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Abstract

The study of traveling waves for viscous conservation laws with nonlinear source terms

and small diffusion leads to a singularly perturbed problem. This slow-fast problem in-

volves necessarily some point that is not hyperbolic with respect to the fast field. The corre-

sponding solutions follow both stable and unstable branches of the slow manifold and are

therefore of canard type.

In the present paper we establish existence of some continuous heteroclinic traveling

waves by a careful singular perturbation analysis involving non-hyperbolic points on the

slow manifold. The wave speed is determined up to first order in the small viscosity pa-

rameter by a Melnikov-like calculation after a local blow-up near the non-hyperbolic point.

It is also shown that some discontinuous traveling waves of the inviscid equation have no

analogues in the viscous case.

Math Subject Classification: 35L65, 35B25, 35L45, 34E15

Keywords: traveling waves, hyperbolic conservation laws, singular perturbations, canard so-

lution.

1 Introduction

In [Här00], we started the study of viscous profiles of scalar hyperbolic balance lawsut + f(u)x = g(u); x 2 R; u 2 R; f 2 C3; g 2 C2: (1)

Equations of this type are often considered as an approximation for a viscous equationut + f(u)x = "uxx + g(u); x 2 R; u 2 R (2)

where the viscosity parameter " is very small. Applications of balance laws, although not scalar,
can be found e.g. in combustion [PC86], nozzle flow [CG96] and describing roll waves [NT01].
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Our main interest in this paper are continuous traveling wave solutions since they are a feature

that distinguishes hyperbolic balance laws from the much better studied hyperbolic conserva-

tion laws.

In the hyperbolic case " = 0, Mascia [Mas97] has given a classification of the possible traveling
waves for the case of a convex flow function f . Here we will treat the question whether these
traveling waves are admissible with respect to the viscosity criterion, i.e. whether they can be

obtained as limits of traveling waves of the viscous balance law (2) when " tends to zero. We
are also interested in the influence of the small viscosity on the speed of the traveling wave.

Estimates on this wave speed correction are necessary to prove the convergence of the wave

profiles in L1(R) for " ! 0. It turns out that not all solutions are viscosity solutions in this
sense. In particular, all waves of the hyperbolic equation with more than one discontinuity do

not admit viscous profiles.

We assume the following about the nonlinear functions f and g:
(G) g possesses exactly three simple zeros u` < um < ur with u0(u`) < 0, u0(um) > 0 andu0(ur) < 0.
(F) f 00(um) > 0 and f 0(w1) < f 0(um) < f 0(w2) for all w1 < um < w2.
Note that for the pure reaction dynamics ut = g(u) the zeroes u` and ur are attracting while the
zero um is repelling.
Since the hyperbolic equation (1) does in general not possess global smooth solutions, and since

on the other hand weak solutions are not unique, one considers as a solution usually a weak

solution which satisfies an additional so-called entropy condition. As this paper is concerned

with traveling waves only, we state directly for the special case of traveling waves what is

meant by a (possibly discontinuous) entropy solution of (1) .

DEFINITION 1.1 An entropy traveling wave is a solution of (1) of the form u(x; t) = u(x� st) for
some velocity s 2 R with the following properties:
(i) u is piecewise C1, i.e. u 2 C1(R n J) and the set of accumulation points of J has only isolated
points. At points where u is continuously differentiable it satisfies the ordinary differential equa-
tion �f 0(u(�))� s� u0(�) = g(u(�)) (3)

with � = x� st.
(ii) The jumps at the points of discontinuity satisfy the Rankine-Hugoniot conditions (u(�+)� u(��)) = f(u(�+))� f(u(��)) (4)

and the entropy condition u(�+) � u(��)
where u(�+) and u(��) stand for the one-sided limits of u.
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1.1 Heteroclinic waves of the hyperbolic equation

In this paper we are primarily interested in traveling wave solutions which connect constant

states at �1.
DEFINITION 1.2 A traveling wave u is said to be a heteroclinic wave connecting equilibria u�1 andu+1 if lim�!�1u(�) = u�1; lim�!+1u(�) = u+1
for some u�1; u+1 2 R with u�1 6= u+1.
It is called a homoclinic wave if u�1 = u+1.
Apart from the heteroclinic waves there can be also discontinuous periodic and nonperiodic

waves.

There are several types of heteroclinic waves as shown in [Mas97]. They fall into three cate-

gories:

(A) Heteroclinic waves which exist for a whole interval of wave speeds s
(B) waves which can be found only if the speed s takes precisely the value f 0(um) and
(C) undercompressive shock waves which do also show up only for isolated wave speeds

determined by a Rankine-Hugoniot condition.

