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PARAMETER ESTIMATION FOR THE DRIFT OF A
TIME-INHOMOGENEOUS JUMP DIFFUSION PROCESS

BRICE FRANKE AND THOMAS KOTT

Abstract. This work deals with parameter estimation for the drift of jump diffusion pro-
cesses which are driven by a Lévy process and whose drift term is linear in the parameter.
In contrast to the commonly used maximum likelihood estimator, our proposed estimator
has the practical advantage that its calculation does not require the evaluation of the con-
tinuous part of the sample path. In the important case of an Ornstein-Uhlenbeck-type jump
diffusion, which is a widely used model, we prove consistency and asymptotic normality.

1. Introduction

In statistical inference for time-continuous stochastic processes, parameter estimators that
are based on the observation of the entire time-continuous path are natural objects to study:
These estimators have often a closed-form representation in terms of stochastic integrals
such that large sample results like consistency and asymptotic normality may be obtained
by using techniques from stochastic analysis, see Section 5. In many situations continuous
time estimators can be fairly approximated by their discrete time versions, see Lemma 3.1
for a representation.

There exists a large number of publications on drift parameter estimation for time-
continuously observed diffusion processes. Maximum likelihood estimation is thereby, as
well as in many other fields of statistical inference, the most commonly used estimation
method. For a continuous diffusion process, which is an important model in many applied
fields, with stochastic differential

(1) dXt = f(t,Xt, θ)dt+ dBt, 0 ≤ t ≤ T,

where (Bt)t≥0 denotes Brownian motion and θ the unknown parameter, maximum likelihood
estimation is based on Girsanov’s theorem which provides an expression of the likelihood
function. The resulting maximum likelihood estimator requires the computation of integrals
of the form

(2)

∫ t

0

f(t,Xt, θ)dXt.

Asymptotic properties of maximum likelihood estimates from time-continuous realizations
of the process in (1) can be found e.g. in [3] and [17]. Given time-continuous observations
{Xt, 0 ≤ t ≤ T} the integral in (2) is approximated by an Itô sum using time-discrete
increments of the sample path.

Especially in mathematical finance, an important generalization of model (1) is the jump
diffusion process allowing for the possibility of discontinuities and a wide variety of marginal
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distributions, see [2] and [6] for some applications. The jump diffusion process is defined as
the solution to

(3) dXt = f(t,Xt, θ)dt+ dLt, 0 ≤ t ≤ T,

where (Lt)t≥0 is a homogeneous Lévy process, and the application of the maximum likelihood
approach to the Girsanov density yields estimators that are based on∫ T

0

f(t,Xt, θ)dX
0,c
t

where X0,c
t is the continuous local martingale part of the process (see section 3 for the exact

definition). This integral cannot be computed without further ado since the process (Xc
t )t≥0

is not observed separately in practice. Large sample results on the maximum likelihood
estimator for jump diffusion processes are derived in [21] and [22].

In this treatment we present an alternative continuous-time estimator for the drift pa-
rameter θ of the jump diffusion process given in (3) where the drift term is linear in the
parameter, that means that the process solves

(4) dXt = f(t,Xt)θ dt+ dLt.

Our estimator is derived by making use of the least squares method. In detail, we first
regard the discretized version of the stochastic differential equation (4) and apply ordinary
least squares estimation. In doing so, we obtain a time-discrete estimator. Thereafter, we
take the limit as the discretization step ∆t goes toward zero and get thereby a continuous
time estimator of the drift parameter. Note that the resulting least squares estimator does
not coincide with the trajectory fitting estimator (see Section 2.2.3 in [18]) which is sometimes
referred to as time-continuous least squares estimator as well.

The crucial point of this work is the fact that, unlike the maximum likelihood estimator,
our estimator requires the computation of integrals of the form (2) which can be calcu-
lated from the given data and which do not require further investigation determining the
continuous part of the sample path.

In Sections 5, 6 and 7 we prove strong consistency and asymptotic normality of our
time-continuous least squares estimator for a time-inhomogeneous, mean-reverting Ornstein-
Uhlenbeck process of the form (4) provided with a periodic drift. The case of a continuous
driving process in this Ornstein-Uhlenbeck model is studied by the authors in [7]. Note that
mean reversion, periodicity and the occurrence of jumps are meaningful properties of, for
example, energy commodity and particularly electricity data, cf. [11]. In the case of the
ordinary Ornstein-Uhlenbeck process with jumps, [12] studies the large sample behavior of
the time-continuous trajectory fitting estimator, various time-discrete estimation techniques
are investigated in [4],[8], [13] and [23].

2. Description of the model

Suppose we are given a filtered probability space (Ω,F , (Ft)t≥0, P ) where F0 contains
all P -null sets of F and where Ft is right continuous, i.e. Ft = ∩u>tFu. Let (Lt)t≥0 be a
Lévy process, that is an Ft-adapted process which is continuous in probability and which has
independent and stationary increments. Throughout this work we want to consider its unique
càdlàg (right-continuous with left limits) modification. The famous Lévy-Itô decomposition
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([1], Theorem 2.4.16 on p. 108) gives the path-wise representation

(5) Lt = bt+ σBt +

∫ t

0

∫
|x|<1

xq̃L(dt, dx) +

∫ t

0

∫
|x|≥1

xqL(dt, dx)

where (Bt)t≥0 is a (standard) Brownian motion, b ∈ R, σ > 0 and where qL denotes the
Poisson random measure associated with (Lt)t≥0 while q̃L is the corresponding compensated
measure. In detail, qL is a random measure on R+ × (R\{0}) defined by

qL(t, A) = #{0 ≤ s ≤ t : ∆Ls ∈ A} =
∑

0≤s≤t

1A(∆Ls)

for all Borel sets A ∈ R\{0}. Thereby, we use the notation ∆Ls = Ls − Ls−, Ls− =
limε→0 Ls−ε and 1A for the indicator function of the set A. Further, the compensated
Poisson random measure is given by q̃L(dt, dx) = qL(dt, dx) − dtν(dx) where ν is the
Lévy measure associated with (Lt)t≥0 satisfying

