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Abstract
First year engineering students often complain about their mathematics courses as the

significance of the difficult and abstract calculus to their field of study remains unclear. We
report on the project MathePraxis, a feasibility study which was designed as a means to
give first year students some impression about the use of mathematics in real practice. We
aim to increase motivation and retention rates among engineering students by connecting the
contents of the first year mathematics lectures with practical applications. We developed
three projects, two of which are described in this article: An inverted pendulum considered
as a model for the automated control within a Segway and a study on the the optimal design
of a ribbed cooler. In this article, we briefly present the mathematical content of the projects
and report on their implementation.

Keywords: first year students; mathematics; motivation; practical orientation; segway;
ribbed cooler; retention rates

1 Mathematics in Engineering education

1.1 Present situation

Mechanical engineering students in Germany typically begin their studies with at least two
semesters getting mainly taught the basic knowledge in mathematics, mechanics and physics.
The philosophy behind that structure is that only after students can master those basic skills they
will be able to apply them successfully to problems from engineering. Unfortunately, a significant
number of students struggle with this construction: After months of doing primarily other subjects
they lose a lot of their former interest and sometimes even change their subject. Often they blame
mathematics for their failure to complete their original goals. Observations however show that
among those early university dropouts there are many students that would be able to finish their
courses successfully if they could be motivated to learn the subjects.

A survey among more than 1000 German engineers [Pfenning and Renn, 2001] showed that
retrospectively they considered their studies too abstract, not sufficiently team-oriented and far
from practice. Even though there have been some changes in recent years, these issues are still a
challenge for many engineering students.
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1.2 Real application and basic maths – incompatible?

Crucial questions therefore are if it is possible to connect first year mathematics with real engi-
neering applications and if this is a way to maintain the students’ motivation and interest.

Bringing in practical relevance into first year mathematics courses faces two essential road-
blocks: First, real problems from an engineer’s everyday work can in general not be solved with
basic mathematics, and secondly there is hardly any time to embed examples in the mathematics
lectures that take more than a few minutes, not to mention complex practice-oriented problems.
Homework and excercises mostly concentrate on practising calculus schemes.

1.3 The MathePraxis approach

MathePraxis was created as a feasibility study to show that concrete engineering problems can
be adapted from real requirements in practice to the students’ level. It is a collaboration be-
tween the departments of Mathematics and Mechanical Engineering at Ruhr-University Bochum
in cooperation with the center of higher education (IFB) and supported by Stifterverband für
die Deutsche Wissenschaft and Heinz Nixdorf foundation. For details on the larger context and
the accompanying project MathePlus see [Dehling et al. , 2010]. MathePraxis is an attempt to
highlight the connections between first year mathematics and engineering applications. There
have been different approaches to assist first year engineering students in mathematics by using
more applications, see e.g. [Aroshas et al. , 2007], [Verner et al. , 2008] where short problems from
various science and engineering domains were included in a multivariable calculus course in order
to increase the internal motivation. We go one step further by using larger problems which cover
several different topics at once. A number of groups suggest to include mathematical modelling
in the first year curriculum, see e.g.[Huang, 2011] or focus combine mathematical questions with
general problem-solving skills, see[Gleason et al. , 2010]. This however was not our intention in
MathePraxis. Had we decided to focus on modelling of the engineering problems described below
we would probably have spent all the available time to derive the model equations. For this reason
we used topics which were suggested by engineers from the mechanical engineering department
and adapted their mathematical details to the first year mathematics. Although we do not go
as far as [Young et al. , 2011] where courses are taught by teams consisting of a scientist and an
engineer the projects were at least established in close collaboration.

Based on the mathematics curriculum the projects should use only basic linear algebra and
calculus of one or many variables. The three projects that were realized within MathePraxis so far
deal with the control of a Segway, a sway control system for cranes and the effective CPU cooling
by a ribbed cooler.

The rest of the paper is organized as follows. In section 2 we describe the general design of
our course. Sections 3 and 4 give some impression about the mathematical contents for two of our
projects while section 5 is devoted to the final presentation of the project results. In section 6 we
comment on the students’ performance as well as on their feedback.

