1/2.67754 0.289 0.242 0.248 0.246

2/2.67754 0.466 0.486 0.506 0.533

4/2.67754 0.684 0.805 0.855 0.895

Table 4.4: Power of the two-sample Gauß test (top) and the two-sample Wilcoxon test

(bottom), based on 10, 000 repetitions of a Pareto(3,1) transformed fGn series of length

n with Hurst parameter H = 0.7 (D=0.6) and with a jump of height hn = cn−D/2 at

the half.
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Chapter 5

Change-point processes based on

U-statistics

There are several asymptotic results for U -statistics of LRD data (Dehling and Taqqu,

1991; Hsing and Wu, 2004; Beutner and Zähle, 2011; Beutner, Wu and Zähle, 2012,

e.g.). In Chapter 3 we developed a non-parametric change-point test for LRD data

which is based on Wilcoxon’s two-sample test statistic which can be represented as

a U -statistic. We determined its asymptotic distribution under the null hpothesis

that no change occured by representing the test statistic as a functional of the two-

parameter empirical process of the data for which there are limit theorems (Dehling and

Taqqu, 1989, 1991). Since our test is based on the Wilcoxon two-sample rank statistic

Wk,n = (ndn)−1
∑k

i=1

∑n
j=k+1 I{Xi≤Xj} and since Wk,n in its above representation is a

U -statistic, the natural question arises if the technique can universally be extended to

U -statistics

Uk,n =
k∑
i=1

n∑
j=k+1

h(Xi, Xj)

with a general kernel h. Of course, such a generalization will require more technical

and formal work because a general kernel does not possess the conducive form of the

kernel h(x, y) = I{x≤y}, which leads to the Wilcoxon statistic and has substantial formal

similarity to the empirical distribution function. The idea of the proof shall nevertheless

still be to express the statistic as a functional of the empirical process for which we

have an asymptotic theory: As shown in Chapter 3, by the Dudley-Wichura version

of Skorohod’s representation theorem (Shorack and Wellner, 1986, Th. 2.3.4) it follows

from the empirical process non-central limit theorem of Dehling and Taqqu (1989) that

sup
λ,x

∣∣d−1
n [nλ](F[λn](x)− F (x))− J(x)Z(λ)

∣∣ −→ 0 a.s. (5.1)

and

sup
λ,x

∣∣d−1
n (n− [nλ])(F[nλ]+1,n(x)− F (x))− J(x)(Z(1)− Z(λ))

∣∣ −→ 0 a.s., (5.2)
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where Z denotes a certain Hermite process. In this chapter, I will present generaliza-

tions to the work by Dehling, Rooch and Taqqu (2012) and develop limit theorems for

the general U -statistic Uk,n under the null hypothesis of no change in the mean. In

Chapter 6, we present a different approach to the limit behaviour of Uk,n.

5.1 Special kernels

We start with general kernels of a special form: Factorizable kernels h(x, y) = a(x)b(y)

and additive kernels h(x, y) = a(x)+b(y). Note that both types allow a direct approach,

see the remark on page 114. Nevertheless, for illustration of our method, we choose a

technique based on a representation via the e.d.f..

Theorem 5.1 (NCLT for two-sample U -statistics with factorizable kernels). Suppose

that (ξi)i≥1 is a stationary Gaussian process with mean zero, variance 1 and auto-

covariance function as in (1.1) with 0 < D < 1
m . Moreover let G : R → R be a

measurable function with E[G(ξi)] = 0 and define

Xk = G(ξk).

Assume that Xk has a continuous distribution function F . Let m denote the Hermite

rank of the class of functions I{G(ξi)≤x}−F (x), x ∈ R. Assume that h(x, y) = a(x)b(y)

satisfies the following conditions:

(i)
∫
|a(x)| dF (x) <∞ and

∫
|b(x)| dF (x) <∞

(ii) a(x) and b(y) have both bounded total variation.

(iii)
∫
J(x) da(x) and

∫
J(x) db(x) exist and are finite.

Then with the notation of Chapter 3,

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)
, 0 ≤ λ ≤ 1, (5.3)

converges in distribution towards the process

− (1− λ)Z(λ)

∫
J(x) da(x)

∫
b(x) dF (x)

− λ(Z(1)− Z(λ))

∫
J(x) db(x)

∫
a(x) dF (x), 0 ≤ λ ≤ 1.

(5.4)

We set Z(λ) = Zm(λ)/m!, where Zm(λ) denotes the m-th order Hermite process.

Remark. (a) Using the special form of the kernel, the statistic (5.3) can be written as

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(a(Xi)b(Xj)− E[a(X)]E[b(X)]) , 0 ≤ λ ≤ 1,
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where X ∼ F has the same distribution as the single Xi’s.

(b) Condition (i) is equivalent to E|h(X,Y )| <∞ for independent X,Y ∼ F .

(c) If h has bounded variation in the sense of Hardy-Krause (see Appendix B.3),

then condition (ii) is fulfilled.

Proof. In order to use (5.1) and (5.2), we write sums as integrals with respect to the

e.d.f. Fn and then enforce expressions of type “Fn − F” in our test statistic.

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

= (n− [nλ])

[λn]∑
i=1

∫
h(Xi, x2) dF[λn]+1,n(x2)− [λn](n− [λn])

∫∫
h(x1, x2) dF (x1)dF (x2)

= [λn](n− [nλ])

{∫ (∫
h(x1, x2) dF[λn]+1,n(x2)

)
dF[λn](x1)

−
∫∫

h(x1, x2) dF (x1)dF (x2)

}

= [λn](n− [nλ])

{∫ (∫
h(x1, x2) d(F[λn]+1,n − F )(x2)

)
dF[λn](x1)

+

∫ (∫
h(x1, x2) dF (x2)

)
d(F[λn] − F )(x1)

}
(5.5)

and with h(x, y) = a(x)b(y)

= [λn](n− [nλ])

{∫
a(x) dF[λn](x)

∫
b(x) d(F[λn]+1,n − F )(x2)

+

∫
a(x) d(F[λn] − F )(x)

∫
b(x) dF (x)

}

= [λn](n− [nλ])

{(∫
a(x) d(F[λn] − F )(x) +

∫
a(x) dF (x)

)∫
b(x) d(F[λn]+1,n − F )(x)

+

∫
a(x) d(F[λn] − F )(x)

∫
b(x) dF (x)

}

Now we integrate by parts in order to have the “Fn − F” terms as integrands and

the deterministic terms as integrators.∫
a(x) d(F[λn] − F )(x) =

[
a(x)(F[λn] − F )(x)

]∞
−∞ −

∫
(F[λn] − F )(x) da(x)∫

b(x) d(F[λn]+1,n − F )(x) =
[
b(x)(F[λn]+1,n − F )(x)

]∞
−∞ −

∫
(F[λn]+1,n − F )(x) db(x)
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We assumed by (ii) that a(x) and b(x) have bounded total variation. This ensures that

the integrals on the right-hand side exist, moreover it follows that a(x) and b(x) are

bounded and the boundary terms on the right-hand side vanish. So we obtain

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

=
[λn](n− [nλ])

ndn

{(∫
(F[λn] − F )(x) da(x)−

∫
a(x) dF (x)

)∫
(F[λn]+1,n − F )(x) db(x)

−
∫

(F[λn] − F )(x) da(x)

∫
b(x) dF (x)

}
. (5.6)

We will now show that this converges to the process given in (5.4). We look into the

single terms.

[λn](n− [nλ])

ndn

∫
(F[λn]+1,n − F )(x) db(x)− λ

∫
J(x)(Z(1)− Z(λ)) db(x)

=
[λn]

n

∫
d−1
n (n− [nλ])

(
(F[λn]+1,n − F )(x)− J(x)(Z(1)− Z(λ))

)
db(x)

+

(
[λn]

n
− λ
)∫

J(x)(Z(1)− Z(λ)) db(x)

The first term on the right-hand side converges to 0 due to the bounded total vartiation

of b(x) and (5.2). The second term converges to 0 because we assumed in (iii) that the

integral is finite, and [λn]/n→ λ uniformly. Since ‖F[λn] − F‖∞ → 0 almost surely,∫
(F[λn] − F )(x) da(x) −→ 0.

Finally

− [λn](n− [nλ])

ndn

∫
(F[λn] − F )(x) da(x) + (1− λ)

∫
J(x)Z(λ) da(x)

= −n− [λn]

n

∫ (
d−1
n [λn](F[λn] − F )(x)− J(x)Z(λ)

)
da(x)

−
(
n− [λn]

n
− (1− λ)

)∫
J(x)Z(λ) da(x)

converges to 0 by the same arguments as above: a(x) is of bounded variation and

because of (5.1), the first integral on the right-hand side vanishes; the second integral

is finite by assumtion (iii), and (n−[λn])/n→ (1−λ) uniformly. For putting everything

together in (5.6), note that
∫
J(x) da(x) and

∫
J(x) db(x) are finite due to condition (iii).

For additive kernels, we obtain a quite similar result.

Theorem 5.2 (NCLT for two-sample U -statistics with additive kernels). Suppose that

(ξi)i≥1 is a stationary Gaussian process with mean zero, variance 1 and auto-covariance
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function as in (1.1) with 0 < D < 1
m . Moreover let G : R→ R be a measurable function

with E[G(ξi)] = 0 and define

Xk = G(ξk).

Assume that Xk has a continuous distribution function F . Let m denote the Hermite

rank of the class of functions I{G(ξi)≤x}−F (x), x ∈ R. Assume that h(x, y) = a(x)+b(y)

satisfies the following conditions:

(i)
∫
|a(x)| dF (x) <∞ and

∫
|b(x)| dF (x) <∞

(ii) a(x) and b(y) have both bounded total variation.

(iii)
∫
J(x) da(x) and

∫
J(x) db(x) exist and are finite.

Then with the notation of Chapter 3,

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)
, 0 ≤ λ ≤ 1,

converges in distribution towards the process

−(1− λ)Z(λ)

∫
J(x) da(x)− λ(Z(1)− Z(λ))

∫
J(x) db(x), 0 ≤ λ ≤ 1. (5.7)

Again, we set Z(λ) = Zm(λ)/m!, where Zm(λ) denotes the m-th order Hermite process.

Remark. (a) Due to the special form of the kernel, the statistic can also be written as

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

((a(Xi)− E[a(X)]) + (b(Xj)− E[b(X)])) , 0 ≤ λ ≤ 1,

or

n− [λn]

ndn

[λn]∑
i=1

(a(Xi)− E[a(X)]) +
[λn]

ndn

n∑
j=[λn]+1

(b(Xj)− E[b(X)]) , 0 ≤ λ ≤ 1,

where X ∼ F has the same distribution as the single Xi’s.

(b) The conditions under which Theorem 5.2 holds are the same as for Theorem 5.1.

Proof. The idea behind the proof stays the same: We aim to express the statistic as

a functional of the empirical process such that we can use the convergence theorems
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(5.1) and (5.2). We start as in the proof before, and from (5.5) we obtain, using that

h(x, y) = a(x) + b(y),

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

= [λn](n− [nλ])

{∫ (∫
a(x1) d(F[λn]+1,n − F )(x2)

)
dF[λn](x1)

+

∫ (∫
a(x1) dF (x2)

)
d(F[λn] − F )(x1)

+

∫ (∫
b(x2) d(F[λn]+1,n − F )(x2)

)
dF[λn](x1)

+

∫ (∫
b(x2) dF (x2)

)
d(F[λn] − F )(x1)

}

= [λn](n− [nλ])

{∫
a(x) d(F[λn] − F )(x) +

∫
b(x) d(F[λn]+1,n − F )(x)

}
,

where we have used that F and Fn are distribution functions and that for any pair

of c.d.f.’s F , G it holds
∫
dF = 1 and

∫
d(F − G) = 0. Here it also contributes

condition (i). Observe that by integration by parts∣∣∣∣∫ a(x) dF[λn](x)

∣∣∣∣ =

∣∣∣∣∫ a(x) d(F[λn] − F )(x) +

∫
a(x) dF (x)

∣∣∣∣
≤
∣∣∣∣∫ (F[λn] − F )(x) da(x)

∣∣∣∣+

∣∣∣∣∫ a(x) dF (x)

∣∣∣∣ <∞.
Now we integrate by parts in order to have the “Fn − F” terms as integrands and the

deterministic terms as integrators, exactly as in the proof before. This yields

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

= [λn](n− [nλ])

{
−
∫

(F[λn] − F )(x) da(x)−
∫

(F[λn]+1,n − F )(x) db(x)

}
. (5.8)

As in the proof before, due to the bounded total vartiation of a(x), b(x) and in virtue

of (5.1) and (5.2), this converges to the process given in (5.7).

Remark. The just treated cases of special kernels, h(x, y) = a(x)b(y) and h(x, y) =

a(x)+b(y), allow both a direct approach: one can trace them back to the limit theorems

for single partial sums, as presented in Theorem (1.1). For example for factorizable

kernels one has

1

dn(ma)dn(mb)

[λn]∑
i=1

n∑
j=[λn]+1

a(Xi)b(Xj) =

 1

dn(ma)

[λn]∑
i=1

a(Xi)

 1

dn(mb)

n∑
j=[λn]+1

b(Xj)

 ,



5.2 General kernels 115

where ma, mb are the Hermite rank of the functions a(G(·)), b(G(·)) respectively. For

such an approach, one needs the joint convergence. Compare this to the approach in

Chapter 6.

5.2 General kernels

Theorem 5.3 (General NCLT for two-sample U -statistics). Suppose that (ξi)i≥1 is a

stationary Gaussian process with mean zero, variance 1 and auto-covariance function

as in (1.1) with 0 < D < 1
m . Moreover let G : R → R be a measurable function with

E[G(ξi)] = 0 and define

Xk = G(ξk).

Assume that Xk has a continuous distribution function F . Let m denote the Hermite

rank of the class of functions I{G(ξi)≤x} − F (x), x ∈ R. Define

h̃(x1) :=

∫
h(x1, x2) dF (x2)

and assume that the following conditions hold:

(i) The kernel h(x, y) is of bounded total variation in each variable (each with the

other one fixed).

(ii) h(x, y) satisfies the following growth conditions:

sup
x∈R

lim
y→∞

(
h(x, y)(1− F (y))− h(x,−y)F (−y)

)
= 0

lim
x→∞

(
h̃(x)(1− F (x))− h̃(−x)F (−x)

)
= 0

(iii) h̃(x1) is of bounded total variation.

(iv)
∫
d|h(x1, x2)(x2)|TV ≤ c <∞

(v)
∫
J(x1) dh̃(x1) and

∫ (∫
J(x2) dh(x1, x2)(x2)

)
dF (x1) exist and are finite.

Then, with the notation of Chapter 3,

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)
, 0 ≤ λ ≤ 1,

converges in distribution towards the process

− (1− λ)Z(λ)

∫
J(x1) dh̃(x1)

− λ(Z(1)− Z(λ))

∫ (∫
J(x2) dh(x1, x2)(x2)

)
dF (x1), 0 ≤ λ ≤ 1.

(5.9)

Again, we set Z(λ) = Zm(λ)/m!, where Zm(λ) denotes the m-th order Hermite process.
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Remark. (a) Conditions (i)–(iv) are sufficient, but not neccessary. During the proof,

we will have to ensure that certain integrals are finite; the conditions guarantee upper

bounds. Of course in particular cases, the conditions may be violated, but neverthe-

less the respective integrals may be finite. This is also the case for condition (ii) of

Theorem 5.1 and Theorem 5.2: It may be too restrictive.

(b) Let us spend a moment to discuss the conditions and some possible implications:

• Condition (i) means that the kernel function does not fluctuate too much. It

ensures that one can one-dimensionally integrate with h as integrator (with one

variable fixed). The condition is met for any bounded function which is monotone

in each variable, like h(x, y) = I{x≤y} (which, by the way, is not of bounded total

variation, see Section B.3.2), while it is not met for any unbounded function like

h(x, y) = xy.

• Condition (ii) is also needed for the integration by parts: If the tails of the kernel

h grow to fast, the boundary terms may not vanish. If h is bounded, (ii) is always

fulfilled.

• Condition (iii) is a sufficient condition that
∫
f(x)dh̃(x) is finite for bounded f .

If h is factorizable, (i) implies (iii).

• Condition (iv) demands that h(x1, x2) is bounded in x1 (which is also required

by condition (i)). If h(x1, x2) is monotone increasing in x2, (iv) reduces to∣∣∫ dh(x1, x2)(x2)
∣∣ ≤ c <∞.

• If J is bounded, (iii) and (iv) imply (v). By the remark following the proof,

one can express
∫
J(x1) dh̃(x1) as a Hermite coefficient of the function h̃(G(·)).

Thus if h̃(G(·)) =
∫
h(G(·), y) dF (y) ∈ L2(R,N ), then

∫
J(x1) dh̃(x1) exists and

is finite.

Proof. As before, we express the statistic as a functional of the empirical process. For

this purpose, we write sums as integrals with respect to the e.d.f. Fn and enforce

expressions of type “Fn − F”. By (5.5) it is

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

= [λn](n− [nλ])

{∫ (∫
h(x1, x2) d(F[λn]+1,n − F )(x2)

)
dF[λn](x1)

+

∫ (∫
h(x1, x2) dF (x2)

)
d(F[λn] − F )(x1)

}
,
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and now we integrate by parts in order to get the “Fn − F” terms as integrands and

the deterministic terms as integrators.

∫
h(x1, x2) d(F[λn]+1,n − F )(x2)

=
[
h(x1, x2) · (F[λn]+1,n − F )(x2)

]∞
x2=−∞ −

∫
(F[λn]+1,n − F )(x2) dh(x1, x2)(x2)

(5.10)∫ (∫
h(x1, x2) dF (x2)

)
d(F[λn] − F )(x1)

=
[
h̃(x1) · (F[λn] − F )(x1)

]∞
x1=−∞

−
∫

(F[λn] − F )(x1) dh̃(x1) (5.11)

The boundary terms vanish due to assumption (ii) and the remaining integrals are

defined because of assumptions (i) and (iii). It is important that the boundary term

in (5.10) does not only vanish for any fixed x1, but uniformly, due to assumption (ii),

because the integration by parts takes place in an integrand of an integral with respect

to F[λn](x1). (Another approach is possible to handle the term on the right-hand side of

(5.11); see the remark following this proof.) After integration by parts we thus obtain

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

=
[λn](n− [nλ])

ndn

{∫ (
−
∫

(F[λn]+1,n − F )(x2) dh(x1, x2)(x2)

)
dF[λn](x1)

−
∫

(F[λn] − F )(x1) dh̃(x1)

}
. (5.12)

We now go into both terms and show that they converge to the limit given in (5.9).

[λn](n− [nλ])

ndn

∫
(F[λn] − F )(x1) dh̃(x1)− (1− λ)

∫
J(x1)Z(λ) dh̃(x1)

=
n− [nλ]

n

∫ (
d−1
n [λn](F[λn] − F )(x1)− J(x1)Z(λ)

)
dh̃(x1)

+

(
n− [λn]

n
− (1− λ)

)∫
J(x1)Z(λ) dh̃(x1) (5.13)

The first summand on the right-hand side converges to zero because of (5.1) and

the bounded total variation of h̃ due to condition (iii), the second summand since

sup0≤λ≤1 |(n − [nλ])/n − (1 − λ)| → 0 as above and since
∫
J(x1) dh̃(x1) < ∞ by

assumption (v).
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[λn](n− [nλ])

ndn

∫ (∫
(F[λn]+1,n − F )(x2) dh(x1, x2)(x2)

)
dF[λn](x1)

− λ
∫ (∫

J(x2)(Z(1)− Z(λ)) dh(x1, x2)(x2)

)
dF (x1)

=
[nλ]

n

∫ {∫
d−1
n (n− [nλ])(F[nλ]+1,n − F )(x2)

− J(x2)(Z(1)− Z(λ)) dh(x1, x2)(x2)

}
dF[nλ](x1)

+
[nλ]

n
(Z(1)− Z(λ))

∫ (∫
J(x2) dh(x1, x2)(x2)

)
d(F[nλ] − F )(x1)

+

(
[nλ]

n
− λ
)

(Z(1)− Z(λ))

∫ (∫
J(x2) dh(x1, x2)(x2)

)
dF (x1) (5.14)

All three terms on the right-hand side converge to zero. For the last term this is

a consequence of sup0≤λ≤1 |[nλ]/n − λ| → 0 as above and of assumption (v). The

convergence of the first term follows from (5.2) and from assumption (iv): With the

abbreviation Kn,λ(x) := d−1
n (n − [nλ])(F[nλ]+1,n(x) − F (x)) − J(x)(Z(1) − Z(λ)), the

first term on the right-hand side of (5.14) is∫∫
Kn,λ(x2) dh(x1, x2)(x2) dF[nλ](x1)

≤ sup
λ,x
|Kn,λ(x)|

∫∫
d|h(x1, x2)(x2)|TV dF[nλ](x1)

≤ sup
λ,x
|Kn,λ(x)| c‖F[λn]‖TV ,

due to assumption (iv). This goes to 0 because supλ,x |Kn,λ(x)| → 0 a.s. by (5.2).

The second term in (5.14) can be written as

[nλ]

n

∫ (∫
J(x2) dh(x1, x2)(x2)

)
d(F[nλ] − F )(x1)

=
1

n

[λn]∑
i=1

∫
J(x2) dh(Xi, x2)(x2)− E

[∫
J(x2) dh(X1, x2)(x2)

]
.

The ergodic theorem states that k−1
∑k

i=1(f(Xi) − Ef(Xi)) → 0 a.s., and thus can

be applied here with f(x) =
∫
J(t) dh(x, t)(t); the neccessary requirement E|f(Xi)| =∫

|f(x)|dF (x) <∞ is guaranteed by assumption (v).

So (5.13) and (5.14) converge to zero, and bearing this in mind, (5.12) proves the

statement.
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Remark. The preceding proof started with writing

[λn]∑
i=1

n∑
j=[λn]+1

(
h(Xi, Xj)−

∫∫
h(x1, x2) dF (x1)dF (x2)

)

= [λn](n− [nλ])

{∫ (∫
h(x1, x2) d(F[λn]+1,n − F )(x2)

)
dF[λn](x1)

+

∫ (∫
h(x1, x2) dF (x2)

)
d(F[λn] − F )(x1)

}
. (5.15)

Using integration by parts, we showed that the second term on the right-hand side of

(5.15) converges to

−(1− λ)

∫
J1(x1)Z(λ)dh̃(x1),

where Z(λ) = Zm(λ)/m! and m is the Hermite rank of the class of functions I{G(ξ)≤x}−
F (x). Note that another approach is possible since the second term on the right-hand

side of (5.15) can be written as

[λn](n− [nλ])

ndn

1

[λn]

[λn]∑
i=1

(
h̃(Xi)− Eh̃(Xi)

)
D−→ (1− λ)

ap
p!
Zp(λ)

by direct application of Theorem 1.1, where p denotes the Hermite rank of h̃(G(·)) and

ap is the associated Hermite coefficient.

This means that

−(1− λ)

∫
J1(x1)Z(λ)dh̃(x1)

D
= (1− λ)

ap
p!
Zp(λ) (5.16)

and as a consequence, it follows that first both Hermite ranks are the same, m = p. In

other words, m is the smallest non-zero integer which satisfies

E
[
h̃(G(ξ))Hm(ξ)

]
6= 0

E
[
(I{G(ξ)≤x} − F (x))Hm(ξ)

]
6= 0 for some x ∈ R

(and it satisfies both conditions if it satisfies one of them). Second, relation (5.16) may

help to evaluate the constants on either side. As an example, we consider the case

G(t) = t (which entails m = 1 and Hm(x) = x). On the left hand side, we obtain

−
∫
J1(x) dh̃(x) = −

∫∫
I{s≤x}s dΦ(s) dh̃(x)

=

∫
ϕ(x) dh̃(x) since

∫
I{s≤x}s dΦ(s) = −ϕ(x)

= −
∫
h̃(x) dϕ(x) by integration by parts

= −
∫∫

h(x, y) dΦ(y) dϕ(x) by definition of h̃

=

∫∫
h(x, y)x dΦ(x) dΦ(y) with

dϕ(x)

dx
= −xϕ(x).
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For the expression on the right-hand side of (5.16), we obtain in our example

a1 = E
[
h̃(ξ)Hm(ξ)

]
=

∫
h̃(x)x dΦ(x)

=

∫∫
h(x, y)x dΦ(x) dΦ(y),

which is obviously the same.

5.3 Examples

The kernel h(x, y) = I{x≤y}

In Chapter 3, we have shown that the technique of Theorem 5.3 works for the kernel

h(x, y) = I{x≤y} which yields the Mann-Whitney-Wilcoxon statistic

W[λn],n =
1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(
I{Xi≤Xj} −

1

2

)
,

but of course we can get the same result as well from the general approach.

General case

We consider data of the general type Xi = G(ξi) and check the consitions of Theo-

rem 5.3:

(i) Observe that h(x, y) = I{x≤y} = H(y − x), where H denotes the Heaviside step

function. So for a fixed x or a fixed y, the kernel h(x, y) = H(y−x) is of bounded

variation (it has each only one jump of height 1).

(ii) h is bounded, so the growth conditions are fulfilled.

(iii) We have

h̃(x1) =

∫
h(x1, x2) dF (x2) =

∫ ∞
x1

dF (x2) = 1− F (x1),

and this is of bounded total variation since F is monotone and bounded.

(iv) The kernel h can be represented as a Heaviside step function H, see above, and

H is the integral of the Dirac delta function. Thus we have

dh(x1, x2)(x2) = d(I{x1≤x2})(x2) = δx1(x2)dx2,

where δa(x) is the Dirac delta function with mass in point a. We obtain∣∣∣∣∫
R
dh(x1, x2)(x2)

∣∣∣∣ =

∣∣∣∣∫
R
δx1(x2)dx2

∣∣∣∣ = 1 <∞.
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(v) By the above calculations it holds∫
J(x1) dh̃(x1) = −

∫
J(x1) dF (x1)

and ∫∫
J(x2) dh(x1, x2)(x2) dF (x1) =

∫
J(x1) dF (x1).

|
∫
J(x) dF (x)| is finite, because with J(x) = Jm(x) = E

[
Hm(ξ)I{G(ξ)≤x}

]
it

equals ∣∣∣∣∫∫
R2

Hm(s)I{G(s)≤x} dΦ(s) dF (x)

∣∣∣∣ ≤ ∫∫
R2

|Hm(s)| dΦ(s) dF (x),

and Hm is a polynomial and thus integrable with respect to the standard normal

density, moreover F is a c.d.f..

So Theorem 5.3 reproduces the result of Chapter 3: W[λn],n converges in distribution

to the process

(Z(λ)− λZ(1))

∫
J(x) dF (x).

In fact, we have just shown a little (but essential) bit more, namely that the integrals

in the limit are always finite such that the limit process is not ∞.

Gaussian observations

Let us also consider the Gaussian case, i.e. the special case G(t) = t such that the

process (Xi)i≥1 = (ξi)1≥1 is standard normally distributed with auto-covariance func-

tion γ(k) = k−DL(k). F is then the c.d.f. of a Gaussian variable, denoted by Φ. We

consider the expansion

I{X≤x} − F (x) =
∞∑
q=m

Jq(x)

q!
Hq(X)

with Jq(x) = E
[
I{X≤x}Hq(X)

]
. The Hermite rank is m = 1, because

Jm(x) = E
[
Hm(ξ)I{G(ξ)≤x}

]
= E

[
ξI{ξ≤x}

]
= −ϕ(x),

is the negative of the p.d.f. of a Gaussian variable and non-zero. Above we have verified

almost all conditions of Theorem 5.3, we only need to check that the limit is finite, but

this is the case because
∫
R ϕ(x) dΦ(x) = (2

√
π)−1 <∞, so Theorem 5.3 can be applied.

It states that W[λn],n converges in distribution to(
− 1

2
√
π

)
(Z(λ)− λZ(1)),

where Z(λ) = B1−D/2(λ) denotes the standard fBm with parameter H = 1−D/2.
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If we fix λ, we obtain a result on the two-sample Wilcoxon test under LRD data:

UW,[λn],n =
n−2+D/2L(n)−1/2

σW

[λn]∑
i=1

n∑
j=[λn]+1

(
I{Xi≤Xj} −

1

2

)
D−→ N (0, 1)

with

σ2
W :=

c1

4π
Var[Z(λ)−λZ(1)] =

2

4π(1−D)(2−D)

(
λ2 − λ+ (1− λ)λ2−D + λ(1− λ)2−D) .

The kernel h(x, y) = x− y

This kernel leads to the difference of means statistic

1

ndn
Udiff,[λn],n = D[λn],n =

1

ndn

[λn]∑
i=1

n∑
j=[λn]+1

(Xi −Xj)

=
[λn](n− [λn])

ndn

(
X̄[λn] − X̄[λn]+1,n

)
,

where X̄[λn] denotes the arithmetic mean of the first [λn] observations and X̄[λn]+1,n

denotes the arithmetic mean of the last n− [λn] observations. Here, the conditions of

Theorem 5.3 are not met; nevertheless, if we ignore this incommodious fact for reasons

of inquisitiveness, carfreely applying the theorem yields the correct limit behaviour. In

order to handle the conditions that involve F , we consider the Gaussian case: G(t) = t

such that m = 1, J(x) = −ϕ(x), F (x) = Φ(x).

(i) The kernel h(x, y) = x − y is not bounded in both variables, thus it does not

have bounded total variation in its single variables. Nevertheless, it has locally

bounded total variation since it is continuous.

(ii) We have

h̃(x1) =

∫
R
h(x1, x2) dF (x2) =

∫
R

(x1 − x2) dΦ(x2) = x1.

Φ(x) converges to its limits, as x→ ±∞, fast enough, so that the growth condi-

tions are fulfilled.

(iii) As the kernel itself, h̃(x1) = x1 is only of locally bounded variation, not of

bounded total variation at all, since it is unbounded.

(iv) We have

dh(x1, x2)(x2) = d(x1 − x2)(x2) = −dx2,

and of course,
∫
R dh(x1, x2)(x2) is not bounded. Nevertheless, the integrator has

locally bounded variation again.
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(v) Both integrals have the same absolute value, namely∣∣∣∣∫
R
J(t) dh(x, t)(t)

∣∣∣∣ =

∫
R
ϕ(t) dt = 1 <∞,

thus the integrals in the limit exist and are finite.

So, if one ignored that some of the conditions are violated, Theorem 5.3 would state

that Udiff,[λn],n converges in distribution to the process

(1− λ)Z(λ)

∫
ϕ(x1) dx1 − λ(Z(1)− Z(λ))

∫ (∫
ϕ(x2) dx2

)
dΦ(x1)

= (1− λ)Z(λ)− λ(Z(1)− Z(λ))

= Z(λ)− λZ(1),

where Z(λ) = B1−D/2(λ) denotes the standard fBm with parameter H = 1 − D/2.

This “result” is confirmed by the calculations from Section 3.4.2 and by Horváth and

Kokoszka (1997).

If we fix the parameter λ and change some notation, we reproduce the results from

the introductory consideration of X̄ − Ȳ . Set Yj := X[λn]+j , and Theorem 5.3 states

1

ndn
Udiff,[λn],n = D[λn],n =

[λn](n− [λn])

n dn

(
X̄[λn] − Ȳn−[λn]

)
D−→ Z(λ)− λZ(1).

It follows that
nD/2L(n)−1/2

(
X̄[λn] − Ȳn−[λn]

)√
c1 Var[Z(λ)− λZ(1)]

D−→ N (0, 1),

and since the auto-covariace of fBm is known so that Var[Z(λ)− λZ(1)] can be calcu-

lated, after some algebra we find that

c1 Var[Z(λ)− λZ(1)] =
2

(1−D)(2−D)

λ1−D + (1− λ)1−D − 1

λ(1− λ)
,

which is nothing else than the statement of Theorem 2.3.

5.4 Simulations

I have simulated time series ξ1, . . . , ξn of fGn for different Hurst parameters H (respec-

tively D = 2− 2H). In this model, the auto-covariances are

γk ∼ H(2H − 1)k2H−2 =

(
1− D

2

)
(1−D)k−D.

For each a set of n observations (for varying sample sizes n) and different cutting points

λ I have calculated the two-sample Wilcoxon test statistic

1

σW n2−D
2

UW,[λn],n =
1

σW

n−2+D
2

[λn]∑
i=1

n∑
j=[λN ]+1

(
I{ξi≤ξj} −

1

2

)
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with

σ2
W :=

1

4π

(
λ2 − λ+ (1− λ)λ2−D + λ(1− λ)2−D) .

I have repeated this 10, 000 times for each choice of parameters n, λ,H. By the above

theory, (σW n2−D
2 )−1UW,[λn],n converges to a standard normal distribution. In Fig-

ure 5.1, the density of the 10, 000 simulated values for UW,[λn],n is shown; their sample

variances are given in Appendix D.6. Figure 5.1 indeed conveys some impression that

UW is asymptotically normally distributed.
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Figure 5.1: Density of the scaled and normalized Wilcoxon statistic UW,[λn],n. fGn with

k = 10, 000 and H = 0.7 (D = 0.6).



Chapter 6

Change-point processes based on

U-statistics, a direct approach

In Chapter 5 we analysed the limit behaviour of the general change-point statistic

k∑
i=1

n∑
j=k+1

h(Xi, Xj)

with kernel h. In this chapter we make a different approach to this two-sample U -

statistic. As a start, we consider a stationary Gaussian process (ξi)i≥1 with mean

zero, variance 1 and auto-covariance function (1.1) and a function h ∈ L2(R,N ). As

described in Section 1.4.2, in order to analyse the limit behaviour of a partial sums of

observations h(ξ1), . . . , h(ξn), it is useful to expand h in Hermite polynomials. Because

under some assumptions, only the first term in this expansion contributes to the limit,

and one obtains the elegant Theorem 1.1,

1

dn

[λn]∑
i=1

h(ξi)
D−→ am

m!
Zm(λ),

where dn = cmn
2−DmLm(n), cm = 2m!((1−Dm)(2−Dm))−1, m denotes the Hermite

rank of h, am the associated Hermite coefficient and where Zm is them-th order Hermite

process. In order to analyse the limit behaviour of two-sample U -statistics

Uλ,n =

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj), (6.1)

we will follow a similar route: We will expand h into Hermite polynomials and deduce

the limit behaviour of Uλ,n from this expansion. Due to the dependencies of the (ξi)i≥1,

some problems will arise.