∫
R\{0}(x

2 ∧ 1)ν(dx) < ∞. It holds that

b = E(L1) −
∫
|x|≥1

xν(dx). We also point out that the Poisson random measure qL(dt, dx)

and the Brownian motion B representing L are independent.
The model of interest is the jump diffusion process (Xt)t≥0 solving the stochastic differen-

tial equation

(6) dXt = f(t,Xt)θ dt+ dLt, X0 = X∗,

where
f(t, x) = (f1(t, x), . . . , fp(t, x)) , p ∈ N,

and where each fi(t, x) is a known, real-valued function on [0,∞)×R. Further, let the random
variable X∗ be independent of the Lévy process and E(X2

∗ ) < ∞. The drift parameter
θ ∈ Rp is unknown and has to be estimated. We require that the distribution of X∗ does
not depend on θ otherwise the Radon-Nikodym derivative given in Proposition 4.1 would
contain an additional factor, see [18] (p. 37) for details.

Note that equation (6) is a short form of the integral equation

Xt −X∗ =

∫ t

0

f(s,Xs)θ ds+ Lt.

We implicitly assume that the well-known Lipschitz and linear growth conditions on the
drift function f are satisfied (see [15], Theorem III.2.32 on p. 145) such that a unique càdlàg
solution to (6) exists.

3. Least squares estimator

In this section we introduce a least squares estimator for the drift parameter θ. The
derivation is based on a discretization of the stochastic differential equation (6) to which
the ordinary least squares approach is applied. Taking the limit as the refinement improves
yields a time-continuous estimator.

The stochastic differential equation (6) can be discretized on a time interval [0, T ] to the
difference equation

(7) X(i+1)∆t −Xi∆t = f(i∆t,Xi∆t)θ∆t+ (L(i+1)∆t − Li∆t), i = 0, 1, . . . , N,

where N = bT/∆tc − 1 and where ∆t > 0 denotes the constant time increment. Here bxc
denotes the integer part of x. The structure of (7) is similar to that of the classical linear
model. Even though the conditions of the Gauss-Markov Theorem for linear models are not
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fulfilled we want to apply least squares estimation which is based on the minimization of the
functional

g : θ 7→
N∑
i=0

(
X(i+1)∆t −Xi∆t − f(i∆t,Xi∆t)θ∆t

)2
.

Lemma 3.1. The solution vector θ̃T,∆t to the minimization problem g(θ)→ min is given by

θ̃T,∆t = Q−1
T,∆tRT,∆t

where QT,∆t =
(∑N

i=0 fj(i∆t,Xi∆t)fk(i∆t,Xi∆t)∆t
)

1≤j,k≤p
∈ Rp×p and

RT,∆t =

(
N∑
i=0

f1(i∆t,Xi∆t)(X(i+1)∆t −Xi∆t), . . . ,
N∑
i=0

fp(i∆t,Xi∆t)(X(i+1)∆t −Xi∆t)

)t

∈ Rp.

Proof. By general theory of least squares estimation in linear models, the solution to the
minimization problem g(θ)→ min is given by

(8) θmin = (ATA)−1ATD

where

A = ∆t


f1(0, X0) . . . fp(0, X0)
f1(∆t,X∆t) . . . fp(∆t,X∆t)

...
. . .

...
f1(N∆t,XN∆t) . . . fp(N∆t,XN∆t)

 , D =


X∆t −X0

X2∆t −X∆t
...

X(N+1)∆t −XN∆t

 .

Hence, the products in equation (8) can be calculated to be

ATD = ∆tRT,∆t

and
ATA = ∆tQT,∆t.

Thus we get θ̃T,∆t = (ATA)−1ATD = Q−1
T,∆tRT,∆t. �

Now a continuous-time estimator can be derived from the least squares estimator by
considering ∆t→ 0. Note that any càdlàg function can be uniformly approximated on finite
intervals by a sequence of step functions since it has countably many discontinuities on finite
intervals. Hence, it is Riemann-integrable. This justifies the following convergence of the
entries of QT,∆t (as ∆t→ 0):

(9)
N∑
i=0

fl(i∆t,Xi∆t)fm(i∆t,Xi∆t)∆t→
∫ T

0

fl(t,Xt)fm(t,Xt)dt

since fj(t,Xt) has càdlàg paths (because Xt has càdlàg paths) and the left-hand side of (9)
is a Riemann sum. Regarding the entries of RT,∆t it holds that

N∑
i=0

fj(i∆t,Xi∆t) · (X(i+1)∆t −Xi∆t)→
∫ T

0

fj(t,Xt−)dXt

uniformly on compacts in probability since Xt is a semi-martingale with càdlàg paths, see
[20] (Theorem II.21 on p. 64). We have thus proved the following proposition.
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Proposition 3.2. As ∆t → 0, the least squares estimator θ̃T,∆t converges in probability to

θ̂T = Q−1
T RT where QT =

(∫ T
0
fj(t,Xt)fk(t,Xt)dt

)
1≤j,k≤p

∈ Rp×p and

RT =

(∫ T

0

f1(t,Xt−)dXt, . . . ,

∫ T

0

fp(t,Xt−)dXt

)T

∈ Rp.

We call the estimator θ̂T continuous-time least squares estimator.

Remark 1. We implicitly assumed that QT is invertible. This condition holds for many
reasonable models, like for jump diffusions of Ornstein-Uhlenbeck form. However, in the
case of a singular matrix QT , one has to find solutions γ ∈ Rp to the normal equations

QTγ = RT

and make further constraints in order to determine a proper estimator. Note that we have the
same possible ambiguity of the solution vector in the case of maximum likelihood estimation
which is presented in the next section.