2 Structure and benefits of the MathePraxis project

Students who had successfully passed the final exam of the first term could apply for MathePraxis
by writing a short letter of motivation. The finally 28 participants then were given a practice-
oriented problem which they should solve in small teams of 3–5 learners each during the 12
remaining weeks of the term. They were guided through the learning process by a combination of
assignments (for examples, see sections 3.3 and 4.3) and some detailed text; This text, however,
was not from a textbook, but the students had to discover the connection between the material,
the mathematical formulas and real life on their own.

This course design is a variant of the leittext method, a method originally developed for indus-
trial in-house training and described in [Rottluff, 1992],[Golle and Hellermann, 2000]. It allows for
a self-regulated learning process by providing the learners with texts containing basic information,
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concrete questions or specific tasks. Based on these information, the groups have to plan their
strategy, decide about which method to use and control their results afterwards.

At the beginning of all projects stood a short and interesting question: Why doesn’t a Segway
fall over? How do the ribs of an optimal ribbed cooler look? These questions adress the technical
interest and purposefully omit mathematics. Although these problems in general require advanced
knowledge and experience in mathematics, in MathePraxis they were refined and reduced so that
students could solve them using only methods from their first year mathematics lectures, see
Sections 3 and 4. Only where it could not be avoided, the student used numerical methods that
had not been taught in the mathematics course. In the project, the participants did not learn
new mathematical methods; they found out how standard and basic techniques can be used in
practice. Note that this is in contrast to some other approaches like [Ooi, 2007] where the math
courses are supplemented by examples in computational mathematics and the students have to
learn to use a Computer Algebra System.

The teams could organise their working time on their own, with a weekly meeting with the
project leaders. In this informal meetings of 45 minutes each, the students could ask questions or
discuss about modelling and methods. We arranged these meetings primarily in order to ensure
that the students which were not used to self dependent work stayed on the right way.

The weekly assignements were thought of both as a navigation and as a means to get to know
the ideas behind a mathematical method. They consisted of specific tasks what to do next, to
scrutinize the obtained results and to illustrate and to explain the approach and the used methods.
During their first year at university, students often get the impression that mathematics occurs
primarily in the form of clearly formulated exercises (“Solve the equation”, “Calculate the integral
over a given domain”, . . . ) with answers being either true or false. Working with the leittext
assignments in addition involves problem solving abilities, deciding about solution strategies and
evaluating results.

3 Balancing with differential equations – the Segway

Scientific parlance
We had discussions with the stu-
dents, if we can talk about one equa-
tion of motion although we have a
system of two equations or that one
variable x⃗ contains in fact several
variables. MathePraxis contributes
early to communication skills: Stu-
dents learn to talk with each other
about what they are doing and about
subject-related conventions in nota-
tion and symbols.

The Segway is a stunning example for advanced and
fancy engineering: It is a means of transport that
can be found in everyday life, it is not too spe-
cialized or technical, it is fascinating and funny –
and its construction would be impossible without
mathematics. Thus a Segway is a shining exam-
ple illustrating the need for higher mathematics in
engineering education.

3.1 Setting the scene: The task

The real control systems in a Segway are much
too complicated for first year students without any
knowledge in automatic control, so the participat-
ing nine students (one group of five, one group of
four persons) got the task to design a feedback con-
trol for an inverted pendulum, a pendulum which
is mounted on a cart and deflected by an angle of
90◦ upwards (to the horizontal). Like a normal pendulum, the inverted pendulum is stable when
hanging downwards, but it can be controlled by moving the cart horizontally in an appropriate
way, so that the pendulum remains in its (unstable) upright position – like balancing an umbrella
on the fingertip.
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3.2 Mathematical challenges

The single steps to develop a control for an inverted pendulum are:

Find the equation of motion of the uncontrolled inverted pendulum.

In principle, this is easy when using Lagrangian mechanics. Since at the beginning of the second
semester, these techniques are not available yet, the equations of motion

ẍ = − ml

M +m
α̇2 sinα+

ml

M +m
α̈ cosα+

1

M +m
F (1)

α̈ =
3

4l
ẍ cosα+

3g

4l
sinα (2)

were given.

