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Abstra
tWe study a singularly perturbed s
alar rea
tion-di�usion equation on abounded interval with a spatially inhomogeneous bistable nonlinearity. For
ertain nonlinearities, whi
h are pie
ewise 
onstant in spa
e on k subintervals,it is possible to 
hara
terize all stationary solutions for small " by meansof sequen
es of k symbols, indi
ating the behavior of the solution in ea
hsubinterval. Determining also Morse-indi
es and zero numbers of the equilibriain terms of the symbol sequen
es, we are able to give a 
riterion for hetero
lini

onne
tions and a des
ription of the asso
iated global attra
tor for all k.1 Introdu
tionS
alar rea
tion di�usion equations on a bounded interval provide an interesting 
lassof in�nite dynami
al systems, whi
h still allows to obtain a detailed qualitative un-derstanding of the dynami
s. Due to standard theorems they give under appropriate
onditions rise to 
ompa
t analyti
 semigroups, possessing a global attra
tor that
ontains all solutions whi
h are uniformly bounded for all times. Moreover therehave been a lot of investigations about stationary solutions, their stability and howtheir nodal properties determine the hetero
lini
 
onne
tions in the attra
tor (see[Pol02℄ and referen
es there).A parti
ular interesting situation is the 
ase where the e�e
t of di�usion is very small
ompared to the size of the rea
tion terms. This is modeled by a small parameter" in front of the di�usion term. Some examples like the Chafee-Infante equation[CI74℄ show that one must expe
t both the number of equilibria and the dimensionof the global attra
tor to be
ome unbounded as " & 0. On the other hand, thereare situations where the dimension remains uniformly bounded, e.g. for vis
ous
onservation laws with dissipative sour
e terms, see [Hä98℄.In this paper, we want to investigate the intera
tion of small di�usion with spatialinhomogeneities of the nonlinearity. To this end we study a spe
ial 
lass of examplesof the form ut = "2uxx + (1 � u2)(u� a(x)); x 2 (0; 1) (1)under Neumann boundary 
onditions ux(0) = ux(1) = 0, with a bistable nonlinearitywhere the position of the unstable root �1 < a(x) < 1 may 
hange in spa
e.It has been shown in [AMP87℄, that for small ", all stable stationary solutions stay
lose to the stable roots �1 and 1 ex
ept for some transition layers, o

urring at po-sitions where a(x) = 0 and a0(x) 6= 0. In general, however, the number of stationary1



solutions, together with the dimension of some unstable manifolds be
omes in�nitefor small " [ABF93℄. Hen
e it is still impossible, to obtain a 
omplete understandingof the set of all stationary solutions and the attra
tor in the limit "& 0.Salazar and Solà-Morales suggested in [SS01℄ to study the situation of pie
ewise
onstant fun
tions a(x), being alternatingly smaller and bigger than 0. This meansthat a(x) = 
i for x 2 [xi; xi+1), where 0 = x1 < x2 < : : : < xk < xk+1 = 1 is a givenpartition of the unit interval. For de�niteness, we will always assume that 
i �(�1)i >0. Equation (1) with pie
ewise 
onstant a(x) has �rst been 
onsidered by Ro
ha[Ro88℄ who showed that for " su�
iently small there are exa
tly Fk stable stationarysolutions, where Fk is the k-th Fibona

i number. In [SS01℄ it has been shownthat for 
i su�
iently distant from 0, the number of equilibria and the unstabledimensions stay bounded in the limit " ! 0 (see Theorem 1 in [SS01℄). Later,together with Fiedler and Ro
ha, they proved in [FRSS01℄ some statements aboutthe number and stability of stationary solutions of (1).Building on these results we propose a more algebrai
 framework whi
h allows totranslate the information on the stationary solutions e�
iently into information onthe dynami
s. We will give in Se
tion 2 a 
hara
terization of all stationary pro�les,using a des
ription of transition layers and spikes by symbol sequen
es (Theorem1). Then, in Se
tion 3, we give an easy 
ondition for hetero
lini
 
onne
tions of theequilibria in terms of their symboli
 des
ription (Theorem 2). To this end, we re
alla general result about hetero
lini
 
onne
tions for su
h equations from [Wo00℄. Weshow that 
orresponding order relations, as they are used in [Wo00℄, 
an be de�nedalso for the symbol sequen
es. Moreover, the symbol sequen
es and their orderrelations 
an be used to obtain expli
itly the permutation of the equilibria. Thispermutation is de�ned by the ordering of the stationary pro�les at both ends of theinterval [FuRo91℄. It 
ontains all information about nodal properties and 
an alsobe used to determineMorse-indi
es and hetero
lini
 
onne
tions [FR96℄. Finally, wegive in Se
tion 4 a system of ordinary di�erential equations in k dimensions, whi
hreprodu
es the dynami
s of the equation (1).2 Des
ribing stationary solutions by symbol sequen-
esStationary solutions to (1) are given as solutions of the se
ond order ODE boundaryvalue problem "2u00 + (1� u2)(u� a(x)) = 0u0(0) = u0(1) = 0whi
h 
an be written as a �rst order system for u = (u; v):( "u0 = v"v0 = (u2 � 1)(u� a(x)) (2)2




i = 0v v v
i < 0 
i > 0u u uFigure 1: The ve
tor�eld for a(x) � 
iwith boundary 
onditions v(0) = v(1) = 0: (3)For ea
h subinterval [xi; xi+1℄, we 
an look at the phase portrait of this �rst ordersystem, whi
h is di�erent for odd i, i.e. a(x) � 
i < 0 and even i, i.e. a(x) � 
i > 0:There are always three equilibria (�1; 0), (
i; 0) and (1; 0). For 
i < 0 there is ahomo
lini
 orbit atta
hed to the hyperboli
 equilibrium (�1; 0), while for 
i > 0 thehomo
lini
 orbit is asymptoti
 to the other hyperboli
 equilibrium (1; 0) (see Figure2). For 
i = 0 there exists a pair of hetero
lini
 orbits that 
onne
t (�1; 0) and(1; 0). The size of the homo
lini
 orbits is measured by its diameter
(
i) = 23 �3� j
ij �q
2i + 3j
ij� ;the distan
e between the asymptoti
 state and the point where the homo
lini
 in-terse
ts the u-axis.The linearization at the equilibrium to whi
h the homo
lini
 orbit is asymptoti
possesses the real eigenvalues �q2(1 � j
ij). The eigenvalues of the linearization atthe other hyperboli
 equilibrium are �q2(1 + j
ij).Salazar and Solà-Morales have obtained su�
ient 
onditions to assure a de�nitelimiting behavior for "! 0. We restate their result in our 
oordinates:Proposition 2.1 ([SS01℄, Theorem 3) Assume that
i � (�1)i > 0; (4)
(
i) + 
(
i+1) < 2 for i = 1; 2; : : : ; k � 1 (5)and (x2 � x1)q1� j
1j < (x3 � x2)q1 + j
2j;(xi+1 � xi)q1 � j
ij < (xi � xi�1)q1 + j
i�1j for i = 3; : : : ; k: 9=; (6)Then for " small enough the number Nk of stationary solutions of (1) does notdepend on ". Nk satis�es the re
ursion relation Nk+1 = Nk + 2Nk�1 with N2 = 3,N3 = 5. Moreover, the Morse index of any stationary solution does not ex
eed 2k.Note that these 
onditions are satis�ed for example if all subintervals are of equallength, and the 
i just satisfy (4) and (5).3



