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AbstratWe study a singularly perturbed salar reation-di�usion equation on abounded interval with a spatially inhomogeneous bistable nonlinearity. Forertain nonlinearities, whih are pieewise onstant in spae on k subintervals,it is possible to haraterize all stationary solutions for small " by meansof sequenes of k symbols, indiating the behavior of the solution in eahsubinterval. Determining also Morse-indies and zero numbers of the equilibriain terms of the symbol sequenes, we are able to give a riterion for heterolinionnetions and a desription of the assoiated global attrator for all k.1 IntrodutionSalar reation di�usion equations on a bounded interval provide an interesting lassof in�nite dynamial systems, whih still allows to obtain a detailed qualitative un-derstanding of the dynamis. Due to standard theorems they give under appropriateonditions rise to ompat analyti semigroups, possessing a global attrator thatontains all solutions whih are uniformly bounded for all times. Moreover therehave been a lot of investigations about stationary solutions, their stability and howtheir nodal properties determine the heterolini onnetions in the attrator (see[Pol02℄ and referenes there).A partiular interesting situation is the ase where the e�et of di�usion is very smallompared to the size of the reation terms. This is modeled by a small parameter" in front of the di�usion term. Some examples like the Chafee-Infante equation[CI74℄ show that one must expet both the number of equilibria and the dimensionof the global attrator to beome unbounded as " & 0. On the other hand, thereare situations where the dimension remains uniformly bounded, e.g. for visousonservation laws with dissipative soure terms, see [Hä98℄.In this paper, we want to investigate the interation of small di�usion with spatialinhomogeneities of the nonlinearity. To this end we study a speial lass of examplesof the form ut = "2uxx + (1 � u2)(u� a(x)); x 2 (0; 1) (1)under Neumann boundary onditions ux(0) = ux(1) = 0, with a bistable nonlinearitywhere the position of the unstable root �1 < a(x) < 1 may hange in spae.It has been shown in [AMP87℄, that for small ", all stable stationary solutions staylose to the stable roots �1 and 1 exept for some transition layers, ourring at po-sitions where a(x) = 0 and a0(x) 6= 0. In general, however, the number of stationary1



solutions, together with the dimension of some unstable manifolds beomes in�nitefor small " [ABF93℄. Hene it is still impossible, to obtain a omplete understandingof the set of all stationary solutions and the attrator in the limit "& 0.Salazar and Solà-Morales suggested in [SS01℄ to study the situation of pieewiseonstant funtions a(x), being alternatingly smaller and bigger than 0. This meansthat a(x) = i for x 2 [xi; xi+1), where 0 = x1 < x2 < : : : < xk < xk+1 = 1 is a givenpartition of the unit interval. For de�niteness, we will always assume that i �(�1)i >0. Equation (1) with pieewise onstant a(x) has �rst been onsidered by Roha[Ro88℄ who showed that for " su�iently small there are exatly Fk stable stationarysolutions, where Fk is the k-th Fibonai number. In [SS01℄ it has been shownthat for i su�iently distant from 0, the number of equilibria and the unstabledimensions stay bounded in the limit " ! 0 (see Theorem 1 in [SS01℄). Later,together with Fiedler and Roha, they proved in [FRSS01℄ some statements aboutthe number and stability of stationary solutions of (1).Building on these results we propose a more algebrai framework whih allows totranslate the information on the stationary solutions e�iently into information onthe dynamis. We will give in Setion 2 a haraterization of all stationary pro�les,using a desription of transition layers and spikes by symbol sequenes (Theorem1). Then, in Setion 3, we give an easy ondition for heterolini onnetions of theequilibria in terms of their symboli desription (Theorem 2). To this end, we realla general result about heterolini onnetions for suh equations from [Wo00℄. Weshow that orresponding order relations, as they are used in [Wo00℄, an be de�nedalso for the symbol sequenes. Moreover, the symbol sequenes and their orderrelations an be used to obtain expliitly the permutation of the equilibria. Thispermutation is de�ned by the ordering of the stationary pro�les at both ends of theinterval [FuRo91℄. It ontains all information about nodal properties and an alsobe used to determineMorse-indies and heterolini onnetions [FR96℄. Finally, wegive in Setion 4 a system of ordinary di�erential equations in k dimensions, whihreprodues the dynamis of the equation (1).2 Desribing stationary solutions by symbol sequen-esStationary solutions to (1) are given as solutions of the seond order ODE boundaryvalue problem "2u00 + (1� u2)(u� a(x)) = 0u0(0) = u0(1) = 0whih an be written as a �rst order system for u = (u; v):( "u0 = v"v0 = (u2 � 1)(u� a(x)) (2)2



i = 0v v vi < 0 i > 0u u uFigure 1: The vetor�eld for a(x) � iwith boundary onditions v(0) = v(1) = 0: (3)For eah subinterval [xi; xi+1℄, we an look at the phase portrait of this �rst ordersystem, whih is di�erent for odd i, i.e. a(x) � i < 0 and even i, i.e. a(x) � i > 0:There are always three equilibria (�1; 0), (i; 0) and (1; 0). For i < 0 there is ahomolini orbit attahed to the hyperboli equilibrium (�1; 0), while for i > 0 thehomolini orbit is asymptoti to the other hyperboli equilibrium (1; 0) (see Figure2). For i = 0 there exists a pair of heterolini orbits that onnet (�1; 0) and(1; 0). The size of the homolini orbits is measured by its diameter(i) = 23 �3� jij �q2i + 3jij� ;the distane between the asymptoti state and the point where the homolini in-tersets the u-axis.The linearization at the equilibrium to whih the homolini orbit is asymptotipossesses the real eigenvalues �q2(1 � jij). The eigenvalues of the linearization atthe other hyperboli equilibrium are �q2(1 + jij).Salazar and Solà-Morales have obtained su�ient onditions to assure a de�nitelimiting behavior for "! 0. We restate their result in our oordinates:Proposition 2.1 ([SS01℄, Theorem 3) Assume thati � (�1)i > 0; (4)(i) + (i+1) < 2 for i = 1; 2; : : : ; k � 1 (5)and (x2 � x1)q1� j1j < (x3 � x2)q1 + j2j;(xi+1 � xi)q1 � jij < (xi � xi�1)q1 + ji�1j for i = 3; : : : ; k: 9=; (6)Then for " small enough the number Nk of stationary solutions of (1) does notdepend on ". Nk satis�es the reursion relation Nk+1 = Nk + 2Nk�1 with N2 = 3,N3 = 5. Moreover, the Morse index of any stationary solution does not exeed 2k.Note that these onditions are satis�ed for example if all subintervals are of equallength, and the i just satisfy (4) and (5).3