In the one-sample case, each summand of a partial sum
∑[λn]

i=1 h(ξi) contains only

one single observation ξi ∼ N (0, 1). Now in order to handle the partial sum, we use
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that Hermite polynomials form an orthogonal basis of L2(R,N ), the space of square-

integrable functions on R with respect to the standard normal measure1 ϕ(x)dx: We

expand h into Hermite polynomials, and this expansion is the same for each summand

in the partial sum
∑[λn]

i=1 h(ξi). In the two-sample case, the situation is different: Each

summand in (6.1) contains now a pair of observations (ξi, ξj) ∼ N (0, γ|i−j|) and thus

lives each in another space L2(R2,Nγk), the space of square-integrable functions on R2

with respect to the normal measure ϕk(x, y)dx dy where

ϕk(x, y) =
1

2π|Σγk |1/2
exp

(
−1

2
(x, y)TΣ−1

γk
(x, y)

)
is the p.d.f. of a (two-dimensional)N2(0,Σγk)-distributed random vector with k = |i−j|
and

Σγk =

(
1 γk

γk 1

)
.

Thus we would have to expand each summand of Uλ,n into a different set of polynomials,

which is far away from handy, not to mention the question which would be the “Hermite

polynomials” in the space L2(R2,Nγk), i.e. appropriate orthogonal polynomials under

a normal measure with non-trivial covariance matrix – and if the limit theory applies

for them.

Thus we will expand Uλ,n in usual Hermite polynomials as if (ξi, ξj) were indepen-

dent, such that these problems do not arise. Instead, we have to find conditions that

guarantee that this formal expansion converges and really represents Uλ,n.

This approach, which we restricted for a start to Gaussian data ξ1, . . . , ξn, can of

course be extended to general dataG(ξ1), . . . , G(ξn) by considering the kernel h(G(x), G(y))

instead of h(x, y).

6.1 The limit distribution under the null hypothesis

Let (ξi)i≥1 be a stationary Gaussian processes with mean zero, variance 1 and auto-

covariance function (1.1). We assume that we observe n data and that this series is cut

into two pieces at point [λn], λ ∈ (0, 1), so that we have artificially two samples:

ξ1, ξ2, . . . , ξ[λn] and ξ[λn]+1, ξ[λn]+2, . . . , ξn

We now want to study the asymptotic behaviour of the two-sample U -statistic

Uλ,n =

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj),

1Sometimes we denote this measure simply by N , i.e. like the normal distribution.
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which is based on these observations, with a measurable kernel function h : R2 → R,

h ∈ L2(R2,N ). We can assume without loss of generality that E[h(ξ, η)] = 0 (otherwise

just substract the mean). Then we have the Hermite expansion

h(x, y) =
∞∑

k,l=0

akl
k! l!

Hkl(x, y) =
∞∑

k,l=0

akl
k! l!

Hk(x)Hl(y). (6.2)

This is an L2 expansion with respect to the bivariate standard normal density. In this

expansion, the coefficients are

akl = E [h(ξ, η)Hk(ξ)Hl(η)] =

∫∫
R2

h(x, y)Hk(x)Hl(y)ϕ(x)ϕ(y) dx dy.

Note that because of the assumption that h is centralised, a0,0 = 0 always. We would

like to order the terms in this expansion (6.2) according to the size of k + l:

h(x, y) =
∞∑
q=m

∑
k,l:

k+l=q

akl
k! l!

Hk(x)Hl(y), (6.3)

where m is the smallest integer for which there exists a non-zero Hermite coefficient

akl 6= 0 with k + l = m. m is called the Hermite rank of h(x, y).

Definition 6.1 (Hermite rank for two-dimensional functions). The Hermite rank of a

function h(x, y) is defined as

m = inf{k + l | k, l ≥ 0, akl 6= 0},

where akl is the coefficient in the Hermite expansion (6.3).

In our setting, a0,0 = 0 always, as stated above, so the kernel h has always Hermite

rank m ≥ 1. In order to show the convergence of Uλ,n with h represented by its Hermite

expansion (6.3), we need a multi-dimensional version of Theorem 1.1. This result can

be obtained using the same techniques that yield the one-dimensional NCLT. Details

for the two-dimensional case will appear in a forthcoming paper by Taqqu (2012).

Theorem 6.1 (Multi-dimensional NCLT for LRD processes). For any 1 ≤ m ≤ 1/D 1

dn(1)

[λ1n]∑
i=1

H1(ξi),
1

dn(2)

[λ2n]∑
i=1

H2(ξi), . . . ,
1

dn(m)

[λmn]∑
i=1

Hm(ξi)


converges in distribution to the m-dimensional process(

Z1(λ1)

1!
,
Z2(λ2)

2!
, . . . ,

Zm(λm)

m!

)
in D[0, 1]m, where

d2
n(k) = ckn

2−DkLk(n)

is the usual scaling for the partial sum of the k-th Hermite polynomial and Zk denotes

the k-th order Hermite process, as defined in (1.11).



128 Change-point processes based on U-statistics, a direct approach

Definition 6.2 (Centralized/normalized Lp(R2)-functions). Let ξ, η ∼ N (0, 1) be two

independent standard normal random variables. We define

G1(R2,N ) := {G : R2 → R integrable | E[G(ξ, η)] = 0} ⊂ L1(R2,N ),

the class of (with respect to the standard normal measure) centralized and integrable

functions on R2, and

G2(R2,N ) := {G : R2 → R measurable | E[G(ξ, η)] = 0, E[G2(ξ, η)] = 1} ⊂ L2(R2,N ),

the class of (with respect to the standard normal measure) normalized and square-

integrable functions on R2.

Any function G : R2 → R which is measurable with mean zero and finite variance

under standard normal measure can be normalized by dividing the standard deviation,

so it can be considered as a function in G2 = G2(R2,N ).

Theorem 6.2. Let (ξi)i≥1 be a stationary Gaussian process with mean 0, variance 1

and covariances (1.1). Let Dm < 1 and let h ∈ G2(R2,N ) be a function with Hermite

rank m whose Hermite coefficients satisfy∑
k,l

|akl|√
k! l!

<∞. (6.4)

Then as n→∞

1

d′n n

∣∣∣∣∣∣∣∣
[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)−
∑
k,l:

k+l=m

akl
k! l!

[λn]∑
i=1

n∑
j=[λn]+1

Hk(ξi)Hl(ξj)

∣∣∣∣∣∣∣∣
L1

−→ 0

uniformly in λ ∈ [0, 1] and

1

d′n n

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)
D−→

∑
k,l:

k+l=m

akl
(k! l!)2

(ckcl)
1/2Zk(λ)(Zl(1)− Zl(λ)) (6.5)

in D[0, 1], λ ∈ [0, 1], where

d′2n = n2−mDL(n)m (6.6)

and the Zk(λ), k = 0, . . . ,m, are dependent processes which can be expressed as k-fold

Wiener-Itō-Integrals, see (1.11).

Remark. (a) The scaling factor (6.6) differs slightly from the usual scaling (1.12): It

does not include the normalizing constant cm. This is caused by the fact that the limit

now is a linear combination of two possibly different Hermite processes Zk, Zl and thus

the associated factors ck, cl cannot be divided out and must remain inside the sum of

the right-hand side of (6.5).

(b) For the most interesting and simple case, we can give a handy explicit represen-

tation of the limit (6.5) (this is what makes the case interesting), because then Z1(λ)

is fBm BH(λ) with H = 1−D/2. We will do this hereafter.
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Proof. The two-dimensional Hermite polynomials Hkl(x, y) = Hk(x)Hl(y) form an or-

thogonal basis of the space L2(R2,N ) (and Hk(x)Hl(y)/
√
k!l! form an orthonormal

basis), so the expansion (6.3) of h(x, y) in Hermite polynomials converges to h in

L2(R2,N ). But in order to handle h(ξi, ξj), this expansion is not suitable for now,

since any pair (ξi, ξj) is dependent and underlies a joint normal distribution with non-

standard covariance matrix. So first we ensure that the expansion (6.3) is nevertheless

applicable in our situation. We show at first that under condition (6.4), (6.3) converges

almost surely to h(x, y).

Observe that

E

∑
k,l

∣∣∣ akl
k! l!

Hk(ξi)Hl(ξj)
∣∣∣
 ≤∑

k,l

|akl|
k! l!

E |Hk(ξi)Hl(ξj)|

≤
∑
k,l

|akl|
k! l!

√
E
[
H2
k(ξi)

]
E
[
H2
l (ξj)

]
=
∑
k,l

|akl|√
k! l!

,

and this is finite by our assumption. Thus∑
k,l

akl
k! l!

Hk(ξi)Hl(ξj)

is almost surely absolutely convergent. So the Hermite expansion converges almost

surely, and since it converges to h in L2(R2,N ), the same holds almost surely (since

the measures are equivalent).

Thus we have

h(ξi, ξj) =
∑
k,l:

k+l≥m

akl
k! l!

Hk(ξi)Hl(ξj)

and hence

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)−
∑
k,l:

k+l≥m

[λn]∑
i=1

n∑
j=[λn]+1

akl
k! l!

Hk(ξi)Hl(ξj) = 0

and so

sup
0≤λ≤1

1

d′n n

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)−
∑
k,l:

k+l=m

[λn]∑
i=1

n∑
j=[λn]+1

akl
k! l!

Hk(ξi)Hl(ξj)


= sup

0≤λ≤1

1

d′n n

∑
k,l:

k+l≥m+1

[λn]∑
i=1

n∑
j=[λn]+1

akl
k! l!

Hk(ξi)Hl(ξj).

We will show that the lower term converges in L1 to 0, and so will the upper one. Note

at first that the supremum here is in fact a maximum, since λ appears only in terms
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of the integer [λn], thus by setting b := [λn] and by the fact that we need to have

[λn] ≥ 1 in order to have a two-sample statistic, we can replace sup0≤λ≤1 by max1≤b≤n.

Using maxb |f(b)g(b)| ≤ maxb |f(b)| maxb |g(b)| and the Cauchy–Bunyakovsky–Schwarz

inequality, we obtain

E

∣∣∣∣∣∣∣∣ sup
0≤λ≤1

∑
k,l:

k+l≥m+1

akl
k! l!

[λn]∑
i=1

n∑
j=[λn]+1

Hk(ξi)Hl(ξj)

∣∣∣∣∣∣∣∣
≤ E

 1

d′n n

∑
k,l:

k+l≥m+1

|akl|
k! l!

max
1≤b≤n

∣∣∣∣∣
b∑
i=1

Hk(ξi)

∣∣∣∣∣ max
1≤b≤n

∣∣∣∣∣∣
n∑

j=b+1

Hl(ξj)

∣∣∣∣∣∣


≤ 1

d′n n

∑
k,l:

k+l≥m+1

|akl|
k! l!

E [ max
1≤b≤n

∣∣∣∣∣
b∑
i=1

Hk(ξi)

∣∣∣∣∣
]2

E

 max
1≤b≤n

∣∣∣∣∣∣
n∑

j=b+1

Hl(ξj)

∣∣∣∣∣∣
21/2

. (6.7)

In order to show that this term converges to 0, we need bounds for the expectations of

the squared maxima.

The growth of the partial sum
∑b

i=1Hk(ξi) is determined by the degree k of the

Hermite polynomial and the size of the LRD parameter D ∈ (0, 1): For Dk > 1 we

observe usual SRD behaviour, while for Dk < 1 we observe a faster rate of growth,

remember (1.8). First we consider the SRD case, that is Dk > 1. Here we have by

(1.8)

E

[
b∑
i=1

Hk(ξi)

]2

≤ Ck! · b,

and thus by stationarity and an inequality by Móricz (1976, Theorem 3)

E

[
max

1≤b≤n

∣∣∣∣∣
b∑
i=1

Hk(ξi)

∣∣∣∣∣
]2

≤ 4Ck! · n(log2 n)2. (6.8)

Here we used the estimate log2(2n) ≤ 2 log2 n for n ≥ 2. Now we turn to the LRD

case, that is Dk < 1. Here we have by (1.8) and the simple estimate b2−Dk ≤ bn1−Dk

for all b ≤ n (and we do not consider any other b)

E

[
b∑
i=1

Hk(ξi)

]2

≤ C̃(k)k! · n1−Dk max
1≤b≤n

Lk(b) · b,

and thus by the same inequality of Móricz (1976, Theorem 3)

E

[
max

1≤b≤n

∣∣∣∣∣
b∑
i=1

Hk(ξi)

∣∣∣∣∣
]2

≤ 4C̃(k)k! · n2−Dk max
1≤b≤n

Lk(b) · (log2 n)2. (6.9)
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Note that the same estimates hold in (6.7) for the sum that starts at b+ 1 because for

some b′ ∈ {1, . . . , n}

max
1≤b≤n

∣∣∣∣∣∣
n∑

j=b+1

Hl(ξj)

∣∣∣∣∣∣ D= max
1≤b≤n

∣∣∣∣∣∣
n−b∑
j=1

Hl(ξj)

∣∣∣∣∣∣ = max
1≤b′≤n

∣∣∣∣∣∣
b′∑
j=1

Hl(ξj)

∣∣∣∣∣∣
where

D
= denotes equality in distribution since the (ξi)i≥1 are stationary.

Now depending on the size of k and l, both sums in (6.7) can be SRD or LRD –

and thus they can be bounded by (6.8) or by (6.9) –, such that we have to descriminate

four cases.

• When k, l < 1/D, such that both sums are LRD, (6.7) is bounded by

1

n2−Dm/2Lm/2(n)

∑
k+l≥m+1
k,l<1/D

|akl|
k! l!

(
C̃(k)

√
k!n1−Dk/2 max

1≤b≤n
Lk/2(b) log2 n

· C̃(l)
√
l!n1−Dl/2 max

1≤b≤n
Ll/2(b) log2 n

)

≤
∑

k+l≥m+1
k,l<1/D

|akl|√
k! l!

(
C̃(k)C̃(l)

· n
D
2

(m−(k+l)) max
1≤b≤n

Lk/2(b) max
1≤b≤n

Ll/2(b)L−m/2(n)(log2 n)2

)

Now n
D
2

(m−(k+l)) = n−ε for some ε > 0, and L−m/2(n) and log2
2 n are o(nε) for

any ε > 0. We will immediately show that also max1≤b≤n L
k/2(b) is o(nε) for any

ε > 0 and k ∈ N. Because the summation over k, l is only finite, the sum on the

right-hand side is finite, and thus the right-hand side converges to 0.

Now we show that max1≤b≤n L
k/2(b) is o(nε) for any ε > 0 and k ∈ N. When L

is slowly varying, Lk/2(x) is it as well. So we need to consider

max
1≤b≤n

L(b)

nε
≤ max

1≤b≤
√
n

L(b)√
n
ε√
n
ε + max√

n≤b≤n

L(b)

nε

≤ 1√
n
ε max

1≤b≤
√
n

L(b)

bε
+ max√

n≤b≤n

L(b)

bε
,

and since L(b)/bε → 0 as b→∞, max1≤b≤
√
n
L(b)
bε is bounded and max√n≤b≤n

L(b)
bε

converges to 0.
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• When k < 1/D and l > 1/D, such that the sum over i is LRD and the sum over

j is SRD, (6.7) is bounded by

1

n2−Dm/2Lm/2(n)

∑
k+l≥m+1

k<1/D, l>1/D

|akl|
k! l!

(
C(k)

√
k!n1−Dk/2 max

1≤b≤n
Lk/2(b) log2 n

·
√
l!
√
n log2 n

)

≤
∑

k+l≥m+1
k<1/D, l>1/D

|akl|√
k! l!

(
C(k)n−

1
2

+Dm
2
−Dk

2 max
1≤b≤n

Lk/2(b)L−m/2(n)(log2 n)2

)

Here, we have summed up some constants in order to keep the expression simple.

Now n−
1
2

+Dm
2
−Dk

2 = n−ε for a ε > 0, because Dm
2 , Dk2 ∈ (0, 1

2). max1≤b≤n L
l/2(b),

L−m/2(n) and log2
2 n are o(nε) for any ε > 0 as above, and the sum on the right

hand side is finite, because of (6.4) and since the summation over k is only finite.

• When k > 1/D and l < 1/D, such that the sum over i is SRD and the sum over

j is LRD, (6.7) converges to 0 by the same arguments.

• When k, l > 1/D, such that both sums are SRD, (6.7) is bounded by

1

n2−Dm/2Lm/2(n)

∑
k+l≥m+1
k,l>1/D

|akl|
k! l!

(
C
√
k!
√
n log2 n ·

√
l!
√
n log2 n

)

≤ C
∑

k+l≥m+1
k,l>1/D

|akl|√
k! l!

(
n−1+Dm/2L−m/2(n) log2

2 n
)

Now n−1+Dm/2 = n−ε for a ε > 0, because Dm
2 ∈ (0, 1

2). L−m/2(n) and log2
2 n are

o(nε) for any ε > 0 as above, and the sum on the right hand side is finite, because

of (6.4).

So all in all, (6.7) converges to 0, and the first statement of the Theorem is proved.

For the second statement we consider the cases where k + l = m.

1

d′n n

[λn]∑
i=1

n∑
j=[λn]+1

Hk(ξi)Hl(ξj)

= n−2+Dm/2L(n)−m/2
[λn]∑
i=1

Hk(ξi)

 n∑
j=1

Hl(ξj)−
[λn]∑
j=1

Hl(ξj)


D−→ c

1/2
k

Zk(λ)

k!
· c1/2
l

(Zl(1)− Zl(λ))

l!

uniformly in λ ∈ [0, 1] by Theorem 6.1 and the continuous mapping theorem.
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6.2 The limit distribution in special situations

6.2.1 Hermite rank m = 1

Corollary. If the Hermite rank of h(x, y) is m = 1, the statement of Theorem 6.2

simplifies to

1

d′n n

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)
D−→
√
c1 (a1,0(1− λ)BH(λ) + a0,1λ(BH(1)−BH(λ))) ,

(6.10)

where BH(λ) is fBm with parameter H = 1−D/2. If λ ∈ [0, 1] is fixed, it holds

1

d′n n

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ξj)
D−→ N (0, σ2) (6.11)

with

σ2 =
2

(1−D)(2−D)

(
− (1− λ)λ2−Da1,0 (λa0,1 − (1− λ)a1,0)

+ λa0,1

(
a1,0 − λa1,0 + (1− λ)2−D (λa0,1 − (1− λ)a1,0)

) )
.

Proof. By Theorem 6.2, the limit is∑
k+l=1

akl
k! l!

√
ckclZk(λ)(Zl(1)− Zl(λ))

= a1,0
√
c1Z1(λ) (Z0(1)− Z0(λ)) + a0,1

√
c1Z0(λ) (Z1(1)− Z1(λ))

= a1,0
√
c1(1− λ)BH(λ) + a0,1

√
c1λ(BH(1)−BH(λ))

with c1 = 2/((1 − D)(2 − D)), because Z0(t) = t and Z1(t) = BH(t); this proves the

first statement.

For the second statement we see that

Var [BH(t)] = Cov [BH(t), BH(t)]

= t2H

Var [BH(1)−BH(t)] = Var[BH(1)]− 2 Cov[BH(1), BH(t)] + Var[BH(t)]

= 1− (1 + t2H − (1− t)2H) + t2H

= (1− t)2H

Cov [BH(t), BH(1)−BH(t)] = Cov[BH(1), BH(t)]−Var[BH(t)]

=
1

2
(1 + t2H − (1− t)2H)− t2H ,

so that (BH(λ), BH(1)−BH(λ)) ∼ N2(0,Σ) with

Σ =

(
λ2H 1

2

(
λ2H + 1− (1− λ)2H

)
− λ2H

1
2

(
λ2H + 1− (1− λ)2H

)
− λ2H (1− λ)2H

)
.
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A linear combination of two bivariate normally distributed random variables is univari-

ate normally distributed: For b = (b1, b2) ∈ R2 and Z = (Z1, Z2)t ∼ N2(0,Σ) it holds

b · Z ∼ N (0, bΣbt). Here, b =
√
c1(a1,0(1− λ), a0,1λ), and so

btΣb = c1

(
− (1− λ)λ2Ha1,0 (λa0,1 − (1− λ)a1,0)

+ λa0,1

(
a1,0 − λa1,0 + (1− λ)2H (λa0,1 − (1− λ)a1,0)

) )
.

6.2.2 Two independent samples

Now we consider the behaviour of Uλ,n in a situation with two independent samples

ξ1, ξ2, . . . , ξ[λn] and η1, η2, . . . , ηn−[λn]

where λ ∈ (0, 1). In this situation, we can show in Theorem 6.2 convergence in L2.

Theorem 6.3. Let (ξi)i≥1 and (ηj)j≥1 be two stationary Gaussian processes, indepen-

dent of each other, each with mean 0, variance 1 and covariances (1.1). Let h be a

function in G2(R2,N ) with Hermite rank m whose Hermite coefficients satisfy (6.4).

Let Dm < 1. Then as n→∞

1

d′n n

∣∣∣∣∣∣∣∣
[λn]∑
i=1

n−[λn]∑
j=1

h(ξi, ηj)−
∑
k,l:

k+l=m

akl
k! l!

[λn]∑
i=1

n−[λn]∑
j=1

Hk(ξi)Hl(ηj)

∣∣∣∣∣∣∣∣
L2

−→ 0

uniformly in λ ∈ [0, 1] and

1

d′n n

[λn]∑
i=1

n−[λn]∑
j=1

h(ξi, ηj)
D−→

∑
k,l:

k+l=m

akl
(k! l!)2

√
ckclZk(λ)Z ′l(1− λ) (6.12)

in D[0, 1], where d′2n is as in (6.6) and Zk(λ), Z ′l(λ), k, l = 0, . . . ,m, λ ∈ [0, 1] are

independent Hermite processes, see (1.11).

Proof. Set temporarily Sk :=
∑[λn]

i=1 Hk(ξi) and Sl :=
∑n−[λn]

j=1 Hl(ηj) (Sk′ and Sl′ re-

spectively). Like in the proof of Theorem 6.2, it holds

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ηj)−
∑
k,l:

k+l=m

akl
k! l!

SkSl =
∑
k,l:

k+l≥m+1

akl
k! l!

SkSl,
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and thus with b = [λn] > 1

E

∣∣∣∣∣∣∣∣ sup
0≤λ≤1

1

nd′n

[λn]∑
i=1

n∑
j=[λn]+1

h(ξi, ηj)−
∑
k,l:

k+l=m

akl
k! l!

SkSl


∣∣∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣∣∣ max
1≤b≤n

1

nd′n

∑
k,l:

k+l≥m+1

akl
k! l!

SkSl

∣∣∣∣∣∣∣∣
2

.

We will show that the term on the right-hand side converges to 0, and so will the

term on the left-hand side. Like in the proof of Theorem 6.2 and since ξi and ηj are

independent, the right-hand side is bounded by

E

 1

nd′n

∑
k,l:

k+l≥m+1

|akl|
k! l!

max
1≤b≤n

|Sk| max
1≤b≤n

|Sl|


2

=
1

(nd′n)2

∑
k,l:

k+l≥m+1

∑
k′,l′:

k′+l′≥m+1

(
|akl|
k! l!

|ak′l′ |
k′! l′!

· E
[

max
1≤b≤n

|Sk| max
1≤b≤n

|Sk′ |
]
E

[
max

1≤b≤n
|Sl| max

1≤b≤n
|Sl′ |

])

≤ 1

(nd′n)2

∑
k,l:

k+l≥m+1

∑
k′,l′:

k′+l′≥m+1

(
|akl|
k! l!

|ak′l′ |
k′! l′!

·

√
E

[
max

1≤b≤n
|Sk|

]2

E

[
max

1≤b≤n
|Sk′ |

]2
√
E

[
max

1≤b≤n
|Sl|
]2

E

[
max

1≤b≤n
|Sl′ |

]2
)

by the Cauchy–Bunyakovsky–Schwarz inequality, and finally by sorting

=
1

nd′n

∑
k,l:

k+l≥m+1

(
|akl|
k! l!

√
E

[
max

1≤b≤n
|Sk|

]2

E

[
max

1≤b≤n
|Sl|
]2
)

· 1

nd′n

∑
k′,l′:

k′+′l≥m+1

(
|ak′l′ |
k′! l′!

√
E

[
max

1≤b≤n
|Sk′ |

]2

E

[
max

1≤b≤n
|Sl′ |

]2
)
.

Now we have two expressions like in the right-hand side of (6.7) which converge to 0, as

we have shown in the proof of Theorem 6.2. Thus, the first statement of the Theorem

is proved.
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For the second statement we consider the cases where k + l = m.

1

d′n n

[λn]∑
i=1

n−[λn]∑
j=1

Hk(ξi)Hl(ηj)

=
1

n1−kD/2Lk/2(n)

[λn]∑
i=1

Hk(ξi) ·
1

n1−lD/2Ll/2(n)

n−[λn]∑
j=1

Hl(ηj)

D−→
√
ck
Zk(λ)

k!
·
√
cl
Z ′l(1− λ)

l!

by Theorem 1.1.

Remark. Observe that the limits in Theorem 6.2 (one sample ξ1, . . . , ξn which is di-

vided in ξ1, . . . , ξ[λn] and ξ[λn]+1, . . . , ξn) and in Theorem 6.3 (two independent samples

ξ1, . . . , ξ[λn] and η1, η2, . . . , ηn−[λn]) differ. This is in contrast to the weak dependent

case.

6.3 Examples

6.3.1 “Differences-of-means” test

The kernel h(x, y) = x− y leads to the difference-of-means statistic

Udiff,λ,n =

[λn]∑
i=1

n∑
j=[λn]+1

(ξi − ξj) = [λn](n− [λn])
(
X̄

[λn]
1 − X̄n

[λn]+1

)
.

This kernel is of course in L2(R2,N ) and its Hermite expansion can be read off without

calculating:

h(x, y) = x− y =
a1,0

1!0!
H1(x) +

a0,1

0!1!
H1(y),

so its Hermite coefficients are

akl =


1 k = 1, l = 0

−1 k = 0, l = 1

0 else

,

and condition (6.4) is trivially fulfilled.

“Differences-of-means” test for one divided sample

The Corrolary to Theorem 6.2 states

1

d′n n
Udiff,λ,n

D−→
√
c1 ((1− λ)BH(λ)− λ(BH(1)−BH(λ))) ,

and this is exactly the result of Section 3.4.2 and also confirmed by Horváth and

Kokoszka (1997).
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For a fixed λ, we obtain the asymptotic behaviour of the two-sample Gauß test

statistic:
1

d′n n
Udiff,λ,n

D−→ N (0, s2)

with s2 = 2
(1−D)(2−D)

(
(1− λ)λ2−D − λ

(
1− λ− (1− λ)2−D)) or

nD/2L(n)−1/2

(
X̄

[λn]
1 − X̄n

[λn]+1

)
σdiff

D−→ N (0, 1)

with

σ2
diff :=

2

(1−D)(2−D)

λ1−D − 1 + (1− λ)1−D

λ(1− λ)
,

and this is exactly the same as we have calculated manually in Theorem 2.3.

“Differences-of-means” test for two independent samples

We consider two samples of independent observations ξ1, . . . , ξn1 and η1, . . . , ηn2 which

are independent of each other. A common test statistic to detect differences in the

location of these two samples, is the simple difference of means statistic, also known as

the Gauß test statistic, based on the kernel h(x, y) = x− y:

U ′diff,n1,n2
=

n1∑
i=1

n2∑
j=1

h(ξi, ηj) = n1n2(ξ̄n1 − η̄n2)

Theorem 6.3 states

1

d′n n
U ′diff,n1,n2

D−→
∑
k,l:

k+l=1

akl
k! l!

√
ckclZk(λ)Z

′
l (1− λ)

=
√
c1

(
Z1(λ)(1− λ)− λZ ′1(1− λ)

)
.

A short check with basic theory, i.e. applying Theorem 1.1 directly, yields the same:

1

d′n n
U ′diff,n1,n2

= (1− λ)
1

dn

[λn]∑
i=1

ξi − λ
1

dn

n−[λn]∑
j=1

ηi

D−→ Z1(λ)(1− λ)− λZ ′1(1− λ).

For λ ∈ [0, 1] fixed, we obtain

1

d′n n
U ′diff,n1,n2

D−→ N (0, s′2diff)

with

s′2diff = Var
[√
c1

(
Z1(λ)(1− λ)− λZ ′1(1− λ)

)]
= c1

(
λ2−D(1− λ)2 − λ(1− λ)2−D)
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or √
n1n2

n2−DL(n)σ2
diff’

(ξ̄n1 − η̄n2)
D−→ N (0, 1)

with n = n1 + n2 and σ2
diff’ = 2

(1−D)(2−D)(λ1−D(1− λ) + λ(1− λ)1−D). This is exactly

the same as we have calculated manually in Theorem 2.4.

“Differences-of-means” test for non-Gaussin data

So far, we have considered Gaussian observations ξ1, . . . , ξn. As mentioned in the intro-

duction to this chapter, all results can be extended to general data G(ξ1), . . . , G(ξn),

where G is a transformation, by considering the kernel h(G(x), G(y)) instead of h(x, y).

This is what we will do now exemplarily.

Consider a function G : R→ R, G ∈ G2(R,N ) ⊂ L2(R,N ), like the quantile trans-

formations from Section 3.6. The Hermite coefficients of the function h(G(x), G(y))

are

akl =

∫∫
R2

(G(x)−G(y))Hk(x)Hl(y) dΦ(x) dΦ(y)

=

∫
R
G(x)Hk(x) dΦ(x) ·

∫
R
Hl(y) dΦ(y)−

∫
R
G(y)Hl(y) dΦ(y) ·

∫
R
Hk(x) dΦ(x)

=


0 if k, l 6= 0

−al if k = 0, l 6= 0

ak if k 6= 0, l = 0

,

where ap = E[G(ξ)Hp(ξ)] is the p-th Hermite coefficient of G. Thus for such G and

h(x, y) = x− y, the summability condition (6.4) is satisfied:

∑
k,l

akl√
k! l!

=
∞∑
k=1

ak√
k!
−
∞∑
l=1

al√
l!

= 0

6.3.2 “Wilcoxon-type” test

Using h(x, y) = I{x≤y} yields the famous Mann-Whitney-Wilcoxon statistic

UW,λ,n =

[λn]∑
i=1

n∑
j=[λn]+1

I{ξi≤ξj}.

We will now show that this kernel does not fulfil the summability condition (6.4), but

that – if we ignore this – the above theorems nevertheless reproduce our results from

the last chapters. This confirms that condition (6.4) may be too strong and suggests

that Theorem 6.2 holds under milder assumptions.
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Summability condition not fulfilled

We will now demonstrate that h(x, y) = I{x≤y} does not satisfy (6.4), which is neither

intuitively visible nor enjoyable to verify. The Hermite coefficients are

akl =

∫∫
{x≤y}

Hk(x)Hl(y)ϕ(x)ϕ(y) dx dy

=

∫
R
Hl(y)ϕ(y)

(∫ y

−∞
Hk(x)ϕ(x) dx

)
dy

and by the definition of the Hermite polynomials and for k ≥ 1

=

∫
R

(−1)k+l

2π

(
dl

dyl
e−y

2/2

)(
dk−1

dyk−1
e−y

2/2

)
dy.

If we now integrate by parts, the boundary terms vanish. Therefore k − 1 times inte-

gration by parts yields

ak,l = (−1)k−1 (−1)k+l

2π

∫
R

(
dl+k−1

dyl+k−1
e−y

2/2

)
e−y

2/2 dy

=
(−1)2k+l−1

2π

∫
R
Hl+k−1(y)e−y

2
dy.

From the symmetry of Hl+k−1 we conclude that ak,l = 0 if l+k−1 is odd. But if l+k−1

is even, we are in the unpleasant situation that we need to evaluate the integral, but

the Hermite polynomials Hl+k−1 do not form an orthogonal family in L2 with respect

to the weight e−y
2
. But we can transform them into physicists’ Hermite polynomials

H
(phy)
l+k−1, so that we can apply the following formula (Bateman, 1953, p. 195):∫

R
e−y

2
H

(phy)
2m (ay) dy =

√
π

(2m)!

m!
(a2 − 1)m

In doing so we obtain for even l + k − 1

ak,l =
(−1)2k+l−1

2π
2−

l+k−1
2

∫
R
H

(phy)
l+k−1(2−

1
2 y)e−y

2
dy

=
(−1)k√

π
2−

l+k−1
2
−1 (l + k − 1)!(

l+k−1
2

)
!

(
−1

2

) l+k−1
2

=
(−1)

l+k−1
2

+k

√
π

Γ(l + k)Γ
(
l+k

2

)
2l+kΓ

(
l+k

2 + 1
2

)
Γ
(
l+k

2

) .
We have expanded the fraction with Γ

(
l+k

2

)
in order to use the Legendre duplication

formula Γ(z)Γ(z + 1
2) = 21−2z√πΓ(2z) in the denominator. So finally we have found

an explicit expression for the Hermite coefficients of h(x, y) = I{x≤y}:

ak,l =


(−1)

l+3k−1
2

2π Γ
(
l+k

2

)
l + k odd and positive

0 l + k even and positive

1
2 l = k = 0

(6.13)
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Now we show that
∑∞

k,l=1 |ak,l|/
√
k! l! diverges. It is enough to consider the first odd

diagonal where l = k+ 1, because there we have already with Sterling’s approximation

|ak,l|√
k! l!
∼ (2k − 1)ke

2k(k + 1)k/2+3/4kk/2+1/4
=

(
1− 1

2k

)k 1
ke(

1 + 1
k

)k/2 (
1 + 1

k

)3/4 ∼ 1

k
.

“Wilcoxon-type” test for one divided sample

Let us for a moment ignore that the Wilcoxon kernel does not fulfill the summability

condition (6.4), which may be too rigorous anyway, and apply Theorem 6.2. To this

end, we use (6.13) or calculate the first Hermite coefficients manually:

a0,0 =

∫∫
{x≤y}

H0(x)H0(y)ϕ(x)ϕ(y) dx dy =

∫∫
{x≤y}

ϕ(x)ϕ(y) dx dy =
1

2

a1,0 =

∫∫
{x≤y}

xϕ(x)ϕ(y) dx dy = − 1

2
√
π

a0,1 =

∫∫
{x≤y}

yϕ(x)ϕ(y) dx dy =
1

2
√
π

Since we formulated the theorem for centralized kernels, we consider h(x, y)−E[h(ξ, η)] =

I{x≤y} − 1/2, which has Hermite rank m = 1. So the Corrolary to Theorem 6.2 states

that

1

nd′n

[λn]∑
i=1

n∑
j=[λn]+1

I{ξi≤ξj}
D−→
√
c1 (a1,0(1− λ)BH(λ) + a0,1λ(BH(1)−BH(λ)))

=

√
c1

2
√
π

(λBH(1)−BH(λ)) .