�i = �1i = 1 2 3 4 : : : k�i = 1�i = 0Figure 2: Ea
h symbol sequen
e in Sk 
orresponds to a dire
ted path in this graph2.1 Abstra
t symbol sequen
esIn this se
tion we des
ribe a set of �nite symbol sequen
es. Later, we show thatthese symbol sequen
es 
an be identi�ed with the stationary solutions of (1), su
hthat ea
h symbol des
ribes the behavior of the stationary pro�le in one subinterval.De�nition 2.2 The set Sk 
onsists of sequen
es s := (�1; : : : ; �k) of symbols �i 2f�1; 0; 1g satisfying the following rules:� For odd i the symbol �i = 1 may be followed by any symbol �i+1 , whereas for�i = �1 or 0, �i+1 has to be �1.� For even i the symbol �i = �1 may be followed by any symbol �i+1 , whereasfor �i = +1 or 0, �i+1 has to be +1.For any s = (�1; : : : ; �k) 2 Sk we denote with i(s) the number of zeroes 
ontained inthis sequen
e.In Figure 2 these transition rules are visualized by a dire
ted graph. Now we de-
ompose Sk into subsets Sjk = fs 2 Skj i(s) = jg:The 
ardinalities of the sets Sjk 
an be 
omputed re
ursively:Lemma 2.3 We have the re
ursions:jSkj = jSk�1j+ 2jSk�2j (7)jS0k j = jS0k�1j+ jS0k�2j (8)jS ikj = jS ik�1j+ jS ik�2j+ jS i�1k�2j;subje
t to the (arti�
ial) initial values jS�1j = jS0j = jS0�1j = jS00 j = 1 and jS i�1j =jS i0j = 0 for i > 0. 4



These re
ursions 
oin
ide with those, given in [FRSS01℄ for the numbers of station-ary solutions with Morse index i in the 
ase of k subintervals.Proof: We pro
eed by indu
tion. First, it is straightforward to 
he
k that thearti�
ial initial values give the 
orre
t values for k = 1 and k = 2. Assume nowthat k is even and take an arbitrary sequen
e s = (�1; : : : ; �k) 2 Sk. Then for�k = �1 the prede
essor �k�1 is arbitrary, i.e. the sequen
e (�1; : : : ; �k�1) is arbi-trary in Sk�1, giving the �rst term in (7). For �k = 0 or +1, the transition rulerequires �k�1 = �1, and only the sequen
e (�1; : : : ; �k�2) is arbitrary in Sk�2. Sin
ewe 
an extend in two ways with �k = 0 or +1, we get the fa
tor 2 in the se
ond termof (7). Not allowing the symbol 0 at all, leads to (8), where the fa
tor 2 is missing.If the number of symbols 0 is �xed to some value i, then �k = 0 and �k = �1 givedi�erent 
ontributions jS i�1k�2j and jS ik�2j sin
e the remainder (�1; : : : ; �k�2) 
ontainsthe symbol 0 either i � 1 or i times, respe
tively. For odd k the same argumentswork, inter
hanging �1 and +1. 22.2 Stationary pro�lesWe show now that the symbol sequen
es in Sk 
an be used to des
ribe the stationarypro�les in the 
ase of k subintervals for su�
iently small ". With E"k we denote theset of stationary solutions to (1) in the 
ase of k subintervals.Theorem 1 Assume that the pie
ewise 
onstant fun
tion a(x) satis�es (5) and (6).Then there exists a "0 > 0 su
h that for 0 < " < "0 the following statements aretrue:(i) There is a one-to-one-
orresponden
e between the stationary solutions in E"kand the symbol sequen
es in Sk.(ii) A stationary pro�le w 2 E"k is 
hara
terized by its 
orresponding symbol se-quen
e s = (�1; : : : ; �k) in the following way: The i-th symbol �i des
ribesthe behavior of w(x) in the i-th subinterval (xi; xi+1); �i = �1 
orresponds tow(x) � �1,whereas �i = 1 
orresponds to w(x) � 1. The symbol �i = 0 isasso
iated with a spike-type or boundary-layer behavior in the 
orrespondinginterval.(iii) The Morse-index (dimension of the unstable manifold) for a stationary pro�lew 2 E"k is given by the number i(s) of symbols 0 in the 
orresponding symbolsequen
e s.Re
all that for x 2 (xi; xi+1), i.e. for a(x) � 
i equation (2) de�nes a Hamilto-nian system whi
h possesses a homo
lini
 orbit �i asymptoti
 to the equilibrium((�1)i; 0).For i = 1; 2; : : : ; k, let W si and W ui be the stable and unstable manifold of thehyperboli
 equilibrium ((�1)i+1; 0), whi
h is not 
ontained in the 
losure of �i.5
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Figure 3: Numeri
ally 
omputed stationary pro�les for two subintervals, " = 0:1,a(x) = �12Remark 2.4 W ui and W si+1 interse
t transversally, as 
an be 
he
ked from theirrepresentation as level sets of the 
orresponding Hamiltonian systems.It is easy to show that any solution of the boundary value problem (2), (3) mustsatisfy u(x) 2 [�1; 1℄ for all x 2 [0; 1℄. To see this, assume that u(x) = (u(x); v(x))is a traje
tory satisfying the left boundary 
ondition v(0) = 0 and that u(�x) > 1 forsome �x. Then v(�x) > 0 sin
e the region fu � 1; v � 0g is negatively invariant and
annot be rea
hed by a traje
tory that starts from the u�axis. Similarly, the regionfu > 1; v > 0g is positively invariant whi
h implies that the traje
tory will neverrea
h the u�axis again and therefore 
annot satisfy the right boundary 
ondition.The proof that u(x) � �1 is 
ompletely analogous.In a next step we therefore des
ribe all solutions of the system"u0 = v"v0 = (u2 � 1)(u� a(x))for whi
h u(x) remains in the interval [�1; 1℄ as long as x is in some subinterval[xi�1; xi+1℄. We do not aim at an optimal des
ription of this set but rather preparethe setting for the proof of Theorem 1.Let Æ be small su
h that Æ�neighborhoods of adja
ent homo
lini
 orbits do notinterse
t, in other words, 
(
i) + 
(
i+1) + 2Æ < 2is satis�ed for i = 1; : : : ; k. Moreover, we require that Æ�neighborhoods of �i andW si do not interse
t either. This 
an obviously be a
hieved by 
hoosing Æ su�
ientlysmall. With su
h Æ, letHi be a Æ�neighborhood of the equilibriumwhi
h is 
ontainedin the 
losure of the homo
lini
 �i and Ni a Æ�neighborhood of the interse
tionbetween W si and the strip f�1 � u � 1g. The notation indi
ates that Hi isasso
iated with the equilibriumwhere the homo
lini
 orbit is, while Ni 
ontains theequilibrium with no homo
lini
 orbit. 6