�i = �1i = 1 2 3 4 : : : k�i = 1�i = 0Figure 2: Eah symbol sequene in Sk orresponds to a direted path in this graph2.1 Abstrat symbol sequenesIn this setion we desribe a set of �nite symbol sequenes. Later, we show thatthese symbol sequenes an be identi�ed with the stationary solutions of (1), suhthat eah symbol desribes the behavior of the stationary pro�le in one subinterval.De�nition 2.2 The set Sk onsists of sequenes s := (�1; : : : ; �k) of symbols �i 2f�1; 0; 1g satisfying the following rules:� For odd i the symbol �i = 1 may be followed by any symbol �i+1 , whereas for�i = �1 or 0, �i+1 has to be �1.� For even i the symbol �i = �1 may be followed by any symbol �i+1 , whereasfor �i = +1 or 0, �i+1 has to be +1.For any s = (�1; : : : ; �k) 2 Sk we denote with i(s) the number of zeroes ontained inthis sequene.In Figure 2 these transition rules are visualized by a direted graph. Now we de-ompose Sk into subsets Sjk = fs 2 Skj i(s) = jg:The ardinalities of the sets Sjk an be omputed reursively:Lemma 2.3 We have the reursions:jSkj = jSk�1j+ 2jSk�2j (7)jS0k j = jS0k�1j+ jS0k�2j (8)jS ikj = jS ik�1j+ jS ik�2j+ jS i�1k�2j;subjet to the (arti�ial) initial values jS�1j = jS0j = jS0�1j = jS00 j = 1 and jS i�1j =jS i0j = 0 for i > 0. 4



These reursions oinide with those, given in [FRSS01℄ for the numbers of station-ary solutions with Morse index i in the ase of k subintervals.Proof: We proeed by indution. First, it is straightforward to hek that thearti�ial initial values give the orret values for k = 1 and k = 2. Assume nowthat k is even and take an arbitrary sequene s = (�1; : : : ; �k) 2 Sk. Then for�k = �1 the predeessor �k�1 is arbitrary, i.e. the sequene (�1; : : : ; �k�1) is arbi-trary in Sk�1, giving the �rst term in (7). For �k = 0 or +1, the transition rulerequires �k�1 = �1, and only the sequene (�1; : : : ; �k�2) is arbitrary in Sk�2. Sinewe an extend in two ways with �k = 0 or +1, we get the fator 2 in the seond termof (7). Not allowing the symbol 0 at all, leads to (8), where the fator 2 is missing.If the number of symbols 0 is �xed to some value i, then �k = 0 and �k = �1 givedi�erent ontributions jS i�1k�2j and jS ik�2j sine the remainder (�1; : : : ; �k�2) ontainsthe symbol 0 either i � 1 or i times, respetively. For odd k the same argumentswork, interhanging �1 and +1. 22.2 Stationary pro�lesWe show now that the symbol sequenes in Sk an be used to desribe the stationarypro�les in the ase of k subintervals for su�iently small ". With E"k we denote theset of stationary solutions to (1) in the ase of k subintervals.Theorem 1 Assume that the pieewise onstant funtion a(x) satis�es (5) and (6).Then there exists a "0 > 0 suh that for 0 < " < "0 the following statements aretrue:(i) There is a one-to-one-orrespondene between the stationary solutions in E"kand the symbol sequenes in Sk.(ii) A stationary pro�le w 2 E"k is haraterized by its orresponding symbol se-quene s = (�1; : : : ; �k) in the following way: The i-th symbol �i desribesthe behavior of w(x) in the i-th subinterval (xi; xi+1); �i = �1 orresponds tow(x) � �1,whereas �i = 1 orresponds to w(x) � 1. The symbol �i = 0 isassoiated with a spike-type or boundary-layer behavior in the orrespondinginterval.(iii) The Morse-index (dimension of the unstable manifold) for a stationary pro�lew 2 E"k is given by the number i(s) of symbols 0 in the orresponding symbolsequene s.Reall that for x 2 (xi; xi+1), i.e. for a(x) � i equation (2) de�nes a Hamilto-nian system whih possesses a homolini orbit �i asymptoti to the equilibrium((�1)i; 0).For i = 1; 2; : : : ; k, let W si and W ui be the stable and unstable manifold of thehyperboli equilibrium ((�1)i+1; 0), whih is not ontained in the losure of �i.5
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Figure 3: Numerially omputed stationary pro�les for two subintervals, " = 0:1,a(x) = �12Remark 2.4 W ui and W si+1 interset transversally, as an be heked from theirrepresentation as level sets of the orresponding Hamiltonian systems.It is easy to show that any solution of the boundary value problem (2), (3) mustsatisfy u(x) 2 [�1; 1℄ for all x 2 [0; 1℄. To see this, assume that u(x) = (u(x); v(x))is a trajetory satisfying the left boundary ondition v(0) = 0 and that u(�x) > 1 forsome �x. Then v(�x) > 0 sine the region fu � 1; v � 0g is negatively invariant andannot be reahed by a trajetory that starts from the u�axis. Similarly, the regionfu > 1; v > 0g is positively invariant whih implies that the trajetory will neverreah the u�axis again and therefore annot satisfy the right boundary ondition.The proof that u(x) � �1 is ompletely analogous.In a next step we therefore desribe all solutions of the system"u0 = v"v0 = (u2 � 1)(u� a(x))for whih u(x) remains in the interval [�1; 1℄ as long as x is in some subinterval[xi�1; xi+1℄. We do not aim at an optimal desription of this set but rather preparethe setting for the proof of Theorem 1.Let Æ be small suh that Æ�neighborhoods of adjaent homolini orbits do notinterset, in other words, (i) + (i+1) + 2Æ < 2is satis�ed for i = 1; : : : ; k. Moreover, we require that Æ�neighborhoods of �i andW si do not interset either. This an obviously be ahieved by hoosing Æ su�ientlysmall. With suh Æ, letHi be a Æ�neighborhood of the equilibriumwhih is ontainedin the losure of the homolini �i and Ni a Æ�neighborhood of the intersetionbetween W si and the strip f�1 � u � 1g. The notation indiates that Hi isassoiated with the equilibriumwhere the homolini orbit is, while Ni ontains theequilibrium with no homolini orbit. 6



Lemma 2.5 Consider solutions of (2) where the i satisfy (5). Then for " smallenough the following holds:If a trajetory u(x) of (2) satis�es u(x) 2 [�1; 1℄ for all x 2 [xi�1; xi+1℄ for some2 � i � k, then u(xi) 2 Hi [ Ni:Proof: We will determine separately the lous of �initial onditions� u(xi) for whihu(x) remains in [�1; 1℄ for x 2 [xi; xi+1℄ and the lous of �terminal onditions� forwhih u(x) 2 [�1; 1℄ for x 2 [xi�1; xi℄. The intersetion of the two sets will beontained in Hi [ Ni.From the phase portrait for x 2 [xi; xi+1℄ we an immediately read o� that for "small we have �1 � u(xi+1) � 1 only if(i) the initial ondition u(xi) is lose to the stable manifolds of the two hyperboliequilibria, or(ii) the initial ondition u(xi) lies in the interior of the homolini orbit �i.In partiular, u(xi) must for " small lie in the union of W si and some neighborhoodof the interior of �i.Similarly, the ondition u(x) 2 [�1; 1℄ for x 2 [xi�1; xi℄ an only be satis�ed for small" if u(xi) is lose to one of the unstable manifolds or if u(xi) lies in the interior ofthe homolini orbit �i�1. In other words, u(xi) has to lie in a neighborhood ofW ui�1 or in some neighborhood of the interior of �i�1.For " su�iently small, the intersetion of the four sets onsists of the union of Hi,Hi�1 and a small neighborhood of the intersetion W ui�1 \W si . In partiular, u(xi)is therefore ontained in Hi [Ni. 2We outline now our strategy for the proof of Theorem 1: Stationary solutions will befound via a shooting method. Denote with �"i;j the �ow of (2) from x = xi to x = xj.We follow the image of the line fv = 0g, whih orresponds to the left boundaryondition, under the �ow �"1;j+1 for j = 1; : : : ; k. Due to the previous lemma weknow that we need only to keep trak of those parts of the shooting urve whih atx = xi lie within Hi [ Ni. Preimages of these parts will be intervals I"�1;:::;�j . As issuggested by this notation these intervals will onnet the di�erential equation withthe symbol sequenes introdued earlier.To get a preise orrespondene between neighborhoods and symbols it is neessaryto deompose Hi in two parts. The line fv = 0g divides Hi in two sets: Hsi is thepart that has a non-empty intersetion with W si�1 and Hui ontains some part ofW ui�1.The basi tool will be the following lemma that desribes the evolution of urvesunder the �ow �"i;i+1 orresponding to one interval where a(x) � i is onstant.7