Question the methods
A key aspect of MathePraxis is that the
students learn to think when they apply
calculus schemes, e.g. whether one can
be content with a solution for the lin-
earised differential equation: Is the lin-
earisation – in whatever sense – “good
enough”? Or when designing the con-
trol, why one chooses F to depend lin-
early on x⃗, and not in a more compli-
cated functional relation.

(1) and (2) look nasty and confusing, espe-
cially for first year students. In discussions we
made clear that most of the variables (M , m and
l) are known numbers (to simplify calculations,
we later worked with concrete values). Some stu-
dents had the (good) idea to plug one equation
into the other in order to simplify the coupling,
but this does not eliminate the nasty terms. The
unpleasing conclusion was: Solving the equations
of motion fails due to the non-linear behaviour of
the pendulum.

Linearise.

In order to get rid of the non-linear terms, one
has to linearise the equation of motion by a Taylor expansion. This provoked a first light bulb
moment: The students knew Taylor expansions from their regular courses, but for most of them
this was the first application of the method.

After linearisation, one obtains the equations

ẍ =
3mg

4M +m
α+

4

4M +m
F (3)

α̈ =
3g(M +m)

l(4M +m)
α+

3

l(4M +m)
F (4)

Solve the system of linear ODEs.

We are interested in the behaviour of the point x and the angle α at time t. Combining these
variables into

x⃗ =


x
ẋ
α
α̇

 .

one gets from (3) and (4) the linear ODE

˙⃗x = Ax⃗+ b⃗, (5)
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that is 
ẋ
ẍ
α̇
α̈


︸ ︷︷ ︸

⃗̇x

=


0 1 0 0

0 0 3mg
4M+m 0

0 0 0 1

0 0 3g(M+m)
l(4M+m) 0


︸ ︷︷ ︸

A


x
ẋ
α
α̇


︸ ︷︷ ︸

x⃗

+


0
4

4M+m

0
3

l(4M+m)

F

︸ ︷︷ ︸
b⃗=b⃗′·F

. (6)

Interpret formulae
In MathePraxis we emphasized descrip-
tive understanding of equations, be-
cause this usually gets a raw deal in ba-
sic math education.
For example the strange terms e6t in (7):
The cart moves on and the pendulum
rotates increasingly fast? This is hardly
conceivable, so how to interpret this?
Of course, for the initial value x⃗(0) = 0,
we receive what we expect: The pendu-
lum remains motionless upright for all
times. But if we allow even a tiny deflec-
tion, this solution is apparently wrong
for large times.
This was a second light bulb moment:
What the drawbacks of linearisation
are.

In this representation we clearly perceive that
A describes the movement of the pendulum and
the cart alone and that b⃗ contains the part we can
influence via the force F . x and α are measurable
output variables, F is the input. At first, we set
F = 0 since we are interested in the uncontrolled
movement of the system (the crucial point later
will be to design F , depending on x⃗).

To solve this linear system of differential
equations, we assumed to know the following ex-
act values: the mass of the cart M = 1

2 kg, the
mass of the pendulum m = 1 3

4 kg, the distance
from the centre of mass, respectively the pivot
point l = 1

2 m and the acceleration of gravity
g = 10m/s2. Now A is quite simple.

The mathematics needed to solve this is cov-
ered by the course “mathematics for engineers”
and most students almost immediately obtained
the correct solution for ˙⃗x = Ax⃗:

x⃗(t) =


c1 − 7c4e

−6t + 7c3e
6t + c2(1 + t)

c2 + 42c4e
−6t + 42c3e

6t

−18c4e
−6t + 18c3e

6t

108c4e
−6t + 108c3e

6t

 . (7)

It took some time to guide the students to the understanding, that positive eigenvalues indicate
instability of the system. This was a crucial point in the project: The students should acquire a
link between an abstract equation and a movement in real life – an important skill which is hard
to achieve by usual courses. Wherever possible, we highlighted these connections and practised
with the students to interpret mathematical expressions, initial or boundary conditions, etc.

Understand how a state-feedback control works.