Remark 2. The referee for this article suggested another least square analogy which also
leads to the same estimator: in a discrete linear model yi = fiθ + εi; i = 1, ..., n the least
square estimator also has to minimize the expression −2

∑
yifiθ+

∑
(fiθ)

2. In our case the
equation leads to the continuous linear model dXt = ftθdt + dLt and it is then manifest to
look for an estimator, which minimize the expression

−2

∫ T

0

ftθdXt +

∫ T

0

θTfT
t ftθdt.

The resulting minimizer turns out to have the expression θ̂T = Q−1
T

∫ T
0
fT
t dXt, where Q−1

T

denotes the inverse of the matrix QT :=
∫ T

0
fT
t ftdt.

4. Maximum likelihood estimation

We want to demonstrate the practical advantage of the continuous-time least squares
estimator introduced in the previous section over the maximum likelihood estimator. An
extensive study of maximum likelihood methods for jump-type processes has been presented
in [22]. Let D[0, T ] denote the space of càdlàg functions from [0, T ] to R. Denote by PX and
PL the measures induced on D[0, T ] by the process (Xt)0≤t≤T solving equation (6) and by
the Lévy process (Lt)0≤t≤T , respectively. Note, that the law PX implicitly depends on the
parameter θ. Under the law PX the canonical process (ξt)t≥0 on D[0, T ] is a jump-diffusion
with the same characteristics as the solution of the stochastic differential equation (6) and
the process

ξθ,ct := ξt−ξ0−
∑
s≤t

1{|∆ξs|≥1}∆ξs−
∫ t

0

θf(s, ξs)ds+t

∫
{|y|>1}

yν(dy)−
∫ t

0

∫
{|y|≤1}

y(µ−ν)(ds, dy)

is a continious local martingale. Here the random measure µ is defined on [0, T ]× (R/{0})
through

µ(t, A) :=
∑

0≤s≤t

1A(∆ξs).
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In particular under PL the process

ξ0,c
t := ξt − ξ0 −

∑
s≤t

1{|∆ξs|≥1}∆ξs + t

∫
{|y|>1}

yν(dy)−
∫ t

0

∫
{|y|≤1}

y(µ− ν)(ds, dy)

is a continious local martingale (see [22] p.73). We mention that (see [22] p.80)

ξθ,ct = ξ0,c
t −

∫ t

0

f(s, ξs)θds.

The following proposition is an adaptation of the results from [22] to our situation. Like in
[22] we will assume that the function f is bounded on [0, n]× {x : |x| ≤ n} for all n ∈ N.

Proposition 4.1. The measures PX and PL are equivalent on D[0, T ] and one has PL-almost
surely

dPX
dPL

(ξ) = exp
(∫ T

0

f(t, ξt−)θσ−1dξ0,c
t −

1

2

∫ T

0

(f(t, ξt−)θ)2σ−1dt
)
.

Proof. Clearly one has that PX(AT (θ) < ∞) = PL(AT (θ) < ∞) = 1 since for every θ the
random variable

AT (θ) :=

∫ T

0

(f(t, ξt)θ)
2dt

is bounded. Furthermore the condition C from [22] is clearly satisfied and thus the formula
on p.77 from [22] yields the particular form of the Radon Nikodym derivative. �

Remark 3. In our model specified in (6), the Radon-Nikodym derivative has a simpler form
than the one in [22] because X(T )(ω) and L(T )(ω) exhibit the same jumps since

∆Xt = lim
ε→0

(Xt −Xt−ε) = lim
ε→0

∫ t

t−ε
dXt = lim

ε→0

∫ t

t−ε
f(t,Xt)θ dt+ lim

ε→0
(Lt − Lt−ε) = ∆Lt.

Hence, it holds for the point process qX associated with (Xt)t≥0 that

qX(t, A) = qL(t, A)

for all Borel sets A ∈ R\{0} and all t. Consequently, the change of measure from PL to PX
does not change the ‘weights’ of the discontinuities. So, in our framework, the density of PX
with respect to PL does not include any term that accounts for the jumps.

Remark 4. Similar expressions for the Radon-Nikodym derivative dPX
dPL

have been described

in [5] for financial models with jumps.

We will use the notation X(T ) to denote the observed trajectory of the process X during
the time-interval [0, T ]. Based on XT we define the continuous trajectory X0,c := F (XT )
where

F : D[0, T ]→ C[0, T ]; ξ 7→ ξ0,c.

The maximum likelihood estimator θ̌T is defined by

θ̌T := arg max
θ

dPX
dPL

(X(T )),

where the Radon-Nikodym density dPX/dPL obviously depends on the parameter θ. Con-
sistency and asymptotic normality for this estimator in quite general jump diffusion models
have been studied in [22] (see p.84). In our model the maximum likelihood estimator has an
explicit representation.



PARAMETER ESTIMATION FOR THE DRIFT OF A JUMP DIFFUSION PROCESS 7

Proposition 4.2. The maximum likelihood estimator θ̌T is given by

θ̌T = Q−1
T R̃T

where QT =
(∫ T

0
fj(t,Xt)fk(t,Xt)dt

)
1≤j,k≤p

∈ Rp×p and

R̃T =

(∫ T

0

f1(t,Xt−) dX0,c
t , . . . ,

∫ T

0

fp(t,Xt−) dX0,c
t

)T

∈ Rp.