Lemma 2.6 (Transition Lemma) (i) Suppose that the urve C � Ni is a graphover the u-axis whih is transverse to the stable manifold W si . Then for " suf-�iently small,� �"i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W si+1,� �"i;i+1(C) \ Hi+1 is a urve whih is C1-lose to W ui . Therefore, itintersets the homolini orbit �i+1 transversally and is again a graphover the u-axis .Moreover, �"i;i+1 preserves the order on C, that is, if (u1; v1) and (u2; v2) aretwo points on C with u1 < u2 then the u-oordinate of �"i;i+1(u1; v1) is smallerthan the u-oordinate of �"i;i+1(u2; v2).(ii) Suppose that the urve C is a graph over the u-axis in Hsi whih is transverseto the homolini orbit �i. Then for " su�iently small,� �"i;i+1(C) \ Hi+1 = ;,� �"i;i+1(C) \ Ni+1 has a onneted omponent whih is a graph over theu-axis transverse to W si+1.Again, �"i;i+1 preserves the order on C.(iii) Suppose that the urve C is a graph over the u-axis in Hui whih is C1�loseto W ui�1. Then for " su�iently small� �"i;i+1(C) \ Hi+1 = ;,� �"i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W si+1.The order on C is reversed by �"i;i+1.Proof: (i) is an immediate onsequene of the �-lemma whih states that for "small �"i;i+1(C) will be expanded along the unstable manifold W ui . Beause of thetransverse intersetion of W ui and W si+1 the urve �"i;i+1(C) will also be transverseto W si+1 in Ni+1. Similarly, sine it is C1�lose to W ui in Hi+1 it is automatiallytransverse to �i+1. That �"i;i+1 preserves the order on C an be seen from the phaseportrait, see Figure 4.(ii) The �rst laim is a simple onsequene of the fat that for a(x) � i there areno trajetories of (2) whih lead from Hi to Hi+1. As before, the �-lemma impliesthat a small part of C near the intersetion with �i will be strethed to a urve thatis lose to the unstable manifold of the equilibrium ontained in the losure of �i.This in turn implies that it will be transverse to W si+1 in Ni+1. Note that �"i;i+1 mayin general map other parts of the urve C also bak to Hi. This �spiraling� inside of�i, however, does not our if the urve C is lose enough to W ui�1. In the situationwe are interested in, this loseness is ahieved by ondition (6) (see[SS01℄).(iii) Again, sine no trajetories of (2) pass fromHi to Hi+1 the �rst laim is obvious.8
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Figure 4: E�et of the �ow �"i;i+1 on C in ase (i)This time we will use the �-lemma in a di�erent way than before. The stable mani-fold W si+1 is transverse to the homolini orbit �i. (This an again be heked usinglevel sets of the orresponding Hamiltonians.) The bakward evolution �i+1;i(W si+1)will therefore streth along �i and along the other branh of the unstable manifold ofthe equilibrium. In partiular, it will have a unique point of transverse intersetionwith the urve C. This in turn guarantees that �"i;i+1(C) \Ni+1 onsists of a urvethat is transverse to W si+1. Due to the exursion along �i the order on the urve isreversed. 2From this lemma it beomes lear that u(xi) 2 Ni orresponds to the symbol �i =(�1)i+1 beause in this ase the trajetory will remain near the equilibrium withoutthe homolini orbit for the major part of the interval [xi; xi+1℄. Similarly, u(xi) 2Hsi orresponds to the symbol �i = (�1)i and u(xi) 2 Hui orresponds to the symbol�i = 0 alias an exursion along the homolini orbit �i.In the next step we use the transition lemma to �nd trajetories of (2) with a givenitinerary s 2 Sk.In addition to the sets Hi and Ni we hoose a neighborhood U` of the intersetionbetween the homolini orbit �1 and the u-axis. We need this set to take are of theNeumann boundary onditions whih allows for solutions with a sharp boundarylayer at x = 0 orresponding to trajetories lose to a homolini orbit in (2).9



HuiW si v NiW ui�1 uW ui�"i;i+1(C)�iCHsiFigure 5: E�et of the �ow �"i;i+1 on C in ase (ii) and (iii)Lemma 2.7 Assume that (4) is satis�ed by the onstants i. Then for any " suf-�iently small and s = (�1; �2; : : : ; �k) 2 Sk, there exists some subinterval I"s of theu� axis suh that solutions of (2) with u(0) 2 I"s have the following properties:(i) u(xi) 2 Ni i� �i = (�1)i+1,(ii) u(xi) 2 Hsi i� �i = (�1)i,(iii) u(0) 2 U` if �1 = 0 and u(xi) 2 Hui if �k = 0 for some 2 � i � k.Proof: We onstrut a sequene of intervals I"�1;�2;:::;�j with the property thatI"�1;:::;�j;�j+1 � I"�1;�2;:::;�j ; (9)and suh that u(0) 2 I"�1;�2;:::;�j implies that the onditions (i)-(iii) are satis�ed for1 � i � j.To begin with, we hoose intervalsI"�1 := H1 \ fv = 0g;I"0 := U` \ fv = 0g; (10)I"1 := N1 \ fv = 0gand study the evolution of these intervals under the �ow �"1;2 to x = x2. By the�-lemma, if " is small enough �1;2(I"�1) is a urve whih is C1-lose to the unstable10