And for fixed λ ∈ [0, 1] we obtain

1

nd′n

[λn]∑
i=1

n∑
j=[λn]+1

I{ξi≤ξj}
D−→ N (0, σ2

W )

with

σ2
W =

c1

4π

(
λ2 − λ+ (1− λ)λ2−D + λ(1− λ)2−D) .

Bearing in mind that
∫
R J1(x) dΦ(x) = −(2

√
π)−1, we have just reproduced Theo-

rem 3.4 for the Gaussian case and the findings of Section 5.3.

The Wilcoxon two-sample test for independent samples

We ignore that the Wilcoxon kernel does not fulfill the summability condition (6.4)

and apply Theorem 6.3 for the case of two independent LRD samples. For two sam-

ples of independent observations ξ1, . . . , ξn1 and η1, . . . , ηn2 which are independent of
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each other and have the same distribution but may differ in their location, the kernel

h(x, y) = I{x≤y} yields the famous Mann-Whitney-Wilcoxon statistic

U ′W,n1,n2
=

n1∑
i=1

n2∑
j=1

I{ξi≤ηj},

also known as Mann-Whitney U or Wilcoxon rank-sum test (since it can be written as a

statistic of ranks). It is well known that U ′W,n1,n2
is asymptotically normally distributed:

U ′W,n1,n2
− n1n2

2√
n1n2(n1 + n2 + 1)/12

D−→ N (0, 1),

respectively written in a more convenient notation

n−3/2
U ′W,n1,n2

−mW

sW ′
D−→ N (0, 1)

with mW = n1n2/2 and sW ′ =
√
λ(1− λ)/12. In our situation here, with two inde-

pendent samples of LRD observations, one expects at least a different normalizing and

a stronger scaling, and indeed, this is true.

By the above calculation, the Hermite rank of h(x, y) = I{x≤y} is m = 1, and

Theorem 6.3 states

1

nd′n
(U ′W,n1,n2

−mW )
D−→
√
c1

2
√
π

(
−Z1(λ)(1− λ) + λZ ′1(1− λ)

)
,

and this is the result of Theorem 3.2 for the Gaussian case.

When we consider a fixed λ ∈ [0, 1], then we obtain

n−2+D
2 L(n)−1/2UW −mW

σW ′
D−→ N (0, 1)

with mW = n1n2/2 and

σ2
W ′ = Var

[√
c1

2
√
π

(
−Z1(λ)(1− λ) + λZ ′1(1− λ)

)]
=
λ2−D(1− λ)2 + (1− λ)2−Dλ2

2π(1−D)(2−D)
.

And indeed, the normalizing is different and the scaling is stronger than for mutually

independent observations: n3/2 < n2−D
2 < n2.

“Wilcoxon-type’ test for non-Gaussin data

Like for the “difference-of-means” test in the previous section, we will shortly show

that we can easily pass over from Gaussian observations ξ1, . . . , ξn to non-Gaussian ob-

servations G(ξ1), . . . , G(ξn), where G is a transformation – irrespective of the fact, that

the kernel h(x, y) = I{x≤y} does not fulfill the summability condition (6.4). Although

in general, this changeover produces even more difficult integrals when calculating Her-

mite coefficients, the indicator kernel, like the differences kernel h(x, y) = x− y, makes

it easy.
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Consider a strictly monotone function G : R→ R, G ∈ G2(R,N ) ⊂ L2(R,N ). The

Hermite coefficients of the function h(G(x), G(y)) are

akl =

∫∫
R2

I{G(x)≤G(y)}Hk(x)Hl(y) dΦ(x) dΦ(y)

=

∫∫
R2

I{x≤y}Hk(x)Hl(y) dΦ(x) dΦ(y),

and this is nothing else than the Hermite coefficients of h(x, y) = I{x≤y} itself. Here we

have essentially used that G is strictly monotone. Note that this result is in concordance

with the invariance of the “Wilcoxon-type’ test statistic which we proved in Lemma 3.3.

6.4 In search of handy criteria

There is no denying that the summability condition (6.4) is somewhat unhandy. If we

are not in the unlikely situation that h is just a polynomial and has therefore a finite

Hermite expansion, most kernels h will not do us the favour that one look at them tells

us if (6.4) is fulfilled. So next I will investigate if there are criteria which are easier to

verify.

Lemma 6.4. Let h be four times differentiable and let h and its four derivatives be in

L1(R2, λ). Then condition (6.4) is fulfilled.

Proof. By the Plancherel theorem we can write Hermite coefficients in the following

way:

akl =
1

2π

∫∫
R2

h(x, y)Hk(x)Hl(y)e−(x2+y2)/2 dx dy

=
1

2π

∫∫
R2

ĥ(s, t)g(s, t) ds dt,

where ĥ = F(h) and g(s, t) = F(Hk(x)Hl(y)e−(x2+y2)/2) denote the Fourier transform

of h and Hk(x)Hl(y)e−(x2+y2)/2, as defined in (6.14). Now we want to give an explicit

representation of g(s, t), and we will use the following properties of Fourier transforms

and Hermite polynomials:

• F
(
e−(x2+y2)/2

)
= e−(s2+t2)/2

This is a standard result from elementary Fourier analysis.

• F
(

∂k+l

∂xk∂xl
f(x, y)

)
= ik+lsktlf̂(s, t)

This as well.

• Hk(x)Hl(y)e−(x2+y2)/2 = ∂k+l

∂xk∂xl
e−(x2+y2)/2(−1)k+l

This follows easily from the definition of Hermite polynomials.

With this formulae we can write

akl =
1

2π

∫∫
R2

ĥ(s, t)(−i)k+lsktle−(s2+t2)/2 ds dt.
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Now we will bound this expression, using factorials and exponential functions. For

reasons of simplicity, we write (k/2)! := Γ(k/2 + 1). Stirling’s approximation still

holds, i.e. (k/2)! ∼
√

2π(k/2)(k/(2e))k/2, and from this it follows that (k/2)!/
√
k! ≈

C2−k/2k1/4 and we obtain∑
k,l

|akl|√
k! l!
≤ C

∑
k,l

∫∫
R2

|ĥ(s, t)| |s|
k|t|l√
k! l!

e−(s2+t2)/2 ds dt

≈ C
∑
k,l

∫∫
R2

|ĥ(s, t)| |s|k|t|l

(k/2)! (l/2)!
(kl)1/42−(k+l)/2e−(s2+t2)/2 ds dt

= C
∑
k,l

∫∫
R2

|ĥ(s, t)|e−(s2+t2)/2

(
s2

2

)k/2 (
t2

2

)l/2
(k/2)! (l/2)!

(kl)1/4 ds dt.

Note that k1/4 ≤ k/2 for k ≥ 3 and

∞∑
k=0

xk/2k/2

(k/2)!
=

√
x√
π

+ xex(1 + erf(
√
x)) ≤

√
x√
π

+ 2xex,

where erf(x) denotes the Gaussian error function 2/
√
π
∫ x

0 e
−t2 dt which is bounded by

1, such that we obtain

∑
k,l

|akl|√
k! l!
≤ C

∫∫
R2

|ĥ(s, t)|

(√
s2

2
e−s

2/2 + s2

)(√
t2

2
e−t

2/2 + t2

)
ds dt.

Now we know for any f ∈ L1(R2, λ) that f̂(ξ)→ 0 as |ξ| → ∞, and we know for any

k-times differentiable f that F( dk

dxk
f(x)) = ξkf̂(ξ). By our assumptions, h and its first

four derivatives are in L1(R2, λ), so we receive ξ4f̂(ξ) → 0, respectively f̂(ξ) = o(ξ−4)

as |ξ| → ∞. So the integrand is bounded around 0 and on large scale it decreases at

least like (st)−2, and thus the integral is finite.

Example. Any function h ∈ L1(R2, λ) with four integrable derivatives satisfies the

summability condition (6.4), for instance:

(i) a (normalized) Hermite function

h̃kl(x, y) =
1√

2k+lk! l!π
H

(phy)
kl (x, y)e−(x2+y2)/2

=
1√

2k+lk! l!π
(−1)k+le(x2+y2)/2 d

k

dxk
e−x

2 dl

dyl
e−y

2

(ii) a Gaussian function

g(x, y) = a exp

{
−b ·

((
x

y

)
−

(
µ1

µ2

))t
Σ−1

((
x

y

)
−

(
µ1

µ2

))}

with a, b, µ1, µ2 ∈ R and Σ ∈ R2×2 a symmetric positive-definite matrix
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(iii) a smooth function with bounded support like the bump function

f(x, y) =

e
−1

1−x2 e
−1

1−y2 |x|, |y| < 1

0 else

Now we turn to a even more tricky criterion involving Fourier transforms. (6.4) is a

condition on the summability of the Hermite coefficients. Vemuri (2008) has shown that

the Hermite coefficients of a function f : R→ R decay exponentially under some growth

and smoothness conditions, namely that both the function and its Fourier transform

are dominated by a Gaussian of large variance. Such an exponential deacy would

be sufficient to imply (6.4), so we will try to adapt this technique for our porposes

and extend Vemuri’s results to the multi-dimensional case. Since the method uses

techniques from complex analysis – which I dare say are not common among probabilists

–, I will work out the proof in details. We will use the following multi-dimensional

notation:

• We write x · y =
∑d

i=1 xiyi for the inner product on Rd and abbreviate x ·x = x2.

• At times we use multi-index notation when we refer to a general result: A d-

dimensional multi-index is a vector ν = (ν1, . . . , νd) of non-negative integers. For

two multi-indices ν, β ∈ Nd0 and x = (x1, . . . , xd) ∈ Rd one defines

ν ± β = (ν1 ± β1, ν2 ± β2, . . . , νd ± βd)

|ν| = ν1 + ν2 + · · ·+ νd

ν! = ν1! · ν2! · · · νd!

xν = xν1
1 x

ν2
2 . . . xνdd

∂ν = ∂ν1
1 ∂

ν2
2 . . . ∂νdd =

∂ν1

∂xν1
1

. . .
∂νd

∂xνdd

The idea of the proof is as follows: When calculating the k, l-th Hermite coefficient

of a kernel h ∈ L2(Rd,N ), we have to evaluate the inner product of h with the k, l-th

Hermite polynomial with respect to the bivariate standard normal measure

〈h,Hk,l〉N =

∫
R2

h(x, y)Hk,l(x, y) dΦ(x)dΦ(y).

We can represent this expression as the inner product of a slightly modified kernel f

and the k, l-th Hermite function with respect to the Lebesgue measure:

〈h,Hk,l〉N = 〈f, hk,l〉λ

In order to bound this, we will use a transformation into another space which preserves

this inner product. This is the so called Bargmann transformation which translates

Hermite functions into monomials. Moreover, the new space in which we operate then
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contains entire functions on Cd, i.e. functions that are holomorphic on the whole Cd,
and so we can apply tools from complex analysis to find bounds corresponding to the

monomials, most notably the Phragmén-Lindelöf principle.

The Phragmén-Lindelöf principle is an extension of the well-known maximum mod-

ulus principle, which states that an analytic function f on a bounded region in C with

|f(z)| ≤ 1 on the boundary is bounded by 1 in the interior as well. This does not apply

to unbounded regions, but under certain growth conditions, a bound on the edges still

implies a bound in the interior.

Theorem 6.5 (Phragmén-Lindelöf principle). Let f(z) be an analytic function of a

complex variable z = reiϑ defined on the region D between two straight rays making an

angle π/b at the origin and on the lines themselves, i.e.

D =
{
z = reiϑ

∣∣∣ϑ ∈ [ϑ0, ϑ0 + π/b]
}

for ϑ0, b ∈ R. Suppose that for some constant M

|f(z)| ≤M

on the lines, and that for every δ > 0

f(z) = O(eδr
b
)

uniformly in the angle as r →∞. Then |f(z)| ≤M throughout the whole region D.

For a proof, some different formulations of the principle (it applies to strips as well

as to cones) and a general discussion of the concept, see Titchmarsh (1964, p. 176

–187)2.

Definition 6.3 (Bargmann transform). The Bargmann transform of a function f on

Rd is defined by

Bf(z) =
e−z

2/4

2d/4πd/2

∫
Rd
f(x)exze−x

2/2 dx,

where z2 = z2
1 + . . . + z2

d. Bf(z) is an element of the so-called Bargmann-Fock space

F2(Cd), the Hilbert space of all entire functions F on Cd with finite norm

‖F‖2F =
1

(2π)d/2

∫
Cd
|F (z)|2e−|z|2/2 dz.

2Titchmarsh requires the function to be regular. This emanates from his definition of functions

which is obsolete, but still can be found in complex analysis at times: A function f is not an unique

mapping, but a formal expression whose values f(z) are obtained by all possible limits approaching

z. In this case, f(z) can have several values, consider for example
√
z, which reaches a different value

(namely a value rotated by π) if one approaches z going on a circle around 0. A function is said to be

regular, if it is one-valued (Titchmarsh, 1964, p. 142–143). By our modern convention, each function is

one-valued and therefore regular; a function like
√
z is either not a function in our sense or its domain

has to be adapted (for example by cutting out the negative real axis.)
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The inner product on F2(Cd) is

〈F,G〉F =
1

(2π)d/2

∫
Cd
F (z)G(z)e−|z|

2/2 dz.

The Bargmann transform B : L2(Rd) → F2(Cd) is an isometry and its range is

dense: it is a unitary operator. For a discussion see Gröchenig (2001, Chap. 3.4)3. The

Bargmann transform has two properties which are very useful for our purposes. Let f̂

denote the Fourier transform

f̂(ξ) =
1

(2π)d/2

∫
Rd
f(x)e−ix·ξ dx (6.14)

(keep in mind that this expression is only applicable without problems for f ∈ L1(Rd),
but it extends to an unitary operator on L2(Rd) by approximation procedures), then

Bf̂(z) = Bf(−iz)

for all z ∈ Cd which can easily be verified:

Bf̂(z) =
e−z

2/4

2d/4πd/2
1

(2π)d/2

∫
Rd

∫
Rd
f(t)eitxexze−x

2/2 dt dx

=
e−z

2/4

2d/4πd/2
1

(2π)d/2

∫
Rd

∫
Rd
f(t)e(z−it)x−x2/2 dx dt

=
e−z

2/4

2d/4πd/2
1

(2π)d/2

∫
Rd
f(t)eb

2/2

∫
Rd
e−

1
2

(x−b)2
dx dt with b := (z − it)

=
e−z

2/4

2d/4πd/2

∫
Rd
f(t)ez

2/2−izt−t2/2dt = Bf(−iz)

The second useful property is: If we set temporarily

hν(x) =
1√

ν! 2|ν−1/2|
H(phy)
ν (x)e−x

2/2,

with ν a multi-index, then we have

Bhν(z) =
zν√
2|ν|ν!

,

see Gröchenig (2001, Th. 3.4.2 and p. 57). hν is a normalized Hermite function. Such

functions form an orthonormal basis of L2(Rd), and – this is what we will use later –

they can be used to calculate the coefficients aν = 〈f,Hν〉N in a Hermite expansion of

a function f . Here, we have normalized with respect to the stretched Lebesgue measure

λ/(2π)d/2.

3Gröchenig gives a different definition of the Bargmann transform. This is due to his definition

of the Fourier transform, because both are related in a certain way. See the remark on page 147 for

details.
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Technical remark. a) The cause for the stretching factor in the measure is the definition of the L2

space in the paper of Vemuri (2008). Probably for aesthetical reasons, he defines the norm on L2(Rd)
as

〈f, g〉 = (2π)−d/2
∫
Rd
f(x)g(x) dx.

We have seen above that Hermite functions that are normal with respect to this measure pass over to

rather elegant monomials. We will follow this definition as long as we go along Vemuri’s work. This

is not consistent with the standard definitions used here, but probably less confusing as if we would

struggle with additional roots and powers of π. One short example: The normalized Hermite functions

in L2(Rd, λ) are

hν(x) =
1√

ν! 2νπd/2
H(phy)
ν (x)e−x

2/2,

and we have

Bhν(z) =
zν√

2|ν|ν!(2π)d/2
.

Since we are going to deduce bounds for Hermite coefficients to get an idea of their rate of growth, we

can ignore constants, so we can temporarily work with a compressed measure without any problems.

b) The formal expression of a Hermite function is not only affected by the particular measure on

the space, but also on the way of defining the Fourier transform: It is per definition an eigenfunction

of the Fourier transform, so there are as many ways of defining a Hermite function as there are ways of

notating a Fourier transform. And if one wants to keep the property that Hermite functions are linked

with orthonormal monomials in F2(Cd) via the unitary Bargmann transform – which is an adequate

way of defining the transform –, the particular look of the Fourier transform has an impact on the

formal expression of the Bargmann transform as well.

In Gröchenig (2001), the Fourier transform is – as often in signal processing – a function of the

ordinary frequency ξ, given in hertz:

f̂1(ξ) =

∫
Rd
f(x)e−2πix·ξ dx

This definition and the one used here (which workes in real life with angular frequency in rad/s) are

related by f̂(ω) = (2π)−d/2f̂1 (ω/(2π)).

Starting with this definition, the Bargmann transform is defined by

Bf(z) = 2d/4
∫
Rd
f(x)e2πx·z−πx2−π

2
z2 dx

and the Bargmann-Fock space F2(Cd) is the Hilbert space of all entire functions F on Cd with inner

product

〈F,G〉F =

∫
Cd
F (z)G(z)e−π|z|

2

dz.

The Bargmann transform is then still a unitary operator B : L2(Rd)→ F2(Cd) (Gröchenig, 2001, Th.

3.4.3), and it keeps the property Bf̂(z) = Bf(−iz). The normalized Hermite functions are in this

setting

ψν(x) =
1√

2|ν−1/2|ν!
H(phy)
ν (

√
2πx)e−πx

2

,

with ν a multi-index, and they are still the counterpart of orthonormal monomials in F2(Cd) under

the Bargmann transformation:

Bψν(z) =

(
π|ν|

ν!

)1/2

zν

One can pass over from one notation to the other by a chain of isometries. A function f(x) in our

L2(Rd) corresponds to a function f̃(x) = u(f)(x) = f((2π)d/2x) in Gröchenig’s L2(Rd) and a function
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F̃ (z) in Gröchenig’s F2(Cd) or L2(Rd) corresponds to a function F (x) = u−1(F̃ )(x) = F̃ ((2π)−d/2x)

in our spaces.

Grö.’s situation L2(Rd, λ)
B // F2(Cd)

u−1

��

f̃
� // 2d/4

∫
Rd f̃(x)e2πx·z−πx2−π

2
z2dx

��

situation here L2(Rd, λ

(2π)d/2
)
B

//

u

II

F2(Cd) f
� //

II

e−z
2/4

2d/4πd/2

∫
Rd f(x)exze−x

2/2dx.

The basis for our criterion for summability condition (6.4) will be the following

generalization of the theorem of Vemuri (2008).

Lemma 6.6. Let a ∈ (0, 1) and C ∈ R+ be constant and let ga(x) = e−ax
2/2 be a

Gaussian function of x ∈ Rd with variance 1/
√
a. If

|f(x)| ≤ Cga(x) and as well |f̂(ξ)| ≤ Cga(ξ), (6.15)

then

|〈f, hν〉| ≤ C
(

2π

1 + a

)d/2√
ν!
( e
ν

)ν/2(1− a
1 + a

)|ν|/4
for any multi-index ν ∈ Nd+.

We will formulate the proof in several single propositions. For reasons of simplicity

we will consider only the two-dimensional case. During the proof it becomes clear what

has to be done in higher dimensions.

Proposition 6.7. Under the conditions of Lemma 6.6, the Bargmann transform of a

function f : R2 → R can be bounded as follows:

|Bf(z)| ≤ C 2π

1 + a
exp

{
r2

1

(
µ+ (1− µ) sin2 ϑ1

)
+ r2

2

(
µ+ (1− µ) sin2 ϑ2

)
4

}
(6.16)

and

|Bf(z)| ≤ C 2π

1 + a
exp

{
r2

1

(
µ+ (1− µ) cos2 ϑ1

)
+ r2

2

(
µ+ (1− µ) cos2 ϑ2

)
4

}
, (6.17)

where µ = (1− a)/(1 + a) ∈ R.

Proof. We represent z ∈ C2 as

z = u+ iv =

(
z1

z2

)
=

(
u1

u2

)
+ i

(
v1

v2

)
=

(
r1e

iϑ1

r2e
iϑ2

)
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with uj , vj , rj , ϑj ∈ R for j = 1, 2. By the first hypothesis in (6.15) and completing the

square in the exponent we obtain∣∣∣∣∫∫
R2

exze−x
2/2f(x1, x2) dx1dx2

∣∣∣∣ ≤ C ∫∫
R2

∣∣∣exz− 1
2

(1+a)x2
∣∣∣ dx

= Ce
u2

2(1+a)

∫∫
R2

e−
1+a

2 (x− u
1+a)

2

dx

= Ce
u2

2(1+a)
2π

1 + a
.

Thus a simple bound for the Bargmann transformation is

|Bf(z)| =

∣∣∣∣∣e−z
2/4

21/2π

∫∫
R2

exze−x
2/2f(x1, x2) dx1dx2

∣∣∣∣∣
≤ C 2π

1 + a
exp

{
u2

2(1 + a)
+
v2 − u2

4

}
= C

2π

1 + a
exp

{
v2 + µu2

4

}
with µ = 1−a

1+a , respectively by writing it in real polar coordinates

|Bf(z)| ≤ C 2π

1 + a
exp

{
v2

1 + v2
2 + µ

(
u2

1 + u2
2

)
4

}

= C
2π

1 + a
exp

{
r2

1

(
µ+ (1− µ) sin2 ϑ1

)
+ r2

2

(
µ+ (1− µ) sin2 ϑ2

)
4

}
,

which proves the first statement.

Now we make the same calculation for Bf̂ . f ∈ L2(R2) implies f̂ ∈ L2(R2), and so

Bf̂ is defined, and by the second hypothesis in (6.15), f̂ has the same bound as f . We

obtain

|Bf(z)| =
∣∣∣Bf̂(iz)

∣∣∣
≤ C 2π

1 + a
exp

{
r2

1

(
µ+ (1− µ) sin2(ϑ1 + π

2 )
)

+ r2
2

(
µ+ (1− µ) sin2(ϑ2 + π

2 )
)

4

}

= C
2π

1 + a
exp

{
r2

1

(
µ+ (1− µ) cos2 ϑ1

)
+ r2

2

(
µ+ (1− µ) cos2 ϑ2

)
4

}
.

We will now improve these estimates with the Phragmén-Lindelöf principle.

Proposition 6.8. Under the conditions of Lemma 6.6, the upper bounds (6.16) and

(6.17) for the Bargmann transform of a function f : R2 → R can be refined to

|Bf(z)| ≤ C 2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{√
µ

4
r2

2

}
(6.18)

for z1 and z2 each in the first quadrant.
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Proof. Note that Bf is a holomorphic function, since the Bargmann transform maps

functions into the Bargmann-Fock space F2(C2) of entire functions. Consider

F (z) = exp

{
i

√
µ

4
z2

1

}
Bf(z)

which is entire, too, because both factors are entire: Bf is entire and

∂

∂z̄
exp

{
i

√
µ

4
z2

1

}
= 0.

We fix the second variable and regard F as a function of one complex variable z1.

It stays entire. Now we show that F (with fixed second argument) is bounded by

an exponential everywhere and by a constant on certain rays. The Phragmén-Lindelöf

principle then guarantees that F is bounded by this constant on the whole cone between

the rays. ∣∣∣∣exp

{
i

√
µ

4
z2

1

}∣∣∣∣ = exp

{
−
√
µ

4
2u1v1

}
= exp

{
−
√
µ

4
2r2

1 cosϑ1 sinϑ1

}
≤ exp

{√
µ

4
r2

1

}
Therefore and by (6.16)

|F (z1)| ≤ C(z2) exp

{√
µ

4
r2

1

}
exp

{
r2

1

(
µ+ (1− µ) sin2 ϑ1

)
4

}
≤ C(z2)er

2
1/4er

2
1/4

≤ C(z2)e|z1|
2

with C(z2) = C 2π
1+a exp

{
r2

2

(
µ+ (1− µ) sin2 ϑ2

)
/4
}

. Keep in mind that we could have

just as well C(z2) = C 2π
1+a exp

{
r2

2

(
µ+ (1− µ) cos2 ϑ2

)
/4
}

, if we had taken (6.17) for

the estimate.

Let now

ϑc1 =
1

2
arctan

(
2
√
µ

1− µ

)
and ϑc2 =

π

2
− ϑc1 .

Observe that ϑc1 ∈ (0, π4 ) and ϑc2 − ϑc1 < π
2 , so that the cone, which is delimited by

the rays ϑ1 = ϑc1 and ϑ1 = ϑc2 lies in the first quadrant, see Figure 6.1. On these rays,

F (z1) is bounded. First look at ϑ1 = ϑc1 .

∣∣∣∣exp

{
i

√
µ

4
z2

1

}∣∣∣∣ = exp

{
−
√
µ

4
=(z2

1)

}
= exp

{
−
√
µ

4
r2

1 sin(2ϑc1)

}
, (6.19)

where =(z2
1) is the imaginary part of z2

1 . In addition, (6.16) and the trigonometric

identities

sin(arctanx) =
x√

1 + x2
, cos(arctanx) =

1√
1 + x2

, sin
x

2
= ±

√
1− cosx

2
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=(z1)

ϑc1 = 1
2

arctan
(

2
√
µ

1−µ

)
<(z1)

ϑc2 = π
2
− ϑc1

Figure 6.1: On the rays, F (z1) is bounded, and the Phragmén-Lindelöf principle extends

the bound on the interior ϑc1 ≤ ϑ1 ≤ ϑc2 .

yield

|F (z1)| ≤ C(z2) exp

{
−
√
µ

4
r2

1 sin(2ϑc1)

}
exp

{
r2

1

(
µ+ (1− µ) sin2 ϑc1

)
4

}

= C(z2) exp

{
−
√
µ

4
r2

1

2
√
µ

1 + µ

}
exp

{
r2

1

4

2µ

1 + µ

}
= C(z2).

Since z2
c1 = (r1e

iϑc1 )2 = r2
1e
i2ϑc1 and z2

c2 = (r1e
iϑc2 )2 = r2

1e
i(π−2ϑc1 ) have the same

imaginary part and since cos(π2 − x) = sinx, we can easily deduce the same bound for

F (z1) on the ray ϑ = ϑc2 via (6.17).

Now it follows from the Phragmén-Lindelöf principle4 that

|F (z1)| ≤ C(z2)

on the whole cone ϑc1 ≤ ϑ1 ≤ ϑc2 . So we obtain

|Bf(z)| ≤ C(z2) exp

{√
µ sin 2ϑ1

4
r2

1

}
for ϑc1 ≤ ϑ1 ≤ ϑc2 . Trivially, we can bound this more roughly:

|Bf(z)| ≤ C(z2) exp

{√
µ

4
r2

1

}
(6.20)

We will now verify, that this estimate holds even for the whole frist quadrant. (6.16)

as a function of z1 only is monotone increasing in ϑ1 in the first quadrant and therefore

4Let us qickly check the conditions, as we have stated them in Theorem 6.5: Here we have b > 2

and the bound |F (z1)| ≤ Cer
2
1 . So

|F (z1)|
eδr

b
1

≤ Cer
2
1−δr

b
1 ≤ Cer

2
1−δr

2+ε
1 = Cer

2
1(1−δrε1)

for a certain ε > 0, and this goes to 0 as r1 → ∞ for any fixed δ > 0. The convergence is uniform in

the angle, because it only depends on the absolut value of z1.
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maximal on [0, ϑc1 ] for ϑ1 = ϑc1 . With the same trigonometric indentities as before

and a simple convexity argument one can easily show that

µ+ (1− µ) sin2

(
1

2
arctan

(
2
√
µ

1− µ

))
=

2µ

1 + µ
≤ √µ

for µ ∈ (0, 1). Analogously, (6.17) is monotone decreasing in ϑ1 in the first quadrant

and therefore maximal on [ϑc2 ,
π
2 ] for ϑ1 = ϑc2 = π

2 − ϑc1 . With cos(π2 − x) = sinx, we

obtain exactly the same upper bound as on the first cone [0, ϑc1 ], so in the whole first

quadrant of z1, estimate (6.20) is valid.

By the previous calculation we have achieved the bounds

|Bf(z)| ≤ C 2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{
r2

2

(
µ+ (1− µ) sin2 ϑ2

)
4

}
(6.21)

and

|Bf(z)| ≤ C 2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{
r2

2

(
µ+ (1− µ) cos2 ϑ2

)
4

}
, (6.22)

and now we take the second argument into account and fix the first argument (of which

only the absolute value r1 is left). We will repeat the calculation that we have done for

z1. For that purpose, consider

F (z) = exp

{
i

√
µ

4
z2

2

}
Bf(z).

This F as a function of z2 is entire, too. Now use (6.21) and (6.22) instead of (6.16)

and (6.17) to show

|F (z2)| ≤ C(z1)e|z2|
2

with C(z1) = C 2π
1+a exp

{√
µr2

1/4
}

and

|F (z2)| ≤ C(z1)

on the rays ϑ2 = ϑc1 and ϑ2 = ϑc2 , and so via Phragmén-Lindelöf on the domain

between the rays. With the same arguments as before we extend the bound to the

whole first quadrant of z2, and so we obtain after all the bound

|Bf(z)| ≤ C 2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{√
µ

4
r2

2

}
for z1 and z2 each in the first quadrant.

Proposition 6.9. The upper bound (6.18) holds not only for the first quadrant, but

everywhere.
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Proof. We have just established (6.18) for the first quadrant, starting from a cone with

rays ϑc1 , ϑc2 = π/2− ϑc1 . At first consider the third quadrant. We rotate the cone by

an angle of π so that we have a domain between the rays ϑc5 = π+ϑc1 and ϑc6 = π+ϑc2 .

On these rays, z1 has the same imaginary part as on the rays in the first quadrant,

compare to (6.19):

=(z2
1) = r2

1 sin(2ϑc5) = r2
1 sin(2π + 2ϑc1) = r2

1 sin(2ϑc1)

=(z2
1) = r2

1 sin(2ϑc6) = r2
1 sin(3π − 2ϑc1) = r2

1 sin(2ϑc1)

And the functions sin2 ϑ and cos2 ϑ are π-periodic, so that we can do exactly the same

calculation as before and obtain the bound (6.18) for the third quadrant.

For the second quadrant, we rotate the cone in the first quadrant by an angle of

π/2 and operate on the rays ϑc3 = π
2 +ϑc1 and ϑc4 = π

2 +ϑc2 . Now the imaginary party

of z1 has changed its sign:

=(z2
1) = r2

1 sin(2ϑc3) = r2
1 sin(π + 2ϑc1) = −r2

1 sin(2ϑc1)

=(z2
1) = r2

1 sin(2ϑc4) = r2
1 sin(2π − 2ϑc1) = −r2

1 sin(2ϑc1)

Therefore we make use of a slightly different entire function F, namely

F (z) = exp

{
−i
√
µ

4
z2

1

}
Bf(z).

Then we can deduce the same exponential growth bound for this F as for the former

version, and since rotation by π/2 only swaps sine and cosine, the bounds (6.16) and

(6.17) are still available and only have to be applied vice versa.

Finally, the fourth qudadrant can be put down to this last case by rotating it by

an angle of π, since sin2 ϑ and cos2 ϑ are π-periodic and again =(z2
1) = −r2

1 sin(2ϑc1)

on the rays ϑc7 = π+ π
2 + ϑc1 and ϑc8 = π+ π

2 + ϑc2 . So (6.18) holds on whole C2.

Finally, we turn to the

Proof of Lemma 6.6. The statement to proove is

|〈f, hkhl〉| ≤ C
2π

1 + a

√
k! l!

( e
k

)k/2 (e
l

)l/2(1− a
1 + a

)(k+l)/4

for all k, l ∈ N+, if

|f(x1, x2)| ≤ Cga(x1, x2) and |f̂(ξ1, ξ2)| ≤ Cga(ξ1, ξ2).

Consider the Bargmann transform Bf of f . By Proposition 6.9,

|Bf(z)| ≤ C 2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{√
µ

4
r2

2

}
,
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and since Bf is analytic (it is an element of the Bargmann-Fock space of entire func-

tions), we can write it as a power series

Bf(z) =

∞∑
m,n=0

cm,nz
m
1 z

n
2

with Taylor coefficients

cmn =
∂m+n

∂zm1 ∂z
n
2

Bf(z)

m!n!
.

In complex analysis there is a famous estimate for derivatives, Cauchy’s inequality5.

Applying this to the polydisk B(0, r1) × B(0, r2) with arbitrary r1, r2 > 0 and with

(6.18), we obtain

∂m+nBf(z)

(∂z1)m(∂z2)n
≤ m!n!

rm1 r
n
2

C
2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{√
µ

4
r2

2

}
and so

|cm,n| ≤ C
2π

1 + a
exp

{√
µ

4
r2

1

}
exp

{√
µ

4
r2

2

}
r−m1 r−n2 .

This bound is valid for any r1, r2 > 0, so we can choose such r1, r2 that it becomes

minimal. Note that the function gk,µ(r) := exp(
√
µ/4 · r2)r−k has derivative g′k,µ(r) =

exp(
√
µ/4 · r2)r−k−1(

√
µ/2 · r2 − k), and this has a null in r > 0 for

√
µ/2 · r2 − k = 0.

Thus |cmn| gets minimal for r1 =
√

2m/
√
µ, r2 =

√
2n/
√
µ, and this is

|cm,n| ≤ C
2π

1 + a

(
e
√
µ

2m

)m/2(e√µ
2n

)n/2
. (6.23)

Now the stage is set to bound the Hermite coefficients of f . Remember that B is

an isometry and that we temporarily work with the measure dz/(2π).

|〈f, hkl〉| = |〈Bf,Bhkl〉|

=

∣∣∣∣∣∣
∫
C2

 ∞∑
m,n=0

cm,nz
m
1 z

n
2

( zk1√
2kk!

zl2√
2ll!

)
e−r

2
1/2e−r

2
2/2

4π2
dz

∣∣∣∣∣∣
5Let D ∈ Cd be a domain, f : D → C analytic, z0 ∈ D a point and P d(z0, r) ⊂⊂ D a polydisk with

distinguished boundary T. Then

|Dνf(z0)| ≤ ν!

rν
sup
T
|f |.