In the present paper we are mainly interested in the waves of type (B). A finer classification

allows to split these waves into four subcategories (B1)–(B4), see [Här00]. However, under

assumption (G) only two cases can actually occur:

(B1) Continuous, monotone increasing waves connecting u` to ur with speed s = f 0(um)
(B4) Discontinuous waves that connect u` to ur with speed s = f 0(um).
Note that for s0 := f 0(um) the traveling wave equation (3) can be put in the formu0 = 8>>>><>>>>: g(u)f 0(u)� f 0(um) for u(�) 6= umg0(um)f 00(um) for u(�) = um (5)

The wave speed s0 is the only one for which the singularity of the function g(u)(f 0(u)�s)�1 can
be removed. Therefore, there exists a monotone heteroclinic orbit u0 from u` to ur precisely for
this wave speed. Considered as a traveling wave, u0 is a continuous wave of type (B1). There
are also entropy traveling waves with an arbitrary number of discontinuities. They consist of

smooth parts which are solutions of (5) separated by discontinuities which connect a left state

from the interval (um; ur) to the corresponding right state in the interval (u`; um) according to
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the Rankine–Hugoniot condition (4). These waves are all of type (B4). Note that these waves of

type (B4) pass at least twice (continuously) through the value um. This fact will be used to show
that these entropy traveling waves have no counterpart in the viscous equation. In contrast, it

will turn out that in the viscous equation only a monotone heteroclinic orbit connecting the

equilibria u` and ur exists for exactly one wave speed s(") close to but not equal to s0 = f 0(um).
1.2 Viscous Profiles

Wewant to compare the entropy traveling waves with traveling waves of the viscous equation

(2). Using the traveling wave ansatz u(x; t) = u(x� st) in (2), leads to the equation"u00 = (f 0(u)� s)u0 � g(u) (6)

where the prime denotes differentiation with respect to the new coordinate � := x � st. Note
that, unlike in viscous conservation laws, the viscosity parameter " is still present in the travel-
ing wave equation.

We can now make precise what we mean by a viscosity traveling wave solution.

DEFINITION 1.3 A traveling wave solution of (1) with wave speed s0 is said to be admissible or to
admit a viscous profile if there is a sequence of solutions (u"n) of"nu00"n = �f 0(u"n)� sn�u0"n � g(u"n)
with "n & 0, sn ! s0 such that ku"n � ukL1(R) ! 0.
Note that this approach is essentially different from Kruzhkov’s classical result [Kru70]. While

Kruzhkov shows convergence on a finite time interval [0; T ℄ with identical initial data for the
hyperbolic and the parabolic equation, we focus on closeness of the profiles for infinite times

and allow therefore the initial conditions to differ slightly.

On the other hand, we also allow a small difference in the speeds of the hyperbolic and the

viscous wave. This implies that in a fixed frame the L1–distance between the two profiles will
not remain small.

1.3 The main results

In another article [Här00] we were able to show by classical singular perturbation theory the

following statement:

PROPOSITION 1.1 All heteroclinic waves of type (A) and type (C) admit a viscous profile.

This family of viscous profiles does not only exist but also converges to u0 in the suitable sense
as "! 0:
THEOREM 1.1 (ADMISSIBILITY OF TYPE (B1) WAVES) The continuous traveling wave connecting u`
to ur is admissible.
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More precisely, we will show that for " sufficiently small there is a unique value s(") such that
a monotone heteroclinic wave u" of (2) connects u` to ur. The wave speed s(") can be shown to
depend on the viscosity " in the following way:
THEOREM 1.2 (ASYMPTOTIC BEHAVIOR OF THE WAVE SPEED) For " sufficiently small, there is a
unique heteroclinic connection u" from u` to ur that occurs ats(") = s0 � 12 ddu � g0(u)f 00(u)�����u=um "+O("3=2):
We also present another result which shows that all discontinuous heteroclinic waves do not

satisfy the admissibility condition, although the entropy jump condition can be derived from

the viscous approximation.

THEOREM 1.3 (NON-ADMISSIBILITY OF TYPE (B4) WAVES) All discontinuous heteroclinic travel-

ing waves with wave speed f 0(um) do not admit a viscous profile.
This will be a consequence of the Jordan curve theorem and thus is probably a low-dimensional

effect which shows up only in scalar balance laws.

The rest of this article is organized as follows: In chapter 2 the set-up and some notation is

given. The nonexistence theorem 1.3 and the existence theorem 1.1 are proved in chapters3 and 4, respectively. The final chapter 5 uses a blow–up construction to derive asymptotic
estimates for the speed of the viscous traveling waves.