manifold W u(0) alias the homolini orbit �1 and whih may spiral inside the ho-molini orbit �1. Hene, �"1;2(I"�1) \N2 may onsist of several omponents. As wewant to avoid too muh spiraling, we take as I"�1;�1 the preimage of the onnetedomponent, ontaining the origin in �"1;2(I"�1) \ N2.Similarly, �"1;2(I"0) \N2 may onsist of several piees and among the orrespondingpreimages we take as I"0;�1 the omponent whih ontains the intersetion of �1 withthe u-axis.Lemma 2.6(i) tells us that �"1;2(I"1) is a urve C1-lose to the unstable manifoldW u1 .This urve therefore intersets the sets N2 and H2 so that we an hoose as I"1;�1,I"1;0 and I"1;1 the preimage of the intersetion with N2, Hu2 and Hs2, respetively.From now on we proeed indutively and assume that all intervals I"�1;�2;:::;�j havealready been onstruted for some j. Moreover, we assume that �"1;j(I"�1;�2;:::;�j ) is� a urve in Nj transverse to W sj if �j = (�1)j+1� a urve in Hj lose to W uj�1 if �j = (�1)j or �j = 0.It is straightforward hek that these assumptions are satis�ed for j = 2.We distinguish now three ases:1. �j = (�1)j+1In this ase �"1;j(I"�1;�2;:::;�j ) is a urve in Nj. By Lemma 2.6 the image of thisurve under �"j;j+1 intersets both Nj+1 and Hi+1. Choose I"�1;:::;�j ;(�1)j as thepreimage of the intersetion with Nj+1, then �"1;j+1(I"�1;:::;�j ;(�1)j) is a urvetransverse to W sj+1 as desired. The part whih intersets Hj+1 is C1-lose toW uj . Choose as I"�1;:::;�j ;(�1)j the preimage of the part whih lies in Hsj+1, andas I"�1;:::;�j ;0 the preimage of the part whih lies in Huj+1.2. �j = (�1)jBy assumption, �"1;j(I"�1;�2;:::;�j) is a urve in Hsj lose to W sj�1 and thereforetransverse to th homolini orbit �j . From Lemma 2.6(ii) we know that theimage �"1;j+1(I"�1;�2;:::;�j) does not interset Hj+1 but Nj+1. The preimage ofthis intersetion will be denoted with I"�1;�2;:::;�j ;(�1)j .3. �j = 0We have seen in Lemma 2.6(iii) that for " small there is a unique point onI"�1;�2 ;:::;�j that will be mapped to a point on W sj+1 under �"j;j+1. Choose asI"�1;�2 ;:::;�j ;0 the preimage of the omponent of �"j;j+1(I"�1;�2;:::;�j) whih ontainsthis point on W sj+1.Indutively one an therefore �nd intervals whih satisfy the onditions given above.2 11



We have not yet aounted for the right boundary ondition although we havealready used all our information from the symbol sequenes. We omplete the proofof Theorem 1 by showing that for eah interval I"s there will be automatially onepoint of intersetion of �"1;k+1(I"s ) with the u-axis. To this end, we introdue aneighborhood Ur of the intersetion between �k and the u-axis. This neighborhoodtakes are of solutions with a sharp boundary layer at x = 1.Proof of Theorem 1: Consider an arbitrary symbol sequene s = (�1; �2; : : : ; �k) 2Sk. We will show that for " su�iently small �"1;k+1(I"s) has a point of intersetionwith the u-axis. This intersetion will orrespond to a stationary solution in E"k.Uniqueness will follow from the result of Salazar and Sola-Morales who determinedthe exat number of stationary solutions under the assumptions (3)-(5).For de�niteness, we disuss the ase that k is even only. The ase that k is oddan be treated in a ompletely symmetri way. This assumption implies that in thelast interval [xk; xk+1℄ the homolini orbit �k is attahed to u = 1. We have todistinguish four ases:Case 1: �k = �1In this ase, we know that �"1;k(Is) is a urve in Nk whih is transverse to W sk . For "small this urve will be strethed along W uk aording to the �-lemma. In partiularit will have a point of intersetion with fv = 0g.Case 2: �k = 1Here �"1;k(Is) is a urve in Hsk lose to W uk�1 and transverse to the homolini orbit�k. For " small this urve will be strethed along the unstable manifold of the equi-librium u = 1 and will therefore have at least one intersetion with fv = 0g.Case 3: �k = 0By Lemma 2.7 �"1;k(Is) is a urve in Huk whih is transverse to W sk . By the �-lemmathis urve will be strethed along W uk under the �ow �"k;k+1 for " small enough.Therefore �"1;k+1(I"s ) = (�"1;k Æ �"k;k+1)(I"s) will have an intersetion with the u-axiswhih orresponds to a hyperboli stationary solution.Uniqueness of stationary solutions with a given symbol sequene follows by referringto Theorem 3 of [SS01℄. It is obvious that solutions with di�erent symbol sequenesare distint. In Lemma 2.3 we have shown how to determine the number of di�erentsymbol sequenes jSkj reursively. It was shown in [SS01℄ that under the assumptions(3)-(5) and for " small this is exatly the number of stationary solutions. This impliesthat, under these hypotheses, we have found all stationary solutions. This provespart (i) of Theorem 1.Part (ii) follows from the onsiderations in the proof of Lemma 2.6. There we havedetermined the way how trajetories pass from the neighborhoods Ni and Hi toNi+1 [ Hi+1.For part (iii) note that the Morse index is exatly the number of lokwise half turnsof a tangent vetor to the interval Is under the map �"1;k+1 (see [FuRo91℄). By ouronsiderations in Lemma 2.6 about the order-preservation along the urve under�"i;i+1 it is lear that the Morse index inreases by 1 when the trajetory follows the12



homolini loop �i and remains the same in all other ases. The Morse index of thestationary solution an therefore be determined by ounting the number of exur-sions along homolini loops, i.e. by ounting the number of zeroes in the assoiatedsymbol sequene. 23 Heterolini onnetions in the attratorIn this setion, we will prove an expliit riterion, deiding whether two equilibriaw; ~w 2 E"k have a heterolini onnetion.Reall that our hoie of the nonlinearity in (1) satis�es a dissipativity ondition,providing a global ompat semi�ow on the Banah spae X � W 1;2((0; 1); IR).This semi�ow possesses a global attrator A, i.e. a ompat invariant set whih at-trats bounded subsets of X and whih is maximal with this properties (see [Hal88℄,[BV92℄). Moreover, due to the gradient struture of the system, the global attratorontains only equilibria and their unstable manifolds, whih onsist of heterolinionnetions. Stable and unstable manifolds always interset transversely [An86℄.Sine we know from Proposition 2.1 that under the onditions (5), (6), su�ientlysmall ", the equilibria do not hange any more, we an desribe the heterolinionnetions in A" independent of ":Theorem 2 Assume that the pieewise onstant funtion a(x) satis�es (5) and (6)and w; ~w are stationary solutions in E"k. Then there exists a "0 > 0 suh that for0 < " < "0 the following two statements are equivalent:(i) There is a heterolini onnetion from w to ~w(ii) If the two orresponding symbol sequenes s = (�1; : : : �k) and ~s = (~�1; : : : ~�l)di�er at any position i, that is �i 6= ~�i, then �i = 0.Note that aording to this theorem the equilibrium w onnets exatly to thoseequilibria ~w whose symbol sequene ~s an be obtained by replaing in the sequenes symbols 0 by other symbols. Interpreting this aording to Theorem 1, one ansee that any heterolini solution an be desribed as follows: In one or severalsubintervals, where for t ! �1 a spike is loated, this spike disappears and fort ! 1 the pro�le beomes either lose to onstant 1 or 0 in the interior of theorresponding subintervals. In all other subintervals the shape of the solution re-mains nearly unhanged. This means that for small " on the attrator the motionin di�erent subintervals beomes nearly deoupled and in eah subinterval there isa simple bistable dynamial behavior. 13



