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First of all, I would like to compliment the authors for writing this very fine
survey paper on some recent developments in change point analysis. There is
a lot of current research activity devoted to change point analysis, and many
articles have appeared since the publication of the seminal book by Csörgő and
Horváth (1997). Among the topics covered in the present paper are empirical
process techniques, Darling-Erdős laws, changes in correlations, changes in
regression parameters, sequential testing, panel models, and functional data.
Horváth and Rice provide an excellent survey of some of the recent results,
which will be helpful to all researchers in this area.

In my discussion, I will complement the paper by Horváth and Rice by pre-
senting some recent results on U-statistics based robust change-point tests for
time series. In a series of papers, see Dehling and Fried (2012), Dehling, Fried,
Garcia and Wendler (2013), Dehling, Rooch and Taqqu (2013a, 2013b), and
Betken (2014), we have investigated such tests, and derived their asymptotic
distribution, both in the case of short range as well as long range dependent
time series.

We consider a model where the data are generated by Xi = µi + εi, where
µi is an unknown signal, and where εi is a stationary ergodic noise process with
E(εi) = 0. Given the observations X1, . . . , Xn, we wish to test the hypothesis
of no change, i.e. H : µ1 = . . . = µn, against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn, for some 1 ≤ k ≤ n− 1.
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The motivation for our change-point tests, as for many other change-point
tests, arises from the two-sample problem that one obtains when the change
point k is assumed to be known. In this situation, we are given two samples
X1, . . . , Xk, and Xk+1, . . . , Xn, and we want to test for a difference in location.
In this paper, we focus on three tests, namely the Gauss test, the Wilcoxon test
and the Hodges-Lehmann test, which are associated with the test statistics

Tn,1(k) =
1

n− k

n∑
i=k+1

Xi −
1

k

k∑
i=1

Xi

Tn,2(k) =

k∑
i=1

n∑
j=k+1

1{Xi≤Xj}

Tn,3(k) = median{(Xj −Xi) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n},

respectively. When the change point is unknown, we consider some summary
statistic, e.g. a weighted maximum max1≤k≤n−1 |an(k)Tn,i(k)|.

In order to derive the asymptotic distribution of these change-point test
statistics, we study weak convergence of the processes (Tn,i([nλ]))0≤λ≤1, prop-
erly normalized. For the first two statistics, this leads to the two-sample U-
statistic process

U[nλ],n−[nλ] =
1

[nλ](n− [nλ])

[nλ]∑
i=1

n∑
j=[nλ]+1

h(Xi, Xj), 0 ≤ λ ≤ 1.

The Hodges-Lehmann estimator is the median of the empirical distribution of
the pairwise differences Xj −Xi, 1 ≤ i ≤ k < j ≤ n. Thus, we are lead to the
study of the empirical distribution and the empirical quantiles of arbitrary
kernels g(Xi, Xj), 1 ≤ i ≤ k < j ≤ n. We define the empirical distribution
function

U[nλ],n−[nλ](t) =
1

[nλ](n− [nλ])

[nλ]∑
i=1

n∑
j=[nλ]+1

1{g(Xi,Xj)≤t}, 0 ≤ λ ≤ 1, t ∈ R,

and the quantile function Q[nλ],n−[nλ](p) = U−1[nλ],n−[nλ](p), where U−1 denotes

the generalized inverse.
We have obtained results both under the assumption of Short Range De-

pendent (SRD) as well as of Long Range Dependent (LRD) noise. We will first
focus on the SRD case, where we assume that the noise has a representation
as a functional of a β-mixing process (Zi)i∈Z, i.e. that εi = f(Zi, Zi−1, . . .),
where f is a Lipschitz continuous function. This covers all relevant examples
from time series analysis, such as ARMA and GARCH models. In addition,
many deterministic dynamical systems such as expanding maps of the unit
interval are covered as well.

Dehling, Fried, Garcia and Wendler (2013) have studied the asymptotic
distribution of the two-sample U-statistics process in the case of SRD noise,
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extending results obtained earlier by Csörgő and Horváth (1988) in the case
of IID noise. Under some technical conditions, concerning the β-mixing coef-
ficients and the continuity of f and h, and under the null hypothesis of no
change, we could show that

√
nλ(1−λ)(U[nλ],n−[nλ]−θ)0≤λ≤1

D→ ((1−λ)W1(λ)+λ(W2(1)−W2(λ)))0≤λ≤1,

where (W1,W2) is 2-dimensional Brownian motion with covariance structure

Cov(Wi(λ),Wj(λ)) = (λ ∧ µ)
∑
k∈Z

Cov(hi(X0), hj(Xk)),

for i, j ∈ {1, 2} and 0 ≤ λ, µ ≤ 1. The functions hi are the first order terms in
the Hoeffding decomposition of the kernel h, given by h(x, y) = θ + h1(x) +
h2(y)+ψ(x, y). Here, θ = Eh(X,Y ), h1(x) = Eh(x, Y )−θ, h2(y) = Eh(X, y)−
θ and ψ(x, y) = h(x, y)−θ−h1(x)−h2(y), where X,Y are independent random
variables with the same distribution as X1.