Lemma 2.5 Consider solutions of (2) where the 
i satisfy (5). Then for " smallenough the following holds:If a traje
tory u(x) of (2) satis�es u(x) 2 [�1; 1℄ for all x 2 [xi�1; xi+1℄ for some2 � i � k, then u(xi) 2 Hi [ Ni:Proof: We will determine separately the lo
us of �initial 
onditions� u(xi) for whi
hu(x) remains in [�1; 1℄ for x 2 [xi; xi+1℄ and the lo
us of �terminal 
onditions� forwhi
h u(x) 2 [�1; 1℄ for x 2 [xi�1; xi℄. The interse
tion of the two sets will be
ontained in Hi [ Ni.From the phase portrait for x 2 [xi; xi+1℄ we 
an immediately read o� that for "small we have �1 � u(xi+1) � 1 only if(i) the initial 
ondition u(xi) is 
lose to the stable manifolds of the two hyperboli
equilibria, or(ii) the initial 
ondition u(xi) lies in the interior of the homo
lini
 orbit �i.In parti
ular, u(xi) must for " small lie in the union of W si and some neighborhoodof the interior of �i.Similarly, the 
ondition u(x) 2 [�1; 1℄ for x 2 [xi�1; xi℄ 
an only be satis�ed for small" if u(xi) is 
lose to one of the unstable manifolds or if u(xi) lies in the interior ofthe homo
lini
 orbit �i�1. In other words, u(xi) has to lie in a neighborhood ofW ui�1 or in some neighborhood of the interior of �i�1.For " su�
iently small, the interse
tion of the four sets 
onsists of the union of Hi,Hi�1 and a small neighborhood of the interse
tion W ui�1 \W si . In parti
ular, u(xi)is therefore 
ontained in Hi [Ni. 2We outline now our strategy for the proof of Theorem 1: Stationary solutions will befound via a shooting method. Denote with �"i;j the �ow of (2) from x = xi to x = xj.We follow the image of the line fv = 0g, whi
h 
orresponds to the left boundary
ondition, under the �ow �"1;j+1 for j = 1; : : : ; k. Due to the previous lemma weknow that we need only to keep tra
k of those parts of the shooting 
urve whi
h atx = xi lie within Hi [ Ni. Preimages of these parts will be intervals I"�1;:::;�j . As issuggested by this notation these intervals will 
onne
t the di�erential equation withthe symbol sequen
es introdu
ed earlier.To get a pre
ise 
orresponden
e between neighborhoods and symbols it is ne
essaryto de
ompose Hi in two parts. The line fv = 0g divides Hi in two sets: Hsi is thepart that has a non-empty interse
tion with W si�1 and Hui 
ontains some part ofW ui�1.The basi
 tool will be the following lemma that des
ribes the evolution of 
urvesunder the �ow �"i;i+1 
orresponding to one interval where a(x) � 
i is 
onstant.7



Lemma 2.6 (Transition Lemma) (i) Suppose that the 
urve C � Ni is a graphover the u-axis whi
h is transverse to the stable manifold W si . Then for " suf-�
iently small,� �"i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W si+1,� �"i;i+1(C) \ Hi+1 is a 
urve whi
h is C1-
lose to W ui . Therefore, itinterse
ts the homo
lini
 orbit �i+1 transversally and is again a graphover the u-axis .Moreover, �"i;i+1 preserves the order on C, that is, if (u1; v1) and (u2; v2) aretwo points on C with u1 < u2 then the u-
oordinate of �"i;i+1(u1; v1) is smallerthan the u-
oordinate of �"i;i+1(u2; v2).(ii) Suppose that the 
urve C is a graph over the u-axis in Hsi whi
h is transverseto the homo
lini
 orbit �i. Then for " su�
iently small,� �"i;i+1(C) \ Hi+1 = ;,� �"i;i+1(C) \ Ni+1 has a 
onne
ted 
omponent whi
h is a graph over theu-axis transverse to W si+1.Again, �"i;i+1 preserves the order on C.(iii) Suppose that the 
urve C is a graph over the u-axis in Hui whi
h is C1�
loseto W ui�1. Then for " su�
iently small� �"i;i+1(C) \ Hi+1 = ;,� �"i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W si+1.The order on C is reversed by �"i;i+1.Proof: (i) is an immediate 
onsequen
e of the �-lemma whi
h states that for "small �"i;i+1(C) will be expanded along the unstable manifold W ui . Be
ause of thetransverse interse
tion of W ui and W si+1 the 
urve �"i;i+1(C) will also be transverseto W si+1 in Ni+1. Similarly, sin
e it is C1�
lose to W ui in Hi+1 it is automati
allytransverse to �i+1. That �"i;i+1 preserves the order on C 
an be seen from the phaseportrait, see Figure 4.(ii) The �rst 
laim is a simple 
onsequen
e of the fa
t that for a(x) � 
i there areno traje
tories of (2) whi
h lead from Hi to Hi+1. As before, the �-lemma impliesthat a small part of C near the interse
tion with �i will be stret
hed to a 
urve thatis 
lose to the unstable manifold of the equilibrium 
ontained in the 
losure of �i.This in turn implies that it will be transverse to W si+1 in Ni+1. Note that �"i;i+1 mayin general map other parts of the 
urve C also ba
k to Hi. This �spiraling� inside of�i, however, does not o

ur if the 
urve C is 
lose enough to W ui�1. In the situationwe are interested in, this 
loseness is a
hieved by 
ondition (6) (see[SS01℄).(iii) Again, sin
e no traje
tories of (2) pass fromHi to Hi+1 the �rst 
laim is obvious.8
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Figure 4: E�e
t of the �ow �"i;i+1 on C in 
ase (i)This time we will use the �-lemma in a di�erent way than before. The stable mani-fold W si+1 is transverse to the homo
lini
 orbit �i. (This 
an again be 
he
ked usinglevel sets of the 
orresponding Hamiltonians.) The ba
kward evolution �i+1;i(W si+1)will therefore stret
h along �i and along the other bran
h of the unstable manifold ofthe equilibrium. In parti
ular, it will have a unique point of transverse interse
tionwith the 
urve C. This in turn guarantees that �"i;i+1(C) \Ni+1 
onsists of a 
urvethat is transverse to W si+1. Due to the ex
ursion along �i the order on the 
urve isreversed. 2From this lemma it be
omes 
lear that u(xi) 2 Ni 
orresponds to the symbol �i =(�1)i+1 be
ause in this 
ase the traje
tory will remain near the equilibrium withoutthe homo
lini
 orbit for the major part of the interval [xi; xi+1℄. Similarly, u(xi) 2Hsi 
orresponds to the symbol �i = (�1)i and u(xi) 2 Hui 
orresponds to the symbol�i = 0 alias an ex
ursion along the homo
lini
 orbit �i.In the next step we use the transition lemma to �nd traje
tories of (2) with a givenitinerary s 2 Sk.In addition to the sets Hi and Ni we 
hoose a neighborhood U` of the interse
tionbetween the homo
lini
 orbit �1 and the u-axis. We need this set to take 
are of theNeumann boundary 
onditions whi
h allows for solutions with a sharp boundarylayer at x = 0 
orresponding to traje
tories 
lose to a homo
lini
 orbit in (2).9



HuiW si v NiW ui�1 uW ui�"i;i+1(C)�iCHsiFigure 5: E�e
t of the �ow �"i;i+1 on C in 
ase (ii) and (iii)Lemma 2.7 Assume that (4) is satis�ed by the 
onstants 
i. Then for any " suf-�
iently small and s = (�1; �2; : : : ; �k) 2 Sk, there exists some subinterval I"s of theu� axis su
h that solutions of (2) with u(0) 2 I"s have the following properties:(i) u(xi) 2 Ni i� �i = (�1)i+1,(ii) u(xi) 2 Hsi i� �i = (�1)i,(iii) u(0) 2 U` if �1 = 0 and u(xi) 2 Hui if �k = 0 for some 2 � i � k.Proof: We 
onstru
t a sequen
e of intervals I"�1;�2;:::;�j with the property thatI"�1;:::;�j;�j+1 � I"�1;�2;:::;�j ; (9)and su
h that u(0) 2 I"�1;�2;:::;�j implies that the 
onditions (i)-(iii) are satis�ed for1 � i � j.To begin with, we 
hoose intervalsI"�1 := H1 \ fv = 0g;I"0 := U` \ fv = 0g; (10)I"1 := N1 \ fv = 0gand study the evolution of these intervals under the �ow �"1;2 to x = x2. By the�-lemma, if " is small enough �1;2(I"�1) is a 
urve whi
h is C1-
lose to the unstable10