3.1 Determining heterolini onnetions by order struturesIn order to prove Theorem 2, we want to apply now a general result on heterolinionnetions to our spei� situation:It has been shown in [Wo00℄ that for salar paraboli equationsut = uxx + f(u; ux; x); ux(0; t) = ux(1; t) = 0; x 2 [0; 1℄ (11)with a dissipative nonlinearity and hyperboli equilibria, the heterolini onne-tions in the attrator an be desribed in a way whih is similar to salar ordinarydi�erential equations. For those it is well known that two hyperboli equilibria havea heterolini onnetion, if and only if there is no third equilibrium in between.Indeed, due to [Wo00℄ a orresponding theorem an be formulated also for salarparaboli equations, where, however, the underlying order struture has to be moreompliated in order to over also multidimensional strutures in the attrator. Sinenodal properties of the solutions play a entral role in salar paraboli equations,they are used to de�ne the appropriate order relations. We reall here the baside�nitions from [Wo00℄.De�nition 3.1 (i) For any x-pro�le w 2 C1[0; 1℄, we denote with z(w) the num-ber of strit sign hanges (zero number) of w(x) in the interval [0; 1℄.(ii) A pair w; ~w of stationary solutions to (11) with z(w � ~w) = n is alled n-ordered, and we write w �n ~w;if we have w(0) < ~w(0).(iii) A n-ordered pair w �n ~w of stationary solutions to (11) is alled adjaent, ifthere is no third stationary solution ŵ with w �n ŵ �n ~w.Proposition 3.2 ([Wo00℄, Theorem 2.4) Two hyperboli equilibria solutions wand ~w of (11) have a heterolini onnetion if and only if they are adjaent.In order to apply Proposition 3.2 to our spei� situation, we have to reover theorder of the stationary pro�les at x = 0 and the zero numbers for pairs of stationarysolutions. in terms of the orresponding symbol sequene in Sk. This information issu�ient to obtain the order relations �n and hene the notion of adjaeny, whihis aording to Proposition 3.2 the riterion for heterolini onnetions.De�nition 3.3 On the set Sk, we de�ne reursively the total order � by the follow-ing two rules:(i) (�1; : : :) � (0; : : :) � (1; : : :) 14



(ii) (�1; �2; : : : �k) � (�1; ~�2; : : : ~�k), ( (�2; : : : �k) � (~�2; : : : ~�k) and �1 6= 0(~�2; : : : ~�k) � (�2; : : : �k) and �1 = 0This means, to ompare two sequenes s = (�1; �2; : : : ; �k) and ~s = (~�1; ~�2; : : : ; ~�k),one has to look at the �rst position i, where the two sequenes di�er, i.e.�i 6= ~�i; �j = ~�j for j < i:The order of the sequenes is then determined by the ordering of �i and ~�i. Butin ontrast to usual lexiographi order, the number of symbols 0 appearing in the�rst i � 1 idential symbols is taken into aount: If this number is even, thenthe sequenes s and ~s are ordered in the same way as �i and ~�i (aording to�1 < 0 < 1). If this number is odd, the order of s and ~s is reversed with respet tothat of �i and ~�i.Note that this de�nition an be applied to sequenes of the symbols f�1; 0; 1g in-dependent of the transition rules from De�nition 2.2. Espeially, we an apply it tothe reversed symbol sequenesR(s) := (�k; : : : ; �1); s = (�1; : : : ; �k) 2 Sk:Obviously, for reversed sequenes R(s); s 2 Sk with even k, the transition rules forodd and even i are interhanged.Using the ordering of the reversed sequenes, we an now de�ne a disrete ounter-part of the zero number:De�nition 3.4 For a pair of sequenes s = (�1; : : : ; �k) and ~s = (~�1; : : : ; ~�k) in Skwe denote by t = (�1; : : : ; �k�1) and ~t = (~�1; : : : ; ~�k�1) the trunated sequenes. Thedisrete zero number zd(s� ~s) is then de�ned reursively by:(i) zd(s � ~s) = zd(t � ~t), if R(s) and R(~s) are ordered in the same way as R(t)and R(~t)(ii) zd(s � ~s) = zd(t � ~t) + 1, if R(s) and R(~s) are ordered opposite to R(t) andR(~t)(iii) zd(s� ~s) = i(t), if t = ~tFor k = 2, the zero number for any pair of sequenes is zero.Note that although in the ase k = 1 there will be no relation to the stationarysolutions of a orresponding PDE, we inlude this ase in our de�nitions in order toahieve a onvenient desription of the strutural properties of the symbol sequenes.The following Lemma ollets some basi properties of our reursive de�nition of thezero number for symbol sequenes:Lemma 3.5 For two sequenes s; ~s 2 Sk we have15



(i) zd(s� ~s) = zd(R(s) �R(~s))(ii) s �n ~s() ( R(s) �n R(~s); if n evenR(~s) �n R(s); if n odd(iii) If zd(t� ~t) < zd(s� ~s), then �k�1 = ~�k�1Proof: To prove statement (i), we �rst onsider sequenes s and ~s, suh that �1 6= ~�1and �k 6= ~�k, but �i = ~�i for all 1 < i < k. Computing for those sequenes the zeronumber zd(s� ~s) step by step, aording to the reursion from De�nition 3.4, we geta ontribution +1 for all positions 1 < i < k with �i = ~�i = 0. These ontributionssum up to i(�2; : : : ; �k�1). Moreover, we get one more ontribution +1, exatly if(�1 � ~�1)(�k � ~�k) < 0 and i(�2; : : : ; �k�1) evenor (�1 � ~�1)(�k � ~�k) > 0 and i(�2; : : : ; �k�1) odd:Exatly the same is obviously true for the zero number of the reversed sequeneszd(R(s) � R(~s)). For an arbitrary pair of sequenes s and ~s we observe, thatthe zero number is given by summation over the zero numbers of all segments(�i; �i+1; : : : ; �j), i < j whih are of the form, desribed above. This formula isobviously independent on the orientation of the sequenes.Statement (ii) follows indutively from De�nition 3.4: For k = 1, all zero numbersare zero and s � ~s , R(s) � R(~s). Assuming the statement to be true for t 6= ~t,both in Sk�1, we get it immediately for s and ~s, using the reursive de�nitions 3.4(i), (ii). For t = ~t, it follows immediately from 3.4 (iii) and 3.3 (ii).Statement (iii), �nally, is a onsequene of the transition rules. Indeed, to obtainR(s) � R(~s) for R(~t) � R(t), it is neessary to have�k < ~�k or �k = ~�k = 0:Aording to the transition rules, both is impossible if~�k�1 < �k�1:On the other hand, R(~t) � R(t) implies that ~�k�1 � �k�1. So, we must have~�k�1 = �k�1. 2In the following lemma, we prove that the above de�ned zero number and orderrelation for symbol sequenes indeed agree with their orresponding ounterpartsfor the stationary solutions.Lemma 3.6 Assume that the pieewise onstant funtion a(x) satis�es (5) and (6)and " is su�iently small (f. Theorem 1). Then for any two stationary solutionsw; ~w 2 E"k and the orresponding symbol sequenes s; ~s 2 Sk we have:16