2 Singular perturbation theory

We return now to the viscous traveling wave equation. The second-order equation (6) that

arises from plugging the traveling wave ansatz into the parabolic equation (2) can be written

as a first-order system in two different ways. Apart from the “phase plane” coordinates"u0 = ww0 = (f 0(u)� s)w" � g(u)
one can use the “Liénard coordinates”"u0 = v + f(u)� suv0 = �g(u): )

(7)

We will distinguish these two possibilities by a consequent use of the variable w for phase
plane considerations and v for Liénard plane arguments. From the “slow-fast”-system (7) two
limiting systems can be derived which both capture a part of the behavior that is observed for" > 0.
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One is the “slow” system obtained by simply setting " = 0:0 = v + f(u)� suv0 = �g(u): )
(8)

The flow is confined to the singular curveCs := f(u; v) : v + f(u)� su = 0g:
Rescaling the variable � we arrive at _u = v + f(u)� su_v = �"g(u): )
In the limit " = 0, this equation leads to the “fast” (or “layer”) system_u = v + f(u)� su_v = 0: )

(9)

Equation (9) defines a vector field for which the singular curve Cs consists of equilibrium points
only. It points to the left below the curve Cs and to the right above.
Trajectories of the fast system connect only points for which v+ f(u)� su has the same values.
This is exactly the Rankine-Hugoniot condition for waves propagating with speed s. Moreover
the direction of the fast vector field is in accordance with the entropy condition.

The linearization of the fast vector field (9) at an equilibrium (u;�f(u) + su) possesses one
eigenvalue 0 (because there is a one-dimensionalmanifold of equilibria) and another real eigen-
value f 0(u)� s. We call a branch of Cs stable if f 0(u)� s < 0 along this branch and unstable, iff 0(u) � s > 0. By assumption (F) for any s there is at most one point where f 0(u) = s. The lin-
earization of (9) at this point which we will call the “fold point” has a double zero eigenvalue,

in particular Cs is not normally hyperbolic in a neighborhood of the fold point.
Geometric singular perturbation theory in the spirit of Fenichel [Fen79] is a strong tool to de-

scribe trajectories that do not pass through a small neighborhood of this point. Outside such

a neighborhood the branches of the singular curve are uniformly normally hyperbolic with

respect to the fast field. For this reason, the stable and unstable branches persist as invariant

manifolds for " > 0.
Unfortunately, trajectories that pass near the top of the curve Cs are not captured by this clas-
sical theory and cannot be avoided in the study of type (B) entropy traveling waves. Such

trajectories that switch from a stable branch to an unstable branch and follow the unstable

branch for a time of orderO(1) are called canards. They were first described in the Van-der-Pol
equation by a group of french non-standard analysts, see [BCDD81].
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3 Nonexistence of viscous profiles

Discontinuous waves of the hyperbolic balance law (1) can be quite complicated. They can pos-

sess an arbitrary number of jumps, see [Mas97]. However, all these discontinuous heteroclinic

waves from u` to ur do not admit a viscous profile.
Proof of Theorem 1.3: We consider a discontinuous heteroclinic traveling wave u0 with speeds0 parametrized in a way that its leftmost discontinuity is at � = 0. At this first shock u0 jumps
from u+ 2 (um; ur) to u� 2 (u`; um), see figure 3. In this figure we have drawn the hyperbolic
wave profile as a dashed line projected on the singular curve Cs. The shock discontinuity is
shown as a horizontal line connecting two points on Cs.
For the viscous equation (7) with " small and wave speed s near s0, the equilibrium u` is of
saddle type with a one-dimensional unstable manifold. Hence, if there was a heteroclinic orbitu" from u` to ur, then it would have to be a branch of the unstable manifold of u`. We follow
thus the unstable manifold of u` and show that it cannot converge to ur.

��

����

��
��
��
�� u

“trajectory” of the

urtrajectory of theul
um

viscous equation

v
hyperbolic equation
(projected onto Cs)

v + f(u)� su = 0
Figure 1: Why some discontinuous entropy waves cannot possess a viscous profile

If the (smooth) trajectory corresponding to the unstable manifold of u` was L1-close to u0, then
it would have to intersect the curve Cs near u = u+ because u0 can only change sign by crossingCs. For " sufficiently small, the trajectory would then intersect the curve Cs again near u = u�
and enter a positively invariant region whose boundary is formed by the trajectory and a part

of Cs. This region is painted in grey in figure 3. Since the grey region is positively invariant andur lies in the exterior of this region, there can be no heteroclinic connection from u` to ur that
could provide a viscous profile for the entropy traveling wave u0. 2
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4 Admissibility of monotone heteroclinic waves

In this chapter we show that monotone heteroclinic waves of type (B1) do always admit a

viscous profile. In a first step we prove, that for fixed " small there is a unique wave speed s(")
near s0 that allows for a heteroclinic connection from u` to ur in (7).
4.1 Rotated Vector Fields

A useful concept for the study of some special planar systems are the so-called rotated vector

fields introduced by Duff [Duf53] and later improved by Perko [Per75, Per93].