Here, ν is a multi-index, U ⊂⊂ V means that U lies relatively compact in V (the closure of U is

compact in V ), a polydisk is the Cartesian product of d usual (complex-)one-dimensional disks and

the distinguished boundary the Cartesian product of their boundary, i.e. of d circles (Fritzsche and

Grauert, 2002, Chap. 1.4.)
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In F2(Cd), monomials form an orthogonal family6; in the one-dimensional case we have

for instance z = reiϑ and∫
C
znzke−r

2/2 dz =

∫
C
rn+keiϑ(n−k)e−r

2/2 dz

=

∫ ∞
0

rn+k+1e−r
2/2

∫ 2π

0
eiϑ(n−k) dϑ dr = 0

since
∫ 2π

0 eiϑ(n−k) dϑ = 0 for n 6= k. So only one term remains of the sum:

|〈f, hkl〉| =

∣∣∣∣∣ ckl√
2k+lk! l!

∫
C2

r2k
1 r2l

2

e−r
2
1/2e−r

2
2/2

4π2
dz

∣∣∣∣∣
=

|ckl|√
2k+lk! l!

∫ ∞
0

∫ ∞
0

r2k+1
1 r2l+1

2 e−r
2
1/2e−r

2
2/2 dr1 dr2

= |ckl|
√

2k+lk! l!

≤ C 2π
√
k! l!

1 + a

( e
k

)k/2 (e
l

)l/2(1− a
1 + a

)(k+l)/4

For the last step, we have used (6.23), for the step before
∫∞

0 r2k+1e−r
2/2 dr = 2kk! for

all k ∈ N.

After this groundwork, we can now give a criterion for the summability condition

(6.4).

Lemma 6.10. Let the function h : R2 → R fulfill the smoothness and growing condi-

tions

|h(
√

2x,
√

2y)e−(x2+y2)/2| ≤ Cga(x, y) (6.24)

and

|F
(
h(
√

2x,
√

2y)e−(x2+y2)/2
)

(ξ1, ξ2)| ≤ Cga(ξ1, ξ2) (6.25)

where a ∈ (0, 1) and C ∈ R+ are constant, ga(x, y) = e−a(x2+y2)/2 is a Gaussian

function with variance 1/
√
a and F(f) denotes the Fourier transform of f , see (6.14).

Then (6.4) is fulfilled.

6Even more holds: They form an orthogonal basis, see Gröchenig (2001), Theorem 3.4.2. But

this should not be surprising: The normalized Hermite polynomials are an orthonormal basis for

L2(Rd), and the Bargmann transform, which translates them into monomials in F2(Cd), is an unitary

mapping. Gröchenig uses this relation just the other way round: He proves that the monomials form an

orthonormal basis for F2(Cd) to conclude that the normalized Hermite polynomials are an orthonormal

basis of L2 (incidentally, without giving an explicit expression for them).
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Proof. In order to keep track of how the above theory applies here, we will keep the

d-dimensional multi-index notation. We can write Hermite coefficients in the following

way:

aν = 〈h,Hν〉N

= (2π)−d/2
∫
Rd
h(x)Hν(x)e−x

2/2 dx

= (2π)−d/2
∫
Rd
h(x)H(phy)

ν (x/
√

2)2−|ν|/2e−x
2/2 dx

=
1√

2|ν| ν!πd/2

√
ν!πd/2

πd/2

∫
Rd
h(
√

2x)H(phy)
ν (x)e−x

2
dx

=

√
ν!

πd/4

∫
Rd
h(
√

2x)e−x
2/2hν(x) dx

=

√
ν!

πd/4
〈h(
√

2x)e−x
2/2, hν(x)〉λ

Now we apply Lemma 6.6 with f(x) = h(
√

2x)e−x
2/2 and obtain

|aν | ≤ Cν!
( e
ν

)ν/2
µ|ν|/4

with µ = (1− a)/(1 + a) ∈ (0, 1) and C ∈ R+ a constant. Thus we have∑
k,l

|akl|√
k! l!
≤ C

(∑
k

√
k!
( e
k

)k/2
µk/4

)(∑
l

√
l!
(e
l

)l/2
µl/4

)
,

and we make a ratio test to see that the sums converge:√
(k + 1)!

k!

(
e

k + 1

)(k+1)/2(k
e

)k/2
µ(k+1)/4µ−k/4

=
√
eµ1/4

(
1 +

1

k

)−k/2
→ µ1/4,

and so ∑
k,l

|akl|√
k! l!

<∞.

Example. Lemma 6.10 enables us to handle for instance a Gaussian function like

g(x, y) = e−(x2+y2)/2, because it has itself as Fourier transformation, to be more pre-

cisely:

|g(
√

2x,
√

2y)e−(x2+y2)/2| = e−
3
2(x2+y2) ≤ Cg 1

3
(x, y)

|F
(
g(
√

2x,
√

2y)e−(x2+y2)/2
)

(ξ1, ξ2)| = 1

3
e−(ξ2

1+ξ2
2)/6 ≤ Cg 1

3
(ξ1, ξ2).

The question is if this is “easier to verify” as promised. But the answer is positive:

Fourier transforms can be determined somehow in many cases while a general expression

for Hermite coefficients (to check the summability condition directly) may be hard to

achieve.



Chapter 7

Solutions for estimation problems

In Chapter 3, we have developed a non-parametric change-point test for changes in the

mean of certain LRD processes, which was based on the Wilcoxon two-sample test, and

compared it to a test based on the differences of means. Along the way, some important

questions arose with which we will deal now.

We still consider a stochastic process (Xi)i≥1 which is an instantaneous functional

of a stationary and LRD Gaussian process:

Xi = G(ξi), i ≥ 1

where (ξi)i≥1 is a stationary mean zero Gaussian process with E[ξ2
i ] = 1 and auto-

covariance function (1.1) and G ∈ G1 or G ∈ G2. In other words, we consider the

situation under the null hypothesis (3.1) where there is no change in the mean, and

without loss of generality we can assume that the common mean of the observations

is 0. For strictly monotone G and if (ξi)i≥1 is fGn, the tests from Chapter 3 are as

follows: For the “Wilcoxon-type” test, reject the null hypothesis of no change if

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣
is large, i.e. if it is greater or equal the upper 5%-quantile q0.05 of its asymptotic dis-

tribution (2
√
π)−1 sup0≤λ≤1 |Z1(λ)− λZ1(1)|; for the “difference-of-means” test, reject

the null hypothesis if

Dn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(Xi −Xj)

∣∣∣∣∣∣
is large, i.e. if it is greater or equal the upper 5%-quantile q0.05 of its asymptotic

distribution |a1| sup0≤λ≤1 |Z1(λ)−λZ1(1)|, where |a1| is the first Hermite coefficient of

G.

If one wants to apply these tests in real situations, one must face two essential

road-blocks:
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• First, the above described tests depend heavily on the LRD parameter D of the

data, respectively the Hurst parameter H = 1 − D/2, which is not known in

practice and must be estimated. In Section 7.1, we compare in a simulation

study different estimators for H and investigate how they influence the above

tests. In doing so, we confirm what has been observed by different authors in the

last decade: that change-points lead to false estimates of H and thus adulterate

also change-point tests itself.

In Section 7.2, we propose new methods to estimate H even under a jump in

the mean. We will show in a further simulation study that these new methods

considerably improve the estimation of H if there is a change in the mean, and

moreover that, if there is no change in the mean, our methods do not affect the

usual estimation.

• Second, we demonstrated in the Corollary to Theorem 3.5 that if G is strictly

monotone, it has always Hermite rank 1; thus in order to apply the “difference-

of-means” test, one only needs to know the first Hermite coeficient a1 of G. But

in real situations, one does not know the function G which generated the data

from fGn in the model. In Section 7.3, we will propose an estimator for a1.

7.1 The influence of an estimated Hurst parameter

In the simulation study in Chapter 3, where we compared the performance of the

“difference-of-means” test and the “Wilcoxon-type” test, we assumed the LRD param-

eter of the data to be known in order to assess the practicability of the test procedures;

but in real applications of course, one has to estimate it from the data. Since such an

estimation is error prone and may heavily influence the test statistic, it is interesting

to analyse the performance of the change-point test in such a situation. Thus, we will

now repeat the simulations, but this time with estimated LRD parameters. (To tell the

truth, one actually would have to estimate even more: In practice, also L is unknown.

But to begin with, estimating L seems to be hardly possible, second, the influence of H

is more important, so we will concentrate on estimating the Hurst parameter H here.)

In what follows, we will repeat parts of the simulation study in Chapter 3, but we

will estimate ndn = n2−D/2 by n2−D̂/2, where D̂ is an appropriate estimator for the

LRD parameter D (respectively H = 1 − D/2) of the data. (Note that c1 and L(n)

cancel each other out if (ξi)i≥1 is fGn.) First of all, we will choose such an estimator

by a comparing simulation study.

7.1.1 Methods of estimating in comparison

The competing estimators

Taqqu, Teverovsky and Willinger (1995) study various techniques for estimating LRD;

they list nine different methods and analyse their performance in a simulation study
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based on 50 fGn and FARIMA time series with each 10, 000 observations; Taqqu and

Teverovsky (1998) take this up under different assumptions. We have chosen five of

these nine estimators to investigate in a more realistic finite sample setting; they all

are based on different techniques, and among similar estimators they exhibit the least

mean squared error in the study by Taqqu, Teverovsky and Willinger (1995):

• Absolute values of the aggregated series

The original time series is divided into blocks of size M in which the observations

are avagared, so one considers the variables

X
(M)
k =

1

M

kM∑
i=(k−1)M+1

Xi, k = 1, 2, . . .

and calculates the mean of their absolute values, 1
n/M

∑n/M
k=1 |X

(M)
k |. If the original

data (Xi)i≥1 have LRD parameter H and the logarithm of this statistic is plotted

versus logM , the result should be a line with slope H − 1.

• Periodogram method

The periodogram

I(λ) =
2

2πn

∣∣∣∣∣
n∑
k=1

Xke
ikλ

∣∣∣∣∣
2

is an estimator for the spectral density of the variables, which should be propor-

tional to |λ|1−2H at the origin. A regression of log I(λ) on log λ should give a

coefficient of 1− 2H.

• Boxed periodogram method

The just described method of estimating H can be modified in order to compen-

sate that in a log-log plot, most frequencies fall on the far right (which skews the

regression); this is done by averaging the periodogram values over logarithmically

equally spaced blocks.

• Peng’s method / Residuals of regression

The original series is split up into blocks of size M . Within each of these blocks,

the partial sums Yi, i = 1, . . . ,M are calculated. Take the partial sums of the

first block, fit a least-squares line to the Yi and calculate the sample variances

of the residuals. Repeat this with the other (n/M)− 1 blocks. Finally, take the

average of all n/M sample variances. For large M , this value is proportional to

M2H for fGn.

• Whittle estimator

The Whittle estimator is also based on the periodogram. It is the only estimator

in this survey which does not use graphical methods, but which estimates H by

minimizing a certain function. It is rather inflexible since it assumes that the

parametric form of the spectral density is known.
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For details on these methods, see Taqqu, Teverovsky and Willinger (1995) and the

references therein.

Simulation results

We have simulated 10, 000 repetitions of a time series G(ξ1), . . . , G(ξn), where (ξi)i≥1 is

fGn with Hurst parameter H andG is a certain function, and we let both the sample size

n and the Hurst parameter H vary: We simulated the time series for n = 100, 500, 1000

and for H = 0.6, H = 0.9 to cover low strong dependence and high strong dependence

as well as time series of different realistic lengths.

In a first set of simulations, we chose G to be the identity G(t) = t so that the

observations are simple fGn. In a second set, we chose G to be

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
,

where Φ denotes the standard Gaussian c.d.f., so that the observations are Pareto(3,1)

distributed. This corresponds to two extrem cases: Well-behaved Gaussian data on the

one hand and heavy tailed data on the other hand.

In Figure 7.1, boxplots of the simulations are shown. For each estimation method

(shortly referenced as absval, boxper, peng, per and whittle), we have three boxplots:

for n = 100, n = 500 and n = 1000. We see that all estimators work better with

increasing sample size and that the Whittle estimator and the Peng estimator seem to

perform rather well.

In Figure 7.2, the square root of the mean squared error,√√√√1

k

k∑
i=1

(Ĥi −H)2,

is given. Here, Ĥi denotes the estimated value of H in the i-th of the k = 10, 000

simulations. Even though there is always an inherent bias and the estimators under-

estimate the true value if the data is not fGn, the Whittle estimator and the Peng

estimator show the least MSE. Since the Peng estimator is very slow (which of course

is no problem in real life application where only a few time series have to analysed, but

which seriously extends the simulation time, due to the 10, 000 repetitions), we decided

to use the Whittle estimator in the following.

7.1.2 Change-point tests with estimated Hurst parameter

Since the estimation of H only changes the scaling in the tests of Chapter 3, and not

the test procedures itself, we just took the simulation results and rescaled them by

multiplying the 10, 000 values of Wn and Dn for each set of data and parameters by

n2−D/2/n2−D̂/2. After that we counted the number of rejections, following the same

rejection rules as were used there.
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We see in Figure 7.1 that the Whittle estimator tends to underestimate the true

value of H in our setting, thus we expect Ĥ < H, respectively D̂ > D. As a con-

sequence, n2−D/2 > n2−D̂/2; in other words, we rather scale down the test statistic

too slowly if we estimate H. This is supported by Figure 7.3, where the new scaling

n2−D/2/n2−D̂/2 is shown under fGn and Pareto data, without jump: The rescaling is a

bit higher than 1, which enlarges the data and will probably cause that the tests reject

more often than they should. We will see that this is really the case.

In contrast, if there is a change-point in the time series, the Hurst parameter is

easily overestimated (in Section 7.2, we propose methods to avoid this misjudging).

Figure 7.4 shows the rescaling under different alternatives (a jump of height 0.5, 1 and

2 at different positions) and we clearly see that higher jumps cause a higher estimate.

For fGn, where the Whittle estimator works well under the null hypothesis, this has the

effect that data are scaled down when the jump gets big. For Pareto(3,1) distributed

data, the overestimation caused by high jumps is compensated to some extent by the

underestimation due to the non-normal distribution. So we expect the tests to detect

jumps less often than in the situation when H is known. This foreboding is also

supported by the following simulations.

Either way, note that the asymptotic level of the tests is probably not 5% any

more, because we know neither the asymptotic distribution of Ĥ nor the asymptotic

distribution of the test statistic when H is estimated by Ĥ, so the critical value which

we use is not adapted to the estimation of H.

Normally distributed data

As the Whittle estimator works well under Gaussian data, the influence of estimation

errors is not big here.

In Figure 7.5, the relative frequency of false rejections under nearly 10, 000 simula-

tion runs1 is shown. Especially for very strong dependence and small sample sizes (i.e.

H = 0.9 and n = 50 or n = 100) the influence of the Whittle estimator is visible: The

test statistic is scaled down too slowly, so that it is bigger and exceeds the asymptotic

critical value more often than usual.

Figure 7.6 shows the the relative frequency of true rejections2. Here we cannot spot

any remarkable difference to the original simulation results where H was assumed to

be known; with an estimated H, both tests detect jumps close to the borders of the

time series a bit more often (i.e. after 5% and 10% of the data, respectively after 90%

and 95%).

The exact simulation results are presented in Table D.20 and Table D.21 in Ap-

pendix D.

1For numerical reasons, sometimes H could not be estimated. In this case, the simulation run was

skipped, so that we analyse a little less than 10, 000 repetitions here.
2Again under nearly 10, 000 simulation runs, because a few of the 10, 000 simulations were skipped.
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Heavy-tailed data

For Pareto(3,1) distrbuted data, the situation is different: Here, the impact of under-

estimating the LRD parameter comes to light.

Figure 7.7 shows the level of the tests; obviously, it is far away from 5%, and it veers

away as the sample size n increases. This can be explained by Figure 7.1: For small

sample sizes, the estimation has a big variance and includes values near the true value

of H; as n increases, Ĥ gets more and more concentrated below the true parameter.

Estimating H boosts as well the power of the tests. Figure 7.8 gives the observed

power of the “difference-of-means” test and the “Wilcoxon-type” test, for sample size

n = 500 and various positions and heights of the level shift. As in the original situation

with a known H, the Wilcoxon-type test has larger power than the “difference-of-

means” test for small level shifts h, but the “difference-of-means” test outperforms the

“Wilcoxon type” test for larger level shifts.

The exact simulation results can be found in Table D.22 and Table D.23 in Ap-

pendix D.

7.1.3 Summary

We have seen that detecting change-points in LRD time series becomes difficult when

the LRD parameter of the data is estimated, because the behaviour of the test statistic

gets unpredictable and incalculable to some extent: When the LRD parameter is un-

derestimated (which happens easily in Pareto distributed data, e.g.), the value of the

test statistic is increased, while a break in a time series causes a too high estimate of

H which entails that the test statistic is scaled down too heavily. So when there is no

level shift, the tests falsely reject too often, while they detect existing breaks too rarely.

Actually, this even happens in the simple setting that the data are an instantaneous

functional of fGn, where only the LRD parameter has to be estimated. In a more general

situation, one would even have to estimate the auto-covariance function.



7.1 The influence of an estimated Hurst parameter 163

0
.
4

0.
6

0
.
8

1.
0

1
.
2

fGn, H=0.6
E
s
t
i
m
a
t
e
d
 
H

absval boxper peng per whittle

0
.
4

0.
6

0
.
8

1.
0

1
.
2

fGn, H=0.9

E
s
t
i
m
a
t
e
d
 
H

absval boxper peng per whittle

0
.
4

0.
6

0
.
8

1.
0

1
.
2

Pareto(3,1), H=0.6

E
s
t
i
m
a
t
e
d
 
H

absval boxper peng per whittle

0
.
4

0.
6

0
.
8

1.
0

1
.
2

Pareto(3,1), H=0.9

E
s
t
i
m
a
t
e
d
 
H

absval boxper peng per whittle

Figure 7.1: Boxplots of simulated Hurst parameters. Each method (absval, boxper,

peng, per, whittle) was applied to time series of sample size n = 100, 500, 1000 (from

left to right, from light to dark tones), each plot is based on 10, 000 estimations. The

dotted line indicates the real value of H.
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Figure 7.2: Square root of the MSE of different Hurst parameter estimates. Each

method (absval, boxper, peng, per, whittle) was applied to time series of sample

size n = 100, 500, 1000 (from left to right, from light to dark tones), each MSE is based

on 10, 000 estimations.
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Figure 7.3: Boxplots of the rescaling n2−D/2/n2−D̂/2, based on 10, 000 samples of fGn

and Pareto(3,1) distributed data, sample size n = 50, 100, 500, 1000, without break.

The dotted line indicates the optimal value of 1.
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Figure 7.4: Boxplots of the rescaling n2−D/2/n2−D̂/2, based on 10, 000 samples of 500

observations of fGn and Pareto(3,1) distributed data with H = 0.7, with jumps of

height h after the [λn]-th observation. The dotted line indicates the optimal value of

1.
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Figure 7.5: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for fGn time series with LRD parameter H, estimated by the Whittle estimator;

10, 000 simulation runs.
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Figure 7.6: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of fGn with LRD parameter H = 0.7, estimated

by the Whittle estimator; different break points [λn] and different level shifts h. The

calculations are based on 10,000 simulation runs.
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Figure 7.7: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Pareto(3,1)-transformed fGn with LRD parameter H, esti-

mated by the Whittle estimator; 10, 000 simulation runs.
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Figure 7.8: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of standardised Pareto(3,1)-transformed fGn with

LRD parameter H = 0.7, estimated by the Whittle estimator; different break points

[λn] and different level shifts h. The calculations are based on 10,000 simulation runs.
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7.2 Estimating the LRD parameter under a change in the

mean

There are several methods to estimate the LRD parameter. For an overview see the

articles by Taqqu, Teverovsky and Willinger (1995) and Taqqu and Teverovsky (1998).

But unfortunately, when one estimates H in order to apply a change-point test, one

maybe has to do with a time series that includes a jump (why else should one test

for it otherwise?), and such a jump intrinsically gets in the way of estimating the

LRD parameter since the usual estimators do not consider a change-point and likely

missspecify the resulting structure of the data as a more intense LRD. As a consequence,

the power of a change-point test likely decreases, because the jump may cause an

overestimation of H which may bring the test to interpret the jump as LRD behaviour.

We have just seen this effect in Section 7.1. Sibbertsen and Willert (2010) report that

tests for a break in persistence, i.e. a break in the long range-dependence structure,

are neither robust against a shift in the mean and must be adapted in this case. For

an overview about how structural breaks and trends lead to missspecification of LRD

and methods how to distinguish both effects, see the survey of Sibbertsen (2004) who

also points out that change-point estimators can not distinguish between LRD and

break points. Krämer, Sibbertsen and Kleiber (2002) illustrate this with data from the

German stock market, and Krämer and Sibbertsen (2002) show that in linear regression

models disturbances that exhibit LRD can be confused with structural changes.

It is thus a challenging problem to distinguish between behaviour that originates

from long memory and behaviour that originates from change-points. CUSUM-type

tests which discriminate between both, an LRD time series and a short-range dependent

time series with changes in the mean, have been proposed in the articles by Berkes et

al. (2006) and Shao (2011) which both contain a lot of references concerning LRD and

structural breaks. We focus on the situation where a LRD time series may possess a

change-point. In this situation, especially for change-point tests which usually require

the true, but unknown LRD parameter, there is a strong need for methods which

estimate the LRD parameter without being confused by the possible mean shift. Our

goal is thus to develop estimators for H which are on the one hand not heavily biased

by a jump in the mean of the data, but which on the other hand still work well if there

is no jump.

Künsch (1987) and Hsu (2005) proposed usage of a local estimator to achieve this.

Hassler and Olivares (2007) applied such a method to German stock market data.

Kuswanto (2009) also analysed German stock market returns and used the invariance

of the LRD parameter under aggregation to develop an improved estimator of H by

looking at combinations of paired of aggregated series.

We propose a broader approach. We will develop and analyse three general methods

to estimate the LRD parameter in a time series which may include a jump that work

with any usual estimation technique. These adapted methods will prove to work better
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than the standard estimations which ignore jumps. All our methods have in common

that they base on the initial insight that, if it includes a jump, the whole LRD time

series is not appropriate for estimating the LRD parameter and that any estimation

approach must thus at first segregate the jump or concentrate on local environments

in the sample.

7.2.1 Adaption techniques

Seperating in two blocks

The first technique divides the time series into two blocks

X1, . . . , Xk and Xk+1, . . . , Xn

and estimates H on each block seperately. This is done for all possible cutting points.

Because the estimation of LRD intrinsically needs many observations, it is not sensible

if one allows early or late cutting points which produce a small block on which the

estimation of H is useless. We thus let the cutting point k take values in the set

K = {klow, klow + 1, . . . , kup}

with

klow = max{[n/10], 10}+ 1

kup = n− klow

and to end up to |K| = kup− klow + 1 pairs of estimations of H: for each cutting point

k ∈ K, we obtain an estimate Ĥ
(1)
k of H on the first block and an estimation Ĥ

(2)
k of

H based on the second block.

As an estimate for the Hurst parameter of the whole sample, two functions of the

Ĥ
(1)
k , Ĥ

(2)
k , k ∈ K are suitable: At first,

Ĥmean =
1

|K|
∑
k∈K

Ĥ
(1)
k + Ĥ

(2)
k

2

is the mean value of the estimate on the first and the second block, averaged over all

cutting points. Then,

Ĥmindiff =
Ĥ

(1)
k∗ + Ĥ

(2)
k∗

2

with

k∗ = arg min
k∈K

∣∣∣Ĥ(2)
k − Ĥ

(1)
k

∣∣∣
is the mean value of the estimate on the first and the second block, diveded by the

special cutting point k∗ where both estimates differ least, measured by the absolute

difference.
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Estimating on a moving window

The second technique estimates H only on a part of the observations, on a certain

window

Xm−w, Xm−w+1, . . . , Xm, . . . , Xm+w

of length 2w + 1 around the center Xm. Now this window is moved through the time

series X1, . . . , Xn: For each m ∈ M = {w + 1, w + 2, . . . , n − w}, we estimate H on

the window around the midpoint Xm, and in doing so, we obtain finally |M | = n− 2w

estimates Ĥw,m for H.

We expect that for a fixed (and not too big) window size w, these estimates Ĥw,m,

m ∈ M , show a high variablilty because each estimation relies on a small window

which may include the jump or wich cover a rather steady part of the observations

(both resulting in too large estimation) or which may not include the jump or cover a

rather fluctuating section of the observations (both resulting in too low estimations) –

or a mixture of all these scenarios. Thus it seems reasonable to average all estimations

and consider

ĤMV,w =
1

|M |
∑
m∈M

Ĥw,m

as an estimate for the true Hust parameter H.

In the context of blocks and windows for statistical inference, the choice of the

length of the block or window is traditionally an important issue. As flank length

w = w(n) as a function of the overall sample size n (which results in a window of size

2w + 1) we choose

w1 = w1(n) = max
{

[
√
n], 10

}
since the square root has often proven to be a good choice and since we do not want

the window to be too small as the estimation of an LRD parameter inherently gets bad

for a short sample of observations. For a comparison, we also analysed

w2 = w2(n) = max {[n/10], 10}

and

w3 = w3(n) = max {[n/5], 10} .

Whenever moving window techniques are employed, it is much discussed if the

windows should be overlapping or non-overlapping. In our situation, the latter could

have the advantage that only one window of data is affected with the jump which results

in only one most likely erroneous estimate. So it is interesting (and a contribution to the

above discussion) to analyse also a non-overlapping moving window approach. Here,

H is estimated on blocks

X1, . . . , Xw, Xw+1, . . . , X2w, X2w+1, . . . , X3w, . . . X([N/w]−1)w+1, . . . , X[N/w]w
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of length w, resulting in [N/w] estimates Ȟw,k, k = 1, . . . , [N/w], for H. Again it is

reasonable to average and consider

ĤMV nl,w =
1

[N/w]

[N/w]∑
k=1

Ȟw,k

as an estimate for the true Hust parameter H. As window sizes, it is reasonable to

choose the same w1, w2, w3 as above. Since this method does not yield satisfying

results, for reasons of comparison, we only concentrated on window size w1 in the

following simulation study (see Section 7.2.2).

Pre-estimating the jump

Our third method is the most natural approach: Since the jump disturbes the estima-

tion of H, we try to remove it. For this purpose, we estimate the position and the

height of the jump, ignoring that we do not know the LRD parameter H yet, and then

either eliminate the jump and estimate H on the whole (now) jumpfree time series or

we estimate H on the observations before and on the observations after the jump and

take the mean value as an estimate for H on the overall sample.

We get down to details: Given the observations X1, . . . , Xn, we apply a change-

point test. In principle, we may take any change-point test we like. Here, we take the

“Wilcoxon-type” change-point test from Chapter 3 which rejects the null hypothesis

that there is no change in the mean for large values of the test statistic

max
1≤k≤n−1

∣∣∣∣∣∣ 1

ndn

k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ . (7.1)

The change-point is supposed to take place after the observation Xk∗ for the k∗ ∈
{1, . . . , n − 1}, for which the test statistic (7.1) takes its maximum value. Since the

scaling factor (ndn)−1 = n−2+D/2(c1L(n))−1/2 does not depend on k, it does not influ-

ence k∗. Knowledge about the LRD parameter H is therefore only essential for a test

decision if there is a change-point; the possible location k∗ is unaffected. This allows

us to pre-estimate the jump location without knowing H by

k∗ = arg max
1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ . (7.2)

If there is a jump after X[τn] for a τ ∈ (0, 1), k∗ estimates its location [τn]; if there is

no jump in the time series, k∗ is some more or less meaningsless index in {1, . . . , n},
but it will not affect the following estimation procedure.

Given the observations X1, . . . , Xn and an estimate k∗ for the jump location as

described in (7.2), we divide the observation into two parts

X1, . . . , Xk∗ and Xk∗+1, . . . , Xn.
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The jump height can be estimated by

ĥ =
1

n− k∗
(Xk∗+1 + . . .+Xn)− 1

k∗
(X1 + . . .+Xk∗),

and so we can remove the jump by considering the time series

X1, . . . , Xk∗ , Xk∗+1 − ĥ, . . . , Xn − ĥ.

On this new time series which is regarded as jump-free, we can estimate H; we denote

this estimate, which is based on pre-estimating and on one long time series, by

Ĥpre,1 = estimation of H on sample X1, . . . , Xk∗ , Xk∗+1 − ĥ, . . . , Xn − ĥ.

Alternatively, we can estimate H on both arising blocks seperately, which yields two

estimates Ĥ
(1)
k∗ and Ĥ

(2)
k∗ , and take their mean value as an estimate for H on the whole

sample:

Ĥpre,2 =
Ĥ

(1)
k∗ + Ĥ

(2)
k∗

2

Remark. (i) Other change-point tests which can be used to pre-detect the jump (in-

stead of the “Wilcoxon-type” test based on (7.1) and (7.2) above) may need the LRD

parameter H – which is just what the method itself is aiming at. A way out of this

vicious circle could be an iterative procedure: Starting with an estimate of H on the

whole sample, one could apply the change-point test which yields a new estimate for

H, which can then be used to execute the change-point test again, and so on. One can

cherish hopes that such a procedure converges or yields, when stopped by a certain

rule, an useful estimate for H.

(ii) Such an iterative procedure can not be used to refine the estimator Ĥpre,1 although

it seems to be reasonable: The removal of the jump is error prone since both the

location and the height of the jump are estimated, so after removing the jump, one

could again apply the change-point test, remove the resulting jump and estimate H on

this new (double) jump-free sample, and so on; one could stop the iterations when the

estimated value of H does not change significantly (for example when the difference

between the new estimate and the estimate from the previous iteration is ≤ 0.01). But

this does not lead to an useful estimate since the technique removes too much of the

structure of the data and H is heavily underestimated.

(iii) An iterative procedure like that to refine Ĥpre,2 is impossible: As described, the

estimation of the jump location by k∗ is not affected by the value of H – we would

obtain the same estimate Ĥpre,2 in any iteration step.

7.2.2 Simulations

We have simulated n = 500 realizations ξ1, . . . , ξ500 of fGn with Hurst parameter H =

0.7 (i.e. D = 0.6), using the fArma package in R. We have choosen G(t) = t and
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obtained observations X1, . . . , X500 of fGn with H = 0.7. To this time series, we have

added a jump of height h = 0.5, 1, 2 after a proportion of λ = 0.1, 0.5 (i.e. after 50

and after 250 observations). To these resulting seven time series (one without jump,

six with jump at different positions and of different heights) we have applied each of

the above defined estimators, using exemplarily the Whittle Estimator (Section 7.2.2)

and the Box-Periodogram Estimator (Section 7.2.2) to estimate the value of the Hurst

parameter H = 1−D/2, see Taqqu, Teverovsky and Willinger (1995) and Giraitis and

Taqqu (1999). We have repeated these simulations 1, 000 times, so after all we obtained

1, 000 estimates H̃1 . . . , H̃1000 for each estimator H̃ and each data situation.

Simulation results for the Whittle Estimator

In a first set of simulations, we have choosen the Whittle Estimator as generic estimation

method for H. In Table 7.1 the relative difference between the average of the above

described estimates H̃1 . . . , H̃1000 and the true parameter is given for each situation,

i.e. the value
mean{H̃1 . . . , H̃1000}

H
− 1

where H denotes the true parameter and H̃ the respective estimate. For example,

for the usual estimator Ĥ (here: the Whittle estimator) and a jump of height 2 after

10% of the data (h = 2, λ = 0.1), we have tabulated 0.126 which means that in this

situation the usual estimator overestimates the true value on average by 12.6% (and

yields Ĥ = 0.788 as average estimate for the true parameter H = 0.7).

At a glance, we see that there is no uniformly best estimator; instead we observe

the following:

• For early or late jumps (λ = 0.1)

– and for small jump heights, the estimators Ĥmindiff, Ĥpre,1, ĤMV,w2 and

ĤMV,w3 yield the best results, while

– for high jumps, ĤMV,w1 is the best.

• For jumps in the middle (λ = 0.5)

– and for small jump heights, we obtain the best estimates with Ĥmean, Ĥpre,2

and ĤMV,w2 , while

– for high jumps, Ĥpre,2 and again ĤMV,w1 are the best.

• The non-overlapping moving window technique is worse than the regular (over-

lapping) moving window technique. We conjecture that this arises from under-

estimating H on small samples without jump and overestimating H on samples

with jump: In the non-overlapping technique, H is rather underestimated on

most of the few small windows, while in the regular overlapping technique, this

is compensated by rather overestimating H on all those many windows which

include the jump.
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Ĥ Ĥmean Ĥmindiff Ĥpre,1 Ĥpre,2

no jump -0.002 -0.006 -0.004 -0.022 -0.020

λ = 0.1

h = 0.5 0.010 0.005 0.003 -0.014 -0.012

h = 1 0.042 0.031 0.020 0.000 0.006

h = 2 0.126 0.091 0.068 0.031 0.051

λ = 0.5

h = 0.5 0.027 0.005 0.011 -0.017 -0.013

h = 1 0.086 0.031 0.040 -0.013 -0.009

h = 2 0.198 0.084 0.090 -0.010 -0.006

Ĥ ĤMV,w1 ĤMV,w2 ĤMV,w3 ĤMV nl,w1

no jump -0.002 -0.020 -0.010 -0.003 -0.040

λ = 0.1

h = 0.5 0.010 -0.017 -0.007 -0.001 -0.039

h = 1 0.042 -0.011 0.001 0.005 -0.036

h = 2 0.126 0.002 0.017 0.021 -0.030

λ = 0.5

h = 0.5 0.027 -0.017 -0.003 0.013 -0.038

h = 1 0.086 -0.011 0.012 0.048 -0.035

h = 2 0.198 0.001 0.043 0.125 -0.028

Table 7.1: Estimators for the Hurst parameter H in time series without (‘no jump’)

and with change-point (jump of height h after a proportion of λ), relative difference

between average estimate and the true parameter, each based on 1, 000 simulation runs

with n = 500 realizations of fGn with H = 0.7, each based on the Whittle Estimator

• Our methods yield very reliable results even if there is no shift in the sample.

While the usual estimator which is designed for exactly this situation yields a

relative error of 0.2% on average, our methods with the best average relative

error of 0.3% and the worst one of only 2.2% can easily compete with this.

In order to get an overview of the performance of the different estimators, we looked

in Table 7.1 only at the average values. But estimating the Hurst parameter is always

precarious when the sample of observations is not very large because LRD intrinsically

manifests oneself on large scales, so the sucess of any estimation from a small sample

depends more or less on fortunate circumstances – the sample has to be appropriate

to reveal the dependence structure –, so as a consequence, the estimation from small

samples is error-prone and is likely subject to fluctuations; thus, we seletced the most

promising estimators from Table 7.1 for both scenarios (early/late jumps and jumps in

the middle) and looked at their variation in our 1,000 simulation runs which is shown

in Figure 7.9.