(i) w(0) < ~w(0)() s � ~s(ii) z(w � ~w) = zd(s� ~s)Proof : To prove (i), we show that for su�iently small ", the intervals of initialonditions I"s and I"~s are ordered aording to the order of s and ~s. Sine for s 6= ~s, Isand I~s are disjoint, there is an obvious notion for the order of these intervals of realnumbers. For k = 1, this follows immediately from (10). We proeed now by indu-tion over k. If the sequenes s and ~s di�er at any position i < k, then the orderingof s and ~s is already determined by the order of the initial parts (�1; : : : ; �i) and(~�1; : : : ; ~�i). By indution, the order for I"�1;:::;�i and I"~�1;:::;~�i is the same. Aordingto (9), this ordering of the intervals arries over to I"s and I"~s .It remains to treat the ase, where �i = ~�i for all i < k. Aording to Lemma 2.6,the image �1;k(I"�1;:::;�k�1) is a graph over the u-axis. It ontains the images�1;k(I"�1;:::;�k�1 ;�1); �1;k(I"�1;:::;�k�1 ;0); �1;k(I"�1;:::;�k�1;1);ordered along the u-axis aording to the last symbol. Traing this ordering bakto the order of the intervalsI"�1;:::;�k�1;�1; I"�1;:::;�k�1;0; I"�1;:::;�k�1;1inside the interval I"�1;:::;�k�1, we have to regard that aording to Lemma 2.6 (iii),the graph has been reversed i(�1; : : : ; �k�1) times while being mapped iteratively to�1;k(I"�1;:::;�k�1). This is exatly re�eted by our de�nition of the order relation � onthe set of symbol sequenes.To prove (ii), we proeed again by indution, assuming that the statement is truefor k�1: For any pair of sequenes t; ~t 2 Sk�1 with orresponding stationary pro�lesu(x); ~u(x), we assume that z(u(x)� ~u(x)) = zd(t� ~t): (12)For k = 2 it is easy to hek from the phase portrait, that z(u(x) � ~u(x)) = 0 forany two stationary pro�les u(x); ~u(x) 2 E"2 (see Figure 3). Aording to De�nition3.4 for k = 2 also zd(t� ~t) = 0 for all t; ~t 2 S2.For given sequenes s; ~s 2 Sk, we get the trunated sequenes t; ~t 2 Sk�1. If t 6= ~t,we an apply the indution hypothesis in the following way: For t; ~t, there existorresponding stationary pro�les wT (x); ~wT (x); x 2 [0; xk℄, satisfying Neumannboundary onditions at 0 and xk, with zero number given by (12).We will establish now a relation between z(wT (x)� ~wT (x)) and z(w(x)� ~w(x)) intwo steps: First, we restrit w(x) and ~w(x) to [0; xk℄ ompare the zeroes there tothose of wT (x)� ~wT (x). Then, we aount for the additional zeroes in the subinterval[xk; 1℄.To this end, we onsider two trajetoriesu�(x) = (u�(x); v�(x)); u�(x) = (u�(x); v�(x)); x 2 [0; xk℄17



�k = 0�k�1 = 0 �k = �1�k�1 = �1 �k�1 = 1 �k = 1
Figure 6: Shemati piture at x = xk for k even. Left: bold lines indiate possibleloations of �0;k(It) and �0;k(I~t); points indiate orresponding loations of wT (xk)and ~wT (xk). Right: segments of the preimage of fv = 0g (bold), interseting �0;k(It)and �0;k(I~t) (dotted lines) at w(xk) and ~w(xk) (points)with initial ondtions u�(0) = � 2 I"t ; v�(0) = 0;and u�(0) = � 2 I"~t ; v�(0) = 0:The zero number z(u�(x)�u�(x)) , x 2 [0; xk℄, is loally onstant in � and �, unlessu�(xk) = u�(xk). At a point where u�(xk) = u�(xk), we have to regard whetheru�(xk) and u�(xk) move around eah other lokwise, whih leads to inreasingz(u��u�), or anti-lokwise, whih leads to dereasing z(u�� u�) (see [FR96℄). Ateah suh point the sign of u�(xk)� u�(xk) hanges.Note that not only wT (0) 2 I"t but also w(0) 2 I"s � I"t . Changing � monotoniallyfrom wT (0) to w(0), the pro�le u�(x); hanges from wT (x) to w(x). Then, hanging� monotonially from ~wT (0) to ~w(0), we move the pro�le u�(x); x 2 [1; xk℄ from~wT (x) to ~w(x).The values u�(xk) and u�(xk) are loated on the urves �"0;k(It) and �"0;k(I~t), whihare lose to the unstable manifold of one of the two �xed points, or to the homoliniloop �k. In Figure 6, we have drawn two instanes of suh urves for all hoies of thek � 1th symbol. For � and � varying as desribed above, we an observe in Figure6 how the endpoints u�(xk) and u�(xk) move from wT (xk) and ~wT (xk) (left handside in the �gure) to w(xk) and ~w(xk) (right hand side in the �gure). The bold linesin the left part show segments of the image of the u-axis under the bakward �ow�k+1;k in the kth subinterval. Eah of the three segments orresponds to one possiblehoie of the kth symbol. The order of points on the segments orresponding to �1is the same as on the u-axis, whereas on the middle segment the order is reversed.A zero of w(x)� ~w(x) in the interval [xk; 1℄ is aompanied with a di�erent sign ofw(xk)� ~w(xk) and w(1) � ~w(1). Obviously, there is at most one additional zero in18



this subinterval.From this on�guration, it is now easy to hek that for wT (xk) < ~wT (xk), we getz(w � ~w) = z(wT � ~wT )exatly, if w(1) < ~w(1). If ~w(1) < w(1), we havez(w � ~w) = z(wT � ~wT ) + 1:Sine the ordering of the endpoints orresponds to the ordering of the reversedsymbol sequenes, this shows the oinidene of the zero number with its disreteounterpart in the ases (i) and (ii) of De�nition 3.4It remains to treat the ase, where t = ~t, i.e �i = ~�i, for 1 � i < k and �k 6= ~�k. Inthis ase, both �1;k(I"s ) and �1;k(I"~s ) are ontained in �1;k(I"t ). Due to the transitionrules we have �k�1 = (�1)k, and �1;k(I"t ) is lose to W uk�1, whih is a graph overthe u-axis. But for any two trajetories u�(x); u�(x) of (2) with initial onditions�; � 2 I"t , we have z(u�(x)� u�(x)) = i(�1; : : : ; �k�1): (13)This follows from the fat aording to Lemma 2.6 (iii) that the �ow �1;k reversesthe interval I"t exatly i(t) times. In the last subinterval x 2 [xk; xk+1℄, there areno additional zeros. Sine (13) oinides with De�nition 3.3 (iii), the lemma is truealso in this ase. 2Lemma 3.7 For any pair of symbol sequenes s; ~s 2 Sk, s 6= ~s, the following twostatements are equivalent:(i) s and ~s are adjaent and i(s) > i(~s)(ii) For all i with �i 6= ~�i, we have �i = 0.Proof : (i) implies (ii): To show this impliation, we proeed as follows: Weassume that with a pair of two sequenes from Sk, it is impossible to satisfy ondition(ii) for both hoies of s; ~s from that pair. Then, we show by indution over k, thatthe sequenes annot be adjaent. Having obtained in this way, that for a pair ofsequenes, adjaeny implies one of the two variants of ondition (ii), we an usethe additional information i(s) > i(~s) from (i), to make the proper hoie of s and~s, and hene obtain that (i) implies (ii).To prove the above assertion, we have to distinguish two ases. Moreover, we assumefor de�niteness, that s �n ~s.Case 1: With the pair of trunated sequenes t; ~t 2 Sk�1 it is impossible to satisfyondition (ii) and t 6= ~t.Then by indution they are not adjaent and hene there exists a sequene t̂ =(�̂1; : : : ; �̂k�1), satisfying t �m t̂ �m ~t; (14)19