Proof. Suppose we observe a sample path X(T ) = {Xt, 0 ≤ t ≤ T} of the process with
stochastic differential given in (6). The partial derivatives of the logarithm of the Radon
Nikodym derivative in Proposition 4.1 are of the form

(10)
∂

∂θi
ln

(
dPX
dPL

(X(T ))

)
=

∫ T

0

∂

∂θi
f(t,Xt−)θσ−1dX0,c

t −
∫ T

0

f(t,Xt)θ
∂

∂θi
f(t,Xt)θσ

−1dt,

i = 1, . . . , p, and the single derivatives of the linear drift function are given by ∂
∂θi
f(t,Xt)θ =

fi(t,Xt). Setting the derivatives in (10) equal zero results in a system of equations∫ T

0

fi(t,Xt−)dX0,c
t −

∫ T

0

f(t,Xt)θ̌Tfi(t,Xt)dt = 0, i = 1, . . . , p,

which can be written as
R̃T −QT θ̌T = 0

This proves our claim. �

Note that the expression for the maximum likelihood estimator θ̌T is similar to the least
squares estimator θ̂T given in Proposition 3.2. The discrepancy lies in the vectors R̃T and

RT . The entries of the latter are of the form
∫ T

0
fi(t,Xt−)dXt and can be calculated in prac-

tice without any difficulty. If time-discrete observations are available these integrals can be

approximated by sums. In contrast to that, the integrals
∫ T

0
fi(t,Xt−)dX0,c

t in R̃T cannot be
computed without further investigation due to the integrator which is the continuous part of
the sample path. In practice, a discontinuous path is observed such that the continuous part
of this path has to be determined by means of further techniques detaching discontinuities.
This is a challenging issue unless the paths of the Lévy process have a finite number of jumps
along the time interval [0, T ]. In the case of time-discrete observations the always arising
problem is to distinguish the jumps from the continuous points since the entire time-discrete
sample looks discontinuous.

Remark 5. In the case of an ordinary diffusion process without jumps, that is the process
solving

dXt = f(t,Xt)θ dt+ dBt, X0 = X∗,

where (Bt)t≥0 is a Brownian motion, the Radon-Nikodym derivative in Proposition 4.1 takes
the form

dPX
dPB

(X(T )) = exp

(∫ T

0

f(t,Xt)θ dXt −
1

2

∫ T

0

(f(t,Xt)θ)
2dt

)
for data X(T ). This expression is in accordance with the famous Girsanov Theorem, see [19]
(Theorem 7.6, p. 246). The first integral is computed with respect to the entire path since
there do not occur any discontinuities in this model. Note that the derivation of the maximum
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likelihood estimator goes in line with the considerations given above, i.e. differentiating and
solving the resulting system of equations, such that θ̌T = Q−1

T RT = θ̂T . That means, in this
continuous diffusion model, the maximum likelihood method provides the same estimator as
our least squares methodology presented in the previous section.

5. Consistency and asymptotic normality of the least squares estimator

In order to substantiate the convenience of the least squares estimator introduced in Sec-
tion 3 we show (strong) consistency of this estimator for a concrete jump diffusion model. In
the quite general setup with regard to the drift function f in (6) consistency requires general
conditions on the convergence of the matrix QT in Proposition 3.2 which are not helpful for
the application in concrete models.

Let us consider the time-inhomogeneous, mean-reverting Ornstein-Uhlenbeck process with
jumps which we define as the solution to

(11) dXt = Φ(t,Xt)θ dt+ dLt, X0 = X∗,

where
Φ(t, x) = (ϕ1(t), . . . , ϕp(t),−x) , p ∈ N,

with known, real-valued functions ϕ1, . . . , ϕp and E [X2
∗ ] <∞, X∗ being independent of the

Lévy process. We denote the parameter vector by θ = (µ1, . . . µp, α)T ∈ Rp×R+. We assume
that the drift function Φ is periodic in t, i.e.

Φ(t+ `, x) = Φ(t, x) for all x

where ` is a known period. Seasonality in the drift is a quite frequent phenomenon in
applications, e.g. in commodity prices or temperature modeling. This assumed periodicity
leads to the requirement ϕj(t + `) = ϕj(t). Due to Gram-Schmidt orthogonalization, we
may assume without loss of generality that ϕ1(t), . . . , ϕp(t) form an orthonormal system in
L2([0, `], 1

`
dλ), that means that

(12)

∫ `

0

ϕj(t)ϕk(t)dt =

{
1, j = k
0, j 6= k.

Henceforth, we will assume that we observe an integral multiple of the period length, i.e.
that

(13) T = N `

for some integer N . Moreover, we will assume without loss of generality that ` = 1.
The driving process (Lt)t≥0 is the right-continuous modification of a Lévy process of the

form as described in Section 2, that is, as usual, a stochastic process that is continuous in
probability with stationary and independent increments. For this model, we additionally
require

(14) IE
[
L2
t

]
<∞

for all t which is equivalent to the requirement
∫
|x|>1

x2µ(dx) <∞ where µ denotes the Lévy

measure. Further, we assume that the measure ν is symmetric; i.e.: ν(A) = ν(−A) for all
Borel sets in R\{0}. This results in b = 0 in representation (5) and

(15) IE[L1] = 0

implying that (Lt)t≥0 is a square integrable martingale (see [14]).
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Note that under the assumptions (12) and (13) the matrix QT in Proposition 3.2 simplifies
to

(16) QT =

(
T Ip −aT
−aT

T bT

)
where aT =

(∫ T
0
ϕ1(t)Xt dt, . . . ,

∫ T
0
ϕp(t)Xt dt

)T

, bT =
∫ T

0
X2
t dt and where Ip denotes the

(p× p)-identity matrix.

We have the following strong consistency result. Its proof is postponed to Section 6.

Theorem 1. Let {Xt, 0 ≤ t ≤ T} be observations of the periodic Ornstein-Uhlenbeck process
introduced above satisfying (12), (13), (14) and (15). Then the least squares estimator given
in Proposition 3.2 is consistent, i.e.

θ̂T → θ, almost surely,

as T →∞.