And indeed, we observe the following:

• The estimators, which all yield very good results on average, have all an in-

terquartile range (IQR, the difference between the upper and the lower quartile
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of a sample) of around 0.04, in other words: half of all estimates (of the true

parameter H = 0.7) fluctuate between 0.66 and 0.74, which is pleasing.

• But the whiskers and outliers indicate that there are situations in which the

estimators miss the true value by up to around 0.1 – or even worse –, in other

words in which the estimation yields 0.6 or 0.8 instead of the true parameter value

H = 0.7.

• Taking into account the variability of the estimator, the moving window estimator

with the
√
n-window size, ĤMV,w1 , is uniformly the best in our survey: on average,

it yields good estimates, and the variation is not only rather constant over jump

heights and jump positions, but also one of the smallest among the analysed

estimators.

Simulation results for the Box-Periodogram Estimator

In a second set of simulations, we have choosen the Box-Periodogram Estimator as

underlying estimation method for H. In our simulation study, this estimator has proven

to be biased: it tends to underestimate the true value of H in time series without jump;

moreover, it has a bigger variance. In Table 7.2, again the relative difference between

the average of the above described estimates H̃1 . . . , H̃1000 and the true parameter is

given for each situation.

We observe clear differences to the simulations with the Whittle Estimator:

• In the high number of underestimations, even in time series with jump, the bias

of the underlying estimator becomes apparent.

• In combination with overestimating H when there is a jump in the mean, which

even slightly occurs when using our new jump-adapted estimation procedures,

this original bias causes that we sometimes obtain better results than with the

Whittle Estimator. This occurs here and there, but most likely for high jumps

(h = 1, h = 2) in the middle (λ = 0.5).

• Combined with the non-overlapping moving window approach ĤMV nl, the Box-

Periodogramm Estimator reveals a remarkable behaviour: it yields drasticly worse

results than the Box-Periodogramm Estimator without any modification. The

reason may be that, the larger the sample is, the more changes the bias of the

Box-Periodogramm Estimator from positive to negative as we have seen in our

inital simulation study. In the non-overlapping moving window approach, H is

estimated on only a few small windows, and on these, the Box-Periodogramm

Estimator yields impressive overestimations.

Again, we selected the most promising estimators from Table 7.2 for both scenarios

(early/late jumps and jumps in the middle) and looked at their variation; these are
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fGn, lambda=0.1, Whittle estimator

e
s
t
i
m
a
t
i
o
n

no jump h=0.5 h=1 h=2

0
.
5

0
.
7

0
.
9

mindiff
pre1
MV,w1

fGn, lambda=0.5, Whittle estimator

e
s
t
i
m
a
t
i
o
n

no jump h=0.5 h=1 h=2

0
.
5

0
.
7

0
.
9

mean
pre2
MV,w1

Figure 7.9: Estimators for the Hurst parameter H = 0.7 in time series with change-

point (jump of height h after a proportion of λ), based on each 1,000 simulation runs

with n = 500 realizations of fGn with H = 0.7.



176 Solutions for estimation problems

fGn, lambda=0.1, boxper estimator
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Figure 7.10: Estimators for the Hurst parameter H = 0.7 in time series with change-

point (jump of height h after a proportion of λ), based on each 1,000 simulation runs

with n = 500 realizations of fGn with H = 0.7.
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Ĥ Ĥmean Ĥmindiff Ĥpre,1 Ĥpre,2

no jump -0.104 -0.083 -0.090 -0.148 -0.105

λ = 0.1

h = 0.5 -0.082 -0.070 -0.074 -0.129 -0.087

h = 1 -0.030 -0.039 -0.049 -0.099 -0.063

h = 2 0.096 0.0310 0.015 -0.052 -0.001

λ = 0.5

h = 0.5 -0.064 -0.067 -0.066 -0.139 -0.106

h = 1 -0.010 -0.039 -0.033 -0.131 -0.101

h = 2 0.081 0.017 0.042 -0.126 -0.097

Ĥ ĤMV,w1 ĤMV,w2 ĤMV,w3 ĤMV nl,w1

no jump -0.104 0.047 -0.050 -0.093 0.130

λ = 0.1

h = 0.5 -0.082 0.051 -0.047 -0.090 0.166

h = 1 -0.030 0.059 -0.041 -0.083 0.219

h = 2 0.096 0.081 -0.024 -0.064 0.281

λ = 0.5

h = 0.5 -0.064 0.051 -0.044 -0.076 0.153

h = 1 -0.010 0.059 -0.031 -0.042 0.187

h = 2 0.081 0.080 0.003 0.034 0.231

Table 7.2: Estimators for the Hurst parameter H in time series without (‘no jump’) and

with change-point (jump of height h after a proportion of λ), relative difference between

average estimate and the true parameter, each based on 1, 000 simulation runs with

n = 500 realizations of fGn with H = 0.7, based on the Box-Periodogram Estimator.

in parts different estimators than in the setting based on the Whittle estimator. The

results are shown in Figure 7.10 and reveal the following:

• Without any exception, the estimations have a much higher variance and a fatally

large range.

• Compared to the estimations based on the Whittle Estimator, choosing the Box-

Periodogram Estimator as underlying estimation method is not recommendable.

• Taking into account the variance of the estimator, the moving window estimator

with n/10-window size, ĤMV,w2 , is uniformly the best (of the bad) in our survey:

its variation is rather constant over jump heights and jump positions, and it is

one of the smallest.

7.2.3 Conclusion and outlook

In time series which are supposed to exhibit LRD, it is important for any statistical

inferece to estimate the LRD parameter like the Hurst parameter H ∈ (0.5, 1), respec-

tively D = 2H − 2 in (1.1). There exist several different approaches for this problem,
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but they all suffer from the defect that they are confused by structural changes in the

data: If there is a shift in the mean, the usual estimation methods easily missjudge

the structure of the data and may detect spurious or too heavy LRD. This drawback

is a fatal double bind when it comes to test for change-points in LRD time series:

Change-point tests naturally require knowledge of the Hurst parameter H in order

to discriminate between a change-point and behaviour which originates from the long

memory, but in practival situations, H must be estimated. Thus a jump in the data

may lead to overestimating H which may lead to overlooking the jump.

We have proposed three types of methods how estimation procedures can be adapted

in order to make allowance for even time series with a change in the mean. In a

simulation study we have compared these methods with different parameters and in

different jump-contaminated and also jump-free situations. Our research shows that

estimation of H can considerably be improved by our methods which yield better

estimates when there is a jump in the time series and which do not affect the estimation

when there is none.

It would be interesting to see how the proposed methods perform under different

data scenarios, e.g. heavy-tailed observations, which may occur if one chooses another

transormation G in our model, or a FARIMA model. Moreover, one could explore if one

could reach improvements by e.g. choosing other window sizes for the moving window

methods or by introducing weighted means for the methods which seperate the sample

in two blocks (instead of keeping the cutting point k away from the borders, one could

down-weight estimations where one of the blocks has a small size). It would also be

interesting to investigate how the methods can be adapted to allow for multiple breaks.

7.3 Estimating the first Hermite coefficient

The observations Xi = G(ξi) considered here exhibit LRD, and thus it is well-known

by now, but still astonishing, that the limit behaviour of the process

d−1
n

[λn]∑
i=1

Xi = d−1
n

[λn]∑
i=1

G(ξi), 0 ≤ λ ≤ 1,

only depends on very little properties of G, namely only on the Hermite rank of G

and the associated Hermite coefficient am (see Theorem 1.1): m determines the scaling

factor dn and the kind of limit distribution; am is a multiplicative factor in this limit

distribution. But this means: If one wants to do statistics based on the observations Xi,

e.g. the “difference-of-means” test from Section 3.4.2, one has to know the functionG, or

at least its Hermite rank and the belonging coefficient, otherwise the limit distribution

is unknown. Even in the comforting situation that G is strictly monotone in which

we already know by the Corollary to Theorem 3.5 that the “difference-of-means” test

statistic has always Hermite rank m = 1, we still need to know the first Hermite

coefficient a1. In what follows, we propose a method to estimate this Hermite coefficient
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if one only observes Xi = G(ξi), i = 1, . . . , n, for the broad class of strictly monotone

functions G.

7.3.1 The sort and replace method

For a start, we restrict ourselves to strictly monotonely increasing G. We want to

estimate the first Hermite coefficient

a1 := E[ξ G(ξ)],

where ξ ∼ N (0, 1). A natural way to estimate this expectation is the mean

â1 =
1

n

n∑
i=1

ξiG(ξi) =
1

n

n∑
i=1

ξiXi,

but this does not help since we do not observe the ξi. But here the monotonicity of G

comes in handy: We know that small Xi originate from small ξi and big Xi originate

from big ξi, so we sort the summands:

â1 =
1

n

n∑
i=1

ξiG(ξi) =
1

n

n∑
i=1

ξ(i)G(ξ(i)) =
1

n

n∑
i=1

ξ(i)X(i),

where in the last step we have essentially used that a strictly monotonely increasing G

does not change the order of the data. In order to estimate a1, we can now replace the

unknown ξi by new independent random variables ξ′i with the same distribution.

Theorem 7.1. Suppose that (ξi)i≥1 is a stationary Gaussian process with mean zero,

variance 1 and auto-covariance function (1.1) with 0 < D < 1. For G ∈ G2 define

Xk = G(ξk).

Let the Xk have a continuous c.d.f. F . Let ξ′i ∼ N (0, 1), i = 1, . . . , n, be i.i.d. random

variables, independent of the ξi that generate the observations Xi = G(ξi), as defined

above.

(i) If G is strictly monotonely increasing,

ã1 :=
1

n

n∑
i=1

ξ′(i)X(i)
P−→ a1. (7.3)

(ii) If G is strictly monotonely decreasing,

ã1 :=
1

n

n∑
i=1

ξ′(i)X(n−i)
P−→ a1. (7.4)
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Proof. (i) G is strictly increasing. G ∈ L2(R,N ) entails f(t) = tG(t) ∈ L1(R,N ), thus

by the ergodic theorem 1
n

∑n
i=1(ξiXi − a1)→ 0, almost surely. So it is to show that

1

n

n∑
i=1

(ξ(i) − ξ′(i))X(i)
P−→ 0.

By the Cauchy-Bunyakovsky-Schwarz inequality∣∣∣∣∣ 1n
n∑
i=1

(ξ(i) − ξ′(i))X(i)

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(ξ(i) − ξ′(i))2

√√√√ 1

n

n∑
i=1

X2
i ,

and the second factor converges to a constant, since G ∈ L2(R,N ). In order to show

that the first factor converges to zero, we truncate; set an arbitrary constant c > 0 and

define

ξ̄i :=


−c if ξi < −c

c if ξi > c

ξi else

and ξ̄′i analogously. With Minkowski’s inequality and since truncation does not change

the order of the data, so that
∑n

i=1(ξ(i) − ξ̄(i))
2 =

∑n
i=1(ξi − ξ̄i)2, we obtain√√√√ 1

n

n∑
i=1

(ξ(i) − ξ′(i))2 ≤

√√√√ 1

n

n∑
i=1

(ξi − ξ̄i)2 +

√√√√ 1

n

n∑
i=1

(ξ′i − ξ̄′i)2 +

√√√√ 1

n

n∑
i=1

(ξ̄(i) − ξ̄′(i))2.

(7.5)

The first term on the right-hand side of (7.5) vanishes asymptotically for n, c → ∞
because √√√√ 1

n

n∑
i=1

(ξi − ξ̄i)2 n→∞−→
√
E
[
(ξi − ξ̄i)2

]
and E

[
(ξi − ξ̄i)2

]
→ 0 as c→∞ due to the dominated convergence theorem, because

ξi − ξ̄i → 0 and |ξi − ξ̄i| < |ξi|. This holds of course for the second term in (7.5) as

well. We well now rigorously prove the intuition correct that for two samples ξ1, . . . , ξn

and ξ′1, . . . , ξ
′
n of identically distributed random variables ξ(i) gets close to ξ′(i), when n

increases. With |ξ̄(i) − ξ̄′(i)| ≤ 2c, we obtain for the last term on the right-hand side of

(7.5)

1

n

n∑
i=1

(ξ̄(i) − ξ̄′(i))
2 ≤ 2c max

i=1,...,n
|ξ̄(i) − ξ̄′(i)|

≤ 2c max
i=1,...,n

(∣∣∣∣ξ̄(i) − Φ̄−1

(
i

n

)∣∣∣∣+

∣∣∣∣ξ̄′(i) − Φ̄−1

(
i

n

)∣∣∣∣) ,
where Φ̄ denotes the c.d.f of the single ξ̄i. Note that by definition of ξ̄i, Φ̄ equals the

standard normal c.d.f. Φ on the interval (−c, c).
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Figure 7.11: A lower bound for the difference of the empirical and the true distribution

function for uniformly distributed variables: supx∈R |FU (x)−FU,n(x)| is at least as big

as
∣∣U(i) − F−1

U

(
i
n

)∣∣. Note that F−1
U,n

(
i
n

)
= inf{t |FU,n(t) ≥ i

n} = U(i).

For a moment consider i.i.d. random variables Ui ∼ U [0, 1]. Here the c.d.f. FU is

basically the bisecting line, and thus one can graphically show (see Figure 7.11) that∣∣∣∣U(i) − F−1
U

(
i

n

)∣∣∣∣ ≤ sup
x∈R
|FU (x)− FU,n(x)| , (7.6)

where FU,n is the empirical distribution function of the Ui. Such an inequality for non-

uniformly distributed random variables can be traced back on (7.6) by using the mean

value theorem:

(b− a) inf
t∈(a,b)

f ′(t) ≤ f(b)− f(a),

if f is continuous on [a, b] and differentiable in the interior. With f = Φ̄ and [a, b] =

[−c, c] we obtain∣∣∣∣ξ̄(i) − Φ̄−1

(
i

n

)∣∣∣∣ ≤ 1

inft∈(−c,c) ϕ(t)

∣∣∣∣Φ̄ (ξ̄(i)

)
− Φ̄

(
Φ̄−1

)( i
n

)∣∣∣∣
≤ 1

inft∈(−c,c) ϕ(t)

∣∣∣∣U(i) −
i

n

∣∣∣∣
≤ 1

inft∈(−c,c) ϕ(t)
sup
x∈R

∣∣FU (x)− F̄U,n(x)
∣∣ ,

where F̄U,n(x) denotes the e.d.f. of the (uniformly distributed) Φ̄(ξ̄i).

So we obtain for the last term on the right-hand side of (7.5)

1

n

n∑
i=1

(ξ̄(i) − ξ̄′(i))
2 ≤ 2c

inft∈(−c,c) ϕ(t)

(
sup
x∈R

∣∣FU (x)− F̄U,n(x)
∣∣+ sup

x∈R

∣∣FU (x)− F̄ ′U,n(x)
∣∣)

=
2c

inft∈(−c,c) ϕ(t)

(
sup
x∈R

∣∣Φ̄(x)− Φ̄n(x)
∣∣+ sup

x∈R

∣∣Φ̄(x)− Φ̄′n(x)
∣∣) ,

(7.7)
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Figure 7.12: Estimated Hermite coefficients ã1, the mean relative to the true value a1

(left) and the variance (right), based on 10, 000 repetitions, for different G.

since the transformation to the uniform distribution only rescales the x-axis. (To see

this, just plug in Φ̄(x) instead of x, it makes no difference if we evaluate the supremum

over all x ∈ R or all Φ̄(x) ∈ Φ̄(R). Recall: F̄U,n(x) denotes the e.d.f. of the Φ̄(ξ̄i), F̄
′
U,n(x)

denotes the e.d.f. of the Φ̄(ξ̄′i), Φ̄n(x) denotes the e.d.f. of the ξ̄, Φ̄(x) denotes the true

c.d.f. of the ξ̄ and Φ̄′n(x) denotes the e.d.f. of the ξ̄′.) Now with the ergodic version of

the theorem of Glivenko-Cantelli, (7.7) converges to 0 for all fixed c, as n → ∞, thus

the right-hand side of (7.5) converges to zero, and the statement is proved.

(ii) If G is strictly decreasing, only small changes have to be made. Under a de-

creasing transformation Xi = G(ξi), small Xi originate from big ξi and big Xi originate

from small ξi, so we now sort the summands

â1 =
1

n

n∑
i=1

ξiG(ξi) =
1

n

n∑
i=1

ξ(i)G(ξ(i)) =
1

n

n∑
i=1

ξ(i)X(n−i+1).

So just replace X(i) by X(n−i+1) in the preceding proof. Since (ξi)i≥1 is stationary and

thus (Xi)i≥1 is it, this does not change anything.

7.3.2 Simulations

In this section, we will analyse the behaviour of the estimator ã1 in (7.3) in finite sample

settings (with sample size ranging from n = 10 up to n = 10, 000). We have simulated n

realisations ξ1, . . . , ξn of fractional Gaussian noise (fGn) with Hurst parameter H = 0.7

and generated the observationsXi = G(ξi) by applying different functionsG on the fGn.

We have repeated each simulation 10, 000 times. To see how good the estimation is, we

have divided the sample mean of these 10, 000 estimates (for each set of simulations)

by the respective true Hermite coefficient a1 = E[ξG(ξ)] which has been determined

by numerical integration. We have also calculated the sample variance of the 10, 000
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estimates. The simulation results are presented in Figure 7.12; the exact simulation

results are given in Table D.24 in Appendix D.

• Gaussian data.

With the increasing transformation G(t) = t we obtain standard fGn as oberva-

tions. This is the most simple non-trivial case in this model since G does not

change the underlying ξi. As one can expect, the estimation is very good in this

case.

• Symmetric data.

The function

G(t) = −(2−1/2) sgn

(
Φ(t)− 1

2

)
log

(
1− 2

∣∣∣∣Φ(t)− 1

2

∣∣∣∣) .
first transforms the data to a U [−1

2 ,
1
2 ] distribution, then applies a quantile trans-

formation and finally centralises the data. This G is increasing and yields stan-

dardised Laplace(0,4) distributed data with p.d.f.

fst(x) =
1√
2

exp
(
−|
√

2x|
)
,

i.e. normal-tailed, symmetric data. G is a well-behaved transformation, so the

data are not too wild: The estimation is close to the Gaussian case.

• Not-so-heavy-tailed data.

A function G that provides heavy tails but a finite variance, so that it is coverd by

our techniques, is G(t) = (3/4)−1/2
(
(Φ(t))−1/3 − 3

2

)
. G is decreasing and yields

standardised Pareto(3,1) distribution with p.d.f.

√
3

4
· f3,1

(√
3

4
x+

3

2

)
=

3
√

3
4

(√
3
4 x+ 3

2

)−4

if x ≥ −
√

1
3

0 else
.

The estimated value is comparable to the estimated value under Pareto(2,1) data

(the case which we will treat next), but the variance of the estimation is fortu-

nately smaller.

• Heavy-tailed data.

G(t) = (Φ(t))−1/2 − 2 is decreasing and transforms the data to a centralised

Pareto(2,1)-distribution with p.d.f.

f2,1

(
x+

3

2

)
=

2
(
x+ 3

2

)−3
if x ≥ −1

2

0 else
.

So the Xi have heavy tails and and infinite variance. Note that such transfor-

mation G are actually not covered by Theorem 7.1, but it is interesting to study
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the performance of the estimator in such a case. Unsurprisingly, the estimation

is bad: For for small sample sizes, the mean is far away from the true value (al-

though it relies on 10,000 simulation runs), and the estimation is afflicted with a

huge variance.



Appendix A

A short introduction into

stochastic integration

In Section 1.3, I have mentioned (and we have seen it over and over throughout this

work) that the theory of LRD processes is strongly related to stochastic integration,

integration with respect to a stocastic process (instead of a deterministic function).

Now I will explain the idea behind these objects and their relation to LRD.

A.1 Wiener integral

The simplest stochastic integral is the Wiener integral

IW (f) =

∫ b

a
f(t) dB(t, ω),

where f is a deterministic function (i.e. it does not depend on ω) and B is a Brownian

motion. It can be constructed for arbitrary square-integrable functions f ∈ L2([a, b], λ)

by approximation procedures using step functions. To this end, divide the interval

[a, b] into n pieces: a = τ0 < τ1 < . . . < τn−1 < τn = b. For step functions f(t) =∑n
i=1 aiI[τi−1,τi)(t), ai ∈ R, the integral is defined as

IW (f) =

n∑
i=1

ai (B(τi)−B(τi−1)) .

Clearly, IW is a linear map on the space of step functions: IW (αf + βg) = αIW (f) +

βIW (g) for any α, β ∈ R and any step functions f, g. Using that the increments

B(t) − B(s) of a Brownian motion are independent N (0, t − s)-distributed, one can

easily show that

IW (f) ∼ N (0, σ2)

with

σ2 = E [IW (f)]2 =

∫ b

a
f2(t) dt.
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Now consider an arbitrary function f ∈ L2([a, b], λ) and choose a sequence (fn)n≥1 of

approximating step functions (i.e. fn → f). The last identity ensures that (IW (fn))n≥1

is a Cauchy sequence in L2 and thus converging. We define its limit as the Wiener

integral of f .

Definition A.1 (Wiener integral). For any f ∈ L2([a, b], λ), the Wiener integral of f

is

IW (f) = lim
n→∞

IW (fn),

where the convergence is in L2.

A Wiener integral has the following properties:

• The limit in the definition above is independent of the chosen approximating

sequence of step functions, such that IW (f) is well-defined.

• IW (f) =
∫ b
a f(t) dB(t, ω) is a Gaussian random variable with mean 0 and variance

‖f‖2 =
∫ b
a f

2(t) dt.

• From this it follows by some calculations that

E [IW (f)IW (g)] =

∫ b

a
f(t)g(t) dt,

and so, IW (F ) and IW (g) are independent, if f and g are orthogonal in L2([a, b], λ).

• The stochastic process

Mt =

∫ t

a
f(s) dB(s)

is a martingale.

Verifying these properties is not excessively difficult (Kuo, 2006, p. 9–21, gives

detailed proofs).

A.2 Itō integral

A natural question, at least for mathematicians, is now if one can define an integral

with respect to a Brownian motion even for stochastic processes as integrands. The

answer is positive; a so called Itō integral

II(f) =

∫ b

a
f(t, ω) dB(t, ω)

arises. Now f is a stochastic process, and this extension yields some severe problems.

If we want to keep the computationally advantageous martingale property, we need to

place some demands on f .
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Definition A.2 (Adapted L2 space). Consider a probability space (Ω,F , P ). Let

L2
ad([a, b]× Ω, λ× P ) be the class of functions

f(t, ω) : [a, b]× Ω→ R

such that

(i) (t, ω) 7→ f(t, ω) is B × F-measurable, where B denotes the Borel σ-algebra on

[a, b],

(ii) f(t, ω) is adapted to the filtration {Ft}, where Ft = σ(Bs, s ≤ t) is the σ-algebra

generated by the random variables Bs with s ≤ t (one can think of Ft as being

the history of Bs up to time t),

(iii) E
[∫ b
a f(t, ω)2 dt

]
<∞.

For such processes f we can define a nice stochastic integral, and we will do this

once more by approximation procedures. At first, divide the interval [a, b] into n pieces

a = τ0 < τ1 < . . . < τn−1 < τn = b and consider a step process

f(t, ω) =

n∑
i=1

ai(ω)I[τi−1,τi)(t),

where ai is now a Fτi−1-measurable, quadratically integrable random variable. For such

processes, the integral is defined as

II(f) =
n∑
i=1

ai(ω) (B(τi)−B(τi−1)) (ω).

Clearly, this is again linear: II(αf + βg) = αII(f) + βII(g) for any α, β ∈ R and

any step processes f, g. Not as easily as for Wiener integrals, one can show that

E [II(f)] = 0

E [II(f)]2 =

∫ b

a
E [f(t, ω)]2 dt,

but of course II(f) is in general not normal distributed. This is a first raw version of

the so called Itō isometry.

With the aid of this isometry, one can extend the definition from step processes

to processes in L2
ad([a, b] × Ω). At first, choose an arbitrary process g ∈ L2

ad which is

bounded and continuous in t for each ω. Then we can find an approximating sequence

(fn)n≥1 of step processes such that

E

[∫ b

a
(g − fn)2 dt

]
→ 0 as n→∞.

Next, one can approximate any bounded h ∈ L2
ad by such bounded functions gn ∈ L2

ad

which are continuous in t for each fixed ω:

E

[∫ b

a
(h− gn)2 dt

]
→ 0 as n→∞
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Finally, we can approximate any arbitray f ∈ L2
ad by bounded functions hn ∈ L2

ad:

E

[∫ b

a
(f − hn)2 dt

]
→ 0 as n→∞

The technical details of these approximations are worked out for example in the books

by Kuo (2006, Chap. 4.3) or Øksendal (1998, Chap. 3.1). These three steps together

mean that, in order to define an Itō integral, we can approximate any f ∈ L2
ad by step

functions for which we have defined II(f).

Definition A.3 (Itō integral). For any f ∈ L2
ad([a, b] × Ω, λ × P ), the Itō integral is

defined by

II(f) =

∫ b

a
f(t, ω) dBt(ω) = lim

n→∞
II(fn),

where (fn)n≥1 is a sequence of step processes approximating f in L2([a, b]× Ω):

E

[∫ b

a
(f(t, ω)− fn(t, ω))2 dt

]
→ 0 as n→∞.

An Itō integral has the following properties:

• The limit in the definition above is independent of the chosen approximating

sequence of step processes, such that II(f) is well-defined.

• II(f) =
∫ b
a f(t, ω) dB(t, ω) is a random variable with mean 0 and variance

E

[∫ b

a
f(t, ω) dBt(ω)

]2

=

∫ b

a
E[f2(t, ω)] dt

(this is called Itō isometry).

• For a sequence (fn)n≥1 ∈ L2
ad with E

[∫ b
a (f(t, ω)− fn(t, ω))2 dt

]
→ 0 it holds

∫ b

a
fn(t, ω) dBt(ω)→

∫ b

a
f(t, ω) dBt(ω)

in L2(P ) as n→∞.

• For all f, g ∈ L2
ad

E [II(f)II(g)] =

∫ b

a
E [f(t, ω)g(t, ω)] dt.

•
∫ b
a f(t, ω) dBt(ω) is Fb-measurable.

• The stochastic process

Mt =

∫ t

a
f(s, ω) dBs(ω)

is a martingale with respect to the filtration {Ft} = σ(B(s), s ≤ t).
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• Mt has a t-continuous version: There exists a t-continuous stochastic process M̃t

on (Ω,F , P ) with P (M̃t = Mt) = 1 for all t ∈ [a, b].

One major difference between stochastic and deterministic integrals is the follow-

ing: As usual, one approximates f(t, ω) by a step process
∑

j f(t∗j , ω)I[tj−1,tj)(t) with

some t∗j ∈ [tj−1, tj), and the integral
∫ b
a f(t, ω) dBt(ω) is defined by the limit of∑

j f(t∗j , ω)(Btj − Btj−1). But what is now a bit surprising is that, in contrast to

Riemann integrals, it makes a difference which point t∗j ∈ [tj−1, tj) we choose, even

though the intervals become infinitely small.

Two choices have become common, for they have been proven useful: Choosing

the left endpoint of the interval t∗j = tj−1 leads to the Itō integral above, choosing

the mid-point t∗j = (tj−1 + tj)/2 leads to the so called Stratonovic integral. While

the Itō integral is a martingale and thus features some computational advantage, the

Stratonovich integral is not, however it behaves more pleasingly under transformations:

It allows for a chain rule without second order terms (which are inevitable for Itō in-

tegrals, see section A.3 below). Øksendal (1998, p. 36–37) gives a short discussion of

both concepts; Kuo (2006, Chap. 8.3) discusses the Stratonovich integral in the context

of Itō processes and the Itō formula (which we will shortly introduce).

It is possible to extend the definition of an Itō integral to a wider class of inte-

grands f . Condition (iii) in Definition A.2, E[
∫ b
a f(t, ω)2 dt] < ∞, can be relaxed to∫ b

a f(t, ω)2 dt <∞ a.s., which may be not integrable.

With the original definition, II(f) belongs to L2(Ω, P ), and since P is a probability

measure and therefore finite, it follows that II(f) ∈ L1(Ω, P ) as well, that means that

the Itō integral is an integrable random variable, and
∫ t
a f(s, ω)dBs(ω) is a martingale.

A function f that fulfills only the new condition
∫ b
a f(t, ω)2 dt <∞ a.s. does not neces-

sarily lead to an integrable II(f), and if it is not integrable, it cannot be a martingale.

But it is at least a so called local martingale which has as well a continuous version

(Kuo, 2006, Chap. 5).

In Definition A.2, condition (ii) can also be weakened. This allows to define multi-

dimensional Itō integrals and, as a special case, Itō integrals with respect to one single

coordinate of n-dimensional Brownian motion while the integrand is a function of other

of its coordinates. This is carried out by Øksendal (1998, Chap. 3.3) where some

bibliographical references are given as well. It is also possible to extend the definition

of an Itō integral to a wider class of integrators, namely to martingales. For f, g ∈
L2

ad([a, b]× Ω) and a martingale Mt =
∫ t
a g(s, ω) dBs(ω) one defines

∫ b

a
f(t, ω) dMt(ω) =

∫ b

a
f(t, ω)g(t, ω) dBt(ω).

To obtain a useful definition, some further conditions on f are necessary; the con-

struction can be found in the book of Kuo (2006, Chap. 6), the essential tool is the
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Doob-Meyer decomposition.

As for ordinary random variables, we will ommit the argument ω when we deal with

stochastic processes if there is no danger of confusing something.

A.3 Itō process and Itō formula

As in ordinary calculus, one does not want to evaluate stochastic integrals by their

definition; it is laborious. But while ordinary integrals can be evaluated with the aid

of the fundamental theorem of calculus, with antiderivatives, such useful combination

of integration and differentiation is not on hand here, simply because in the world of

stochastic processes there is no differentiation. For example a chain rule like (f(g(t)))′ =

f ′(g(t))g′(t) in the context of processes,

(f(B(t)))′ = f ′(g(t))B′(t),

is meaningless since almost all sample paths of B(t) are nowhere differentiable. Nev-

ertheless, there is an analogue to the chain rule which lends us a hand at stochastic

integration.

Theorem A.1 (Itō formula I). For any f ∈ C2(R)

f(B(t))− f(B(a)) =

∫ t

a
f ′(B(s)) dB(s) +

1

2

∫ t

a
f ′′(B(s)) ds,

where the first summand on the right side is an Itō integral and the second one is an

ordinary Riemann integral for any sample path of B(s).

Obviously, the second term on the right side shows (or even constitutes) the differ-

ence between ordinary calculus in Newton/Leibnz sense and Itō calculus. It originates

in the Brownian motion which has a non zero quadratic variation. Using this simple

version of the Itō formula (or as well by calculating manually which is not too difficult

in this simple case), one obtains for example

1

2
B2
t =

1

2
B2
t −

1

2
B2

0

=

∫ t

0
Bs dB(s) +

1

2

∫ t

0
ds

=

∫ t

0
Bs dB(s) +

1

2
t,

and this shows that a harmless transformation like g(x) = x2/2 converts an Itō integral

like Bt =
∫ t

0 dBs in something which is not an Itō integral any more. Mathematicians

dislike such inconsistent behaviour, and so the need for another class of processes that

is stable under smooth transformations is obvious.
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Definition A.4 (Itō process). A stochastic process of the form

Xt(ω) = Xa(ω) +

∫ t

a
f(s, ω) dBs(ω) +

∫ t

a
g(s, ω) ds, (A.1)

where Xa is Fa-measurable, a ≤ t ≤ b and f, g are in L2
ad([a, b] × Ω) (or in the gener-

alisation of this space mentioned above) is called an Itō process. Often, such processes

are written in the convenient shorthand notation

dXt = f(t) dBt + g(t) dt, (A.2)

which is of course only a symbolic expression since the differential of B is not defined

because B is nowhere differentiable.

Bt =
∫ t

0 dBs in the example above is an Itō process, and its transformation under

the map x 7→ x2/2 is it as well: It is the sum of a dBs- and a ds-integral. Its short

differential notation is

d

(
1

2
B2
t

)
= Bt dBt +

1

2
dt.

Theorem A.2 (Itō formula II). For an Itō process Xt, as in (A.1) or (A.2), and a

function θ(t, x) ∈ C2([0,∞)× R),

Yt = θ(t,Xt)

is again an Itō process, and

θ(t,Xt) = θ(a,Xa) +

∫ t

a

∂θ

∂x
(s,Xs)f(s) dBs

+

∫ t

a

(
∂θ

∂t
(s,Xs) +

∂θ

∂x
(s,Xs)g(s) +

1

2

∂2θ

∂x2
(s,Xs)f

2(s)

)
ds

or in shorthand notation

dYt =
∂θ

∂x
(t,Xt) dXt +

∂θ

∂t
(t,Xt) dt+

1

2

∂2θ

∂x2
(t,Xt) (dXt)

2,

where (dXt)
2 = (dXt) · (dXt) is computed by (A.2) and the symbolic multiplication

table1

× dBt dt

dBt dt 0

dt 0 0

.

Some important properties, extensions and applications are:

• With the aid of the Itō formula, a lot of stochastic integrals can be evaluated

using symbolic notation.

1Even not in full generality, Kuo (2006, p. 103) gives a nicely simple instruction how to use the

short notation and the multiplication table.
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• Itō processes and the Itō formula can be defined in the multi-dimensional case.

• The (multi-dimensional) Itō formula applies as well to processes with respect to

continuous and square integrable martingales (and not only with respect to the

Brownian motion).

• By the Itō formula, an integration by parts formula can be derived: If f is de-

terministic (that means f(s, ω) = f(s) only depends on s), continuous and of

bounded variation on [0, t], then
∫ t

0 f(s) dBs = f(t)Bt −
∫ t

0 Bs df(s).

• As stated above, an Itō integral is a martingale, but the converse is also true.

With the Itō formula, one can proove the important Martingale Representation

Theorem: Any martingale (adapted to Ft, with respect to the probability measure

P ) can be represented as an Itō integral.

A.4 Multiple Wiener-Itō integrals

As we have seen, we can find analogies between ordinary integration and stochastic

integration in many fields, but one obvious question remains: Can one define multiple

stochstic integrals? The answer is positive, but the construction of multiple stochstic

integrals is not self-evident. We restrict ourselfs to multiple Wiener integrals, i.e. to

deterministic integrands. The usual approach is to approximate such a deterministic

function f(t, s) by step functions

n∑
i=1

m∑
j=1

aijI[τi−1,τi)(t)I[si−1,si)(s),

where a = τ0 < τ1 < . . . < τn−1 < τn = b and a = s0 < s1 < . . . < sm−1 < sm = b are

partitions of the interval [a, b] and aij ∈ R. This construction yields for example∫ 1

0

∫ 1

0
1 dBt dBs = B2

1 ,

and this has the major drawback that it is unfortunately not orthogonal to constant

functions. In general, integrals of different degrees are by this approach, first introduced

by Wiener (1938), not orthogonal to each other.