with m := zd(t� ~t) = zd(s� ~s) or zd(s� ~s)� 1:This sequene t̂ 2 Sk�1 has now to be extended to ŝ 2 Sk by an additional symbol�̂k, suh that zd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = n: (15)If this is possible, then we onlude that t � t̂ � ~t implies s � ŝ � ~s, whih togetherwith (15) implies, that s and ~s are not adjaent, too.We show now, how to hoose �̂k: Using (14), Lemma 3.5 (ii) implies for m even thatR(t) � R(t̂) � R(~t): (16)and hene �k�1 � �̂k�1 � ~�k�1 (17)For odd m the reversed inequalities are valid.If n = m+ 1, Lemma 3.5 (iii) implies that �k�1 = ~�k�1. Due to (17), we get also�̂k�1 = �k�1 = ~�k�1:Moreover, n = m + 1 implies that either �k 6= ~�k or �k = ~�k = 0. In both ases,the transition rules allow also for �̂k = 0. It is easy to hek that this hoie of �̂kalways satis�es (15).If n = m, we hoose �̂k 2 f�k; ~�kg n f0g. This set is nonempty, sine �k = ~�k = 0ontradits to n = m. Moreover, using (17), it is easy to hek that there is alwayssuh a hoie, whih satis�es the transition rules. Equation (15) is satis�ed for thishoie, sine we get from (16) immediatelyR(s) � R(ŝ) � R(~s);whih, together with (16), implies that no zero number hanges our by adding thek-th symbol.Case 2: t and ~t are equal, or satisfy ondition (ii).In this ase, we look �rst at the reversed sequenes (see Lemma 3.5). If they satisfythe setting for Case 1, we are done. The only possibility, where this fails is, if�1 = ~�k = 0~�1 6= 0 6= �k�i = ~�i for i = 2 : : : k � 1:De�ning now ŝ := (~�1; �2; : : : ; �k�1; �k);one an hek easily thatzd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = i(�2; : : : ; �k�1)20



and either s � ŝ � ~s or ~s � ŝ � s. Hene there is no adjaeny also in that aseand the assertion is proved.(ii) implies (i): First, we show that for any pair of sequenes s; ~s 2 Sk, ondition(ii) implies adjaeny of s and ~s. We will prove this by showing indutively thefollowing assertion: If s; ~s 2 Sk, satisfy ondition (ii), then for all ŝ 2 Sk withs � ŝ � ~s; (18)the quantity Ds := zd(s� ŝ)� zd(~s� ŝ) (19)is greater than zero. For de�niteness, we may assume s �n ~s.First, note that for k = 1 there is no ŝ, satisfying (18), and hene the assertionis trivially satis�ed. If the trunated sequenes t; ~t are equal, then ondition (ii)implies also that there is no ŝ, satisfying (18). Hene we may assume in the sequelthat k > 1 and t 6= ~t. We distinguish now three ases:Case 1: t 6= t̂ 6= ~t. Here, (18) impliest � t̂ � ~tand we an assume by indution thatDt := zd(t� t̂)� zd(~t� t̂) > 0: (20)From Lemma 3.5 (ii), we an onlude that exatly forDt even, one of the inequalitiesR(t) � R(t̂) � R(~t) or R(~t) � R(t̂) � R(t) (21)is true. Consequently, if (21) is satis�ed we get from (20) that Dt � 2. But sinejDt �Dsj � 1 (see De�nition 3.4), this proves our assertion in this ase.If (21) is not satis�ed, thenDs � Dt due to the following reason: To obtain Ds < Dt,we need that zd(~s� ŝ) > zd(~t� t̂), whereas zd(s� ŝ) = zd(t� t̂). Moreover, if Ds = 0,we obtain inequalities analogous to (21) for s; ŝ; ~s, whih implies that�k � �̂k � ~�k or ~�k � �̂k � �k:Taking into aount ondition (ii), it follows that either �̂k = ~�k or �̂k = �k = 0.But �̂k = ~�k is impossible sine then zd(~s � ŝ) = zd(~t � t̂). Also �̂k = �k = 0 isimpossible, beause it implies zd(s � ŝ) > zd(t � t̂). This �nishes the ase wheret 6= t̂ 6= ~t.Case 2: t̂ = t; t̂ 6= ~t. In this ase, we an argue in a similar way as above. First,we notie that zd(s� ŝ) = i(t): (22)Then, we show that zd(~t� t) = zd(~t� t̂) < i(t): (23)21



Indeed, omputing zd(~t � t) reursively aording to De�nition 3.4, there is a on-tribution +1, whenever �i = ~�i = 0. Further ontributions +1 may our only atpositions, where �i 6= ~�i, whih implies �i = 0, aording to ondition (ii). Only atthe �rst position, where �i 6= ~�i, there is never a ontribution to zd(~t � t). Fromthis, we an onlude (23), sine the number of positions i = 1 : : : k�1 where �i = 0is just i(t). Sine zd(~s� ŝ) � zd(~t� t̂) + 1;it follows immediately from (22) and (23) that Ds � 0. To obtain Ds = 0, we wouldneed that zd(~s � ŝ) = zd(~t � t̂) + 1. Aording to De�nition 3.4, this implies that~�k 6= �̂k. In ontradition to that, we obtain again inequalities analogous to (21) fors; ŝ; ~s. As above, we onlude that either �̂k = ~�k or �̂k = �k = 0. But �̂k = �k isexluded here, sine it would imply ŝ = ~s.Case 3: t̂ = ~t; t̂ 6= t. Here, we have by de�nition thatzd(ŝ� ~s) = i(~t:)Due to ondition (ii), at all positions i = 1 : : : k � 1, where ~�i = �̂i = 0, we have�i = 0 as well, and hene zd(t� ~t) = zd(t� t̂) � i(~t):Hene Ds � 0, and Ds = 0 is only possible, ifzd(s� ŝ) = zd(t� t̂) = i(~t): (24)Additionally, we onlude as above, that either �̂k = ~�k or �̂k = �k = 0. The �rst ofthese possibilities ontradits to ŝ 6= ~s, and the latter one giveszd(s� ŝ) = zd(t� t̂) + 1in ontradition to (24). This �nishes the proof for this ase. Hene the assertionthat Ds > 0 for all ŝ between s and ~s is proved. Sine for s 6= ~s, (ii) implies obviouslythat i(s) > i(~s), we get that (ii) implies (i), and the proof of Lemma 3.7 is �nished. 2Proof of Theorem 2: First, we reall that due to the Morse-Smale property of thesystem (see [An86℄), a heterolini onnetion from w to ~w implies for the Morse-indies i(w) > i( ~w): (25)Due to Proposition 3.2, the heterolini onnetion implies also adjaeny of w and~w. Aording to Lemma 3.6, this is equivalent to adjaeny of the orrespondingsymbol sequenes s and ~s. Due to Theorem 1 (iii), inequality (25) implies alsoi(s) > i(~s):This, together with the adjaeny of the sequenes, is due to Lemma 3.7 �nallyequivalent to the ondition that for all j 2 f1; : : : ; kg�j 6= ~�j =) �j = 0;whih is exatly our ondition (ii) in Theorem 2. 222