This requires of course an expertise which is available to first-year students. However, as the
underlying idea is very intuitive, we just had to simplify notations and give the students a short
introduction. We assume that the force F on the cart depends linearly on the state vector x⃗, i.e.
F = −Kx⃗, where the control matrix K specifies, how exactly. In our special situation, a system
with only one input variable, K is a row vector. Now (5) becomes

⃗̇x = Ax⃗+ b⃗ = Ax⃗+ b⃗′F = Ax⃗− b⃗′Kx⃗ = (A− b⃗′K︸ ︷︷ ︸
A′

)x⃗, (8)

The behaviour of the controlled system is obviously determined by a linear differential equation
system ˙⃗x = A′x⃗ with the system matrix A′ = A− b⃗′K. Now the art of a good control is to find
a K such that the system is stable. In discussions we pointed out that in order to achieve this,
the new system matrix A′ = A − b⃗′K must not have positive eigenvalues. The objective then is
to achieve this by choosing the entries of K (this is the so called pole placement).
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Find an appropriate control.

Unfortunately there does not exist a simple and satisfying procedure the students could perform
to obtain a pole placement. In MATLAB, the implemented command K = place(A,B,p) produces
a feedback gain matrix K which gives A′ any desired eigenvalues (collected in a vector p), but as
first year students often are not familar with computer algebra systems, we decided that only for
one black box effect it is not worthwhile to spend time on it. So we let the students try different
K to get a feeling for how K influences the eigenvalues of A′.

3.3 Excercises

Even though we wanted the students to collect and process information independently we gave
them exercises to guide them along general lines and to help them to develop an understanding
of concepts, perceptions and terms. These excercises were designed by the project leaders in close
collaboration with university didacts. Some examples:

• Make a presentation for non-engineers: What is a Segway? How does it work? The presentation
should take five to ten minutes.

• Write an excursus for a schoolbook (used in an advanced class in math): What is an equation
of motion? What is a differential equation? Where do both occur in an engineer’s workday life?
Give some simple examples!

3.4 The action day

In order to keep motivation high over the weeks and to combine theory and real life, thinking and
sensation, we made a day of action in the middle of the semester on which the students could
have a ride on some rented Segways to check out: How it feels when one shifts one’s weight on
the platform and the Segway establishes a corresponding speed to keep the balance and how fast
and how robust the control is.

After a short introduction on a street with little traffic, we made some round trips over the
whole university campus. This was one highlight in the project: The students had a lot of fun
testing the devices – standing still on the Segway, driving the first few meters and stopping are not
trivial at the beginning. By the way, it was fascinating to observe how fast some of the students
explored the limits of the control system.

4 Keep cool – the ribbed cooler

A cooler is a practically relevant example from the field of thermodynamics and was chosen to
give students an idea of how heat transmission in general and especially in a ribbed body works.
Cooler are objects from everyday life that can be found in computers, compressors of all types,
car engines and many other objects.

4.1 Setting the scene: The task

The science of heat transmission tries to explain how the conducted heat flow depends on the
impelling temperature gradient and how fast or intense the irreversible process of heat transmission
proceeds. In our specific project, we focused on the process of heat conduction.

As leittext the participating students were given extracts from a frequently used textbook
[Baehr and Stephan, 2003]. Their task was to construct theoretically a ribbed heat sink for a given
setting (CPU-processor), after picking up the theory of stationary, geometrically one dimensional
heat conduction.
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Figure 1: Energy balance for a volume element

4.2 Mathematical challenges

There are several steps to determine an “optimal” ribbed cooler:

Simplify the general heat conduction equation.

The starting point for the students was the general heat conduction equation

ρc(ϑ)
∂ϑ

∂t
= ∇ · (λ(ϑ)∇ϑ) + Ẇ (ϑ,x, t),

where λ denotes heat conductivity, ϑ temperature and Ẇ heat source. Assuming that λ, the heat
transfer coefficient α and Ẇ do not depend on temperature, the students were able to simplify
this equation to

∇2ϑ+ (Ẇ/λ) = 0,

a differential equation, which they could easily solve for a constant source term Ẇ .

Set up a heat balance for gills and needles.

Using figure 1 the students were able to deduce a differential equation

d

dx
[Aq(x)

dΘ

dx
]− α

λ

dAR

dx
Θ = 0

which describes the behavior of the excess temperature Θ(x) = ϑ(x) − ϑa, with ϑa being the
ambient temperature. The excess temperature is an important factor in the equation describing
the heat flow. Considering only straight gills with constant profile function, the equation above
reduces to a homogeneous scond-order ordinary differential equation. The students could solve
this and got an expression for the excess temperature.