Itō (1951) found a remedy (and this is why the construction is called multiple

Wiener-Itō integral): f has to be approximated by step functions which spare out the

diagonal of the domain of integration. For a start, we consider the two-dimensional

example above. Let ∆n = (τ0, . . . , τn) be a partition of the intervall [a, b] = [0, 1] into

n pieces. It naturally extends to a partition of the unit square

[0, 1)2 =

n⋃
i,j=1

[τi−1, τi)× [τj−1, τj).
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Defining step functions on this partition, where the interval in both dimensions is split

up in the same way, yields of course the same result as above because it is only a

special case of a general partition into rectangles: For the integrad f ≡ 1, we obtain

the Riemann sum

n∑
i,j=1

(Bτi −Bτi−1)(Bτj −Bτj−1) =

(
n∑
i=1

(Bτi −Bτi−1)

)2

= B2
1 .

But now we remove the diagonal elements and evaluate the increments of the Brownian

motion over the domain

[0, 1)2\
n⋃
i=1

[τi−1, τi)
2 =

⋃
1≤i6=j≤n

[τi−1, τi)× [τj−1, τj),

i.e. the remaining off-diagonal squares:

Sn =
∑

1≤i6=j≤n
(Bτi −Bτi−1)(Bτj −Bτj−1)

=

n∑
i,j=1

(Bτi −Bτi−1)(Bτj −Bτj−1)−
n∑
i=1

(Bτi −Bτi−1)2

→ B2
1 − 1 as ‖∆n‖ → 0

where ‖∆n‖ = max1≤i≤n{τi − τi−1} is the fineness of the partition and where we have

used that the quadratic variation of the Brownian motion on an interval [a, b] is

lim
‖∆n‖→0

n∑
i=1

(Bτi −Bτi−1)2 = b− a,

see Kuo (2006, Th. 4.1.2). Thus∫ 1

0
1 dBt dBs = B2

1 − 1,

which is obviously orthogonal to a constant function.

This way of constructing multiple stochastic integrals has proved convenient. The

general construction for a dimension d ∈ N is as follows. Let [a, b] ⊂ R. A subset of

[a, b]d of the form [t
(1)
1 , t

(2)
1 )× . . .× [t

(1)
d , t

(2)
d ) is called a rectangle. The diagonal set of

[a, b]d is the set D = {(t1, . . . , td) ∈ [a, b]d | ∃i 6= j : ti = tj} of all points which have at

least two identical coordinates.

Definition A.5 (Off-diagonal step function). A function

f(t1, . . . , td) =
∑

1≤i1,...,id≤n
ai1,...,idI[τi1−1,τi1 )(t1) · · · I[τid−1,τid )(td)

on the rectangle [a, b]d with a partition a = τ0 < τ1 < . . . < τn = b in each dimension

is called a step function. It is called an off-diagonal step function if it vanishes on D,

that means if the coefficients satisfy

ai1,...,id = 0 if ip = iq for some p 6= q.
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The class of off-diagonal step functions is a vector space. For an off-diagonal step

function f define the d-dimensional multiple Wiener-Itō integral by

Id(f) =

∫
[a,b]d

f(t1, . . . , td) dBt1 dBt2 · · · dBtd

=
∑

1≤i1,...,id≤n
ai1,...,id ξi1ξi2 · · · ξid ,

where ξip = B(τip−1)−B(τip) is the increment of B over the p-th piece of the partition

of [a, b]. Note that the above representation of an off-diagonal step function is not

unique, but the multiple Wiener-Itō integral Id(f) is well-defined (it does not depend

on the representation of f). Again, Id(f) is linear on the vector space of off-diagonal

step functions.

Now note that we can write the diagonal set D as D =
⋃

1≤i6=j≤d(D ∩ {ti = tj}),
in other words: D is a finite union of intersections of D with (d − 1)-dimensional

hyperplanes. Thus, D is a set of the Lebesgue measure 0. This allows us to approximate

a function on [a, b]d by step functions on [a, b]d\D, i.e. by off-diagonal step functions,

because we can cover [a, b]d with rectangles that come arbitrarily close to the diagonal

set without touching it. So we summarize: For each f ∈ L2([a, b]d) we can find a

sequence (fn)n of off-diagonal step functions such that

lim
n→∞

∫
[a,b]d
|f(t1, . . . , td)− fn(t1, . . . , td)|2 dt1 dt2 · · · dtd = 0.

Definition A.6 (Symmetrization). Given a function f(t1, . . . , td), the symmetrization

of f is

f̂(t1, . . . , td) =
1

d!

∑
σ

f(tσ(1), . . . , tσ(d)),

where the sum is to be taken over all permutations σ of {1, 2, . . . , d}.

If f is an off-diagonal step function, f̂ is it as well. Since the Lebesgue measure

is symmetric, one can show that the multiple Wiener-Itō integrals based on f and f̂

coincide: Id(f) = Id(f̂). Moreover,

E [Id(f)]2 = d!

∫
[a,b]d

|f̂(t1, . . . , td)|2 dt1 dt2 · · · dtd.

With this, we can proove for the above sequence (fn)n of off-diagonal step functions

that (Id(fn))n is a Cauchy sequence in L2(Ω) and therefore converging. The limit does

not not depend on the coice of the approximating sequence, so we can give

Definition A.7 (Multiple Wiener-Itō integral). For a function f ∈ L2([a, b]d), the

multiple Wiener-Itō integral Id(f) is defined by

Id(f) =

∫
[a,b]d

f(t1, . . . , td) dBt1 dBt2 · · · dBtd := lim
n→∞

Id(fn),

where (fn)n is a sequence of off-diagonal step functions approximating f and the con-

vergence is in L2(Ω).
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Multiple Wiener-Itō integrals have the following properties:

• It does not matter, if we integrate over f or its symmetrization f̂ : Id(f) = Id(f̂).

• Id(f) is a random variable with expectation E[Id(f)] = 0 and variance E[Id(f)]2 =

d!‖f̂‖2, where ‖ · ‖ is the norm on L2([a, b]d).

• I1(f) is the simple Wiener integral.

• Multiple Wiener-Itō integrals of different orders are orthogonal: For n 6= m and

for any f ∈ L2([a, b]n), g ∈ L2([a, b]m) it holds E [In(f)Im(g)] = 0.

• To compute a multiple Wiener-Itō integral, it can be written as an iterated Itō

integral: ∫
[a,b]d

f(t1, . . . , td) dBt1 dBt2 · · · dBtd

= d!

∫ b

a
· · ·
∫ td−2

a

(∫ td−1

a
f̂(t1, . . . , td) dBtd

)
dBtd−1

· · · dBt1

A.4.1 Relation between Hermite polynomials and multiple Wiener-

Itō integrals

We will shortly illuminate the relation between Hermite polynomials and multiple

Wiener-Itō integrals. Let (Ω,F , P ) be a probability space and B(t) a Brownian mo-

tion with respect to P . Note that for a function f ∈ L2([a, b]), the Wiener integral∫ b
a f(t) dB(t) is measurable with respect to the sigma field

FB := σ {B(t) | a ≤ t ≤ b}

which is smaller than F and in general not equal. Now let L2
B(Ω) ⊂ L2(Ω) denote the

Hilbert space of P -square integrable functions on Ω which are mesurable with respect

to FB.

Define the tensor product of functions f1, . . . , fk ∈ L2([a, b]) as

f1 ⊗ · · · ⊗ fk(t1, . . . , tk) := f1(t1) · · · fk(tk).

The notation g⊗n1
1 ⊗ · · · ⊗ g⊗nkk means that gj is repeated nj times (1 ≤ j ≤ k); it is

a tensor product of n1 + . . . + nk factors. Now the Wiener-Itō integral of the tensor

product of f1, . . . , fk can be calculated as the product of some Hermite polynomials of

Wiener-Itō integrals of the single fj .

Theorem A.3. Let f1, . . . , fk be non-zero orthogonal functions in L2([a, b]) and n1, . . . , nk ∈
N. Set n := n1 + . . .+ nk. Then

In
(
f⊗n1

1 ⊗ · · · ⊗ f⊗nkk

)
=

k∏
j=1

Hnj

(
I(fj); ‖fj‖2

)
.



196 A short introduction into stochastic integration

And with this, one can show: Square integrable functions on Ω that are mesurable

with respect to FB can be represented as sum of multiple Wiener-Itō integrals:

Theorem A.4 (Wiener-Itō Theorem). The space L2
B(Ω) can be decomposed into the

orthogonal direct sum

L2
B(Ω) = K0 ⊕K1 ⊕K2 ⊕ . . . ,

where Kj consists of multiple Wiener-Itō integrals of order j. Each f ∈ L2
B(Ω) has a

unique representation

f =
∞∑
j=0

Ij(fj)

with certain fj ∈ L2
sym([a, b]j), the real Hilbert space of symmetric square integrable

functions on [a, b]j. Because of the orthogonality of Wiener-Itō integrals of different

order, we have

‖f‖2 =
∞∑
j=0

j! ‖fj‖2.

A proof and some comments on how to construct the before mentioned fj are given

by Kuo (2006, Chap. 9.7).



Appendix B

Additions

B.1 Proof of Theorem 2.3

As the Xi are jointly Gaussian with expectation 0, the numerator X̄ − Ȳ is an affine

linear transformation and therefore normally distributed with expectation 0 as well.

We only need to investigate its asymptotic variance.

For this purpose, we decompose the variance into three parts – one containing only

the variances of the first sample, one only containing these of the second sample and

one third including the interdependencies between both:

Var[X̄ − Ȳ ] =
1

m2
Var

[
m∑
i=1

Xi

]
+

1

n2
Var

[
m+n∑
i=m+1

Xi

]
− 2

mn

m∑
i=1

m+n∑
j=m+1

Cov[Xi, Xj ]

=
1

m2
Var

[
m∑
i=1

Xi

]
+

1

n2
Var

[
m+n∑
i=m+1

Xi

]
− 2

mn

m∑
i=1

m+n−i∑
j=m+1−i

γj (B.1)

=: A+B + C

Now we look into the convergence of each summand, starting with the last and most

difficult one.

Ad C. To detect the limiting behaviour we will replace some terms by other ones

that are asymptotically equivalent and easier to handle. For keeping an overview we will

at first show these replacements and give the detailed justification afterwards. During
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the whole proof, all limits and asymptotic equivalences apply to an increasing overall

sample size N →∞ (and thus m,n→∞ as well).

m∑
i=1

m+n−i∑
j=m+1−i

γj =

m∑
i=1

m+n−i∑
j=1

γj −
m−i∑
j=1

γj


∼

m∑
i=1

( c

Γ(2−D)
(m+ n− i)1−DL(m+ n− i) (B.2)

− c

Γ(2−D)
(m− i)1−DL(m− i)

)
=

m+n−1∑
k=1

c

Γ(2−D)
k1−DL(k)−

n−1∑
k=1

c

Γ(2−D)
k1−DL(k) (B.3)

−
m−1∑
k=0

c

Γ(2−D)
k1−DL(k)

∼ c

Γ(3−D)

(
(m+ n− 1)2−DL(m+ n− 1) (B.4)

− (n− 1)2−DL(n− 1)− (m− 1)2−DL(m− 1)

)

In (B.3) we have expanded the sum and changed the index of summation (in the first

sum m+ n− i = k, in the second sum m− i = k). Next we factor out (m+ n)2−D and

substitute m = λN and n = (1− λ)N .

m∑
i=1

m+n−i∑
j=m+1−i

γj ∼
c

Γ(3−D)
(m+ n)2−D

((
N − 1

N

)2−D
L(N − 1)

−
(
n− 1

N

)2−D
L(n− 1)−

(
m− 1

N

)2−D
L(m− 1)

)
∼ c

Γ(3−D)
N2−DL(N)

(
1− λ2−D − (1− λ)2−D) (B.5)

Now we give the promised justification of the asymptotic equivalences above. Look

at step (B.2). We apply Lemma 2.1 (iii) with

ai,m =

m+n−i∑
j=1

γj −
m−i∑
j=1

γj

αi,m =
c

Γ(2−D)

(
(m+ n− i)1−DL(m+ n− i)− (m− i)1−DL(m− i)

)
= gm+n−i − gm−i.
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We have

m−1∑
i=1

(ai,m − ai,m−1) + am,m =

m−1∑
i=1

γm+n−i −
m−1∑
i=1

γm−i +

n∑
i=1

γi

=
m+n−1∑
i=n+1

γi −
m−1∑
i=n+1

γi =
m+n−1∑
i=m

γi

and

m−1∑
i=1

(αi,m − αi,m−1) + αm,m =

m−1∑
i=1

(gm+n−i − gm−i − gm+n−i−1 − gm−i−1) + gn

=

m−1∑
i=1

(gn+i − gi)−
m−2∑
i=0

(gn+i − gi) + gn

= gm+n−1 − gm−1.

We have to verify that these two expressions are asymptotically equivalent as m in-

creases. By (2.6) in Lemma 2.2

m+n−1∑
i=1

γi ∼
c(m+ n− 1)1−D

Γ(2−D)
L(m+ n− 1) and

m−1∑
i=1

γi ∼
c(m− 1)1−D

Γ(2−D)
L(m− 1),

and so by Lemma 2.1 (i),

m+n−1∑
i=m

γi ∼
c

Γ(2−D)

(
(m+ n− 1)1−DL(m+ n− 1)− (m− 1)1−DL(m− 1)

)
= gm+n−1 − gm−1,

because

(m+ n− 1)1−DL(m+ n− 1)

(m− 1)1−DL(m− 1)
∼
(
N

λN

)1−D L(N)

L(λN)
→
(

1

λ

)1−D
> 1.

It remains to verify that
∑m

k=1Dk,m is unbounded and strictly increasing. We shall see

that from some point the increments stay positive.

m∑
i=1

αi,m −
m−1∑
i=1

αi,m−1

= gn +

m−1∑
i=1

(gm+n−i − gm−i − gm−1+n−i + gm−1−i)

= gm+n−1 − gm−1

=
c

Γ(2−D)

(
(m+ n− 1)1−DL(m+ n− 1)− (m− 1)1−DL(m− 1)

)
=

c

Γ(2−D)
(N − 1)1−DL(N − 1)

(
1−

(
λN − 1

N − 1

)1−D L(λN − 1)

L(N − 1)

)
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Trivially, the first three factors are positive. The factor in brackets converges to

1 − λ1−D > 0, so it is positive for large N . Thus the sum in (B.2) is monotonic

from a certain index foreward. And we can see that the sum is unbounded: Its incre-

ments behave, at least from a certain index foreward and except a positive factor, like

N1−DL(N), in other words they are increasing.

Now look at step (B.4). The asymptotic equivalence of each single term is nothing

else than (2.6) with D − 1 instead of D (as noted in the proof, Karamata’s theorem

still holds as long D − 1 > −1); the asymptotic equivalence of all differences follows

similarly as before from Lemma 2.1 (i), since we have for the first difference

(N − 1)2−DL(N − 1)

((1− λ)N − 1)2−DL((1− λ)N − 1)
∼
(

1

1− λ

)2−D L(N)

L((1− λ)N)
→
(

1

1− λ

)2−D
> 1

and for the second difference

(N − 1)2−DL(N − 1)− ((1− λ)N − 1)2−D L((1− λ)N − 1)

(λN − 1)2−DL(λN − 1)
∼ 1− (1− λ)2−D

λ2−D

and recalling that D,λ ∈ (0, 1) we can bound this as follows:

1− (1− λ)2−D

λ2−D >
1

λ2
−
(

1

λ
− 1

)2

=
2

λ
− 1 > 2− 1 = 1.

Finally we deal with step (B.5). We have factored out L(N) and we have re-

placed L(N − 1)/L(N), L(n − 1)/L(N) and L(m − 1)/L(N) by 1 (this is equivalent

by Lemma 2.2 and since L is slowly varying). To ensure that we indeed are allowed

to make these replacements in the differences, we bring once more lemma 2.1 (i) into

action: 1/λ2−D > 1 for the first difference is trivial, and for the second difference we

have
1− λ2−D

(1− λ)2−D >
1− λ2−D

1− λ
>

1− λ
1− λ

= 1.

Ad A. Now that we coped with the covariances we confidently can tackle the

variances of X̄ and Ȳ .

Var

[
m∑
i=1

Xi

]
=

m∑
i=1

Var[Xi] +
∑

1≤i6=j≤m
Cov[Xi, Xj ]

= mγ0 + 2

m−1∑
k=1

(m− k)γk

Clearly,
∑m−1

k=1 (m− k)γk =
∑m

k=1mγk −
∑m

k=1 kγk, and by (2.6) and by going through

the proof of Lemma 2.2 (ii), we obtain

m∑
k=1

mγk ∼ cm2−D L(m)

Γ(2−D)
,

m∑
k=1

kγk ∼ cm2−D L(m)

(2−D)Γ(1−D)
.
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Since

cm2−D L(m)

Γ(2−D)

/
cm2−D L(m)

(2−D)Γ(1−D)
=

2−D
1−D

>
1

1−D
> 1,

we obtain with Lemma 2.1 (i)

m−1∑
k=1

(m− k)γk ∼ cm2−D L(m)

Γ(2−D)

(
1− 1−D

2−D

)
= cm2−D L(m)

Γ(3−D)
. (B.6)

Now it is not a surprise that we apply Lemma 2.1 (i) one last time to detect finally

the asymptotic equivalence of mγ0 + 2
∑m−1

k=1 (m− k)γk. Γ(3−D)γ0

/
2cm1−DL(m)→

0 6= 1 is self-evident, so in the end we receive

Var

[
m∑
i=1

Xi

]
∼ mγ0 + 2cm2−D L(m)

Γ(3−D)
. (B.7)

Ad B. Calculating the asymptotic variance of the sum of the Y ’s is exactly the

same as we just have done, so just replace m by n in the result:

Var

[
m+n∑
i=m+1

Xi

]
= Var

[
n∑
i=1

Xi+m

]
= nγ0 + 2

n−1∑
k=1

(n− k)γk

∼ nγ0 + 2cn2−D L(n)

Γ(3−D)
(B.8)

Now we look back on the decomposition (B.1) and put together the results on the

single summands (B.5), (B.7) and (B.8) to establish the asymptotic (expediently scaled)

variance of X̄ − Ȳ :

lim
N→∞

mn

(m+ n)2−D
1

L(m+ n)
Var

[
X̄ − Ȳ

]
= lim

N→∞

mn

(m+ n)2−D
1

L(m+ n)

[
1

m2
mγ0 +

1

m2
2cm2−D L(m)

Γ(3−D)
+

1

n2
nγ0

+
1

n2
2cn2−D L(n)

Γ(3−D)
− 2

mn

c

Γ(3−D)
N2−DL(N)

(
1− λ2−D − (1− λ)2−D) ]

= lim
N→∞

λ(1− λ)

N−DL(N)

[
γ0

λN
+ 2cλ−DN−D

L(λN)

Γ(3−D)
+

γ0

(1− λ)N

+ 2c(1− λ)−DN−D
L((1− λ)N)

Γ(3−D)

− 2c

λ(1− λ)

1

Γ(3−D)
N−DL(N)

(
1− λ2−D − (1− λ)2−D) ]

=
2c

Γ(3−D)
λ(1− λ)

(
λ−D + (1− λ)−D − 1− λ2−D − (1− λ)2−D

λ(1− λ)

)
This completes the proof.
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B.2 An heuristic example illustrating Theorem 2.3

We now make a check on Theorem 2.3 with an heuristic example. We consider γk = k−D

with D ∈ (0, 1) and disregard that this is actually not an auto-covariance function

(see the technical remark on page 25). We will calculate the asymptotic variance of√
mn

(m+n)2−D (X̄−Ȳ ) elementarily1. γk = γ(k) is monotonic decreasing and non-negative,

and a well known result from introductory analysis for decreasing f : R→ R≥0 is

∫ n+1

1
f(x) dx ≤

n∑
i=1

f(i) ≤
∫ n

1
f(x) dx+ f(1).

We will use this to replace sums by integrals (afterwards we ensure that the remainders

vanish asymptotically). As in the proof of Theorem 2.3, we analyse the single terms in

the decomposition (B.1).

m∑
i=1

m+n−i∑
j=m+1−i

γj =
m∑
i=1

m+n−i∑
j=m+1−i

j−D (B.9)

≈
m∑
i=1

(∫ m+n−i

m+1−i
j−D dj

)
(B.10)

≈ 1

1−D

∫ m

i=1

(
(m+ n− i)1−D − (m+ 1− i)1−D) di (B.11)

≈ 1

1−D

∫ m

i=0

(
(m+ n− i)1−D − (m+ 1− i)1−D) di (B.12)

=
(m+ n)2−D

(2−D)(1−D)

(
1−

(
m+ 1

m+ n

)2−D
−
(

n

m+ n

)2−D
+

(
1

m+ n

)2−D
)

It is easy to see that

γ(m+ 1− i) = (m+ 1− i)−D = o
(
(m+ n)2−D)∫ m+n−i+1

m+n−i
j−D dj =

1

1−D
(
(m+ n− i+ 1)1−D − (m+ n− i)1−D) = o

(
(m+ n)2−D) ,

so in (B.10) really holds “=” for large n (that is what we denoted by ≈), and the same

counts for (B.11). In (B.12) we have omitted the rest integral∫ 1

0

(
(m+ n− i)1−D − (m+ 1− i)1−D) di
=

(m+ n)2−D

2−D

(
1 +

(
m

m+ n

)2−D
−
(
m+ 1

m+ n

)2−D
−
(
m+ n− 1

m+ n

)2−D
)

=
(m+ n)2−D

2−D
o(1),

1We know by know that
√
nm/(n+m)2−D is the right scaling; but if we did not, we could sense it

in the course of the calculation.
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so we have for the covariance term in (B.1):

lim
n→∞

mn

(m+ n)2−D
1

mn

m∑
i=1

m+n−i∑
j=m+1−i

γj

= lim
n→∞

1

(1− D
2 )(1−D)

(
1−

(
m+ 1

m+ n

)2−D
−
(

n

m+ n

)2−D
+

(
1

m+ n

)2−D
)

=
1

(1− D
2 )(1−D)

(
1− λ2−D − (1− λ)2−D) (B.13)

To detect the limiting behaviour of the two variance terms in (B.1), we use2 (1.8).

lim
N→∞

mn

(m+ n)2−D
1

m2
Var

[
m∑
i=1

Xi

]
= lim

N→∞

λ(1− λ)

N−D
(λN)−D

2

(1−D)(2−D)

= λ1−D(1− λ)
2

(1−D)(2−D)
(B.14)

lim
N→∞

mn

(m+ n)2−D
1

n2
Var

[
n∑
i=1

Xm+i

]
= λ(1− λ)1−D 2

(1−D)(2−D)
(B.15)

We now put together (B.13), (B.14), (B.15):

mn

(m+ n)2−D Var
[
X̄ − Ȳ

]
N→∞−→ 1

(1− D
2 )(1−D)

(
λ1−D(1− λ) + λ(1− λ)1−D − 1 + λ2−D + (1− λ)2−D)

Alternatively, we may apply Theorem 2.3 with c = Γ(1−D) and L(k) ≡ 1. The result

is obviously the same.

B.3 Bounded variation in higher dimensions

In Chapter 3 we derived the limit distribution of the Wilcoxon two-sample test statistic

W[nλ],n =

[nλ]∑
i=1

n∑
j=[nλ]+1

I{Xi≤Xj}, 0 ≤ λ ≤ 1.

Since W[nλ],n is a U -statistic, one could try to adapt the technique of Dehling and Taqqu

(1989) who treat one-sample U -statistics of LRD data in order to handle W[nλ],n; but

this approach fails since the kernel h(x, y) = I{x<y} does not have bounded variation –

which is an essential technical requirement for the technique.

In this chapter, we will deal with the question what bounded variation is in higher

dimensions since it is of general interest, even though it does not lead to the desired

change-point test; we shall see that this is not trivial. At the end, we prove that

h(x, y) = I{x<y} has (even locally) infinite variation.

2To draw on an existing limit theorem does of course not seem to be an “elementary” approach as

promised, but we do this only for reasons of speed; we could deduce the results in the same elementary

way as we have treated the rest of the calculation before.
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B.3.1 Definition, properties and examples

Let f be a real valued function defined on a bounded interval [a, b] ⊂ R. The total

variation of f is defined by

‖f‖V,[a,b] := sup

p∑
i=1

|f(ai)− f(ai−1)|,

where the supremum is taken over all finite sets of points {ai | 0 ≤ i ≤ p < ∞} which

define a partition of the interval [a, b], i.e. with a = a0 < . . . < ap = b. If the underlying

interval [a, b] is clear, we shorty write ‖f‖V instead of ‖f‖V,[a,b]. If ‖f‖V < ∞ then f

is said to have bounded variation.

This one-dimensional variation has some nice properties (Kannan and Krueger

(1996, Chap. 6) provide proofs and some more results):

• If f is monotone, then ‖f‖V = |f(b)− f(a)| <∞.

• If f is Lipschitz continuous, then ‖f‖V <∞.

• If f has a bounded derivative, then ‖f‖V =
∫ b
a |f

′(x)| dx <∞.

• Sums, multiples and products of functions of bounded variation have itself bounded

variation: For functions f, g on [a, b] and a scalar α it holds ‖f + g‖V ≤ ‖f‖V +

‖g‖V , ‖αf‖V = |α|‖f‖V , and if ‖f‖V , ‖g‖V < ∞, then ‖fg‖V < ∞ (and the

same is true for f/g as long as |g(x)| ≥ c > 0 for all x ∈ [a, b]).

• The variation is additive: If [a, c] is divided by b ∈ (a, c), then ‖f‖V,[a,c] =

‖f‖V,[a,b] + ‖f‖V,[b,c].

• f is of bounded variation, if and only if it is the difference of two increasing,

bounded functions.

• If f has has bounded variation, then the left-hand limits f(x−) for x ∈ (a, b] and

the right-hand limits f(x+) for x ∈ [a, b) exist, f can have at most a countable

number of discontinuities, f ′ exists and is finite a.e..

The question is now how to define bounded variation for functions f : [a, b] ⊂
Rd → R, d ≥ 2, and which properties hold for this higher-dimensional variation. Un-

fortunately, there is no obvious way to extend the definition of bounded variation to

several variables: Clarkson and Adams (1933) for example list six different definitions

of bounded variation for d = 2. We will take a closer look at two of them which proved

to be useful in the context of integration and measure; the first one is connected with

the names of Vitali, Lebesgue, Fréchet and de la Vallée Poussin, the second one with

the names of Hardy and Krause. Owen (2004) discusses both definitions in detail in a

general setting (but with a notation that needs getting used to).
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For a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd write a ≤ b, if the inequality holds for all

components (likewise define a < b). Define the hyperrectangle [a, b] ⊂ Rd as follows

[a, b] := {x ∈ Rd | a ≤ x ≤ b}

(and likewise (a, b], [a, b) and (a, b)). For f : [a, b] ⊂ Rd → R define the d-increment of

f over the rectangle R := [a, b] as

∆Rf :=
∑

I⊂{1,...,d}

(−1)|I|f(xI),

where xI ∈ Rd has the components

(xI)i =

ai i ∈ I

bi i /∈ I
.

Note that ∅ ⊂ {1, . . . d} always. In case d = 1 this definition reduces to

∆Rf = f(b)− f(a) = f(b1)− f(a1),

in case d = 2 to

∆Rf = f(b1, b2)− f(b1, a2)− f(a1, b2) + f(a1, a2).

There are several ways to note down d-increments. Young (1916) for example defines

them recursively:

[f ]b1x1=a1
= f(b1, x2,, . . . , xd)− f(a1, x2,, . . . , xd)

[f ]b1,b2x1=a1,x2=a2
= [f(b1, x2,, . . . , xd)− f(a1, x2,, . . . , xd)]

b2
x2=a2

...

[f ]b1,...,bda1,...,ad
= ∆Rf

If it is clear over which rectangle the increments have to be computed, we will shortly

write ∆f instead of ∆Rf .

Definition B.1 (Monotonicity). A function f : Rd → R is called monotone, if ∆Rf ≥ 0

for all d-dimensional rectangles R.

Example. We consider some functions on the first quadrant R+×R+. By intuition we

expect f1(x, y) = x2y to be monotone because the functions x 7→ x2 and y 7→ y have

this property, and we expect f2(x, y) = −y sin(x) not to be monotone because the sinus

possesses hills and valleys – an educated guess. We compute the increments over the

rectangle [a1, b1]× [a2, b2] in the first quadrant R+ × R+ to verify this. The increment

∆f1 = f1(b1, b2)− f1(b1, a2)− f1(a1, b2) + f1(a1, a2)

= (b1 − a1)(b2 − a2)(a1 + b1)
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is positive, so f1 is in fact monotone. The (sign of the) increment

∆f2 = (b2 − a2)(sin(a1)− sin(b1))

depends on the underlying rectangle (effectively, only the x-cordinates are crucial),

sin(a1) − sin(b1) can be negative, and so ∆f2 can be negative. f2 is therefore not

monotone.

But in general, more-dimensional monotonicity is not intuitively visible.

Example. We consider some monotone functions and take a closer look at their one-

and two-dimensional increments3 over the same rectangle as before. We will see that

their behaviour is quite different.

a) For f1(x, y) = x2y we have

∆f1 = (b1 − a1)(b2 − a2)(a1 + b1) > 0

∆xf1 = f1(b1, b2)− f1(a1, b2) = b2(b21 − a2
1) > 0

∆yf1 = f1(b1, b2)− f1(b1, a2) = b21(b2 − a2) > 0.

All increments in all dimensions are positive.

b) f3(x, y) = x4 − y5 does not look monotone. But it is:

∆f3 = 0

∆xf3 = b41 − a4
1 > 0

∆yf3 = a5
2 − b52 < 0

f3 is increasing in x and decreasing in y. Curiously, the 2-dimensional increment is

always 0. f4(x, y) = −y/x is an example of a function with the same 1-dimensional

properties, but an always positive 2-dimensional increment.

c) For f5(x, y) = e−xe−y we have

∆f5 = (eb1 − ea1)(eb2 − ea2)e−(a1+a2+b1+b2) > 0

∆xf5 = e−b2(e−b1 − e−a1) < 0

∆yf5 = e−b1(e−b2 − e−a2) < 0.

Although both 1-dimensional increments are negative, the 2-dimensional increment is

positive.

Definition B.2 (Vitali variation). For a function f : [a, b] ⊂ Rd → R let R be a finite

set of d-dimensional rectangles that exactly cover [a, b], i.e. R = {Ri | 1 ≤ i ≤ p < ∞}
3When we consider one-dimensional increment, we will fix one argument and regard f(x, b2) and

f(b1, y) as functions of one variable. There is no deeper secret behind it that we fix the arguments just

to the upper bounds b1, b2; this is a convention in the notation of Hardy-Krause variation and it does

not matter which value in [ai, bi], i = 1, 2 we take.
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Figure B.1: Monotonicity in higher dimensions, here on the first quadrant R+ × R+ ,

is not intuitively visible. First row: f1(x, y) = x2y is monotone, because all increments

in all dimensions are positive, but f2(x, y) = −y sin(x) is clearly not. Second row:

f3(x, y) = x4 − y5 does not look monotone, but it is, and f5(x, y) = e−xe−y has

negative one-dimensional increments, but is two-dimensional increasing.
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such that [a, b] =
⋃p
i=1Ri and the interiors of two different rectangles Ri, Rj are disjoint.

The Vitali variation of f is

‖f‖V,[a,b] := sup
∑
R∈R
|∆Rf |, (B.16)

where the supremum is taken over all such sets R.

Clearly, for d = 1 this is the well-known standard definition of variation for real

functions on the real line which we considered at the beginning.

Definition B.3 (Hardy-Krause variation). Consider a function f : [a, b] ⊂ Rd → R
and a non-empty subset ∅ 6= I ⊂ {1, . . . , d}. Define a new function fI :

∏
i∈I [ai, bi]→ R

by setting the i-th argument of f equal to bi for all i /∈ I. The Hardy-Krause variation

of f is

‖f‖HK,[a,b] :=
∑

∅6=I⊂{1,...,d}

‖fI‖V,[a,b]. (B.17)

For d = 1 the Hardy-Krause variation turns out to be the Vitali variation and

therefore the standard variation for real functions on the real line. In higher dimensions

both definitions differ, as we will shortly see.

Definition B.4 (Bounded variation). (i) f : [a, b] ⊂ Rd → R has bounded variation in

the sense of Vitali if

‖f‖V,[a,b] <∞.

The class of all such functions is denoted by BVV ([a, b]).

(ii) f : Rd → R has bounded variation in the sense of Vitali, if

sup
{
‖f‖V,[a,b]

∣∣∣ [a, b] ⊂ Rd
}
<∞.

Analogously we define bounded variation in Hardy-Krause sense. Denote the class of

functions with bounded Hardy-Krause variation by BVHK([a, b]).

Remark. A function is of bounded variation in Hardy-Krause sense if the sum over

all Vitali variations over [a, b] and its upper faces (bi is fixed as i-th argument) in all

dimension is bounded. Owen (2004) refers to Young (1913, p. 142) who proved that

this condition is equivalent to the original definition by Hardy (1905) that the sum is

bounded regardless of which point zi ∈ [ai, bi] we fix as i-th argument. We will make

use of this alternative definition later.

Now we collect some properties4 of functions on R2 which have bounded variation

in either Vitali or Hardy-Krause sense.

4A lot of results on bounded variation – in either way of defining it – does not hold in the same way

for all dimensions d. Keep in mind that Adams and Clarkson (1934) and Clarkson and Adams (1933)

only give proofs for d = 2 (it does not matter since we are interested just in two-dimensional results),

while Owen (2004) provides general results.
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Proposition B.1. (i) BVV and BVHK are closed under + and −.

(ii) BVHK is closed under · and ÷ (as long as the quotient of two functions is defined),

but BVV is not.

(iii) If the rectangle R is split into subrectangles Ri, i = 1, . . . k, then

f ∈ BV (R) ⇒ f ∈ BV (Ri) ∀ = 1, . . . k,

and conversely

f ∈ BV (Ri) ∀ = 1, . . . k ⇒ f ∈ BV

(
k⋃
i=1

Ri

)

as long as
⋃k
i=1Ri is again a rectangle. This holds for both BVV and BVHK .

Proof. Owen (2004, Prop. 11) shows (i) and (ii), (iii) is demonstrated by Adams and

Clarkson (1934, Th. 11 and 12).

Proposition B.2. Let f be defined on [a, b] ⊂ R2.