manifold W u(0) alias the homo
lini
 orbit �1 and whi
h may spiral inside the ho-mo
lini
 orbit �1. Hen
e, �"1;2(I"�1) \N2 may 
onsist of several 
omponents. As wewant to avoid too mu
h spiraling, we take as I"�1;�1 the preimage of the 
onne
ted
omponent, 
ontaining the origin in �"1;2(I"�1) \ N2.Similarly, �"1;2(I"0) \N2 may 
onsist of several pie
es and among the 
orrespondingpreimages we take as I"0;�1 the 
omponent whi
h 
ontains the interse
tion of �1 withthe u-axis.Lemma 2.6(i) tells us that �"1;2(I"1) is a 
urve C1-
lose to the unstable manifoldW u1 .This 
urve therefore interse
ts the sets N2 and H2 so that we 
an 
hoose as I"1;�1,I"1;0 and I"1;1 the preimage of the interse
tion with N2, Hu2 and Hs2, respe
tively.From now on we pro
eed indu
tively and assume that all intervals I"�1;�2;:::;�j havealready been 
onstru
ted for some j. Moreover, we assume that �"1;j(I"�1;�2;:::;�j ) is� a 
urve in Nj transverse to W sj if �j = (�1)j+1� a 
urve in Hj 
lose to W uj�1 if �j = (�1)j or �j = 0.It is straightforward 
he
k that these assumptions are satis�ed for j = 2.We distinguish now three 
ases:1. �j = (�1)j+1In this 
ase �"1;j(I"�1;�2;:::;�j ) is a 
urve in Nj. By Lemma 2.6 the image of this
urve under �"j;j+1 interse
ts both Nj+1 and Hi+1. Choose I"�1;:::;�j ;(�1)j as thepreimage of the interse
tion with Nj+1, then �"1;j+1(I"�1;:::;�j ;(�1)j) is a 
urvetransverse to W sj+1 as desired. The part whi
h interse
ts Hj+1 is C1-
lose toW uj . Choose as I"�1;:::;�j ;(�1)j the preimage of the part whi
h lies in Hsj+1, andas I"�1;:::;�j ;0 the preimage of the part whi
h lies in Huj+1.2. �j = (�1)jBy assumption, �"1;j(I"�1;�2;:::;�j) is a 
urve in Hsj 
lose to W sj�1 and thereforetransverse to th homo
lini
 orbit �j . From Lemma 2.6(ii) we know that theimage �"1;j+1(I"�1;�2;:::;�j) does not interse
t Hj+1 but Nj+1. The preimage ofthis interse
tion will be denoted with I"�1;�2;:::;�j ;(�1)j .3. �j = 0We have seen in Lemma 2.6(iii) that for " small there is a unique point onI"�1;�2 ;:::;�j that will be mapped to a point on W sj+1 under �"j;j+1. Choose asI"�1;�2 ;:::;�j ;0 the preimage of the 
omponent of �"j;j+1(I"�1;�2;:::;�j) whi
h 
ontainsthis point on W sj+1.Indu
tively one 
an therefore �nd intervals whi
h satisfy the 
onditions given above.2 11



We have not yet a

ounted for the right boundary 
ondition although we havealready used all our information from the symbol sequen
es. We 
omplete the proofof Theorem 1 by showing that for ea
h interval I"s there will be automati
ally onepoint of interse
tion of �"1;k+1(I"s ) with the u-axis. To this end, we introdu
e aneighborhood Ur of the interse
tion between �k and the u-axis. This neighborhoodtakes 
are of solutions with a sharp boundary layer at x = 1.Proof of Theorem 1: Consider an arbitrary symbol sequen
e s = (�1; �2; : : : ; �k) 2Sk. We will show that for " su�
iently small �"1;k+1(I"s) has a point of interse
tionwith the u-axis. This interse
tion will 
orrespond to a stationary solution in E"k.Uniqueness will follow from the result of Salazar and Sola-Morales who determinedthe exa
t number of stationary solutions under the assumptions (3)-(5).For de�niteness, we dis
uss the 
ase that k is even only. The 
ase that k is odd
an be treated in a 
ompletely symmetri
 way. This assumption implies that in thelast interval [xk; xk+1℄ the homo
lini
 orbit �k is atta
hed to u = 1. We have todistinguish four 
ases:Case 1: �k = �1In this 
ase, we know that �"1;k(Is) is a 
urve in Nk whi
h is transverse to W sk . For "small this 
urve will be stret
hed along W uk a

ording to the �-lemma. In parti
ularit will have a point of interse
tion with fv = 0g.Case 2: �k = 1Here �"1;k(Is) is a 
urve in Hsk 
lose to W uk�1 and transverse to the homo
lini
 orbit�k. For " small this 
urve will be stret
hed along the unstable manifold of the equi-librium u = 1 and will therefore have at least one interse
tion with fv = 0g.Case 3: �k = 0By Lemma 2.7 �"1;k(Is) is a 
urve in Huk whi
h is transverse to W sk . By the �-lemmathis 
urve will be stret
hed along W uk under the �ow �"k;k+1 for " small enough.Therefore �"1;k+1(I"s ) = (�"1;k Æ �"k;k+1)(I"s) will have an interse
tion with the u-axiswhi
h 
orresponds to a hyperboli
 stationary solution.Uniqueness of stationary solutions with a given symbol sequen
e follows by referringto Theorem 3 of [SS01℄. It is obvious that solutions with di�erent symbol sequen
esare distin
t. In Lemma 2.3 we have shown how to determine the number of di�erentsymbol sequen
es jSkj re
ursively. It was shown in [SS01℄ that under the assumptions(3)-(5) and for " small this is exa
tly the number of stationary solutions. This impliesthat, under these hypotheses, we have found all stationary solutions. This provespart (i) of Theorem 1.Part (ii) follows from the 
onsiderations in the proof of Lemma 2.6. There we havedetermined the way how traje
tories pass from the neighborhoods Ni and Hi toNi+1 [ Hi+1.For part (iii) note that the Morse index is exa
tly the number of 
lo
kwise half turnsof a tangent ve
tor to the interval Is under the map �"1;k+1 (see [FuRo91℄). By our
onsiderations in Lemma 2.6 about the order-preservation along the 
urve under�"i;i+1 it is 
lear that the Morse index in
reases by 1 when the traje
tory follows the12



homo
lini
 loop �i and remains the same in all other 
ases. The Morse index of thestationary solution 
an therefore be determined by 
ounting the number of ex
ur-sions along homo
lini
 loops, i.e. by 
ounting the number of zeroes in the asso
iatedsymbol sequen
e. 23 Hetero
lini
 
onne
tions in the attra
torIn this se
tion, we will prove an expli
it 
riterion, de
iding whether two equilibriaw; ~w 2 E"k have a hetero
lini
 
onne
tion.Re
all that our 
hoi
e of the nonlinearity in (1) satis�es a dissipativity 
ondition,providing a global 
ompa
t semi�ow on the Bana
h spa
e X � W 1;2((0; 1); IR).This semi�ow possesses a global attra
tor A, i.e. a 
ompa
t invariant set whi
h at-tra
ts bounded subsets of X and whi
h is maximal with this properties (see [Hal88℄,[BV92℄). Moreover, due to the gradient stru
ture of the system, the global attra
tor
ontains only equilibria and their unstable manifolds, whi
h 
onsist of hetero
lini

onne
tions. Stable and unstable manifolds always interse
t transversely [An86℄.Sin
e we know from Proposition 2.1 that under the 
onditions (5), (6), su�
ientlysmall ", the equilibria do not 
hange any more, we 
an des
ribe the hetero
lini

onne
tions in A" independent of ":Theorem 2 Assume that the pie
ewise 
onstant fun
tion a(x) satis�es (5) and (6)and w; ~w are stationary solutions in E"k. Then there exists a "0 > 0 su
h that for0 < " < "0 the following two statements are equivalent:(i) There is a hetero
lini
 
onne
tion from w to ~w(ii) If the two 
orresponding symbol sequen
es s = (�1; : : : �k) and ~s = (~�1; : : : ~�l)di�er at any position i, that is �i 6= ~�i, then �i = 0.Note that a

ording to this theorem the equilibrium w 
onne
ts exa
tly to thoseequilibria ~w whose symbol sequen
e ~s 
an be obtained by repla
ing in the sequen
es symbols 0 by other symbols. Interpreting this a

ording to Theorem 1, one 
ansee that any hetero
lini
 solution 
an be des
ribed as follows: In one or severalsubintervals, where for t ! �1 a spike is lo
ated, this spike disappears and fort ! 1 the pro�le be
omes either 
lose to 
onstant 1 or 0 in the interior of the
orresponding subintervals. In all other subintervals the shape of the solution re-mains nearly un
hanged. This means that for small " on the attra
tor the motionin di�erent subintervals be
omes nearly de
oupled and in ea
h subinterval there isa simple bistable dynami
al behavior. 13