Maximize the heat flow rate.

Using Fourier’s law, the heat flow is given by

Q̇R = −λRbδR

(
dΘ

dx

)
x=0

.

With constant gill volume VR and constant width b this can be rewritten as

Q̇R =
√
2αRλRVRb

Θ0√
h
tanh

(√
2αRb

λRVR
h3/2

)
,
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where the only free variable is the height h. The students maximized Q̇R(h) with respect to the
height h via the equation

tanh(mh) = 3mh[1− tanh2(mh)] with m =
√

2αR/(λRδR)

which can be solved geometrically to mh =
√
2αR/(λRδR)h = 1.4192 .

This gives the optimal ratio between the height h and thickness δR of a gill.

Deduce the efficiency of gills.

The efficiency ηR = Q̇R

Q̇R0

of a gill is defined as the ratio of the emitted heat flow Q̇R, compared to

the heat flow Q̇R0 emitted by a gill with uniform bottom temperature. For our case of straight
gills with constant profile function

ηR =
tanh(mh)

mh
.

The efficiency of a gill just depends on the proportion of height h and thickness δR.

Applying the theory to an example.

In the last step, the students were given a specific data like dimensions and material constants, and
had to compute the optimal ratio of height and thickness for two different materials (aluminium
and copper). At the end they computed the efficiency of their gill and looked up if such a ribbed
cooler could be used for up-to-date CPU-processors.

4.3 Exercises

Similar to the Segway project, the students were guided by text extracts to the goal of computing
an optimal heat sink. Some examples:

• Write an information box for a popular scientific journal:

– How does the efficiency of a gill depend on parameters?

– What does efficiency close to one or zero mean?

• Write a school book article for a mathematics/physics intensive course:

– Which different kinds of ordinary differential equations do you know?

– What do the notions ∇· and ∇ in the general heat equation mean?

– What is the definition of the geometrical one-dimensional, stationary heat conduction equa-
tion with heat source? Explain in your own words the statement of this heat conduction
equation. What is the meaning of ”stationary”?

– Give an example from the everyday life of an engineer, in which the heat conduction equation
plays an important role.

5 The final presentation

Each group prepared a presentation which was then shown to fellow students and professors from
different departments. To this end the center of higher education at Ruhr-University Bochum
offered a one-afternoon course in presentation techniques. It turned out that all groups had
rather good prerequisites from their school education and none of the groups required additional
assistance. The only problem they faced was the adequate depiction of mathematical formulas on
Powerpoint slides. Two examples of these slides are shown in figure 2. Although the general level
of the presentations was quite high, the technical level was very different. While one group focused
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Figure 2: Sheets from the final presentation

on the history, construction and practical use of Segways another group only briefly mentioned
this background information and quickly went over to the mathematical problems.

From our view the final presentation had two big advantages: First, the students were
brought to think about the project as a whole and rethink their way of approaching the
problem. Second, the final presentation can be thought of as some kind of summary
of the project that they can later use as a reference. We therefore strongly agree with
[K̊agesten and Engelbrecht, 2007][Jeltsch and Nipp, 2002] who found that integrating such stu-
dent presentations in a course supports the learning process.

6 Conclusions

There is no denying that in engineering education there is a need to be in step with actual practice.
The project MathePraxis at Ruhr-Universität Bochum aims at giving students an impression of
the use of basic mathematics in real engineering applications, beyond excercises and homework.

We found out that it is indeed possible to link subjects from the first year mathematics
lecture to real and interesting applications. For example, the Segway is a bodacious possibility
to connect differential equations, Taylor expansion and eigenvalues with up-to-date applications
and with funny, impressive and tangible experiences. Even though we have shown that they can
be refined to the level of knowledge of first-year students, it is in the nature of real problems that
they require thoughts, time and efforts so that it remains to be investigated if these examples
can be implemented in a regular mathematics lecture for first-year students. We also found out
(by an evaluation, for details, see below) that the insight into applications in form of guided,
but essentially single-handed teamwork leads to a more general and deeper understanding of
basic techniques than can be achieved by regular courses. We believe that this increases students
motivation to deal with mathematical subjects and that in this way, MathePraxis has a positive
effect on retention rates among engineering students.