(i)

f ∈ BVV ⇔ f = f1 − f2

where f1, f2 are functions with all 2-increments non-negative: ∆Rfi ≥ 0, i = 1, 2, for

all 2-dimensional rectangles R.

(ii)

f ∈ BVHK ⇔ f = f1 − f2

where f1, f2 are bounded functions with all increments non-negative: ∆Rfi ≥ 0, i = 1, 2,

for all rectangles R in all dimensions5, in other words ∆(f1)I ≥ 0 and ∆(f2)I ≥ 0 for

all I ⊂ {1, 2}. In particular

f ∈ BVHK ⇒ f is bounded.

Proof. See Adams and Clarkson (1934, Th. 5 and 6).

These unequal representations of Vitali and Hardy-Krause variation reflect the dif-

ferences between both definitions: We expect the function f : [a1, b1]× [a2, b2]→ R,

f(x, y) =

1/(x− b1)2 x < b1

0 else
,

not to have bounded variation, because it is not bounded. But surprisingly, it has

bounded Vitali variation, since the 2-increments are always 0. By the last proposition,

it can be written as f = f − 0, and f is not bounded. The notation of Hardy-Krause

variation does not suffer from this defect, it is a stronger property.

5In case d = 2, Young (1916) calls such functions with all increments non-negative “monotonely

monotone”.
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Proposition B.3.

BVHK ⊂ BVV
The other implication is false in general.

Proof. f ∈ BVHK can be written as difference of two bounded functions with all incre-

ments non-negative. This is of course a difference of two functions with all 2-increments

non-negative, and therefore a function in BVV .

To prove the other implication wrong consider the Dirichlet function f(x, y) =

IQ(x). Although f has unbounded variation in x (note that it is even worse: it is

nowhere continuous in x), the 2-dimensional variation ∆f is always 0. So f ∈ BVV ,

but f /∈ BVHK .

Such examples can easily be constructed, as the following proposition shows.

Proposition B.4. If f : Rd → R does not depend on all d variables, then

‖f‖V = 0.

Proof. See Owen (2004, Prop. 8).

Technical remark. While BVV ⊂ BVHK is false in general, there are some further conditions we

can impose on f ∈ BVV to be as well in BVHK (Clarkson and Adams, 1933, p. 827, 841 and 846).

Proposition B.5. ‖ · ‖V and ‖ · ‖HK are semi-norms on functions.

Proof. This follows easily from the definitions. To see that they are not a norm, note

that both variations vanish for constant but non-zero functions.

B.3.2 The case h(x, y) = I{x≤y}

One of the crucial points in the technique of Dehling and Taqqu (1989) is that h

must be of bounded variation. This condition is necessary to ensure that some terms

in the 2-dimensional integration by parts formula vanish at infinity, and above all it is

necessary to define
∫∫

(Fm−F )(x)(Gn−G)(y) dh(x, y). Unfortunately, this requirement

is not met for many examples. This is, e.g., just the case for the kernel h(x, y) = I{x≤y}
which leads to the Mann-Whitney-Wilcoxon statistic. It has infinite variation (in Vitali

sense, and so as well in Hardy-Krause sense), even on compact domains if they cross

the diagonal D = {(x, y) |x = y} ⊂ R2.

To see this, consider h(x, y) = I{x≤y} on an arbitrary rectangle R = [a, b] ⊂ R2

which crosses D. It is always possible to find another rectangle R′ ⊂ R inside which

touches the line D in such a way that three of its corners lie on the same side of D, see

Figure B.2. The 2-increment over R′ is 1, since the 2-increment of h over [a, b] is

∆Rh = h(b1, b2)− h(b1, a2)− h(a1, b2) + h(a1, a2)

and h can take values 0 and 1. Now it is always possible to divide R′ into three

subrectangles with the same property. In so doing, we obtain a partition of R̃ with as

many subrectangles R with |∆Rh| = 1 as we wish.
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(a1, a2)

(a1, b2)

(b1, a2)

(b1, b2)R

R′

D = {x = y}

Figure B.2: h(x, y) = I{x≤y} has infinite variation over any rectangle R crossing the

diagonal, because one can easily construct a partition of R into arbitrarily many sub-

rectangles on which h has a 2-increment of 1.
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Appendix C

Source code of the simulations

C.1 Estimating the variance of X̄ (section 2.4)

The routine varBlockmeans(x,r) estimates Var[X̄] of a time series X (which is given

as vector x and which has length N). The time series is divided in blocks of size r, the

mean values over these blocks is calculated and as the desired estimator, the sample

variance of these [N/r] block means is given out.

1 varBlockmeans <- function(x,r){

2 # x = given time series

3 # r = desired size of blocks

4 # r can be entered as absoulte size or relative to sample

size N

5 N = length(x)

6

7 # stop , if r has unfeasible values

8 if(r<=0 || r>N) {

9 stop("Block size r must be positive and smaller than 

the sample size (0 < r < N).")

10 }

11

12 # if block size r was entered as fractional amount of N,

convert it

13 if(r < 1) {

14 r <- round(r*N)

15 }

16

17 # variance without Bessel ’s correction

18 varianz <- function(x) {n=length(x) ; var(x) * (n-1) / n}

19

20 if(r==1) {

21 warning("Block size r = 1 means: The variance of the 

single values in the time series is calculated (

variance of means over bocks of length 1).")
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22 varianz(x)

23 }

24 else {

25 # divide x in blocks of length r

26 # Number of colums = integer part of N/r

27 nCols = N%/%r

28 # stop , if nCols < 2 (then variance of one single mean is

0)

29 if(nCols < 2) {

30 stop("Only one block of the desired block size r could

 be created from the time series x. The variance of

 the block means (we have only one block!) is 0.")

31 }

32

33 Y = matrix(x[1:(r * nCols)], byrow = FALSE , ncol = nCols)

34

35 # colMeans := vector of means of N%/%r columns

36 varianz(colMeans(Y))

37 }

38 }

C.2 Estimating the auto-covariance (section 2.5)

This is just the standard estimator for the auto-covariances of a vector vect, as defined

in (2.18).

1 estimate.gamma <- function(vect){

2 N = length(vect)

3 gamma.dach = rep(NA , N-1)

4

5 for(h in 1:(N-1)){

6 x.i = vect [1:(N-h)]

7 x.iplush = vect [(1:(N-h))+h]

8

9 # gamma.dach = 1/(N-h) sum_{i=1}^{N-h} X_{i}X_{i+h}

10 # i.e.\ sum(x.i*x.iplush)/(N-h)

11 gamma.dach[h] = mean(x.i*x.iplush)

12 }

13 gamma.dach

14 }

C.3 Estimating the variance of X̄ − Ȳ (section 2.6)

This program puts together the two last routines, as described in (2.22). It needs as

input the data sample vect, its Hurst parameter HH, the proportion llambda after
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which the sample shall be divided, and the size rr of the blocks for the subroutine

varBlockmeans.

1 estimate.varXqYq <- function(vect , HH , llambda , rr){

2 alpha = 2-2*HH

3 D = alpha

4

5 N = length(vect)

6 m = floor(N*llambda)

7 n = N-m

8

9 # divide vect in m and N-m observation

10 x = vect [1:m]

11 y = vect[(m+1):N]

12

13 gamma_dach = estimate.gamma(vect)

14

15 # gamma_dach bad for large lags , so trim:

16 # set to 0 after 10*log10(N) observations

17 # this step may be commented out

18 maxlag = min(floor (10*log10(N)), N-1)

19 gamma_dach = c(gamma_dach [1: maxlag], rep(0, (N-1-maxlag))

)

20

21 # gamma_dach_sumoverj = sum_{j = m+1-i}^{N-i}, for i

=1,...,m

22 gamma_dach_sumoverj = rep(NA , m)

23

24 for(i in 1:m){

25 gamma_dach_sumoverj[i] = sum(gamma_dach[(m+1-i):(N-i)

])

26 }

27

28 estimator = (rr/m)^D * varBlockmeans(x, rr) + (rr/n)^D *

varBlockmeans(y, rr) - 2/(m*n) * sum(gamma_dach_

sumoverj)

29 estimator

30 }

C.4 “Differences-of-means” test (section 3.6)

The following program code calculates k repetitions of the “difference-of-means” test

statistic Dn, as defined in (3.16) for different sample lengths N and LRD parameter H.

The input needed is a N × k-matrix with k LRD time series of length N. The routine

is designed for time series with FGN; to apply it on other LRD series, one must adapt

the constants in the scaling dn.



216 Source code of the simulations

1 # function divides vector vec after entry with index cut

2 # and gives mean(x)-mean(y)

3 divide.and.difference <- function(vec , cut){

4 l = length(vec)

5 mean(vec [1: cut]) - mean(vec[(cut +1):l])

6 }

7

8 # function "calculate.Udiff" calculates U_diff =

9 # 1/(n dn) sum_{i=1}^{ lambda n} sum_{j=lambda n + 1}^n (Xi -

Xj)

10 # for two vectors X, Y (created by dividing one fGn series Z

)

11 # returns vector with 10.000 values of Udiff

12 # needs divide.and.difference

13 calculate.Udiff <- function(Z, cutpt , alpha){

14 # Z = given matrix of k fGn series (k columns of length N

)

15 # cutting point cutpt= 1,...,N-1

16

17 # error if cutting point not an integer number

18 if(cutpt - trunc(cutpt) != 0){

19 stop("Cutpoint is not an integer.")

20 }

21

22 # read dimensions of Z

23 N = nrow(Z)

24 k = ncol(Z)

25

26 # reserve vector U to store k values of Udiff

27 U = rep(NA ,k)

28

29 # cutting point should be in {1,2, ..., N-1}

30 if(( cutpt >= 1) && (cutpt < N)){

31 # apply "divide.and.difference" to columns of Z

32 # and write k results in vector U

33 U = apply(Z, 2, divide.and.difference , cut=cutpt)

34 }

35

36 # if cutpt out of range , T can ’t be calculated

37 if(( cutpt < 1) || (cutpt >= N)) {

38 U = rep(NA ,k)

39 }

40

41 lambd = cutpt/N

42

43 # fGn has covariances (1-alpha)(2-alpha)/2 k^(-alpha)
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44 Lk = (1-alpha)*(2-alpha)/2

45

46 # constant c in dn=c*n^(1- alpha/2) is here

47 # just: c= sqrt (1/Lk)

48

49 # U_diff = 1/(n dn) sum_{i=1}^{ lambda n} sum_{j=lambda n

+ 1}^n (Xi-Xj)

50 # = lambda (1-lambda) n^( alpha/2) c^{-1} L(n)^{-1/

2} (mean(X)-mean(Y))

51 U = lambd*(1-lambd)*N^( alpha/2) * U

52 }

53

54 # function "make.k.times.DN" calculates

55 # k repetitions of DN = max_{1<=k<N} |Udiff|

56 # needs function calculate.Udiff

57 # output: table with k rows

58 make.k.times.DN <- function(H, N, Z){

59 alpha = 2-2*H

60

61 # read number of repetitions

62 k = ncol(Z)

63

64 # N observations => N-1 possible cutting points

65 l = N-1

66

67 # reserve marix to store Udiff

68 # l columns (for each cutting point), k=10.000 rows (

repetitions)

69 Udiff.table = matrix(rep(NA , k*l), byrow = FALSE , ncol =

l)

70

71 # reserve vector to store k repetitions of DN

72 k.times.DN = rep(NA , k)

73

74 # for each cutting point index i=1,...,N

75 for(i in 1:l){

76 # calculate Udiff

77 Udiff.table[,i] = calculate.Udiff(Z[1:N,], i, alpha)

78 }

79

80 # now we have an lxk matrix Udiff.table

81 # go through rows and find max(abs (..))

82

83 # function finds max(abs(vec)) of vector vec

84 # ignore "NA"-entries!

85 find.maxabs <- function(vec){
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86 max(abs(vec), na.rm=TRUE)

87 }

88

89 # apply "find.maxabs" to rows of Udiff.table

90 k.times.DN = apply(Udiff.table ,1, find.maxabs)

91

92 # result: vector of k repetitions of DN = sup |Udiff|

93 return(k.times.DN)

94 }

The workflow to gain simulations for different parameters H, is easy: For H=0.7 e.g.,

just load the file fgn H0.7 N2000 k10000.txt which contains 10,000 time series of

fGn with H=0.7 and length N=2000.

96 # call make.k.times.DN for different N and H

97 lets.go.niveau <- function(H){

98 alpha = 2-2*H

99

100 # read k*N-matrix with fGn (k columns of length N)

101 Z.all = read.table(paste("fgn H", H , " N2000 k10000.txt"

, sep=""))

102 # for each length N

103 for(N in c(10 ,50 ,100 ,500 ,1000)){

104 ktimesDN = make.k.times.DN(H, N, Z.all)

105 write.table(ktimesDN , file = paste("Xquer -Yquer k.

times.DN H", H, " N", N, ".txt", sep = ""))

106 }

107 }

Now executing the function lets.go.niveau yields files with k=10000 values of Dn for

sample sizes N=10, 50, 100, 500, 1000, e.g. Xquer-Yquer k.times.DN H0.7 N100.txt.

In order to perform the “difference-of-means” test, one has to count how many of these

k=10000 values of Dn exceed the respective critical value.

109 # set quantiles manually

110 quantiles = c(1.1, 0.87, 0.44)

111 names(quantiles)=c("H=0.6", "H=0.7", "H=0.9")

112

113 make.niveau.table <- function(quantiles){

114 # reserve marix to store frequencies

115 table.errorI = matrix(rep(NA ,6*3), byrow = FALSE , ncol =

3)

116

117 # give names to colums and rows

118 colnames(table.errorI) = c(’H=0.6’, ’H=0.7’, ’H=0.9’)

119 rownames(table.errorI) = c(’N=10’, ’N=50’, ’N=100’, ’N

=500’, ’N=1000’, ’N=2000’)

120
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121 # for each LRD parameter

122 for(H in c(0.6, 0.7, 0.9)){

123 alpha = 2-2*H

124 # and for each length N=50, ..., N=2000

125 for(N in c(10 ,50 ,100 ,500 ,1000)){

126 # read the simulation output Dn

127 dn = read.table(paste("Xquer -Yquer k.times.DN H", H

, " N", N, ".txt", sep=""))

128

129 # extract data (as vector) from data.frame T

130 dn = dn[,1]

131

132 table.errorI[paste("N=", N, sep=""),paste("H=", H,

sep="")] = length(which(dn > quantiles[ paste(

"H=", H, sep="")]))/length(dn)

133 }

134 }

135

136 table.errorI.rounded = round(table.errorI ,3)

137 write.table(table.errorI ,file="Tabelle Niveau Xq -Yq fGn.

txt")

138 write.table(table.errorI.rounded ,file="Tabelle Niveau Xq -

Yq fGn.txt",append=TRUE)

139 }

140

141 # make.niveau.table(quantiles)

The function make.niveau.table takes three critical values for H=0.6, 0.7, 0.9 and

yields a table with the observed level for each H and each sample size N, i.e. the relative

frequency of wrong rejections among the 10,000 simulation runs.

Now the routine to simulate the level of the test under various alternatives needs

the above defined functions calculate.Udiff and make.k.times.DN and an additional

function which adds a jump to the time series.

1 # function adds break -point of heigth hh

2 # at position lambda to a vector

3 add.break <- function(vec , lambd , hh){

4 ll = length(vec)

5 m = floor(lambd*ll)

6 vec.neu = c(vec [1:m], vec[(m+1):ll] + hh)

7 vec.neu

8 }

9

10 # now the workflow:

11 # call make.k.times.DN for different h and lambda

12 # to save simulation time: fix H and N
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13 lets.go.alternative <- function(h){

14 H=0.7

15 alpha = 2-2*H

16

17 N=500

18

19 # read k*N-matrix with FGN (k columns of length N)

20 Z.all = read.table(paste("fgn H", H , " N2000 k10000.txt"

, sep=""))

21

22 # cut time series to length N

23 Z.all = Z.all [1:N,]

24

25 # for different times ...

26 for(lambda in c(0.05, 0.1, 0.3, 0.5)){

27 # ... add break of height h to time series

28 Z = apply(Z.all , 2, add.break , lambd=lambda , hh=h)

29 ktimesDN = make.k.times.DN(H, N, Z)

30 write.table(ktimesDN , file = paste("Xq -Yq k.DN H", H,

" N", N, " h", h, " lambda", lambda , ".txt", sep =

""))

31 }

32 }

The function lets.go.alternative takes a value for the jump height h and yields a

file with 10,000 values of the test statistic Dn, for the choosen h and for different values

of lambda, the jump location, e.g. Xq-Yq k.DN H0.7 N500 h1 lambda0.1.txt.

34 make.power.table <- function(quantiles){

35 # set LRD and N manually

36 H=0.7

37 alpha = 2-2*H

38 N=500

39

40 # reserve marix to store frequencies

41 table.power = matrix(rep(NA ,3*4), byrow = FALSE , ncol =

4)

42

43 # give names to colums and rows

44 colnames(table.power) = c(0.05, 0.1, 0.3, 0.5)

45 rownames(table.power) = c(’h=0.5’, ’h=1’, ’h=2’)

46

47 for(lambda in c(0.05, 0.1, 0.3, 0.5)){

48 for(h in c(0.5, 1, 2)){

49 # read the simulation output Dn

50 dn = read.table(paste("Xq -Yq k.DN H", H, " N", N, "

 h", h, " lambda", lambda , ".txt", sep=""))



C.5 X̄ − Ȳ for one divided sample (section 2.2.2) 221

51

52 # extract data (as vector) from data.frame

53 dn = dn[,1]

54

55 # count frequency of rejections

56 table.power[paste("h=", h, sep=""),paste(lambda)] =

length(which(dn > quantiles[ paste("H=", H, sep

="")]))/length(dn)

57 }

58 }

59

60 table.power.rounded = round(table.power ,3)

61 write.table(table.power ,file=paste("Tabelle Power Xq -Yq 

fGn N", N, ".txt", sep=""))

62 write.table(table.power.rounded ,file=paste("Tabelle Power

 Xq-Yq fGn N", N, " rounded.txt", sep=""),append=TRUE)

63 }

Like make.niveau.table, the function make.power.table takes three critical values

for H=0.6, 0.7, 0.9 and yields a table with the observed power for the various al-

ternatives (jumps of height h after a proportion of lambda of the data; we restrict

ourselves to H=0.7 and sample size N=500), i.e. the relative frequency of true rejections

among the 10,000 simulation runs.

C.5 X̄ − Ȳ for one divided sample (section 2.2.2)

This is just a special application of the routine calculate.Udiff from Section C.4.

C.6 X̄ − Ȳ for two independent samples (section 2.3.2)

This routine is almost the same as the one before; the only differences are first the

input data (one must not divide one single time series, but now one has to consider

two independent time series) and second the normalizing constant in Theorem 2.4.

calculate.Udiff can easily be adapted to these changes.

An easy way to provide for this new situation without changing the original data set

(e.g. fgn H0.7 N2000 k10000.txt) is the following: Instead of dividing a time series

and calculate the difference of the means of the arising two samples (they would be

dependent), take the first part of a time series as X-sample and the second part of the

succeeding time series as Y -sample and the other way around – in this way, we obtain

two pairs of independent samples X and Y . This can be implemented as follows.

1 # function "DiffOfMeans_indep" calculates mean(X)-mean(Y)

2 # for 2 vectors X, Y (read out of 1 matrix Z of FGN series)

3 # output: mean(X)-mean(Y) scaled and scaled+normalized

4 DiffOfMeans_indep <- function(Z,lambda){
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5 # Z = matrix of k FGN series (k columns of length N)

6 # lambda = cutting point , 0<lambda <1

7

8 # error if not 0<lambda <1

9 if(lambda <=0 || lambda >=1) {

10 stop("lambda must be in (0,1).")

11 }

12

13 # divide Z into X and Y at point lambda*N

14 k = ncol(Z)

15 N = nrow(Z)

16 m = round(lambda*N)

17 n = round((1- lambda)*N)

18

19 # error if m=0 or n=0

20 if(m==0 || n==0) {

21 stop("One of both samples has size 0.")

22 }

23

24 # if k odd , take k-1 instead

25 # reason: see for -loop below

26 if(k %% 2) k <- k-1

27

28 # reserve vectors to store k values of T

29 T.unnormalized = rep(NA ,k)

30 T = rep(NA ,k)

31

32 # take all time series from Z, each time two at once

33 for(i in seq(1,k,2)){

34 # divide time series i and i+1 into pieces

35 # of length m and n=N-m

36 x1 = Z[1:m,i]

37 y1 = Z[(m+1):N,i]

38 x2 = Z[1:m,i+1]

39 y2 = Z[(m+1):N,i+1]

40 # calculate two times unnormalized and unscaled T-

value

41 # and store in vector T.unnormalized

42 T.unnormalized[i] = mean(x1)-mean(y2)

43 T.unnormalized[i+1] = mean(x2)-mean(y1)

44 }

45

46 # calculate normalizing constant sigma_{Xbar -Ybar }^2

47 # if Z is not FGN , this constant is different!

48 sigma.squared = (lambda ^(1- alpha)*(1-lambda) + lambda*(1-

lambda)^(1-alpha))
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49

50 # normalize and scale T.unnormalized

51 # to obtain limit distribution N(0,1) (predicted by

theory)

52 # if Z is not FGN , scaling is different!

53 T = T.unnormalized*sqrt(m*n/N^(2- alpha))/sqrt(sigma.

squared)

54

55 # scale T.unnormalized with overall sample size N (not

normalizing)

56 # if Z is not FGN , scaling is different!

57 T.unnormalized = T.unnormalized*N^( alpha/2)

58

59 write.table(T.unnormalized , file = paste("Xquer -Yquer N",

N, " lambda", lambda , " k", k, ".txt", sep = ""))

60 write.table(T, file = paste("Xquer -Yquer norm N", N, " 

lambda", lambda , " k", k, ".txt", sep = ""))

61 }

C.7 Quantiles of sup |Z(λ)− λZ(1)| (section 3.4)

The distribution of sup0≤λ≤1 |Z(λ) − λZ(1)| was simulated, as described on page 61,

with the following code.

1 simulate.distribution.Dn <- function(H){

2 # fArma: long -range dependend time series

3 library(fArma)

4

5 alpha = 2-2*H

6

7 # from 0 to 1 in steps

8 # k repetitions

9 steps = seq (0 ,1 ,0.001)

10 l = length(steps)

11 k = 10000

12

13 # reserve vector Z for time series Z at l times

14 # reserve vectors for simulation result

15 Z = rep(NA ,l)

16 result.different.lambdas = rep(NA ,l)

17 result = rep(NA ,k)

18

19 # j=1,...,k (repetitions)

20 for(j in 1:k){

21 # simulate fBm with time in [0,1] at l equidistant

points 0, ..., 1
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22 Z = fbmSim(l, H, doplot=F);

23

24 # for each time lambda =0,...,1

25 i = 1

26 for(lambda in steps){

27 # calculate Z(lambda)-lambda Z(lambda)

28 # remember that Z is a vector with entries Z[1], Z

[2], ...

29 lambda2 = lambda*(l-1)+1

30 result.different.lambdas[i] = Z[lambda2]-lambda*Z[l

]

31 i=i+1

32 }

33

34 # store the max of the absolute value to obtain 1

realization

35 result[j] = max(abs(result.different.lambdas))

36 }

37

38 write.table(result , file = paste("Xquer -Yquer Vtlg CP -

test fGn H=", H, " steps=", l, ".txt", sep = ""))

39

40 detach("package:fArma")

41 }

The routine simulate.distribution.Dn produces a file, e.g. Xquer-Yquer Vtlg CP-test

fGn H=.7 steps=1001.txt, with 10000 simulation results of sup0≤λ≤1 |Z(λ)− λZ(1)|
from which properties like the quantiles of the distribution of sup0≤λ≤1 |Z(λ)− λZ(1)|
can be approximated.

C.8 “Wilcoxon-type” test (section 3.6)

The following program code calculates k repetitions of the “Wilcox-type” test statistic

Wn, as defined in (3.12) for different sample lengths N and LRD parameter H. The input

needed, the design of the routine (for fGn; it must be adapted if th underlying Gaussian

process is not fGn), the workflow needed and the output is like for the “diferences-of-

means” test in section C.4.

1 # function divides vector vec after entry with index cut

2 # and gives Wilcoxon statistic

3 divide.and.Wilcox <- function(vec , cut){

4 l = length(vec)

5

6 # function counts , how many entries of vector vv are >= n

7 which.vv.greater.n <- function(n,vv) length(which(n<=vv))

8
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9 # function compares all entries of a vector vec1

10 # with a vector vec2 via "which.vv.greater.n"

11 which.vec1.smaller.vec2 <- function(vec1 , vec2) sum(

sapply(vec1 , which.vv.greater.n, vv=vec2))

12

13 # finally apply "which.vec1.smaller.vec2" to

14 # first and second part of vec

15 which.vec1.smaller.vec2(vec [1: cut], vec[(cut +1):l])

16 }

17

18 # function calculates

19 # U_W = 1/(n dn) sum_{i=1}^{ lambda n} sum_{j=lambda n+1}^n (

I{(Xi <=Xj} - 1/2)

20 # for two vectors X, Y (created by dividing one FGN series Z

)

21 # returns vector with 10.000 values of U_W

22 calculate.U_W <- function(Z, cutpt , alpha){

23 # Z = given matrix of k FGN series (k columns of length N

)

24 # cutting point cutpt= 1,...,N-1

25

26 # error if cutting point not an integer number

27 if(cutpt - trunc(cutpt) != 0){

28 stop("cutpoint is not an integer.")

29 }

30

31 # read dimensions of Z

32 k = ncol(Z)

33 N = nrow(Z)

34

35 # reserve vector U to store k values of U_W

36 U = rep(NA ,k)

37

38 # cutting point should be in {1,2, ..., N-1}

39 if(( cutpt >= 1) && (cutpt < N)){

40 # apply "divide.and.difference" to columns of Z

41 # and write k results in vector U

42 U = apply(Z, 2, divide.and.Wilcox , cut=cutpt)

43 }

44

45 # if cutpt out of range , T can ’t be calculated

46 if(( cutpt < 1) || (cutpt >= N)) {

47 U = rep(NA ,k)

48 }

49

50 lambd = cutpt/N
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51

52 # FGN has covariances (1-alpha)(2-alpha)/2 k^(-alpha)

53 Lk = (1-alpha)*(2-alpha)/2

54

55 # constant c in dn=c*n^(1- alpha/2) is here

56 # just: c= sqrt (1/Lk)

57

58 # U_W = 1/(n dn) sum_{i=1}^{ lambda n} sum_{j=lambda n +

1}^n (I{(Xi <=Xj} -1/2)

59 # = 1/(n^(2- alpha/2) c * sqrt(Lk)) * [#{Xi <=Xj} -

lambda*(1-lambda) n^2/2 ]

60 U = 1/N^(2- alpha/2) * ( U - (lambd*(1-lambd)*N^2/2))

61 }

calculate.U_W calculates the “Wilcoxon-type” statistic Wk,n as in (3.3) with cutpoint

k = [λn]. (We have tested some other ways to calculate the “Wilcoxon-type” statistic

(one for example includes sorting in order to avoid time intensive componentwise com-

paring of long vectors), but they all proved to be slower than the one given here in the

sub-routine divide.and.Wilcox.) The following routine make.k.times.WN calculates

k repetitions of Wn = max1≤k<N |Wk,n|.

63 make.k.times.WN <- function(H, N, Z){

64 alpha = 2-2*H

65

66 # read number of repetitions

67 k = ncol(Z)

68

69 # N observations => N-1 possible cutting points

70 l = N-1

71

72 # reserve marix to store U_W

73 # l columns (for each cutting point), k=10.000 rows (

repetitions)

74 U_W.table = matrix(rep(NA , k*l), byrow = FALSE , ncol = l)

75

76 # reserve vector to store k repetitions of WN

77 k.times.WN = rep(NA , k)

78

79 # for each cutting point index i=1,...,N

80 for(i in 1:l){

81 # calculate U_W

82 U_W.table[,i] = calculate.U_W(as.matrix(Z[1:N,]), i,

alpha)

83 }

84

85 # now we have an lxk matrix U_W.table

86 # go through rows and find max(abs (..))
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87

88 # function finds max(abs(vec)) of vector vec

89 # ignore "NA"-entries!

90 find.maxabs <- function(vec){

91 max(abs(vec), na.rm=TRUE)

92 }

93

94 # apply "find.maxabs" to rows of U_W.table

95 k.times.WN = apply(U_W.table , 1, find.maxabs)

96

97 # result: vector of k repetitions of DN = sup |U_W|

98 return(k.times.WN)

99 }

In order to apply the “Wilcoxon-type” test and to evaluate its level and power, this

routine make.k.times.WN must be applied to data and its output has to be comapred

with the respective quantiles. As mentioned before, this can be done like for the

“diferences-of-means” test in section C.4.

The routine make.k.times.WN can easily be changed such that it does not store

the values of the test statistic Wn = max |Wk,n|, but the point k ∈ {1, N − 1} at which

Wk,n reaches it maximum, in other words, such that the routine stores an estimation

of the change-point location. For this purpose, change the respective part like this:

1 # now we have an lxk matrix U_W.table

2 # go through rows and find argmax(abs (..))

3

4 # function finds argmax(abs(vec)) of vector vec

5 # ignore "NA"-entries!

6 find.argmaxabs <- function(vec){

7 which.max(abs(vec))

8 }

9

10 # apply "find.argmaxabs" to rows of U_W.table

11 k.times.WNArg = apply(U_W.table , 1, find.argmaxabs)

C.9 Estimating the LRD parameter under a jump (sec-

tion 7.2)

Given an arbitrary procedure to estimate the LRD parameter from a sample of obser-

vations, we presented in Section 7.2 different methods to adapt this procedure to time

series which include a jump. Now we will give the R implementations of these methods.

The following subroutines are needed by all methods. add.break(vec,lambd,hh)

adds a break-point of height hh to a time series vec after a proportion of lambd. In

estimate.H, the procedure to estimate is specified. Here, we concentrate on the meth-
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ods whittleFit and boxperFit from the fArma package. The routine estimate.H.try

handles errors: If estimate.H produces an error, it gives out NA.

1 add.break <- function(vec , lambd , hh){

2 ll = length(vec)

3 m = floor(lambd*ll)

4 vec.neu = c(vec [1:m], vec[(m+1):ll] + hh)

5 vec.neu

6 }

7

8 estimate.H <- function(vec){

9 library(fArma)

10 #y = whittleFit(vec)

11 #y@hurst [[3]]

12 y = boxperFit(vec)

13 y@hurst [[1]]

14 }

15

16 estimate.H.try <- function(vec){

17 return(tryCatch(

18 estimate.H(vec),

19 error=function(e) NA

20 ))

21 }

With the following routines, the LRD parameter is estimated on each two blocks

which arise from cutting the sample in two pieces. This is done for all cutting points

(leaving out the margins of the sample). The third routine then calculates a function

of these pairs of estimates – the means of all estimates or the mean of the two estimates

at the cutting point where both estimates (left and right block) differ least.

1 # estimate H seperately on index set

2 # I1={1,...,k} and I2 = {k+1, ..., n}

3 estimate.H.piecewise <- function(vec , cutpoint){

4 N = length(vec)

5 H.lower = estimate.H.try(vec [1: cutpoint ])

6 H.upper = estimate.H.try(vec[( cutpoint +1):N])

7 c(H.lower , H.upper)

8 }

9

10 calculate.all.Hpiecewise <- function(vec){

11 N = length(vec)

12 lower = max(c(floor(N*0.10), 10))+1

13 upper = N-lower

14 Hpiecewise = matrix(rep(NA , 2*(upper -lower +1)), ncol =2)

15 for(i in lower:upper){

16 Hpiecewise[i-lower+1,] = estimate.H.piecewise(vec , i)

17 }
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18 Hpiecewise

19 }

20

21 estimate.H.block <- function(vec){

22 Hpiecewise = calculate.all.Hpiecewise(vec)

23 RMeans = rowMeans(Hpiecewise , na.rm=TRUE)

24

25 H.mean = mean(RMeans , na.rm=TRUE)

26 H.mindiff = mean(estimate.H.piecewise(vec , which.min(abs(

Hpiecewise [,2]- Hpiecewise [,1]))))

27 c(H.mean , H.mindiff)

28 }

Now we give the code for estimating H on a moving (overlapping) window with

flank size w (i.e. a windowf of size 2w+1) from the data vec.

1 estimate.H.movwin <- function(vec , w){

2 N = length(vec)

3

4 window.indices <- function(w, midpoint){

5 # w = half window size

6 # if midpoint <= w, some indices <= 0, fill with "NA"

7 # should not happen , but to be on the safe side :-)

8 if(midpoint > w) indices = seq(midpoint -w, midpoint+w)

9 if(midpoint <= w) {

10 indices = seq(midpoint -w, midpoint+w)

11 indices[which(indices <=0)] = NA

12 }

13 indices

14 }

15

16 window.midpoints = seq(w+1, N-w)

17 H.movwin = rep(NA , length(window.midpoints))

18

19 # move index window [x-w, x+w] from x=w+1 to x=N-w

20 for(i in window.midpoints){

21 H.movwin[i] = estimate.H.try(vec[window.indices(w, i)

])

22 }

23 mean(H.movwin , na.rm=TRUE)

24 }

And this the code for a non-overlapping moving window based estimation:

26 estimate.H.movwin.nonlap <- function(vec , w){

27 N = length(vec)

28 # w: window size

29

30 window.startpoints = seq(1, N, w)



230 Source code of the simulations

31 # remove last startpoint , if last window smaller than w

32 if(N%%w!=0){

33 window.startpoints = window.startpoints[-length(window

.startpoints)]

34 }

35

36 H.movwin.nonlap = rep(NA , length(window.startpoints))

37

38 counter = 1

39 for(i in window.startpoints){

40 H.movwin.nonlap[counter] = estimate.H.try(vec[i:(i+w

-1)])

41 counter=counter +1

42 }

43 mean(H.movwin.nonlap , na.rm=TRUE)

44 }

In what follows, we present the code for estimating H using pre-estimation of

the possible change-point. This approach needs a method to estimate the change-

point location, here this is the routine make.k.times.WNArg, a simple modification of

make.k.times.WN as defined above at the end of Section C.8.

45 estimate.H.preestimate <- function(vec){

46 N = length(vec)

47

48 # load Wilcoxon change -point test statistic

49

50 # estimate H seperately on index set

51 # I1={1,...,k} and I2 = {k+1, ..., n}

52 estimate.H.piecewise <- function(vec , cutpoint){

53 N = length(vec)

54 H.lower = estimate.H.try(vec [1: cutpoint ])

55 H.upper = estimate.H.try(vec[( cutpoint +1):N])

56 c(H.lower , H.upper)

57 }

58

59 # start with arbitrary value for H, e.g. usual estimate

60 H.estim.usual = estimate.H.try(vec)

61

62 # under H=H.estim.usual , where detects Wilcoxon test

change -point?