DEFINITION 4.1 Consider a family of planar vector field_x = P (x; y; �)_y = Q(x; y; �) (10)

depending on a scalar parameter �. Let G : R2 ! R be an analytic function such that G(x; y) = 0
defines a curve which is not a trajectory of (10). The family is called a family of rotated vector fields

(mod G =0) if ����� P (x; y; �) Q(x; y; �)P�(x; y; �) Q�(x; y; �) ����� � 0 for all x; y and � (11)

and if the inequality is strict except on the set f(x; y); G(x; y) = 0g.
Geometrically, this means that varying the parameter �, the vector field is “rotated” in the
same direction at every point with the possible exception of some points where it may keep its

direction. We will use the following

PROPOSITION 4.1 (DUFF, PERKO) Consider a family of rotated vector fields. Suppose there is an

equilibrium, which for all values of � possesses a one-dimensional unstable manifold. Then this unstable
manifold moves either clockwise or anti-clockwise as the parameter � is increased. The stable manifold
moves in the same direction. Moreover, these directions are the same for all saddle equilibria of the

system.

LEMMA 4.1 Consider (7) written in phase plane coordinates_u = w="_w = f 0(u)� s" w � g(u) 9>>>=>>>; (12)

depending on the parameters " and s. Then this is a family of rotated vector fields (mod w = 0) with
respect to the parameter s.
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Proof:We only have to evaluate (11), i.e.��������� w=" f 0(u)� s" w � g(u)0 �w=" ��������� = ��w" �2 � 0
and check that this expression only vanishes on the line w = 0 which is not a trajectory of the
system. 2
REMARK 1 The vector field in Liénard coordinates is not a rotated vector field. This is the reason why

we work here (and only here) in phase plane coordinates.

Now we may use proposition 4.1 to show the existence of a heteroclinic connection from u` tour for the viscous traveling wave equation.
LEMMA 4.2 For " sufficiently small there exists a unique value s = s(") such that there is a monotone
heteroclinic connection u"(�) from u` to ur.
Proof: We fix " and consider a branch of the unstable manifoldW u(u`) and denote with w�(s)
the value of its first intersection with the line u = um. In caseW u(u`) is a heteroclinic connec-
tion between u` and um we setw�(s) := 0. Similarly the first intersection ofW s(ur) determines
a number w+(s). Both functions w�(s) and w+(s) depend continuously on s by standard in-
variant manifold theory.

Since s0 = f 0(um), for s� s0 > 2p"g0(um) the equilibrium um is a sink with two real eigenval-
ues. In this case the unstable manifold of u` connects to um, so w�(s) = 0. However w+(s) > 0
since um is a stable equilibrium and _w < 0 along the line w = 0 as long as u > um.
For s � s0 < �2p"g0(um) the situation is vice versa: We have w+(s) = 0 and w�(s) > 0. The
intermediate value theorem yields now immediately the existence of a number s(") for whichw�(s) = w+(s). Due to proposition 4.1 we know that the function w� is monotone increasing
while w+ is monotone decreasing. From this we can conclude that s(") is unique. 2
REMARK 2 Since the traveling wave u" is monotone in �, its derivative u0" is the eigenfunction associ-
ated with the first eigenvalue. In turn, this implies that 0 is the largest eigenvalue and hence for each
fixed " we can conclude that u" is linearly stable with respect to perturbations of the viscous balance law
(2).

The wave speed s(") of the viscous traveling wave will in general differ from the wave speeds0 of the hyperbolic traveling wave. However, they are close to each other as the following
lemma shows.
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LEMMA 4.3 The speed of the viscous traveling wave is O(")–close to the speed of the hyperbolic travel-
ing wave, i.e. there exists a number � > 0 such that for " > 0 sufficiently small we havejs(")� s0j � �":
Proof: The argument is purely geometrical. We first define a curve  as a graphv = (u) = �f(u) + su+ "g(u)f 0(u)� s0 :
We will show that for s � s0 > �" the unstable manifold W u(u`) lies below  while the sta-
ble manifold W s(ur) lies above . For s � s0 < ��" the situation is vice versa: W u(u`) lies
above  while W s(ur) lies underneath. In both cases the manifolds cannot intersect to form a
heteroclinic orbit.