We are also interested in the distributional asymptotic of the least squares estimator θ̂T .
For this we introduce the following function

h̃(t) = e−αt
p∑
j=1

µj

∫ t

−∞
eαsϕj(s)ds(17)

and the (p+ 1)× (p+ 1)-matrix

C =

(
Ip + γΛΛT −γΛ
−γΛT γ

)
with

Λ := (Λ1, ...,Λp)
T

γ :=

(∫ 1

0

(
h̃(t)

)2

dt+
c2

2α
−

p∑
i=1

Λ2
i

)−1

where

Λi =

∫ 1

0

ϕi(t)h̃(t)dt, i = 1, ..., p

and

c2 := σ2 +

∫
Rd\{0}

y2ν(dy).

With those definitions we have the following asymptotic normality result. Its proof can be
found in Section 7.

Theorem 2. Let {Xt, 0 ≤ t ≤ T} be observations of the periodic Ornstein-Uhlenbeck process
introduced above satisfying (12), (13), (14) and (15). Then the least squares estimator given
in Proposition 3.2 is asymptotically normal; i.e.:

√
Tc−1

(
θ̂T − θ

)
D−→ N(0, C)

where C is defined in (5).
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Here, N(0, C) denotes a normally distributed random vector with zero-mean and covari-
ance matrix C.

Remark 6. In the particular case where the driving process is Brownian motion, asymptotic
normality of the least squares estimator is proved in [7] (Theorem 2). In that continuous
model, least squares and maximum likelihood give the same estimator, see Remark 4.

6. Proof of consistency

The following representation of the least squares estimator is essential for the proof:

Proposition 6.1. The least squares estimator θ̂T can be written as

(18) θ̂T = θ +Q−1
T ST

where

(19) ST =


∫ T

0
ϕ1(t)dLt

...∫ T
0
ϕp(t)dLt

−
∫ T

0
Xt−dLt


and where QT is given in (16).

Proof. By definition, we have θ̂T = Q−1
T RT where QT is given in (16) and

RT =


∫ T

0
ϕ1(t)dXt

...∫ T
0
ϕp(t)dXt

−
∫ T

0
Xt−dXt


in the model considered here, see Proposition 3.2. Due to the stochastic differential equation
(11) which is generating the data and which can be written as

dXt =
( p∑
j=1

µjϕj(t)− αXt

)
dt+ dLt

the stochastic integrals in RT are seen to be∫ T

0

ϕi(t)dXt =

p∑
j=1

µj

∫ T

0

ϕi(t)ϕj(t)dt− α
∫ T

0

ϕi(t)Xtdt+

∫ T

0

ϕi(t)dLt, i = 1, . . . , p,

∫ T

0

Xt−dXt =

p∑
j=1

µj

∫ T

0

ϕj(t)Xtdt− α
∫ T

0

X2
t dt+

∫ T

0

Xt−dLt.

Observe that the set {t ∈ [0, T ] : Xt 6= Xt−} is countable and has thus zero-mass with respect
to dt. Hence, we can conclude from these representations combined with (12) and (13) that

RT =

(
T Ip −aT
−aT

T bT

)
θ + ST

and it follows that Q−1
T RT = θ +Q−1

T ST . �
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Due to representation (18) the aim in the sequel is to show that

Q−1
T ST =

(
T Q−1

T

)( 1

T
ST

)
converges to zero almost surely as T →∞. Therefor, we will prove that T Q−1

T converges to
a finite limit and that 1

T
ST tends to zero, almost surely respectively. Both of these results

require some auxiliary results.

Lemma 6.2. The solution to the stochastic differential equation (11) is explicitly given by

(20) Xt = e−αtX0 + h(t) + Zt

where

h(t) = e−αt
p∑
i=1

µi

∫ t

0

eαsϕi(s)ds

and

Zt = e−αt
∫ t

0

eαsdLs.

Proof. This is a direct consequence of the Itô lemma applied to the function F (t, x) = eαtx.
See [20] (Theorem II.32, p. 71) or [16] (Theorem 7.6.1 and 7.6.4, p. 111 and 113) for reference
to the general Itô formula. �

Remark 7. In the sequel we will use the following version of the well known Itô isometry
for Levy driven stochastic integrals (see [14] p.56):

IE

[(∫ T

0

f(Xt)dLt

)2
]

= IE

[(∫ T

0

f(Xt)σdBt

)2
]

+ IE

[(∫ T

0

∫
R\{0}

f(Xt)yqL(dy, dt)

)2
]

= σ2IE

[∫ T

0

(f(Xt))
2dt

]
+ IE

[∫ T

0

∫
R\{0}

(f(Xt))
2y2ν(dy)dt

]
= c2IE

[∫ T

0

(f(Xt))
2dt

]
.

Due to the time-dependence of h and Z in (20) the process (Xt)t≥0 is not stationary in the
ordinary sense such that the ergodic theorem is not directly applicable. We will introduce a
solution to the stochastic differential equation (11) with time index t ∈ R instead of t ≥ 0. By
interpreting this process as a sequence of path-valued random variables we prove stationarity
and ergodicity of this sequence.

Define the process

(21) X̃t = h̃(t) + Z̃t

where h̃ : [0,∞)→ R is defined by

h̃(t) = e−αt
p∑
j=1

µj

∫ t

−∞
eαsϕj(s)ds(22)

and

(23) Z̃t = e−αt
∫ t

−∞
eαsdL̃s
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whereby
L̃s := Ls1{s≥0}(s) + L̄s1{s<0}(s)

by taking L̄s, when s < 0, to be an independent copy of −L−(s−) (see p. 214 in [1]).