3.1 Determining hetero
lini
 
onne
tions by order stru
turesIn order to prove Theorem 2, we want to apply now a general result on hetero
lini

onne
tions to our spe
i�
 situation:It has been shown in [Wo00℄ that for s
alar paraboli
 equationsut = uxx + f(u; ux; x); ux(0; t) = ux(1; t) = 0; x 2 [0; 1℄ (11)with a dissipative nonlinearity and hyperboli
 equilibria, the hetero
lini
 
onne
-tions in the attra
tor 
an be des
ribed in a way whi
h is similar to s
alar ordinarydi�erential equations. For those it is well known that two hyperboli
 equilibria havea hetero
lini
 
onne
tion, if and only if there is no third equilibrium in between.Indeed, due to [Wo00℄ a 
orresponding theorem 
an be formulated also for s
alarparaboli
 equations, where, however, the underlying order stru
ture has to be more
ompli
ated in order to 
over also multidimensional stru
tures in the attra
tor. Sin
enodal properties of the solutions play a 
entral role in s
alar paraboli
 equations,they are used to de�ne the appropriate order relations. We re
all here the basi
de�nitions from [Wo00℄.De�nition 3.1 (i) For any x-pro�le w 2 C1[0; 1℄, we denote with z(w) the num-ber of stri
t sign 
hanges (zero number) of w(x) in the interval [0; 1℄.(ii) A pair w; ~w of stationary solutions to (11) with z(w � ~w) = n is 
alled n-ordered, and we write w �n ~w;if we have w(0) < ~w(0).(iii) A n-ordered pair w �n ~w of stationary solutions to (11) is 
alled adja
ent, ifthere is no third stationary solution ŵ with w �n ŵ �n ~w.Proposition 3.2 ([Wo00℄, Theorem 2.4) Two hyperboli
 equilibria solutions wand ~w of (11) have a hetero
lini
 
onne
tion if and only if they are adja
ent.In order to apply Proposition 3.2 to our spe
i�
 situation, we have to re
over theorder of the stationary pro�les at x = 0 and the zero numbers for pairs of stationarysolutions. in terms of the 
orresponding symbol sequen
e in Sk. This information issu�
ient to obtain the order relations �n and hen
e the notion of adja
en
y, whi
his a

ording to Proposition 3.2 the 
riterion for hetero
lini
 
onne
tions.De�nition 3.3 On the set Sk, we de�ne re
ursively the total order � by the follow-ing two rules:(i) (�1; : : :) � (0; : : :) � (1; : : :) 14



(ii) (�1; �2; : : : �k) � (�1; ~�2; : : : ~�k), ( (�2; : : : �k) � (~�2; : : : ~�k) and �1 6= 0(~�2; : : : ~�k) � (�2; : : : �k) and �1 = 0This means, to 
ompare two sequen
es s = (�1; �2; : : : ; �k) and ~s = (~�1; ~�2; : : : ; ~�k),one has to look at the �rst position i, where the two sequen
es di�er, i.e.�i 6= ~�i; �j = ~�j for j < i:The order of the sequen
es is then determined by the ordering of �i and ~�i. Butin 
ontrast to usual lexi
ographi
 order, the number of symbols 0 appearing in the�rst i � 1 identi
al symbols is taken into a

ount: If this number is even, thenthe sequen
es s and ~s are ordered in the same way as �i and ~�i (a

ording to�1 < 0 < 1). If this number is odd, the order of s and ~s is reversed with respe
t tothat of �i and ~�i.Note that this de�nition 
an be applied to sequen
es of the symbols f�1; 0; 1g in-dependent of the transition rules from De�nition 2.2. Espe
ially, we 
an apply it tothe reversed symbol sequen
esR(s) := (�k; : : : ; �1); s = (�1; : : : ; �k) 2 Sk:Obviously, for reversed sequen
es R(s); s 2 Sk with even k, the transition rules forodd and even i are inter
hanged.Using the ordering of the reversed sequen
es, we 
an now de�ne a dis
rete 
ounter-part of the zero number:De�nition 3.4 For a pair of sequen
es s = (�1; : : : ; �k) and ~s = (~�1; : : : ; ~�k) in Skwe denote by t = (�1; : : : ; �k�1) and ~t = (~�1; : : : ; ~�k�1) the trun
ated sequen
es. Thedis
rete zero number zd(s� ~s) is then de�ned re
ursively by:(i) zd(s � ~s) = zd(t � ~t), if R(s) and R(~s) are ordered in the same way as R(t)and R(~t)(ii) zd(s � ~s) = zd(t � ~t) + 1, if R(s) and R(~s) are ordered opposite to R(t) andR(~t)(iii) zd(s� ~s) = i(t), if t = ~tFor k = 2, the zero number for any pair of sequen
es is zero.Note that although in the 
ase k = 1 there will be no relation to the stationarysolutions of a 
orresponding PDE, we in
lude this 
ase in our de�nitions in order toa
hieve a 
onvenient des
ription of the stru
tural properties of the symbol sequen
es.The following Lemma 
olle
ts some basi
 properties of our re
ursive de�nition of thezero number for symbol sequen
es:Lemma 3.5 For two sequen
es s; ~s 2 Sk we have15



(i) zd(s� ~s) = zd(R(s) �R(~s))(ii) s �n ~s() ( R(s) �n R(~s); if n evenR(~s) �n R(s); if n odd(iii) If zd(t� ~t) < zd(s� ~s), then �k�1 = ~�k�1Proof: To prove statement (i), we �rst 
onsider sequen
es s and ~s, su
h that �1 6= ~�1and �k 6= ~�k, but �i = ~�i for all 1 < i < k. Computing for those sequen
es the zeronumber zd(s� ~s) step by step, a

ording to the re
ursion from De�nition 3.4, we geta 
ontribution +1 for all positions 1 < i < k with �i = ~�i = 0. These 
ontributionssum up to i(�2; : : : ; �k�1). Moreover, we get one more 
ontribution +1, exa
tly if(�1 � ~�1)(�k � ~�k) < 0 and i(�2; : : : ; �k�1) evenor (�1 � ~�1)(�k � ~�k) > 0 and i(�2; : : : ; �k�1) odd:Exa
tly the same is obviously true for the zero number of the reversed sequen
eszd(R(s) � R(~s)). For an arbitrary pair of sequen
es s and ~s we observe, thatthe zero number is given by summation over the zero numbers of all segments(�i; �i+1; : : : ; �j), i < j whi
h are of the form, des
ribed above. This formula isobviously independent on the orientation of the sequen
es.Statement (ii) follows indu
tively from De�nition 3.4: For k = 1, all zero numbersare zero and s � ~s , R(s) � R(~s). Assuming the statement to be true for t 6= ~t,both in Sk�1, we get it immediately for s and ~s, using the re
ursive de�nitions 3.4(i), (ii). For t = ~t, it follows immediately from 3.4 (iii) and 3.3 (ii).Statement (iii), �nally, is a 
onsequen
e of the transition rules. Indeed, to obtainR(s) � R(~s) for R(~t) � R(t), it is ne
essary to have�k < ~�k or �k = ~�k = 0:A

ording to the transition rules, both is impossible if~�k�1 < �k�1:On the other hand, R(~t) � R(t) implies that ~�k�1 � �k�1. So, we must have~�k�1 = �k�1. 2In the following lemma, we prove that the above de�ned zero number and orderrelation for symbol sequen
es indeed agree with their 
orresponding 
ounterpartsfor the stationary solutions.Lemma 3.6 Assume that the pie
ewise 
onstant fun
tion a(x) satis�es (5) and (6)and " is su�
iently small (
f. Theorem 1). Then for any two stationary solutionsw; ~w 2 E"k and the 
orresponding symbol sequen
es s; ~s 2 Sk we have:16