We first determine the relative position of  andW u(u`) near u = u`. The slope of  at u = u` is0(u`) = �f 0(u`) + s+ "g0(u`)f 0(u`)� s0 :
The unstable manifold W u(u`) is tangent to the eigenvector e+ of the unstable eigenvalue �+
of the linearization of (7) at the stationary point u = u`, v = �f(u`) + su`. A straightforward
calculation gives �+ = 12" �f 0(u`)� s+p(f 0(u`)� s)2 � 4"g0(u`)�
with corresponding eigenvectore+ =0BB� 112p(f 0(u`)� s)2 � 4"g0(u`)� 12(f 0(u`)� s) 1CCA : (13)

Expanding the square root in powers of " we get as the slope of the tangent vectorf 0(u`) + s+ "g0(u`)f 0(u`)� s + 2"2g0(u`)2(f 0(u`)� s)3 +O("3)= 0(u`) + "g0(u`)f 0(u`)� s � "g0(u`)f 0(u`)� s0 + 2"2g0(u`)2(f 0(u`)� s0)3 +O("3)= 0(u`) + "g0(u`)(s� s0)(f 0(u`)� s0)(f 0(u`)� s) + 2"2g0(u`)2(f 0(u`)� s0)3 +O("3):
Since g0(u`) < 0, this shows that for s � s0 > �" with � chosen sufficiently large, the unstable
manifold lies below  in a right neighborhood of u = u`.
The same calculation can be carried out near u = ur to show that for s � s0 > �" the stable
manifoldW s(ur) lies above  in a left neighborhood of u = ur.
To prove that W u(u`) stays below  we compare the vectorfield (7) along  with the slope 0.
We have _v_u ����v=(u) = �"g(u)(u) + f(u)� su
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Since limu!um (f 0(u)� s0)g0(u)� f 00(u)g(u)(f 0(u)� s0)2 = f 00(um)g00(um)� f 000(um)g0(um)2f 00(um)2
the last term is uniformly bounded on the interval (u`; ur). So, by choosing s� s0 > �" with �
sufficiently large, the slope of the vector field will be strictly smaller than the slope of the curve, in other words, trajectories do cross  from above.
Therefore the unstable manifoldW u(u`) cannot intersect the stable manifoldW s(ur)which lies
above .
Since the case s� s0 < ��" is completely analogous, we omit the details. 2
Using this estimate on the wave speed we are now able to localize the heteroclinic orbit u" in
the Liénard plane. We do this in two steps: First, we prove estimates for the part of u" which
is at least O("1=2) away from um. In a second step we then show that the passage near um only
takes a time of orderO("1=2). Together, this suffices to prove the admissibility of the monotone
heteroclinic wave u0.
LEMMA 4.4 Let � be as in lemma 4.3 and Æ > 0 be arbitrary. Then there exists some constants k > 0
and "1 > 0 such that for all 0 < " � "1 and js� s0j � �" the regionU+ = (u` � u � um � Æ"1=2; ����v + f(u)� su� "g(u)f 0(u)� s0 ���� � k"3=2g(u)u� um )
contains a branch of the unstable manifold of u` and trajectories of (7) can leave U+ only at the right
boundary u = um � Æ"1=2.
Similarly trajectories may enter a regionU� = (um + Æ"1=2 � u � ur; ����v + f(u)� su� "g(u)f 0(u)� s0 ���� � k"3=2g(u)u� um )
containing the stable manifold of ur only at u = um + Æ"1=2 . The situation is depicted in figure 4.1.
Proof: Using js� s0j = O("), we get from (13) the expressione+ = 0� 1�(f 0(u`)� s) + " g0(u`)f 0(u`)� s +O("2) 1A
for the eigenvector corresponding to the unstable eigenvalue of the linearization of (7) at u`.
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ur

um
the viscous equationuluv

k"3=2g(u)=(u� um) k"3=2g(u)=(u� um)

v + f(u)� su = 0

region U� of widthregion U+ of width
heteroclinic orbit of

Figure 2: The heteroclinic orbit at s = s(")
The tangent vectors to the upper and lower boundary of U+ at u` aret� = 0� 1�(f 0(u`)� s) + " g0(u`)f 0(u`)� s0 � k"3=2 g0(u`)u` � um 1A
and by choosing " small one can certainly make sure that e+ is contained in the open sector
between t� and t+. This implies that the unstable manifold of u` passes through U+.
To show that trajectories leave U+ only at the right boundary one first considers the upper
boundary v = (u) of U+ where(u) = �f(u) + su+ " g(u)f 0(u)� s0 + k"3=2 g(u)u� um :
The slope of this boundary curve isd(u)du = �f 0(u) + s+ "(f 0(u)� s0)g0(u)� f 00(u)g(u)(f 0(u)� s0)2+k"3=2 (u� um)g0(u)� g(u)(u� um)2 :
Since the limitslimu!um (f 0(u)� s0)g0(u)� f 00(u)g(u)(f 0(u)� s0)2 = f 00(um)g00(um)� f 000(um)g0(um)2f 00(um)2
and limu!um (u� um)g0(u)� g(u)(u� um)2 = �12g00(um)
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both exist, it follows that there exists some constantM > 0 such thatd(u)du � �f 0(u) + s�M"�Mk"3=2: (14)