Constructed in this way, the process (L̃t)t∈R is a continuation of (Lt)t≥0 to R such that

(L̃t)t∈R is also a Lévy process with càdlàg paths. We know that each function ϕj is periodic
with period one and its restriction to [0, 1] belongs to L1([0, 1], λ). This implies that the

function h̃ is well defined since we have∣∣∣ ∫ 0

−∞
eαsϕj(s)ds

∣∣∣ ≤ ∞∑
j=0

∫ j+1

j

e−αs|ϕj(s)|ds ≤
∞∑
j=0

∫ 1

0

e−αjν |ϕj(s)|ds <∞.

We also mention that Z̃ is well defined, since we can use Remark 7 to prove that its second
moments exists:

IE

[(∫ t

−∞
eαsdL̃s

)2
]

= c2IE

[∫ t

−∞
e2αsds

]
<∞.

In order to prove our main results we will need the following ergodicity result:

Lemma 6.3. The sequence (Wk)k∈N of D[0, 1]-valued random variables defined by

Wk(s) := X̃k−1+s, 0 ≤ s ≤ 1,

is stationary and ergodic.

Proof. Let h̃0 be the restriction of the function h̃ to [0, 1]. Since h̃ is periodic, we have the
decomposition

Wk(t) = h̃(k − 1 + t) + e−α(k−1+t)

∫ k−1+t

−∞
eαsdL̃s

= h̃0(t) + e−α(k−1+t)

∫ k−1+t

k−1

eαsdL̃s +
k−1∑
l=−∞

e−α(k−1+t)

∫ l

l−1

eαsdL̃s.

The time shifted Lévy martingale L̃
(l)
s := L̃s+l yields

Wk(t) = h̃0(t) + e−αt
∫ t

0

eαsdL̃(k−1)
s +

k−1∑
l=−∞

e−α(k−l+t)
∫ 1

0

eαsdL̃(l−1)
s

= h̃0(t) + e−αt
∫ t

0

eαsdL̃(k−1)
s +

0∑
j=−∞

e−α(1+t−j)
∫ 1

0

eαsdL̃(j+k−2)
s .

Consequently, we can write

Wk(·) = h̃0(·) + F0(Yk−1) +
0∑

j=−∞

eα(j−1)F (Yj+k−2)

by using the almost surely defined functionals

F0 : D[0, 1]→ D[0, 1]; ω 7→
(
t 7→ e−αt

∫ t

0

eαsdω(s)

)
,

F : D[0, 1]→ D[0, 1]; ω 7→
(
t 7→ e−αt

∫ 1

0

eαsdω(s)

)
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and the D[0, 1]-valued random variables

Yl : s 7→ (L̃(l)
s − L̃

(l)
0 ), 0 ≤ s < 1.

The sequence (Yl)l∈Z consists of independent and identically distributed random variables.
This implies that (Wk)k∈N is stationary and ergodic since each element of this sequence can
be represented as a measurable function G : (D[0, 1])N → D[0, 1] of elements of the iid
sequence (Yl)l∈Z, i.e.

Wk = G(Yk−1, Yk−2, . . .).

�

Lemma 6.4. As t→∞, one has

|X̃t −Xt| → 0, almost surely.

Proof. We have

|X̃t −Xt| ≤ e−αt|X0|+ |h̃(t)− h(t)|+ |Z̃t − Zt|

≤ e−αt|X0|+ e−αt
p∑
i=1

µi

∫ 0

−∞
eαs|ϕi(s)|ds+

∣∣∣e−αt ∫ 0

−∞
eαsdL̃s

∣∣∣.
Obviously, the first two terms on the right-hand side converge toward zero as t → ∞.
Further, we can use Remark 7 to see

IE

[(∫ 0

−∞
eαsdL̃s

)2
]

= c2IE

[∫ 0

−∞
e2αsds

]
<∞.

Hence we have shown that E
[∫ 0

−∞ e
αsdL̃s

]2

< ∞ which implies that
∣∣∣∫ 0

−∞ e
αsdL̃s

∣∣∣ < ∞
almost surely. It follows that

(24) e−αt
∣∣∣∣∫ 0

−∞
eαsdL̃s

∣∣∣∣→ 0

as t→∞.
�

Let us now turn to the matrix QT . Due to its simplified form in this model, see represen-
tation (16), its inverse can be explicitly computed.

Lemma 6.5. The inverse of the matrix QT given in (16) can be computed to be

(25) Q−1
T =

1

T

(
Ip + γTΛTΛT

T −γTΛT

−γTΛT
T γT

)
where ΛT = (ΛT,1, . . . ,ΛT,p)

T = 1
T
aT , see (16), and

γT =

(
1

T

∫ T

0

X2
t dt−

p∑
i=1

Λ2
T,i

)−1

.
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Proof. This can be proved by using the Frobenius matrix inversion formula which can be
found in [10] (p. 73), or by directly multiplying the above expression for Q−1

T with

QT = T

(
Ip −ΛT

−ΛT
T

1
T

∫ T
0
X2
t dt

)
.

�

Remark 8. Note that the Frobenius matrix inversion formula holds if and only if the entries
of the matrix on the right hand side of (25) are well-defined. We will see in the proof of
Proposition 6.6 that the limit of 1

T
Q−1
T is well defined since we show that the limit of γT

denoted by γ is greater than zero. Consequently, 1
T
Q−1
T exists almost surely if T is sufficiently

large.

Proposition 6.6. As T →∞, we have

T Q−1
T → C, almost surely,

where C is the (p+ 1)× (p+ 1) matrix

C =

(
Ip + γΛΛT −γΛ
−γΛT γ

)
whereby Λ = (Λ1, . . . ,Λp)

T and

Λi =

∫ 1

0

ϕi(t)h̃(t)dt, i = 1, . . . , p,

γ =

(∫ 1

0

(h̃(t))2dt+
c2

2α
−

p∑
i=1

Λ2
i

)−1

.

The function h̃ and the random variable Z̃t are specified in (22) and (23).