(i) w(0) < ~w(0)() s � ~s(ii) z(w � ~w) = zd(s� ~s)Proof : To prove (i), we show that for su�
iently small ", the intervals of initial
onditions I"s and I"~s are ordered a

ording to the order of s and ~s. Sin
e for s 6= ~s, Isand I~s are disjoint, there is an obvious notion for the order of these intervals of realnumbers. For k = 1, this follows immediately from (10). We pro
eed now by indu
-tion over k. If the sequen
es s and ~s di�er at any position i < k, then the orderingof s and ~s is already determined by the order of the initial parts (�1; : : : ; �i) and(~�1; : : : ; ~�i). By indu
tion, the order for I"�1;:::;�i and I"~�1;:::;~�i is the same. A

ordingto (9), this ordering of the intervals 
arries over to I"s and I"~s .It remains to treat the 
ase, where �i = ~�i for all i < k. A

ording to Lemma 2.6,the image �1;k(I"�1;:::;�k�1) is a graph over the u-axis. It 
ontains the images�1;k(I"�1;:::;�k�1 ;�1); �1;k(I"�1;:::;�k�1 ;0); �1;k(I"�1;:::;�k�1;1);ordered along the u-axis a

ording to the last symbol. Tra
ing this ordering ba
kto the order of the intervalsI"�1;:::;�k�1;�1; I"�1;:::;�k�1;0; I"�1;:::;�k�1;1inside the interval I"�1;:::;�k�1, we have to regard that a

ording to Lemma 2.6 (iii),the graph has been reversed i(�1; : : : ; �k�1) times while being mapped iteratively to�1;k(I"�1;:::;�k�1). This is exa
tly re�e
ted by our de�nition of the order relation � onthe set of symbol sequen
es.To prove (ii), we pro
eed again by indu
tion, assuming that the statement is truefor k�1: For any pair of sequen
es t; ~t 2 Sk�1 with 
orresponding stationary pro�lesu(x); ~u(x), we assume that z(u(x)� ~u(x)) = zd(t� ~t): (12)For k = 2 it is easy to 
he
k from the phase portrait, that z(u(x) � ~u(x)) = 0 forany two stationary pro�les u(x); ~u(x) 2 E"2 (see Figure 3). A

ording to De�nition3.4 for k = 2 also zd(t� ~t) = 0 for all t; ~t 2 S2.For given sequen
es s; ~s 2 Sk, we get the trun
ated sequen
es t; ~t 2 Sk�1. If t 6= ~t,we 
an apply the indu
tion hypothesis in the following way: For t; ~t, there exist
orresponding stationary pro�les wT (x); ~wT (x); x 2 [0; xk℄, satisfying Neumannboundary 
onditions at 0 and xk, with zero number given by (12).We will establish now a relation between z(wT (x)� ~wT (x)) and z(w(x)� ~w(x)) intwo steps: First, we restri
t w(x) and ~w(x) to [0; xk℄ 
ompare the zeroes there tothose of wT (x)� ~wT (x). Then, we a

ount for the additional zeroes in the subinterval[xk; 1℄.To this end, we 
onsider two traje
toriesu�(x) = (u�(x); v�(x)); u�(x) = (u�(x); v�(x)); x 2 [0; xk℄17



�k = 0�k�1 = 0 �k = �1�k�1 = �1 �k�1 = 1 �k = 1
Figure 6: S
hemati
 pi
ture at x = xk for k even. Left: bold lines indi
ate possiblelo
ations of �0;k(It) and �0;k(I~t); points indi
ate 
orresponding lo
ations of wT (xk)and ~wT (xk). Right: segments of the preimage of fv = 0g (bold), interse
ting �0;k(It)and �0;k(I~t) (dotted lines) at w(xk) and ~w(xk) (points)with initial 
ondtions u�(0) = � 2 I"t ; v�(0) = 0;and u�(0) = � 2 I"~t ; v�(0) = 0:The zero number z(u�(x)�u�(x)) , x 2 [0; xk℄, is lo
ally 
onstant in � and �, unlessu�(xk) = u�(xk). At a point where u�(xk) = u�(xk), we have to regard whetheru�(xk) and u�(xk) move around ea
h other 
lo
kwise, whi
h leads to in
reasingz(u��u�), or anti-
lo
kwise, whi
h leads to de
reasing z(u�� u�) (see [FR96℄). Atea
h su
h point the sign of u�(xk)� u�(xk) 
hanges.Note that not only wT (0) 2 I"t but also w(0) 2 I"s � I"t . Changing � monotoni
allyfrom wT (0) to w(0), the pro�le u�(x); 
hanges from wT (x) to w(x). Then, 
hanging� monotoni
ally from ~wT (0) to ~w(0), we move the pro�le u�(x); x 2 [1; xk℄ from~wT (x) to ~w(x).The values u�(xk) and u�(xk) are lo
ated on the 
urves �"0;k(It) and �"0;k(I~t), whi
hare 
lose to the unstable manifold of one of the two �xed points, or to the homo
lini
loop �k. In Figure 6, we have drawn two instan
es of su
h 
urves for all 
hoi
es of thek � 1th symbol. For � and � varying as des
ribed above, we 
an observe in Figure6 how the endpoints u�(xk) and u�(xk) move from wT (xk) and ~wT (xk) (left handside in the �gure) to w(xk) and ~w(xk) (right hand side in the �gure). The bold linesin the left part show segments of the image of the u-axis under the ba
kward �ow�k+1;k in the kth subinterval. Ea
h of the three segments 
orresponds to one possible
hoi
e of the kth symbol. The order of points on the segments 
orresponding to �1is the same as on the u-axis, whereas on the middle segment the order is reversed.A zero of w(x)� ~w(x) in the interval [xk; 1℄ is a

ompanied with a di�erent sign ofw(xk)� ~w(xk) and w(1) � ~w(1). Obviously, there is at most one additional zero in18



this subinterval.From this 
on�guration, it is now easy to 
he
k that for wT (xk) < ~wT (xk), we getz(w � ~w) = z(wT � ~wT )exa
tly, if w(1) < ~w(1). If ~w(1) < w(1), we havez(w � ~w) = z(wT � ~wT ) + 1:Sin
e the ordering of the endpoints 
orresponds to the ordering of the reversedsymbol sequen
es, this shows the 
oin
iden
e of the zero number with its dis
rete
ounterpart in the 
ases (i) and (ii) of De�nition 3.4It remains to treat the 
ase, where t = ~t, i.e �i = ~�i, for 1 � i < k and �k 6= ~�k. Inthis 
ase, both �1;k(I"s ) and �1;k(I"~s ) are 
ontained in �1;k(I"t ). Due to the transitionrules we have �k�1 = (�1)k, and �1;k(I"t ) is 
lose to W uk�1, whi
h is a graph overthe u-axis. But for any two traje
tories u�(x); u�(x) of (2) with initial 
onditions�; � 2 I"t , we have z(u�(x)� u�(x)) = i(�1; : : : ; �k�1): (13)This follows from the fa
t a