Our accompanying anonymous evaluation focused on two subjects: Several questions
dealed with the students’ beliefs about mathematics (see [Berkaliev and Kloosterman, 2009] or
[Grigutsch and Raatz and Törner, 1998] for a similar survey with high school teachers), while in
the other part of the questionnaire the students had to assess the significance of specific mathe-
matical subjects for engineers.

The same questionnaire was given to the students at the beginning of the project and after the
final presentation. A control group from fellow students who did not participate in MathePraxis
was given the same questions at the same times. The five topics that were addressed showed up
both in MathePraxis and in the general lecture.

9



We shortly report about the results since we believe that the students’ attitude towards certain
topics reflects their understanding and motivation.

It turned out that while in the control group the importance of the topic Taylor expansion
decreased it did increase very significantly among project participants (see Table 1). Here the
valuation of importance changed for the control group from 2.4 to 2.8 and from 2.7 to 2.0 for the
project participants. For other topics like derivatives or vector analysis the difference was not as
large but still the project members rated the importance of those topics higher than the control
group. A detailed evaluation of the questionnaire will be given elsewhere.

Topic CG before CG after PG before PG after
Differential equations 2.4 2.4 2.2 1.8

Vector analysis 2.0 2.2 2.0 1.9
Eigenvalues 2.7 2.7 3.0 2.4
Derivatives 2.6 2.5 2.0 1.9

Taylor expansion 2.4 2.8 2.7 2.0

Table 1: Mean values of the estimated relevance for different topics before and after MathePraxis.
Note that smaller numbers indicate a higher importance of the topic. CG = control group; PG =
project group

We also made a short evaluation about the satisfaction with MathePraxis in the middle of
the project; the students were asked to write down what they liked up to that point and how
they would improve the project. The evaluation unambiguously showed, not surprisingly, that the
participants liked the action day most; they recommended to add some more hands-on experience
like designing a simple sway control or a LEGO Mindstorms realization of the inverted pendulum.
The only aspects the students criticized were that the work load was not well-balanced and that
the project “appears to be unstructured”.

We believe that this originates in the fact that the students never experienced such indepen-
dent work. In addition, the choice of the word “appears” indicates that the students actually
realize that it is in the nature of real life problems that one has neither an overview nor a general
idea what to do. Concerning the workload we recognize the difficulty of distributing the topics in
a more balanced way: A short presentation over a Segway and a linearisation are just easier than
solving a system of differential equations using generalised eigenvectors. In the planned rerun
of the project we will try to account for that objection. We also plan to involve little practical
realizations in order to add a creative aspect.

It is obvious that students have to put some time and effort into MathePraxis, but nonetheless,
the mathematics involved in our project is covered by the regular lectures, and so MathePraxis
was not exceptionally demanding. Since the work groups were small and we could monitor the
students’ progress in the weekly meetings and because we checked in interviews after the final
presentation the students’ understanding of the presented topics, we can be sure that even the
weaker students could benefit from the project. We clearly see a need for reflecting methods by
applying them in a more advanced context than in short homework excercises. This impression is
supported by many intense and vivid discussions with the students during the project.

Especially during their first year at university, engineering students seem to have a strong
interest in practical realisations, while they often neither see nor sense the mathematical abilities
needed to realise them even if they are presented in the math courses. We believe that our project
can close this gap and that it enables the students to get a first impression on how mathematics
is used by engineers.
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Springer.

Berkaliev, Z. and Kloosterman, P., 2009. Undergraduate Engineering Majors’ Beliefs About Math-
ematics, School Science and Mathematics, 109(3), 175-182.

Dehling, H. and Glasmachers, E. and Härterich, J. and Hellermann, K., 2010. MP 2 -
Mathe/Plus/Praxis: Neue Ideen für die Servicelehre, Mitteilungen der Deutschen Mathematiker-
Vereinigung, 18, 252.

Gleason, J. et al., 2010. Integrated Engineering Math-Based Summer Bridge Program for Student
Retention, Adv. Eng. Education 2.

Golle, K. and Hellermann, K., 2000. Leittextgestütztes Lehren und Lernen an der Hochschule
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