Proof. Consider the entries of the vector ΛT first, i.e. 1
T

∫ T
0
Xtϕj(t)dt. From Lemma 6.4 we

may conclude that
1

T

∫ T

0

X̃tϕj(t)dt−
1

T

∫ T

0

Xtϕj(t)dt→ 0,

almost surely. Since (X̃k−1+s)k∈N is stationary and ergodic by Lemma 6.3, the ergodic theo-
rem justifies

1

T

∫ T

0

X̃tϕj(t)dt =
1

T

T∑
k=1

∫ k

k−1

X̃tϕj(t)dt→ IE

[∫ 1

0

X̃tϕj(t) dt

]
=

∫ 1

0

h̃(t)ϕj(t)dt,

almost surely. Thus we have established convergence of ΛT,j, 1 ≤ j ≤ p. For the asymptotic

behavior of γT , it suffices to investigate 1
T

∫ T
0
X2
t dt.

It holds by (24) that∣∣∣∣ 1

T

∫ T

0

(Zt − Z̃t) dt
∣∣∣∣ ≤ 1

T

∫ T

0

∣∣∣Zt − Z̃t∣∣∣ dt =
1

T

∫ T

0

e−αt
∣∣∣∣∫ 0

−∞
eαsdL̃s

∣∣∣∣ dt→ 0,

almost surely, as T →∞. The ergodic theorem gives

1

T

∫ T

0

Z̃t dt→ IE
[
Z̃0

]
= 0,
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compare the proof of Lemma 6.3 and we may conclude that

(26) lim sup
T→∞

1

T

∫ T

0

Zt dt <∞.

Observe that h(t) is bounded and X0 < ∞ almost surely. These facts combined with (26)
and representation (20) justify

(27) lim sup
T→∞

1

T

∫ T

0

Xt dt = lim sup
T→∞

1

T

∫ T

0

(e−αtX0 + h(t) + Zt) dt <∞,

almost surely. It follows from (27) and Lemma 6.4 that

1

T

∫ T

0

X̃2
t dt−

1

T

∫ T

0

X2
t dt =

1

T

∫ T

0

(X̃t +Xt)(X̃t −Xt)dt→ 0.

Consequently, again by the ergodic theorem, we get

1

T

∫ T

0

X̃2
t dt =

1

T

T∑
k=1

∫ k

k−1

X̃2
t dt −→ IE

[∫ 1

0

X̃2
t dt

]
= IE

[∫ 1

0

(h̃(t) + Z̃t)
2dt

]
= IE

[∫ 1

0

(h̃(t))2dt+ 2

∫ 1

0

h̃(t)Z̃tdt+

∫ 1

0

Z̃2
t dt

]
=

∫ 1

0

(h̃(t))2dt+ E
[
Z̃2

0

]
=

∫ 1

0

(h̃(t))2dt+
c2

2α
.

By Bessel’s inequality (see [25] p.33), we have

p∑
i=1

Λ2
i ≤

∫ 1

0

(h̃(t))2dt

and thus ∫ 1

0

(h̃(t))2dt+
c2

2α
−

p∑
i=1

Λ2
i ≥

c2

2α
> 0.

�

Lemma 6.7. The term 1√
T
ST is bounded in L2.

Proof. Note that 1√
T

∫ T
0
ϕi(t) dLt is L2-bounded since by Remark 7 one has

IE

[(
1√
T

∫ T

0

ϕi(t) dLt

)2
]

= c2IE

[
1

T

∫ T

0

ϕi(t)
2 dt

]
=

c

T

∫ T

0

ϕi(t)
2 dt <∞.
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For the last entry of 1√
T
ST we use Remark 7 to prove that

IE

[(
1√
T

∫ T

0

Xt dLt

)2
]

= c2IE

[
1√
T

∫ T

0

X2
t dt

]
=
c2

T
IE

[∫ T

0

(
2e−αtX0h(t) + 2e−αtX0Zt + e−2αtX2

0 + 2h(t)Zt + h(t)2 + Z2
t

)
dt

]
.

Since Zt is a zero-mean random variable the expectation of the second and fourth term is
zero. Moreover, IE [Z2

t ] = c2

2α
(1− e−2αt) <∞ such that

sup
T≥0

1

T
IE

[∫ T

0

Z2
t dt

]
<∞.

Further, the function h is bounded and IE(X2
0 ) <∞ resulting in

sup
T≥0

1

T
IE

[∫ T

0

e−αtX0h(t)dt

]
<∞

and

sup
T≥0

1

T

∫ T

0

h(t)2dt <∞.

�

Proposition 6.8. As T →∞, we have

lim
T→∞

1

T
ST = 0, almost surely.

Proof. Observe that ST is a martingale since the Lévy process is a martingale due to con-
dition (15). By Lemma 6.7, 1√

T
ST is L2-bounded. Doob’s maximal inequality for time-

discontinuous sub-martingales, see Theorem 2.1.5 in [1] (p. 74), provides for any ε > 0
that

IP

(
sup

2k≤T≤2k+1

1

T
|ST | ≥ ε

)
≤ IP

(
sup

2k≤T≤2k+1

|ST | ≥ ε2k

)
≤ 4

ε222k
IE
[
|S2k+1 |2

]
= O(2−k).

Applying the Borel-Cantelli theorem, we obtain lim supT→∞
1
T
|ST | ≤ ε, almost surely, and

thus we have shown that ST/T → 0. �

Remark 9. The referee suggested another proof for Proposition 6.8: we have seen in
Lemma 6.7 that the components Sj of the martingale S satisfy supT≥0

1
T
E[(SjT )2] < ∞

and moreover one has 〈Sj〉T ∼ T a.s.. An application of the martingale stability theorem
then proves Proposition 6.8. See [24] (Theorem 3.3.1) for the martingale stability theorem.