ording to Lemma 2.6 (iii) that the �ow �1;k reversesthe interval I"t exa
tly i(t) times. In the last subinterval x 2 [xk; xk+1℄, there areno additional zeros. Sin
e (13) 
oin
ides with De�nition 3.3 (iii), the lemma is truealso in this 
ase. 2Lemma 3.7 For any pair of symbol sequen
es s; ~s 2 Sk, s 6= ~s, the following twostatements are equivalent:(i) s and ~s are adja
ent and i(s) > i(~s)(ii) For all i with �i 6= ~�i, we have �i = 0.Proof : (i) implies (ii): To show this impli
ation, we pro
eed as follows: Weassume that with a pair of two sequen
es from Sk, it is impossible to satisfy 
ondition(ii) for both 
hoi
es of s; ~s from that pair. Then, we show by indu
tion over k, thatthe sequen
es 
annot be adja
ent. Having obtained in this way, that for a pair ofsequen
es, adja
en
y implies one of the two variants of 
ondition (ii), we 
an usethe additional information i(s) > i(~s) from (i), to make the proper 
hoi
e of s and~s, and hen
e obtain that (i) implies (ii).To prove the above assertion, we have to distinguish two 
ases. Moreover, we assumefor de�niteness, that s �n ~s.Case 1: With the pair of trun
ated sequen
es t; ~t 2 Sk�1 it is impossible to satisfy
ondition (ii) and t 6= ~t.Then by indu
tion they are not adja
ent and hen
e there exists a sequen
e t̂ =(�̂1; : : : ; �̂k�1), satisfying t �m t̂ �m ~t; (14)19



with m := zd(t� ~t) = zd(s� ~s) or zd(s� ~s)� 1:This sequen
e t̂ 2 Sk�1 has now to be extended to ŝ 2 Sk by an additional symbol�̂k, su
h that zd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = n: (15)If this is possible, then we 
on
lude that t � t̂ � ~t implies s � ŝ � ~s, whi
h togetherwith (15) implies, that s and ~s are not adja
ent, too.We show now, how to 
hoose �̂k: Using (14), Lemma 3.5 (ii) implies for m even thatR(t) � R(t̂) � R(~t): (16)and hen
e �k�1 � �̂k�1 � ~�k�1 (17)For odd m the reversed inequalities are valid.If n = m+ 1, Lemma 3.5 (iii) implies that �k�1 = ~�k�1. Due to (17), we get also�̂k�1 = �k�1 = ~�k�1:Moreover, n = m + 1 implies that either �k 6= ~�k or �k = ~�k = 0. In both 
ases,the transition rules allow also for �̂k = 0. It is easy to 
he
k that this 
hoi
e of �̂kalways satis�es (15).If n = m, we 
hoose �̂k 2 f�k; ~�kg n f0g. This set is nonempty, sin
e �k = ~�k = 0
ontradi
ts to n = m. Moreover, using (17), it is easy to 
he
k that there is alwayssu
h a 
hoi
e, whi
h satis�es the transition rules. Equation (15) is satis�ed for this
hoi
e, sin
e we get from (16) immediatelyR(s) � R(ŝ) � R(~s);whi
h, together with (16), implies that no zero number 
hanges o

ur by adding thek-th symbol.Case 2: t and ~t are equal, or satisfy 
ondition (ii).In this 
ase, we look �rst at the reversed sequen
es (see Lemma 3.5). If they satisfythe setting for Case 1, we are done. The only possibility, where this fails is, if�1 = ~�k = 0~�1 6= 0 6= �k�i = ~�i for i = 2 : : : k � 1:De�ning now ŝ := (~�1; �2; : : : ; �k�1; �k);one 
an 
he
k easily thatzd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = i(�2; : : : ; �k�1)20



and either s � ŝ � ~s or ~s � ŝ � s. Hen
e there is no adja
en
y also in that 
aseand the assertion is proved.(ii) implies (i): First, we show that for any pair of sequen
es s; ~s 2 Sk, 
ondition(ii) implies adja
en
y of s and ~s. We will prove this by showing indu
tively thefollowing assertion: If s; ~s 2 Sk, satisfy 
ondition (ii), then for all ŝ 2 Sk withs � ŝ � ~s; (18)the quantity Ds := zd(s� ŝ)� zd(~s� ŝ) (19)is greater than zero. For de�niteness, we may assume s �n ~s.First, note that for k = 1 there is no ŝ, satisfying (18), and hen
e the assertionis trivially satis�ed. If the trun
ated sequen
es t; ~t are equal, then 
ondition (ii)implies also that there is no ŝ, satisfying (18). Hen
e we may assume in the sequelthat k > 1 and t 6= ~t. We distinguish now three 
ases:Case 1: t 6= t̂ 6= ~t. Here, (18) impliest � t̂ � ~tand we 
an assume by indu
tion thatDt := zd(t� t̂)� zd(~t� t̂) > 0: (20)From Lemma 3.5 (ii), we 
an 
on
lude that exa
tly forDt even, one of the inequalitiesR(t) � R(t̂) � R(~t) or R(~t) � R(t̂) � R(t) (21)is true. Consequently, if (21) is satis�ed we get from (20) that Dt � 2. But sin
ejDt �Dsj � 1 (see De�nition 3.4), this proves our assertion in this 
ase.If (21) is not satis�ed, thenDs � Dt due to the following reason: To obtain Ds < Dt,we need that zd(~s� ŝ) > zd(~t� t̂), whereas zd(s� ŝ) = zd(t� t̂). Moreover, if Ds = 0,we obtain inequalities analogous to (21) for s; ŝ; ~s, whi
h implies that�k � �̂k � ~�k or ~�k � �̂k � �k:Taking into a

ount 
ondition (ii), it follows that either �̂k = ~�k or �̂k = �k = 0.But �̂k = ~�k is impossible sin
e then zd(~s � ŝ) = zd(~t � t̂). Also �̂k = �k = 0 isimpossible, be
ause it implies zd(s � ŝ) > zd(t � t̂). This �nishes the 
ase wheret 6= t̂ 6= ~t.Case 2: t̂ = t; t̂ 6= ~t. In this 
ase, we 
an argue in a similar way as above. First,we noti
e that zd(s� ŝ) = i(t): (22)Then, we show that zd(~t� t) = zd(~t� t̂) < i(t): (23)21



Indeed, 
omputing zd(~t � t) re
ursively a

ording to De�nition 3.4, there is a 
on-tribution +1, whenever �i = ~�i = 0. Further 
ontributions +1 may o

ur only atpositions, where �i 6= ~�i, whi
h implies �i = 0, a

ording to 
ondition (ii). Only atthe �rst position, where �i 6= ~�i, there is never a 
ontribution to zd(~t � t). Fromthis, we 
an 
on
lude (23), sin
e the number of positions i = 1 : : : k�1 where �i = 0is just i(t). Sin
e zd(~s� ŝ) � zd(~t� t̂) + 1;it follows immediately from (22) and (23) that Ds � 0. To obtain Ds = 0, we wouldneed that zd(~s � ŝ) = zd(~t � t̂) + 1. A