On the other hand, the slope of the vector field (7) along the boundary curve  of U+ is_v_u ����v=(u) = �"g(u)(u) + f(u)� su = �(f 0(u)� s0)1 + "1=2(f 0(u)�s0)u�um :
Using the inequality (1 + �)�1 < 1� �+ �2 which is valid for � > 0 this yields_v_u ����v=(u) � �f 0(u) + s0 + k"1=2 (f 0(u)� s0)2u� um � k2"(f 0(u)� s0)3(u� um)2 (15)

Let f := inf [u`;ur℄ f 00 > 0 and Cf := sup[u`;ur℄ f 00 > 0. For u 2 [u`; um � Æ"1=2℄ the mean value
theorem shows that f 0(u)� s0 � f (u� um) � �fÆ"1=2:
Combining this with (14) and (15) one arrives atd(u)du � _v_u� s� s0 � "M � k"3=2M � k"1=2 f 0(u)� s0u� um (f 0(u)� s0) + k2"(f 0(u)� s0)3(u� um)2� ��"� "M � k"3=2M + 23k"Æ2f � 13k"1=2f (f 0(u)� s0) + k2"(f 0(u)� s0)3(u� um)2� ��� �M + 13kÆ2f� "+ k(13"Æ2f � "3=2M) +�13k"1=2f � k2"C2f� (s0 � f 0(u))| {z }>0 :
Taking k sufficiently large such that 13kÆ2f > � +M and " small we can achieve that d(u)du � _v_u
for u 2 [u`; um � Æ"1=2℄. This shows that the vector field along the upper boundary  of U+
points into the interior of U+.
In exactly the same way one can show that along the lower boundary the vector field points

into the interior of U+ as well. So the only way how a trajectory can leave U+ is through the
right boundary at u = um � Æ"1=2.
The proof for the region U� is completely analogous and will therefore be omitted. 2
Up to now, we know that the heteroclinic orbit u" found in lemma 4.2 passes through the
regions U+ and U�. This implies that u0" is O("1=2)-close to the vector field of the hyperbolic
traveling wave equation (6) except possibly near the fold point:

COROLLARY 4.1 As long as u" 2 [u`; um � Æ"1=2℄ [ [um + Æ"1=2; ur℄ we havedu"d� = 1" (v" + f(u")� s(")u") = g(u")f 0(u")� s0 +O("1=2):
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Parametrize now the family of heteroclinic orbits u" such that u"(0) = um holds for all " and fixÆ0 := pg0(um)f 00(um) > 0:
With this parametrization we can find �� = ��(") such thatu"(��(")) = um � Æ0p":
LEMMA 4.5 For " sufficiently small and � 2 [��; �+℄, we have u0"(�) �  with a constant  > 0
independent of ". In particular, this implies that �+ � �� = O(p").
Proof: Let v" denote the v-component of the heteroclinic orbit of (7) which exists at s = s(").
According to lemma 4.4, this heteroclinic orbit leaves the strip U+ at a heightv"(��) � �f(u") + s(")u"(��) + "g(u")(f 0(u")� s0) � k"3=2g(u)u� um= �Æ20f 00(um)2 "+ "g0(um)p"Æ0 +O("2)f 00(um)Æ0p"+O(") +O("3=2)= �Æ20f 00(um)2 "+ "g0(um)f 00(um) +O("3=2)= g0(um)2f 00(um) "+O("3=2)
where lemma 4.3 and the definition of Æ0 was used. We can now find  > 0 such thatv"(��) � ":
Similarly, v"(�+) � ". Since v" is monotone increasing on [��; 0℄ and monotone decreasing on[0; �+℄, we know thatv"(�) + f(u"(�))� s(")u"(�) � minfv"(��); v"(�+)g � "
for � 2 [��; �+℄. So, on this small part of the heteroclinic orbit we have indeedu0" = 1" (v" + f(u")� s(")u") � : 2
We are now able to conclude the proof of theorem 1.1. It remains to show that the monotone

traveling wave u0 of the hyperbolic equation and the viscous heteroclinic waves u" with s =s(") satisfy the estimate ku" � u0kL1(R) ! 0 for "& 0
when they are suitably parametrized.
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Proof of theorem 1.1: Recall that the heteroclinic waves u" were parametrized according tou"(0) = um. Similarly, we fix the parametrization of u0 by assuming that u0(0) = um. We need
to show that for any given � > 0 ku" � u0kL1(R) � �
holds provided that " is sufficiently small. To this end, we split the trajectories in five different
parts: For � > � and � < � with � and � to be determined later, the exponential convergence
to ur and u` will give us good estimates. For � 2 [�; ��℄ and � 2 [�+; �℄ the heteroclinic orbit(u"; v") lies in the regions U+ and U� where we have good control over u0". By lemma 4.5, the
remaining interval [��; �+℄ is so small that it does not affect the L1-estimate:Z �+�� ju"(�)� u0(�)j d� = O(p") � �5 (16)