Proof of Theorem 1. This follows directly from Proposition 6.6 and Proposition 6.8. �
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7. Proof of asymptotic normality

We define the following (p+ 1)× (p+ 1)-matrix

(28) Σ :=

(
Ip Λ

ΛT ω

)
where

Λi :=

∫ 1

0

ϕi(t)h̃(t)dt, i = 1, . . . , p

ω :=

∫ 1

0

(h̃(t))2dt+
c2

2α

and where the function h̃(t) is defined in (17).
We know that from Proposition 6.1 that

θ̂T = θ +Q−1
T RT

with

RT =


∫ T

0
ϕ1(t)dLt

...∫ T
0
ϕp(t)dLt

−
∫ T

0
Xt−dLt


Thus we have √

T
(
θ̂T − θ

)
=
(
TQ−1

T

) 1√
T
RT .

We further know from Proposition 6.6 that as T →∞
TQ−1

T −→ C = Σ−1 almost surely.

Thus the following proposition is sufficient to prove Theorem 2

Proposition 7.1. We have that

1√
T
RT

D−→ N(0,Σ).

Proof. Let F (n)
t := σ(Ls; s ≤ nt). We use a general limit theorem presented in [9] to prove

the weak convergence of the sequence of vector-valued martingales

R
(n)
t :=

(
1√
n

∫ nt

0

ϕ1(s)dLs, ...,
1√
n

∫ nt

0

ϕp(s)dLs,
1√
n

∫ nt

0

XsdLs

)
toward a Brownian motion. We define the matrix valued processes

A
(n)
t :=

(
Φn(t) Ψn(t)
ΨT
n (t) ρn(t)

)
with

Φij
n (t) :=

c2

n

∫ nt

0

ϕi(s)ϕj(s)ds,

Ψi
n(t) := −c

2

n

∫ nt

0

ϕi(s)Xsds,
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ρn(t) :=
c2

n

∫ nt

0

X2
sds.

For two square-integrable Ft-martingales Mt; t ≥ 0 and Nt, t ≥ 0 there exists a Ft-adapted
process noted 〈M,N〉t, t ≥ 0 such that the process

Mt ·Nt − 〈M,N〉t; t ≥ 0

is a Ft-martingalesee ([14] p.53) . Since one has that 〈L,L〉t = c2t (use formula (3.9) on p.62
in [14]) it follows that〈∫

ϕidL,

∫
ϕjdL

〉
=

∫
ϕiϕjd〈L,L〉s = c2

∫
ϕiϕjds〈∫

ϕidL,

∫
XdL

〉
=

∫
ϕiXd〈L,L〉s = c2

∫
ϕiXsds〈∫

XdL,

∫
XdL

〉
=

∫
X2d〈L,L〉s = c2

∫
X2
sds.

This implies that the processes

M j
n(t) :=

1

n

∫ nt

0

ϕi(s)dLs

∫ nt

0

ϕj(s)dLs − Φij
n (t)

M n(t) :=
1

n

∫ nt

0

ϕi(s)dLs

∫ nt

0

XsdLs −Ψi
n(t)

Mn(t) :=
1

n

(∫ nt

0

XsdLs

)2

− ρn(t)

are F (n)
t -martingales. Using Lemma 6.3 and Lemma 6.4 like in the proof of Proposition 6.6

we obtain that for n→∞
Φij
n −→ tc2

∫ 1

0

ϕi(s)ϕj(s)ds

and

Ψi
n(t) −→ −tc2IE

[∫ 1

0

ϕi(s)X̃sd

]
= −tc2IE

[∫ 1

0

ϕi(s)(Z̃s + h̃(s))ds

]
= −tc2

∫ 1

0

ϕi(s)h̃(s)ds.

Further,

ρn(t) −→ −tc2IE

[∫ 1

0

X̃2
sds

]
= tc2IE

[∫ 1

0

(Z̃s + h̃(s))2ds

]
= tc2

(
IE
[
Z̃2

1

]
+

∫ 1

0

(h̃(s))2ds

)
.

Thus the matrices A(n)(t) converge for n ↑ ∞ toward the matrix tΣ, which is the covariance
matrix of a Brownian motion process WΣ

t ; t ≥ 0. We note that the process A(n)(t) has no
jumps; i.e.:

IE

[
sup

0≤t≤T

∣∣∣A(n)
t − A

(n)
t−

∣∣∣] = 0
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Moreover, we have that

IE

[
sup

0≤t≤T

1√
n

∣∣∣∣∫ nt

0

XsdLs −
∫ nt−

0

XsdLs

∣∣∣∣2
]

≤ ε+ IE

(∫ nt

0

∫
R\B√

nε(0)

∣∣∣∣ 1√
n
X(s)y

∣∣∣∣ qL(dy, ds)

)2


= ε+ IE

[
1

n

∫ nt

0

∫
R\B√

nε(0)

(X(s)y)2 ν(dy)ds

]

= ε+ IE

[
1

n

∫ nt

0

(X(s))2ds

∫
R\{0}

1Bc√
nε

(0)(Xsy)y2ν(dy)

]
= ε+ IE

[
X2
s

∫
R\{0}

1Bc√
nε

(0)(Xsy)y2ν(dy)

]
.

By Lebesgue’s theorem on dominated convergence the last expectation converges toward
zero as n ↑ ∞ since one has IP-almost surely∫

R\{0}
1Bc√

nε
(0)(Xsy)y2ν(dy) −→ 0 as n→∞.

The same argument can be applied for the other components of the process R(n). We thus
have that

IE

[
sup

0≤t≤T

∣∣∣R(n)
t −R

(n)
t−

∣∣∣2] −→ 0.

An application of the limit theorem for martingales in [9] shows that R(n) converges in
distribution toward a Wiener process with covariance matrix Σ. �

Remark 10. In order to prove the distributional convergence of the processes R(n) toward
WΣ one could also use the more general results from [15].
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