63 CP.estim = make.k.times.WNArg(H.estim.usual , N, as.matrix

(vec))

64

65 # way 1:

66 # estimate H on block before and after this change -point

67 H.estim.2 blocks = estimate.H.piecewise(vec , CP.estim)
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68 H.estim.2 blocks = mean(H.estim.2 blocks)

69 # assign new estimate to H? No. Because:

70 # from now on , cp -detection will not change ,

71 # since H changes only scaling

72 # => new H maybe changes test decision , but not argmax

73

74 # way 2:

75 # remove jump and estimate H on whole time series

76 remove.jump <- function(vec){

77 N = length(vec)

78 # under H=H.estim.usual , where detects Wilcoxon test

change -point?

79 H.estim.usual = estimate.H.try(vec)

80 CP.estim = make.k.times.WNArg(H.estim.usual , N, as.

matrix(vec))

81

82 # if H.estim.usual returns NA , CP.estim = integer (0),

i.e.\ length 0 vector

83 if(length(CP.estim)!=0){

84 # estimate jump height

85 h.estim = mean(vec[(CP.estim +1):N])-mean(vec [1:CP.

estim])

86 # remove jump

87 vec.jumpfree = c(vec [1:CP.estim], vec[(CP.estim +1):

N]-h.estim)

88 }else{

89 vec.jumpfree = NA

90 }

91 vec.jumpfree

92 }

93

94 # estimate H on whole time series without jump

95 vec.jumpfree = remove.jump(vec)

96 H.estim.jumpfree = estimate.H.try(vec.jumpfree)

97

98 # way 3:

99 # repeat way 2 iteratively

100 # drawback: many repetitions smoothe time series=> H

underestimated

101 estimate.jumpfree.iterative <- function(vect){

102 # set start values

103 H.iterativ = 2

104 H.Differenz = 2

105 counter = 0

106 while(abs(H.Differenz) > 0.01){

107 # remove jump from vec
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108 vect.jumpfree = remove.jump(vect)

109 # estimate H on time series without jump

110 H.estim.jumpfree = estimate.H.try(vect.jumpfree)

111

112 # did H.estim.jumpfree change?

113 H.Differenz = H.iterativ -H.estim.jumpfree

114 # if yes , try another run , based on jumpfree series

115 vect = vect.jumpfree

116 H.iterativ = H.estim.jumpfree

117 counter = counter + 1

118 }

119 c(H.iterativ , counter)

120 }

121 # estimate.jumpfree.iterative(vec)

122

123 c(H.estim.jumpfree , H.estim.2 blocks)

124 }

C.10 Estimating the first Hermite coefficient (section 7.3)

The program simulateCoeff1 produces a table in which the estimations ã1 for a1, as

defined in (7.3), are given – each the mean and the variance in 10,000 simulation runs

for different sample sizes. For a better comparison, the mean is given relative to the

true value a1; if this value is not known, the program must be adapted.

1 simulateCoeff1 <- function(G, decreas=FALSE , trueCoef , zv.

lrd=FALSE){

2 # G: function G that generates data

3 # decreas: Is G decreasing?

4 # trueCoef: true first Hermite coefficient of G

5 # zv.lrd: replace true xi by new xi iid or lrd

6

7 library(fArma)

8 H = 0.7

9 alpha = 2-2*H

10

11 simCoeff.norm.sort <- function(n, G, decreas , H){

12 # replace true xi by new xi\sim N(0,1) iid

13 xi = rnorm(n)

14 x = G(fgnSim(n, H))

15 mean(sort(xi)*sort(x, decreasing=decreas))

16 }

17

18 simCoeff.LRD.sort <- function(n, G, decreas , H){

19 # replace true xi by new xi\sim N(0,1) LRD

20 xi = fgnSim(n, H)
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21 x = G(fgnSim(n, H))

22 mean(sort(xi)*sort(x, decreasing=decreas))

23 }

24

25 # k = number of repititions

26 k = 10000

27 Tnorm = rep(NA , k)

28

29 NN = c(10, 50, 100, 500, 1000, 2000, 5000, 10000)

30

31 Results = matrix(rep(NA ,length(NN)*2), byrow = FALSE ,

ncol = 2)

32 colnames(Results) = c(’mean/true’, ’variance ’)

33 rownames(Results) = NN

34

35 for(n in NN){

36 for(i in 1:k){

37 Tnorm[i] = if(zv.lrd) simCoeff.LRD.sort(n, G,

decreas , H) else simCoeff.norm.sort(n, G,

decreas , H)

38 }

39 Results[paste(n) ,1] = mean(Tnorm)

40 Results[paste(n) ,2] = var(Tnorm)

41 }

42

43 Results [,1] = Results [,1]/trueCoef

44

45 Results

46 }
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Appendix D

Exact simulation results

D.1 X̄ − Ȳ test (section 2.2 and 2.3)

D.1.1 One divided sample

We consider a series of N observations which is cut into two pieces,

X1, X2, . . . , Xm and Xm+1, Xm+2, . . . , Xm+n

with N = m + n. It is m = [λN ] and n = [(1 − λ)N ] for a λ ∈ (0, 1). We call the

second sample the Y -sample (Yk := Xm+k). We consider the scaled and normalized

X̄ − Ȳ test statistic

T :=

√
mn

(m+ n)2−D
X̄ − Ȳ
σdiff

.

Since T is a linear statistic of the X’s which are standard normally distributed, T is

always normally distributed with mean zero, so we only need to look at its variance.

We have calculated the sample variance of T , based on a set of 10, 000 simulations

• for H = 0.6 (Table D.1),

• for H = 0.7 (Table D.2) and

• for H = 0.9 (Table D.3).

D.1.2 Two independent samples

Now instead of one sample of observations which is cut into two pieces, we consider

two single stationary Gaussian processes (Xi)i≥1 and (Yj)j≥1 which are independent

of each other, and look at the performance of the scaled and normalized X̄ − Ȳ test

statistic

T :=

√
mn

(m+ n)2−D
X̄ − Ȳ
σdiff,2

which is asymptotically standard normally distributed, according to Theorem 2.4.

Again, we have calculated the sample variance of T , based on 10, 000 simulation runs
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N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.98 0.989 1.014 1.026 1.028 1.004 1.005 1.004 0.983

50 0.999 0.962 0.963 0.971 0.989 0.994 0.997 1.011 0.998

100 0.963 0.98 0.996 0.997 0.992 0.981 0.978 0.982 0.995

500 0.977 0.985 1.003 1.008 1.03 1.014 1.002 0.999 0.997

1000 1.004 1.016 1.013 1.004 0.996 1.002 1.009 0.991 0.986

2000 1.008 0.997 0.989 0.985 0.992 0.986 0.982 0.982 0.995

Table D.1: Sample variance of 10, 000 values of T for fGn with Hurst parameter H = 0.6

(D = 0.8). N is the overall sample size, the data was divided into two samples after

the [λN ]-th observation.

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.992 0.993 0.992 0.997 1.003 1.007 1.007 1.001 1.002

50 1.023 1.015 0.996 0.989 0.995 0.994 0.986 1.003 0.992

100 1.025 1.006 1 1.014 1.008 1.008 0.997 0.989 0.992

500 1.001 0.984 0.994 0.997 0.992 0.993 0.994 0.985 0.991

1000 0.984 1.004 1.014 1.015 1.017 1.004 1.005 1.008 1.008

2000 1.003 1.005 0.998 1.002 0.992 1 1.011 1.014 1.02

Table D.2: Sample variance of 10, 000 values of T for fGn with Hurst parameter H = 0.7

(D = 0.6). N is the overall sample size, the data was divided into two samples after

the [λN ]-th observation.

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.988 0.995 1.001 1.014 1.007 1.012 1.003 0.99 1.005

50 1 0.995 0.997 0.992 0.99 0.999 1.001 1.007 1.012

100 1.002 0.996 0.996 0.995 0.991 0.997 1.007 1.008 1.012

500 1 0.996 0.985 0.986 0.981 0.99 0.991 0.993 0.997

1000 0.999 0.99 1.001 1.007 1.011 1.02 1.011 0.998 1

2000 0.99 1.003 1.011 1.004 1.007 0.998 1.003 1.011 0.999

Table D.3: Sample variance of 10, 000 values of T for fGn with Hurst parameter H = 0.9

(D = 0.2). N is the overall sample size, the data was divided into two samples after

the [λN ]-th observation.
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• for H = 0.6 (Table D.4),

• for H = 0.7 (Table D.5) and

• for H = 0.9 (Table D.6).
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N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.967 0.979 0.991 0.993 0.995 0.981 0.98 0.985 0.982

50 0.986 0.966 0.976 0.979 0.982 0.989 0.993 1.001 0.995

100 0.957 0.978 0.978 0.985 0.978 0.975 0.973 0.987 1.003

500 0.99 0.995 1.003 1.009 1.013 1.013 1.005 1.01 1.01

1000 1.003 1.013 1.007 1.007 1 1.007 1.014 1.009 1.008

2000 1.01 1.006 1.012 1.018 1.02 1.021 1.004 0.997 1.014

Table D.4: Sample variance of 10, 000 values of T for two independent samples of fGn

with Hurst parameter H = 0.6 (D = 0.8). N is the overall sample size, the first sample

has length [λN ].

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.985 0.992 0.995 1.003 1.008 1.007 1.014 1.019 1.028

50 1.009 1.003 0.992 0.981 0.976 0.975 0.978 0.986 0.977

100 1.012 0.999 0.994 1.002 1.003 1.007 1.002 1 0.99

500 1.009 1.014 1.025 1.025 1.021 1.019 1.01 0.993 0.989

1000 1.009 1.027 1.027 1.021 1.019 1.013 1.013 1.016 1.016

2000 1.027 1.028 1.015 1.017 1.014 1.014 1.023 1.023 1.019

Table D.5: Sample variance of 10, 000 values of T for two independent samples of fGn

with Hurst parameter H = 0.7 (D = 0.6). N is the overall sample size, the first sample

has length [λN ].

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.994 1.002 1.005 1.008 1.006 1.006 1.004 1 1.004

50 1.003 1.003 1.003 1.002 1.001 1 0.999 0.998 0.996

100 1.007 1.005 1.004 1.002 1 1.002 1.002 0.998 0.993

500 1.007 1.004 1.001 1.003 1.004 1.007 1.006 1.007 1.007

1000 0.992 0.993 0.996 0.997 0.996 0.996 0.993 0.99 0.991

2000 0.984 0.985 0.981 0.974 0.969 0.964 0.962 0.96 0.954

Table D.6: Sample variance of 10, 000 values of T for two independent samples of fGn

with Hurst parameter H = 0.9 (D = 0.2). N is the overall sample size, the first sample

has length [λN ].
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D.2 Estimation of the variance of X̄ (section 2.4)

Here the simulations for the estimated variance of X̄ relative to the true variance, i.e.

for the quotient V̂ar[X(r)]/Var[X̄N ], are presented,

• for H = 0.6 (Table D.7),

• for H = 0.7 (Table D.8) and

• for H = 0.9 (Table D.9),

each for different sample sizes N and different block sizes (r is either relative, fixed or

r = Nβ). The parameter which yields the best result is highlighted in each table.

N \ r 1/
√
N ·N 1/50 ·N 1/10 ·N 1/5 ·N

50 0.79 0.955 0.842 0.722

100 0.836 0.955 0.836 0.718

500 0.927 0.955 0.84 0.718

1000 0.923 0.954 0.836 0.725

2000 0.944 0.954 0.838 0.719

N \ r 10 50 100

50 0.722 – –

100 0.836 0.422 –

500 0.955 0.84 0.718

1000 0.973 0.906 0.836

2000 0.984 0.946 0.903

N \ β 0.1 0.3 0.5 0.7 0.9

50 1.306 0.942 0.79 0.597 –

100 1.41 1.176 0.836 0.663 –

500 1.631 1.028 0.927 0.76 –

1000 1.73 1.083 0.948 0.812 –

2000 1.05 1.053 0.963 0.823 0.421

Table D.7: Relative results V̂ar[X(r)]/Var[X̄N ] of variance estimation of X̄, each value

averaged over 10, 000 simulations, sample size N , block size r, H = 0.6 (D = 0.8).
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N \ r 1/
√
N ·N 1/50 ·N 1/10 ·N 1/5 ·N

50 0.695 0.904 0.75 0.619

100 0.746 0.904 0.746 0.615

500 0.852 0.903 0.746 0.611

1000 0.867 0.906 0.748 0.619

2000 0.893 0.905 0.747 0.619

N \ r 10 50 100

50 0.619 – –

100 0.746 0.343 –

500 0.903 0.746 0.611

1000 0.938 0.836 0.748

2000 0.959 0.891 0.833

N \ β 0.1 0.3 0.5 0.7 0.9

50 1.143 0.848 0.695 0.489 –

100 1.235 1.037 0.746 0.566 –

500 1.417 0.97 0.852 0.658 –

1000 1.489 1.024 0.887 0.715 –

2000 1.025 1.011 0.907 0.729 0.337

Table D.8: Relative results V̂ar[X(r)]/Var[X̄N ] of variance estimation of X̄, each value

averaged over 10, 000 simulations, sample size N , block size r, H = 0.7 (D = 0.6).
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N \ r 1/
√
N ·N 1/50 ·N 1/10 ·N 1/5 ·N

50 0.323 0.544 0.37 0.276

100 0.369 0.543 0.369 0.275

500 0.461 0.542 0.367 0.274

1000 0.496 0.543 0.369 0.275

2000 0.531 0.544 0.37 0.276

N \ r 10 50 100

50 0.276 – –

100 0.369 0.128 –

500 0.542 0.367 0.274

1000 0.602 0.451 0.369

2000 0.654 0.523 0.452

N \ β 0.1 0.3 0.5 0.7 0.9

50 0.588 0.434 0.323 0.198 –

100 0.66 0.533 0.369 0.241 –

500 0.805 0.594 0.461 0.3 –

1000 0.86 0.645 0.502 0.34 –

2000 0.759 0.672 0.535 0.357 0.13

Table D.9: Relative results V̂ar[X(r)]/Var[X̄N ] of variance estimation of X̄, each value

averaged over 10, 000 simulations, sample size N , block size r, H = 0.9 (D = 0.2).
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D.3 Change-point test comparison in (section 3.6)

We consider the model Xi = µi+G(ξi), i = 1, . . . , n, where (ξi)i≥1 is a mean-zero Gaus-

sian process with Var[ξi] = 1 and auto-covariance function (1.1) and a transformation

G : R→ R, G ∈ G1 or G ∈ G2. We wish to test the hypothesis

H : µ1 = . . . = µn

against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1}.

with the “Wilcoxon-type” test which rejects H for large values of

Wn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ .
and with a “difference-of-means” test which rejects H for large values of

Dn =
1

ndn
max

1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(Xi −Xj)

∣∣∣∣∣∣ .
We consider the performance of both tests under null hypothesis, i.e. no change in the

mean, and under certain alternatives, i.e. different level shifts.

D.3.1 Normally distributed data

We consider

G(t) = t,

so that (Xi)i≥1 is fGn.

• Table D.10 shows the level of both tests under Gaussian data.

• Table D.11 shows the power of both tests under Gaussian data.

D.3.2 Symmetric, normal-tailed data

We consider

G(t) =
−b sgn

(
Φ(t)− 1

2

)
log
(
1− 2

∣∣Φ(t)− 1
2

∣∣)
√

2b2

=


1√
2

log(2Φ(t)) if t ≤ 0

− 1√
2

log (2(1− Φ(t))) else

so that (Xi)i≥1 follows a standardised Laplace (or double exponential) distribution.

• Table D.12 shows the level of both tests under standardised Laplace(0,4) dis-

tributed data.

• Table D.13 shows the power of both tests under standardised Laplace(0,4) dis-

tributed data.
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n / H 0.6 0.7 0.9

10 0.024 0.031 0.038

50 0.039 0.042 0.047

100 0.042 0.046 0.044

500 0.047 0.052 0.049

1000 0.047 0.052 0.053

n / H 0.6 0.7 0.9

10 0.013 0.026 0.326

50 0.042 0.050 0.167

100 0.044 0.051 0.140

500 0.051 0.052 0.100

1000 0.051 0.054 0.095

Table D.10: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for fGn time series with LRD parameter H; 10, 000 simulation runs. Both tests

have asymptotically level 5%.

h / λ 0.05 0.1 0.3 0.5

0.5 0.060 0.090 0.388 0.524

1 0.090 0.254 0.952 0.985

2 0.261 0.965 1.000 1.000

h / λ 0.05 0.1 0.3 0.5

0.5 0.058 0.086 0.386 0.525

1 0.077 0.184 0.948 0.985

2 0.119 0.763 1.000 1.000

Table D.11: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of fGn with LRD parameter H = 0.7, different

break points [λn] and different level shifts h. Both tests have asymptotically level 5%.

The calculations are based on 10,000 simulation runs.
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n / H 0.6 0.7 0.9

10 0.036 0.046 0.057

50 0.043 0.05 0.057

100 0.046 0.051 0.056

500 0.051 0.051 0.054

1000 0.049 0.053 0.054

n / H 0.6 0.7 0.9

10 0.013 0.026 0.326

50 0.042 0.050 0.167

100 0.044 0.051 0.140

500 0.051 0.052 0.100

1000 0.051 0.054 0.095

Table D.12: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Laplace(0,4)-transformed fGn with LRD parameter H, 10, 000

repetitions. Both tests have asypmtotically level 5%.

h / λ 0.05 0.1 0.3 0.5

0.5 0.060 0.090 0.401 0.540

1 0.090 0.262 0.960 0.988

2 0.269 0.971 1.000 1.000

h / λ 0.05 0.1 0.3 0.5

0.5 0.061 0.101 0.544 0.704

1 0.084 0.238 0.987 0.998

2 0.120 0.809 1.000 1.000

Table D.13: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of standardised Laplace(0,4)-transformed fGn with

LRD parameter H = 0.7, 10, 000 repetitions, different break points [λn] and different

break height h. Both tests have asypmtotically level 5%.

D.3.3 Heavy-tailed data

We consider the transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)−1/2(
k(Φ(t))−1/β − βk

β − 1

)
which yields Pareto(β, k) distributed observations which exhibit heavy tails. For β = 3,

k = 1, i.e. for

G(t) =
1√
3/4

(
(Φ(t))−1/3 − 3

2

)
,

the data have finite expectation and finite variance.

• Table D.14 shows the level of both tests under standardised Pareto(3,1) dis-

tributed data. The tests are based on asymptotic critical values.

• Table D.15 shows the power of both tests under standardised Pareto(3,1) dis-

tributed data. The tests are based on asymptotic critical values.

• Since the “difference-of-means” test does not reach its asymptotic level, the above

power comparison is not meaningful. Table D.16 presents the power of the test

under standardised Pareto(3,1) distributed data when the test is based on finite

sample quantiles as critical values.
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n / H 0.6 0.7 0.9

10 0.104 0.109 0.117

50 0.138 0.127 0.126

100 0.145 0.125 0.126

500 0.140 0.103 0.119

1000 0.131 0.101 0.123

2000 0.120 0.086 0.115

10000 0.106 0.069 0.101

n / H 0.6 0.7 0.9

10 0.013 0.026 0.326

50 0.042 0.050 0.167

100 0.044 0.051 0.140

500 0.051 0.052 0.100

1000 0.051 0.054 0.095

Table D.14: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for standardised Pareto(3,1)-transformed fGn with LRD parameter H; 10, 000

simulation runs. Both tests have asymptotically level 5%.

h / λ 0.05 0.1 0.3 0.5

0.5 0.116 0.177 0.756 0.864

1 0.177 0.693 0.998 1.000

2 0.815 0.998 1.000 1.000

h / λ 0.05 0.1 0.3 0.5

0.5 0.088 0.294 0.983 0.998

1 0.115 0.655 1.000 1.000

2 0.138 0.944 1.000 1.000

Table D.15: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of standardised Pareto(3,1)-transformed fGn with

LRD parameter H = 0.7, different break points [λn] and different level shifts h. Both

tests have asymptotically level 5%. The calculations are based on 10,000 simulation

runs.

h / λ 0.05 0.1 0.3 0.5

0.5 0.053 0.078 0.566 0.733

1 0.078 0.379 0.994 0.999

2 0.423 0.994 1.000 1.000

Table D.16: Power of the “difference-of-means” test, based on the finite sample quan-

tiles, for n = 500 observations of Pareto(3,1)-transformed fGn with LRD parameter

H = 0.7, different break points [λn] and different level shifts h. The calculations are

based on 10,000 simulation runs.
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A second set of simulations was made with Pareto(β, k) distributed observations for

β = 3, k = 1; these data have finite expectation, but an infinite variance, so that we

consider the centralized transformation

G(t) =
1√
Φ(t)

− 2.

• Table D.17 shows the level of both tests under standardised Pareto(2,1) dis-

tributed data. The tests are based on asymptotic critical values.

• Table D.18 shows the power of both tests under standardised Pareto(2,1) dis-

tributed data. The tests are based on asymptotic critical values.

• Since the “difference-of-means” test again does not reach its asymptotic level, we

considered its performance when it is based on finite sample quantiles as critical

values in order to compare it to the “Wilcoxon-type” test (which again already

reaches its asymptotic level when it is based on the asymptotical critical values).

The resulting power of the test is shown in Table D.16.
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n / H 0.6 0.7 0.9

10 0.104 0.104 0.107

50 0.159 0.138 0.120

100 0.181 0.151 0.122

500 0.223 0.148 0.124

1000 0.232 0.151 0.130

n / H 0.6 0.7 0.9

10 0.013 0.026 0.326

50 0.042 0.050 0.167

100 0.044 0.051 0.140

500 0.051 0.052 0.100

1000 0.051 0.054 0.095

Table D.17: Level of “difference-of-means” test (left) and level of “Wilcoxon-type”

test (right) for Pareto(2,1)-transformed fGn with LRD parameter H; 10, 000 simuation

runs.

h / λ 0.05 0.1 0.3 0.5

0.5 0.148 0.156 0.272 0.350

1 0.156 0.200 0.741 0.853

2 0.199 0.651 0.996 0.999

h / λ 0.05 0.1 0.3 0.5

0.5 0.075 0.180 0.878 0.960

1 0.097 0.401 0.997 1.000

2 0.122 0.744 1.000 1.000

Table D.18: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of Pareto(2,1)-transformed fGn with LRD param-

eter H = 0.7, different break points [λn] and different level shifts h. The calculations

are based on 10,000 simulation runs.

H / n 10 50 100 500 1,000 ∞
0.6 2.30 2.66 2.68 2.58 2.50 1.55

0.7 1.87 2.06 1.96 1.77 1.71 1.23

0.9 1.05 1.06 0.99 1.01 1.00 0.62

Table D.19: 5%-quantiles of the finite sample distribution of the “difference-of-means”

test under the null hypothesis for Pareto(2,1)-transformed fGn with different LRD pa-

rameter H and different sample sizes n. The calculations are based on 10,000 simulation

runs.
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n / H 0.6 0.7 0.9

50 0.020 0.046 0.114

100 0.028 0.045 0.065

500 0.041 0.044 0.039

1000 0.042 0.044 0.043

n / H 0.6 0.7 0.9

50 0.024 0.087 0.447

100 0.038 0.076 0.282

500 0.049 0.052 0.114

1000 0.047 0.049 0.093

Table D.20: Level of “difference-of-means” test (left) and level of “Wilcoxon-type” test

(right) for fGn time series with LRD parameter H, estimated by the Whittle estimator;

10, 000 simulation runs.

h / λ 0.05 0.1 0.3 0.5

0.5 0.039 0.050 0.250 0.389

1 0.035 0.068 0.775 0.917

2 0.018 0.078 0.998 1.000

h / λ 0.05 0.1 0.3 0.5

0.5 0.045 0.054 0.242 0.381

1 0.035 0.052 0.666 0.873

2 0.007 0.007 0.663 0.936

Table D.21: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of fGn with LRD parameter H = 0.7, estimated

by the Whittle estimator; different break points [λn] and different level shifts h. The

calculations are based on 10,000 simulation runs.

D.4 Change-point tests with estimated Hurst parameter

(section 7.1)

We redo the simulation for the change-point tests from Section 3.6, but this time the

Hurst parameter H is estimated from the data befor the test is applied.

D.4.1 Normally distributed data

We consider G(t) = t, so that (Xi)i≥1 is fGn.

• Table D.20 shows the level of both tests under Gaussian data and estimated H.

• Table D.21 shows the power of both tests under Gaussian data and estimated H.

D.4.2 Heavy-tailed data

We consider the transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)−1/2(
k(Φ(t))−1/β − βk

β − 1

)
which yields Pareto(β, k) distributed observations which exhibit heavy tails. For β = 3,

k = 1 the data have finite expectation and finite variance.
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n / H 0.6 0.7 0.9

50 0.175 0.241 0.273

100 0.212 0.286 0.269

500 0.315 0.392 0.282

1000 0.359 0.441 0.309

n / H 0.6 0.7 0.9

50 0.098 0.258 0.643

100 0.126 0.299 0.550

500 0.207 0.366 0.469

1000 0.243 0.413 0.468

Table D.22: Level of “difference-of-means” test (left) and level of “Wilcoxon-type”

test (right) for standardised Pareto(3,1)-transformed fGn with LRD parameter H, es-

timated by the Whittle estimator; 10, 000 simulation runs.

h / λ 0.05 0.1 0.3 0.5

0.5 0.378 0.472 0.882 0.939

1 0.397 0.686 0.994 0.998

2 0.437 0.794 0.999 1.000

h / λ 0.05 0.1 0.3 0.5

0.5 0.415 0.698 0.991 0.997

1 0.344 0.679 0.997 0.999

2 0.124 0.215 0.755 0.874

Table D.23: Power of “difference-of-means” test (left) and power of “Wilcoxon-type”

test (right) for n = 500 observations of standardised Pareto(3,1)-transformed fGn with

LRD parameter H = 0.7, estimated by the Whittle estimator; different break points

[λn] and different level shifts h. The calculations are based on 10,000 simulation runs.

• Table D.22 shows the level of both tests under standardised Pareto(3,1) dis-

tributed data and estimated H.

• Table D.23 shows the power of both tests under standardised Pareto(3,1) dis-

tributed data and estimated H.

D.5 Estimating Hermite coefficients (section 7.3)

We consider the model Xi = G(ξi), i = 1, . . . , n, where (ξi)i≥1 is a stationary mean-zero

Gaussian process with Var[ξi] = 1 and auto-covariance function (1.1) and a transfor-

mation G ∈ G2 which has Hermite rank m = 1. We have observed n data X1, . . . , Xn

and estimate the first Hermite coefficient

a1 = E[ξ G(ξ)],

where ξ ∼ ξ1 by

ã1 =
1

n

n∑
i=1

ξ′(i)X(i),

where ξ′1, . . . , ξ
′
n are n i.i.d. standard normal distributed random variables and X(i) is

the i-th variable in the sorted sample X(1) ≤ . . . ≤ X(n) (ξ′(i) analogously).
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Gauß Laplace(0,4) Pareto(3,1) Pareto(2,1)

n rel var rel var rel var rel var

10 0.720 0.091 0.702 0.112 0.671 0.192 0.671 3.287

50 0.911 0.021 0.904 0.031 0.885 0.109 0.844 1.085

100 0.946 0.011 0.936 0.017 0.922 0.064 0.913 1.204

500 0.982 0.002 0.981 0.004 0.971 0.021 0.955 0.270

1000 0.989 0.001 0.988 0.002 0.983 0.014 0.967 0.159

2000 0.993 0.001 0.993 0.001 0.987 0.008 0.978 0.116

5000 0.996 0.000 0.996 0.000 0.993 0.004 0.988 0.071

10000 0.998 0.000 0.998 0.000 0.995 0.003 0.994 0.039

Table D.24: Estimated Hermite coefficients ã1, the mean relative to the true value a1

(rel) and the variance (var), based on 10, 000 repetitions, for different G

For 10, 000 realizations of a fGn series of length n (with Hurst parameter H = 0.7

and varying sample size n) and for different transformations G (such that normal,

Laplace and two different Pareto distributed observations arise) I have calculated ã1.

Based on these each 10, 000 values, I have calculated the sample mean and the sample

variance.

• Table D.24 shows the mean of ã1 relative to the true coefficient a1 as well as the

variance of ã1.
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D.6 Wilcoxon’s two-sample statistic (section 5.4)

For realizations ξ1, . . . , ξn of fGn for different Hurst parameters H, for different cutting

points λ ∈ [0, 1] and different sample sizes n, I have calculated the two-sample Wilcoxon

test statistic

UW,[λn],n =
1

σW

n−2+D
2

[λn]∑
i=1

n∑
j=[λN ]+1

(
I{ξi≤ξj} −

1

2

)
with

σ2
W :=

1

4π

(
λ2 − λ+ (1− λ)λ2−D + λ(1− λ)2−D) .

I have repeated this 10, 000 times for each choice of parameters n, λ,H. The results

are given

• for H = 0.6 in Table D.25,

• for H = 0.7 in Table D.26 and

• for H = 0.9 in Table D.27.
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n \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 1.196 1.195 1.2 1.213 1.212 1.188 1.189 1.191 1.199

50 1.065 1.025 1.019 1.023 1.045 1.051 1.061 1.075 1.076

100 1.009 1.017 1.036 1.035 1.027 1.022 1.018 1.023 1.035

500 1.003 1.008 1.025 1.031 1.053 1.035 1.023 1.021 1.025

1000 1.024 1.038 1.031 1.022 1.016 1.023 1.029 1.016 1.007

2000 1.028 1.011 1.005 1.001 1.009 1.005 1.001 1.001 1.011

Table D.25: Sample variance of 10, 000 values of UW,[λn],n for fGn with Hurst parameter

H = 0.6 (D = 0.8). n is the overall sample size, the data was divided into two samples

after the [λn]-th observation.

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 1.331 1.302 1.285 1.285 1.284 1.289 1.292 1.299 1.339

50 1.123 1.108 1.079 1.068 1.076 1.073 1.070 1.091 1.087

100 1.087 1.054 1.048 1.066 1.059 1.062 1.051 1.043 1.059

500 1.021 1.005 1.014 1.017 1.013 1.015 1.013 1.005 1.018

1000 1.000 1.019 1.029 1.027 1.030 1.016 1.018 1.022 1.022

2000 1.015 1.014 1.008 1.014 1.003 1.011 1.022 1.025 1.032

Table D.26: Sample variance of 10, 000 values of UW,[λn],n for fGn with Hurst parameter

H = 0.7 (D = 0.6). n is the overall sample size, the data was divided into two samples

after the [λn]-th observation.

N \ λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 2.539 2.430 2.394 2.398 2.380 2.396 2.413 2.45 2.584

50 1.710 1.680 1.680 1.666 1.663 1.673 1.680 1.694 1.731

100 1.564 1.541 1.532 1.529 1.523 1.538 1.551 1.565 1.585

500 1.339 1.327 1.316 1.316 1.308 1.319 1.319 1.325 1.340

1000 1.282 1.270 1.278 1.285 1.288 1.299 1.288 1.273 1.278

2000 1.229 1.238 1.243 1.231 1.236 1.226 1.231 1.240 1.237

Table D.27: Sample variance of 10, 000 values of UW,[λn],n for fGn with Hurst parameter

H = 0.9 (D = 0.2). n is the overall sample size, the data was divided into two samples

after the [λn]-th observation.
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W. Krämer, P. Sibbertsen, C. Kleiber (2002): Long memory versus structural change

in financial time series, Allgemeines Statistisches Archiv, 2002, 86, 83–96
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F. Móricz (1976): Moment inequalities and the strong laws of large numbers, Z.

Wahrscheinlichkeitstheorie verw. Gebiete, 1976, 35(4), 299–314

M. A. Montemurro, P. A. Pury (2002): Long-range fractal correlations in literary cor-

pora, Fractals, 2002, 10(4), 451–461

B. Øksendal (1998): Stochastic Differential Equations, 5th edition, Springer, Berlin

Heidelberg 1998, ISBN 3-540-63720-6

A. Ott, J.P. Bouchaud, D. Langevin, W. Urbach (1990): Anomalous diffusion in “living

polymers”: A genuine Levy flight?, Phys. Rev. Lett., 1990, 65(17), 2201–2204

A. B. Owen (2004): Multidimensional variation for quasi-Monte Carlo, Technical Re-

port, Department of Statistics, Stanford University, 2004, no. 2004-02



262 Bibliography

C. K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons and

H. E. Stanley (1992): Long-range correlations in nucleotide sequences, Nature, 1992,

359, 168–170

C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger

(1994): Mosaic organization of DNA nucleotides, Phys. Rev. E, 1994, 49(2), 1685–

1689

V. Pipiras, M. S. Taqqu (2011): Long Range Dependence and Self-Similarity, preprint

Y. A. Rozanov (1967): Stationary Random Processes, Holden-Day, San Francisco 1967

G. Samorodnitsky (2007): Long Range Dependence, Now Publishers, Hanover 2007,

ISBN 978-1-60198-090-8

G. Samorodnitsky, M. S. Taqqu (1994): Non-Gaussian Stable Processes: Stochastic

Models with Infinite Variance, Chapman and Hall, London, 1994

X. Shao (2011): A simple test of changes in mean in the possible presence of long-range

dependence, Journal of Time Series Analysis, 2011, 32(6), 598–606

G. R. Shorack, J. A. Wellner (1986): Empirical Processes with Applications to Statistics,

John Wiley & Sons, New York 1986, ISBN 0-471-86725-X

P. Sibbertsen (2004): Long Memory versus Structural Breaks: An Overview, Statistical

Papers, 2004, 45, 465–515

P. Sibbertsen, J. Willert (2010): Testing for a Break in Persistence under Long-Range

Dependencies and Mean Shifts, Statistical Papers, 2010

B. Simon (1974): The P (Φ)2 Euclidean (Quantum) field theory, Princeton University

Press, Princeton 1974, ISBN 0-691-08144-1

R. L. Smith (1993): Long-Range Dependence and Global Warming, in: R. A. Madden,

R. W. Katz: Applications of Statistics to Modeling the Earth’s Climate System, 1994,

89–92

D. Surgailis (2003): CLTs for Polynomials of Linear Sequences: Diagram Formula

with Illustrations, in: P. Doukhan, G. Oppenheim, M. S. Taqqu (eds.): Theory and

Applications of Long-Range Dependence, Birkhäuser, Boston Basel Berlin 2003, ISBN
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