3.2 The Permutation of the equilibriaAs an important tool for the investigation of salar paraboli equations of the form(11) Fuso and Roha introdued in [FuRo91℄ the permutation of the equilibria. Fora given equation with hyperboli equilibria, this permutation � is de�ned by �rstnumbering all equilibria pro�les aording to their order at the left boundary x = 0of the interval w1(0) < w2(0) < : : : < wn(0);and then looking how this order has hanged at the right boundary x = 1:w�(1)(1) < w�(2)(1) < : : : < w�(n)(1)The permutation � ontains all information about the nodal properties of the equi-libria pro�les. It has been shown that � an be used do determine the Morse indiesand the heterolini onnetions of the equilibria [FR96℄. Moreover, the permutationdetermines the attrator up to C0 orbit equivalene [FR99℄. How the permutation isrelated in general to the order relations �n, whih we used here, has been disussedin [Wo00℄.Sine in [FRSS01℄, this permutation has also been used to study the spei� lassof equations whih is the subjet of the present paper, we remark that, using theresults from the previous setion, we get immediately the following result:Corollary 3.8 Assume that the funtion a(x) is pieewise onstant on k subinter-vals and satis�es (5) and (6). Then for small enough " > 0 the permutation �k ofthe equilibria an be obtained from the symbol sequenes in Sk in the following way:Numbering all sequenes in Sk aording tos1 � s2 � : : : � sn;the permutation �k is given by the order of the reversed sequenes:R(s�k(1)) � R(s�k(2)) � : : : � R(s�k(n))4 An ODE modelUsing the information we have obtained so far, we an now onstrut a model forthe global attrator A".Theorem 3 For 0 < " < "0 the attrator A" is onnetion equivalent to the globalattrator M of the following model o.d.e. with y = (y1; y2; : : : ; yk) 2 IRk:_y1 = y1(1 � y21)_y2 = y2(1 � y22) + (y1 � 1)(y2 + 1)_y3 = y3(1 � y23)� (y2 + 1)(y3 � 1)... ..._yk = yk(1� y2k) + (�1)k(yk�1 � (�1)k)(yk + (�1)k): 9>>>>>>>=>>>>>>>; (26)23



y1y2 y1 y2y3Figure 7: Heterolini onnetions on the attrator for k = 2 and k = 3Although we expet that M is at least C0-orbit equivalent to A" we do only provethe weaker statement of onnetion equivalene here.Lemma 4.1 The stationary solutions of (26) are preisely the vetors(y1; y2; : : : ; yk) 2 Sk:Proof: Looking for stationary solutions we have to solve �rst the equation y1(1 �y21) = 0, hene y1 = �1 or 0 or +1. Conerning the seond equation, we have todistinguish two ases. If y1 = 1, then the seond equation redues to y2(1� y22) = 0whih implies that y2 2 f�1; 0;+1g. If, however, y1 = 0 or y1 = �1, then the seondequation reads0 = (y2 + 1)(�y22 + y2 + y1 � 1) = (y2 + 1)(�(y2 � 12)2 + 14 + y1 � 1):Clearly, this implies that y2 = �1 sine the term in brakets does not vanish for y1 �0. One an now proeed by indution assuming that we have already found out thatyi 2 f�1; 0;+1g. If yi = (�1)i+1 then the (i+1)-st equation reads yi+1(1�y2i+1) = 0.Hene yi+1 an take any value in f�1; 0;+1g. If yi = (�1)i or yi = 0 then we haveto solve 0 = (yi+1 � (�1)i)(�y2i+1 + (�1)iyi+1 + (�1)i+1yi � 1):As the seond term does not vanish for yi = (�1)i or yi = 0, we must haveyi+1 = (�1)i. Comparing with the de�nition of Sk we see that (y1; y2; : : : ; yk) 2 Sk.2Proof of Theorem 3: We proeed again by indution to show that two equilibria(y1; y2; : : : ; yk) and (ŷ1; ŷ2; : : : ; ŷk) are onneted by a heterolini orbit if and onlyif yi 6= ŷi =) yi = 0 (27)holds for i = 1; 2; : : : ; k. That the laim holds for k = 1 and k = 2 an veri�eddiretly from the orresponding phase portraits.24



Assume now that the statement is true up to k = n and onsider equation (26) withk = n+ 1. From the last equation we an immediately read o� that the hyperplanefyn+1 = (�1)ng is invariant and the restrition of the �ow to this hyperplane isexatly (26) with k = n. From the indution hypothesis we know all about the het-erolini orbits within this hyperplane. These heterolini orbits onnet equilibriawith yn+1 = ŷn+1 = (�1)n whih satisfy (27).Another invariant hyperplane is fyn = (�1)n+1g. Within this hyperplane the �owis given by the system_y1 = y1(1 � y21)_y2 = y2(1 � y22) + (y1 � 1)(y2 + 1)_y3 = y3(1 � y23)� (y2 + 1)(y3 � 1)... ..._yn�1 = yn�1(1� y2n�1) + (�1)n�1(yn�2 � (�1)n�1)(yn�1 + (�1)n�1)_yn+1 = yn+1(1� y2n+1):The last equation is deoupled, so the �ow is a diret produt of the �ow (26) withk = n � 1 and the �ow generated by the last equation. It is therefore obvious that(27) has to be satis�ed for 1 � i � n� 1 and also for i = n+ 1 while yn = ŷn.To show that there are no other heterolini orbits outside the invariant planesfyn+1 = (�1)ng and fyn = (�1)n+1g it su�es to alulate the eigenvalue of thelinearization of the equilibria in the transverse diretion. It turns out that all equi-libria are stable in the transverse diretion so there annot be any heterolini orbitsoutside the invariant hyperplanes. 2Referenes[ABF93℄ N. Alikakos, P. Bates, G. Fuso. Solutions to the nonautonomousbistable equation with spei�ed Morse index. Part I: Existene.Trans. Am. Math. So. 340 No. 2 (1993), 641�654.[AMP87℄ S. Angenent, J. Mallet-Paret, L. A. Peletier. Stable transition layers in asemilinear boundary value problem. J. Di�. Eq. 67(1987), 212�242.[An86℄ S. Angenent, The Morse-Smale Property for a semilinear paraboli equa-tion, J. Di�. Eq. 62(1986), 427�442.[BV92℄ A. Babin, M. Vishik. Attrators of Evolution Equations. Studies in Math-ematis and Appliations 25, North Holland, (1992).[CI74℄ N. Chafee, E. Infante. A Bifuration Problem for a Nonlinear ParaboliEquation. J. Appli. Analysis 4(1974), 17�37.25
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