for " small enough.
To make use of the exponential decay near u`, we determine �` > 0 small such thatg(u)f 0(u)� s + k"1=2 g(u)u� um � 12 g0(u`)(u� u`)f 0(u`)� s0 (17)

for u` � u � u` + �`; js� s0j � � and 0 � " � "1. Moreover, �` should be so small that�` 0Z�1 exp� g0(u`)�2(f 0(u`)� s0)� d� � �10 : (18)

Using �` we can find � such that u0(�) < u`+�` and u"(�) < u`+�` holds for all " small enough.
This is possible since u0" = g(u")f 0(u")�s(") + O(p") is bounded away from zero uniformly in " foru" 2 [u` + �`; um℄.
By corollary 4.1, we have u0" � g(u")f 0(u")� s(") + k"1=2 g(u")u" � um
for u" 2 [u`; um � Æ"1=2℄.
Combining this with (17), one gets for � � � (where u" 2 [u`; u` + �`℄)u"(�)� u` � exp�12 g0(u`)(� � �)f 0(u`)� s0 � (u"(�)� u`) � exp�12 g0(u`)(� � �)f 0(u`)� s0 � �`:
For the same reason, the traveling wave solution u0 of the hyperbolic equation satisfiesu0(�)� u` � exp�12 g0(u`)(� � �)f 0(u`)� s0 � (u0(�)� u`) � exp�12 g0(u`)(� � �)f 0(u`)� s0 � �`:
By (18) this implies that�Z�1 ju"(�)� u0(�)j d� � �Z�1 (ju"(�)� u`j+ ju` � u0(�)j) d� � �5 : (19)
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In exactly the same way one can show thatZ +1� ju"(�)� u0(�)j d� � �5 : (20)

Here � is determined similarly as � by the conditions u0(�) > ur � �r and u0(�) > ur � �r for
some �r satisfying �r 1Z0 exp� g0(ur)�2(f 0(ur)� s0)� d� � �10 :
For the estimate on the intermediate interval [�; ��℄, we note first that ju"(��)�u0(��)j = O(p")
by lemma 4.5. Since the heteroclinic trajectory (u"; v") passes throughU+ we have for � 2 [�; ��℄ju"(�)� u0(�)j � ju"(��)� u0(��)j� Z ��� ju0"(�)� u00(�)j d�� Z ��� ���� g(u0)f 0(u0)� s0 � g(u")f 0(u")� s(") ����+O(p") d�= Z ��� ���� g(u0)f 0(u0)� s0 � g(u")f 0(u")� s0 +O(") ����+O(p") d�� Z ��� Lju"(�)� u0(�)j d� +O(p")
whereL is a Lipschitz constant for the function g=(f 0�s0) on [�; ��℄. By the Gronwall inequality,
this implies ju"(�)� u0(�)j = O(p") again for � 2 [�; ��℄. After integration, this yieldsZ ��� ju"(�)� u0(�)j d� = O(p") � �5 (21)

for " small. Exactly by the same reasoning, we getZ ��+ ju"(�)� u0(�)j d� � �5 (22)

for all sufficiently small ". Adding up (16) and (19)–(22), we arrive atZ +1�1 ju"(�)� u0(�)j d� � �
which completes the proof of theorem 1.1. 2
5 Asymptotic speed of the viscous traveling wave

In this sectionwewill derive an asymptotic formula for the wave speed of the viscous traveling

wave. The tool we use is a blow-up construction similar to the one in [KS01a]. The analysis is
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very close to the case treated there, however due to violation of a non-degeneracy assumption

the “canard case” theorem in [KS01a] does not apply directly.

Details and background on the blow–up method can be found in [DR96] and [KS01a, KS01b].

From the viewpoint of geometrical singular perturbation theory, parts of the singular curve Cs
which are normally hyperbolic, persist for small " > 0. Deleting a small neighborhood of the
fold point from Cs leaves two branches: One branchAs0 which is attracting for the fast dynamics
and one branch Rs0 which is repelling. By Fenichels theory [Fen79], there will be two invariant
curves As" and Rs" close to As0 and Rs0 for " > 0 small. In general, these curves are constructed
as center manifolds of the slow manifold and hence are not unique.