Applying the above limit theorem for the two-sample U-process to the
kernels h(x, y; t) = 1{g(x,y)≤t}, t ∈ R, one can obtain convergence of the two-
sample empirical U-process (

√
nλ(1− λ)(U[nλ],n−[nλ](t)− U(t)))0≤λ≤1, where

U(t) = P (g(X,Y ) ≤ t), for fixed t. Using a Bahadur-Kiefer representation, one
can then obtain convergence of the corresponding two-sample quantile process.
In a forthcoming paper, Dehling, Fried and Wendler (2014) show that, again
under some technical conditions, concerning the β-mixing coefficients and the
continuity of f , g and U , and under the null hypothesis of no change, the
two-sample quantile process

√
nλ(1− λ)

(
Q[nλ],n−[nλ](p)−Q(p)

)
0≤λ≤1

converges in distribution to the process ((1−λ)W1(λ)+λ(W2(1)−W2(λ))0≤λ≤1,
where (W1(λ),W2(λ)) is 2-dimensional Brownian motion with covariance func-
tion

Cov(Wi(µ),Wj(λ)) =
µ ∧ λ

u2(Q(p))

∑
k∈Z

Cov(hi(X0, Q(p)), hj(Xk, Q(p))).

Here, Q(p) = U−1(p) denotes the quantile function. Moreover, we denote the
terms of the Hoeffding decomposition of h(x, y; t) by h1(x; t) and h2(y; t), and
define u(t) = U ′(t).

When applying this result to the case of the Hodges-Lehmann change point
test, we can show that

√
n max

1≤k≤n

k

n
(1− k

n
)|median{(Xj −Xi) : 1 ≤ i ≤ k < j ≤ n}|

has asymptotically the same distribution as σ
u(0) sup0≤λ≤1 |W (0)(λ)|, where

σ2 =
∑∞
k=−∞ Cov(F (X0), F (Xk)), and where (W (0)(λ))0≤λ≤1 denotes stan-

dard Brownian bridge.
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Dehling, Rooch and Taqqu (2013a) have studied the asymptotic distribu-
tion of the Wilcoxon change-point test in the case of LRD noise. We specifi-
cally consider Gaussian subordinated processes, i.e. we assume that εi = H(ξi),
where (ξi)i≥1 is a stationary Gaussian process with standard normal marginals
and autocorrelation function ρk = k−DL(k), 0 < D < 1, L slowly varying,
and where H is some measurable real-valued function. Moreover, we define
Jk(x) = E(1{H(ξ)≤x}Hk(ξ)), where Hk is the k-th order Hermite polyno-
mial. The smallest integer m such that Jm(x) 6≡ 0 is called the Hermite
rank. Define the normalizing constants dn = Var(

∑n
i=1 Hm(ξi)), and recall

that dn ∼ cn2HLm(n), where H := 1−mD/2 is the Hurst coefficient.
Assuming that m < 1/D, Dehling, Rooch and Taqqu (2013) showed that,

under the null hypothesis of no change, the process

1

ndn

[nλ]∑
i=1

n∑
j=[nλ]+1

(
1{Xi≤Xj} −

1

2

)
0≤λ≤1

converges in distribution to the proces
∫
Jm(x)dF (x)

m! (Zm(λ) − λZm(1))0≤λ≤1,
where (Zm(λ))0≤λ≤1 denotes anm-th order Hermite process. In a recent paper,
Betken (2014) gives a self-normalized version of the Wilcoxon change-point test
which is asymptotically distribution free under the null hypothesis.

In a subsequent paper, Dehling, Rooch and Taqqu (2013b) have investi-
gated the asymptotic distribution of the Wilcoxon and the CUSUM change
point test under local alternatives, and calculated their asymptotic relative
efficiencies. In the case of Gaussian errors, the ARE equals 1, while for heavy-
tailed data, the Wilcoxon test has superior power. For finite samples, these
results are confirmed by simulations.
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