ording to De�nition 3.4, this implies that~�k 6= �̂k. In 
ontradi
tion to that, we obtain again inequalities analogous to (21) fors; ŝ; ~s. As above, we 
on
lude that either �̂k = ~�k or �̂k = �k = 0. But �̂k = �k isex
luded here, sin
e it would imply ŝ = ~s.Case 3: t̂ = ~t; t̂ 6= t. Here, we have by de�nition thatzd(ŝ� ~s) = i(~t:)Due to 
ondition (ii), at all positions i = 1 : : : k � 1, where ~�i = �̂i = 0, we have�i = 0 as well, and hen
e zd(t� ~t) = zd(t� t̂) � i(~t):Hen
e Ds � 0, and Ds = 0 is only possible, ifzd(s� ŝ) = zd(t� t̂) = i(~t): (24)Additionally, we 
on
lude as above, that either �̂k = ~�k or �̂k = �k = 0. The �rst ofthese possibilities 
ontradi
ts to ŝ 6= ~s, and the latter one giveszd(s� ŝ) = zd(t� t̂) + 1in 
ontradi
tion to (24). This �nishes the proof for this 
ase. Hen
e the assertionthat Ds > 0 for all ŝ between s and ~s is proved. Sin
e for s 6= ~s, (ii) implies obviouslythat i(s) > i(~s), we get that (ii) implies (i), and the proof of Lemma 3.7 is �nished. 2Proof of Theorem 2: First, we re
all that due to the Morse-Smale property of thesystem (see [An86℄), a hetero
lini
 
onne
tion from w to ~w implies for the Morse-indi
es i(w) > i( ~w): (25)Due to Proposition 3.2, the hetero
lini
 
onne
tion implies also adja
en
y of w and~w. A

ording to Lemma 3.6, this is equivalent to adja
en
y of the 
orrespondingsymbol sequen
es s and ~s. Due to Theorem 1 (iii), inequality (25) implies alsoi(s) > i(~s):This, together with the adja
en
y of the sequen
es, is due to Lemma 3.7 �nallyequivalent to the 
ondition that for all j 2 f1; : : : ; kg�j 6= ~�j =) �j = 0;whi
h is exa
tly our 
ondition (ii) in Theorem 2. 222



3.2 The Permutation of the equilibriaAs an important tool for the investigation of s
alar paraboli
 equations of the form(11) Fus
o and Ro
ha introdu
ed in [FuRo91℄ the permutation of the equilibria. Fora given equation with hyperboli
 equilibria, this permutation � is de�ned by �rstnumbering all equilibria pro�les a

ording to their order at the left boundary x = 0of the interval w1(0) < w2(0) < : : : < wn(0);and then looking how this order has 
hanged at the right boundary x = 1:w�(1)(1) < w�(2)(1) < : : : < w�(n)(1)The permutation � 
ontains all information about the nodal properties of the equi-libria pro�les. It has been shown that � 
an be used do determine the Morse indi
esand the hetero
lini
 
onne
tions of the equilibria [FR96℄. Moreover, the permutationdetermines the attra
tor up to C0 orbit equivalen
e [FR99℄. How the permutation isrelated in general to the order relations �n, whi
h we used here, has been dis
ussedin [Wo00℄.Sin
e in [FRSS01℄, this permutation has also been used to study the spe
i�
 
lassof equations whi
h is the subje
t of the present paper, we remark that, using theresults from the previous se
tion, we get immediately the following result:Corollary 3.8 Assume that the fun
tion a(x) is pie
ewise 
onstant on k subinter-vals and satis�es (5) and (6). Then for small enough " > 0 the permutation �k ofthe equilibria 
an be obtained from the symbol sequen
es in Sk in the following way:Numbering all sequen
es in Sk a

ording tos1 � s2 � : : : � sn;the permutation �k is given by the order of the reversed sequen
es:R(s�k(1)) � R(s�k(2)) � : : : � R(s�k(n))4 An ODE modelUsing the information we have obtained so far, we 
an now 
onstru
t a model forthe global attra
tor A".Theorem 3 For 0 < " < "0 the attra
tor A" is 
onne
tion equivalent to the globalattra
tor M of the following model o.d.e. with y = (y1; y2; : : : ; yk) 2 IRk:_y1 = y1(1 � y21)_y2 = y2(1 � y22) + (y1 � 1)(y2 + 1)_y3 = y3(1 � y23)� (y2 + 1)(y3 � 1)... ..._yk = yk(1� y2k) + (�1)k(yk�1 � (�1)k)(yk + (�1)k): 9>>>>>>>=>>>>>>>; (26)23



y1y2 y1 y2y3Figure 7: Hetero
lini
 
onne
tions on the attra
tor for k = 2 and k = 3Although we expe
t that M is at least C0-orbit equivalent to A" we do only provethe weaker statement of 
onne
tion equivalen
e here.Lemma 4.1 The stationary solutions of (26) are pre
isely the ve
tors(y1; y2; : : : ; yk) 2 Sk:Proof: Looking for stationary solutions we have to solve �rst the equation y1(1 �y21) = 0, hen
e y1 = �1 or 0 or +1. Con
erning the se
ond equation, we have todistinguish two 
ases. If y1 = 1, then the se
ond equation redu
es to y2(1� y22) = 0whi
h implies that y2 2 f�1; 0;+1g. If, however, y1 = 0 or y1 = �1, then the se
ondequation reads0 = (y2 + 1)(�y22 + y2 + y1 � 1) = (y2 + 1)(�(y2 � 12)2 + 14 + y1 � 1):Clearly, this implies that y2 = �1 sin
e the term in bra
kets does not vanish for y1 �0. One 
an now pro
eed by indu
tion assuming that we have already found out thatyi 2 f�1; 0;+1g. If yi = (�1)i+1 then the (i+1)-st equation reads yi+1(1�y2i+1) = 0.Hen
e yi+1 
an take any value in f�1; 0;+1g. If yi = (�1)i or yi = 0 then we haveto solve 0 = (yi+1 � (�1)i)(�y2i+1 + (�1)iyi+1 + (�1)i+1yi � 1):As the se
ond term does not vanish for yi = (�1)i or yi = 0, we must haveyi+1 = (�1)i. Comparing with the de�nition of Sk we see that (y1; y2; : : : ; yk) 2 Sk.2Proof of Theorem 3: We pro
eed again by indu
tion to show that two equilibria(y1; y2; : : : ; yk) and (ŷ1; ŷ2; : : : ; ŷk) are 
onne
ted by a hetero
lini
 orbit if and onlyif yi 6= ŷi =) yi = 0 (27)holds for i = 1; 2; : : : ; k. That the 
laim holds for k = 1 and k = 2 
an veri�eddire
tly from the 
orresponding phase portraits.24



Assume now that the statement is true up to k = n and 
onsider equation (26) withk = n+ 1. From the last equation we 
an immediately read o� that the hyperplanefyn+1 = (�1)ng is invariant and the restri
tion of the �ow to this hyperplane isexa
tly (26) with k = n. From the indu
tion hypothesis we know all about the het-ero
lini
 orbits within this hyperplane. These hetero
lini
 orbits 
onne
t equilibriawith yn+1 = ŷn+1 = (�1)n whi
h satisfy (27).Another invariant hyperplane is fyn = (�1)n+1g. Within this hyperplane the �owis given by the system_y1 = y1(1 � y21)_y2 = y2(1 � y22) + (y1 � 1)(y2 + 1)_y3 = y3(1 � y23)� (y2 + 1)(y3 � 1)... ..._yn�1 = yn�1(1� y2n�1) + (�1)n�1(yn�2 � (�1)n�1)(yn�1 + (�1)n�1)_yn+1 = yn+1(1� y2n+1):The last equation is de
oupled, so the �ow is a dire
t produ
t of the �ow (26) withk = n � 1 and the �ow generated by the last equation. It is therefore obvious that(27) has to be satis�ed for 1 � i � n� 1 and also for i = n+ 1 while yn = ŷn.To show that there are no other hetero
lini
 orbits outside the invariant planesfyn+1 = (�1)ng and fyn = (�1)n+1g it su�
es to 
al
ulate the eigenvalue of thelinearization of the equilibria in the transverse dire
tion. It turns out that all equi-libria are stable in the transverse dire
tion so there 
annot be any hetero
lini
 orbitsoutside the invariant hyperplanes. 2Referen
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