The dynamics on As" and Rs" is close to the slow dynamics on A0 and Rs0, in particular, the
equilibria u` and ur, which persist for " > 0, will lie on As" and Rs". Moreover, As" must contain
the unstable manifold of u` and Rs" must contain the one-dimensional stable manifold of ur,
at least up to a vicinity of the fold point. This implies that both As" and Rs" are determined
uniquely. Of course, we may continue As" and Rs" with the flow in forward, resp. backward
direction.

A heteroclinic orbit from u` to ur exists if and only if the forward continuation of As" intersects
the backward continuation of Rs". From the previous lemma we know already that such an
intersection occurs for precisely one value s(").
This chapter is concerned with the question how to determine, at least to leading order, the

wave speed correction s(")� s0 caused by the small viscosity.
The key is a good understanding of the dynamics near the fold point when " is small and s is
varied near s0.
To this end, we introduce a new small parameter � and rescale the variables according tou = um + ��u;v = �f(um) + sum + �2�v;" = �2�" 9>>=>>; (23)

with (�u; �v; �") 2 S := f�u2 + �v2 + �"2 = 1g:
It will be convenient to keep the wave speed s as a parameter which will be scaled seperately.
The “blow-up” maps the fold point at " = 0 to a sphere S � f� = 0g. Similarly, a full neighbor-
hood of the fold point is mapped to the set S � [0; �0) and this mapping is one-to-one outsideS � f0g. As we are interested in values " > 0 we need to study the blown up vector field in a
vicinity of the hemisphere S \ f�" � 0g.
The difference between the usual blow–up of singularities and the approach of [DR96] used

here is the fact that the blow up here “mixes” the dynamic variables and the parameters. In

particular, �" will in general not be constant along solutions of the rescaled equation. However,
the quantity �2�" remains a first integral.
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To study the flow in the rescaled variables we will change coordinates again and study the

blown up vector field in two different sets of coordinates.

The first change of coordinates is given by the transformationu1 = �u�"�1=2 ) u = um + �1u1v1 = �v�"�1 ) v = �f(um) + sum + �21v1�1 = ��"1=2 ) " = �21:
Note that this change of variables has the same effect as setting �" = 1 in (23). Moreover, we
scale the parameter s as s� s0 =: �1s1:
From _" = 0 we infer _�1 = 0. Hence, in this coordinate system �1 may also be regarded as a
parameter.

In a similar way one can change coordinates for �v < 0 according tou2 = �u(��v)�1=2 ) u = um + �2u2�2 = �(��v)1=2 ) v = ��22 � f(um) + sum"2 = ��"�v�1 ) " = �22"2
which amounts to the same as setting �v � �1 in (23).
In addition we set s� s0 =: �2s2:
For �" > 0 and �v < 0 we may use both sets of variables. In their common domain of definition,
the change of variables between the two sets of coordinates is given byu1 = u2p"2 ; u2 = u1p�v1v1 = � 1"2 ; "2 = � 1v1�1 = �2p"2; �2 = �1p�v1:

9>>>>>>>>>=>>>>>>>>>; (24)

Expanding f and g in a Taylor series near u1 = 0, the viscous traveling wave equation (7)
written in the first set of coordinates reads�1 _u1 = v1 +Au21 � s1u1 + �1Bu31 +O(�21)�1 _v1 = �Du1 � �1Eu21 +O(�21) )

(25)

with A := 12f 00(um), B := 16f 000(um), D := g0(um) and E := 12g00(um). Due to the assumptions
(F) and (G)we have D > 0 and A > 0.
After rescaling the independent variable, we arrive at the system_u1 = v1 +Au21 � s1u1 + �1Bu31 +O(�21)_v1 = �Du1 � �1Eu21 +O(�21) )

(26)
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which is well-defined for all �1 and which for �1 6= 0 possesses the same orbits as (25). For �1 =s1 = 0 this is a well-known equation in the theory of singular perturbations. It is integrable,
more precisely H(u1; v1) := �v1 +Au21 � D2A� e2Av1=D
is a conserved quantity. Equation (26) possesses a family of periodic orbits which accumulate

onto a special unbounded solution 1 corresponding to H = 0. This special solution can be
parametrized as u1(�) = D2A�; v1(�) = D2A � D24A�2:
We will now show that in the coordinates (23) this unbounded orbit corresponds to a hetero-

clinic orbit � connecting two equilibria on the “equator” �" = 0 of S.
From the definition of u1, v1 we get immediately�u2 = �"u21; �v2 = �"2v21 :
Since �u2(�)+ �v2(�)+ �"2(�) = 1we get a quadratic equation for �"(�)which can be solved to give�"(�) = 2��D2�2 +p64A4 +D4�4 + 4A2D2(D�2 � 2)2)�16A2 +D2(D�2 � 2)2 :
In particular, we can immediately see that �"(�)! 0 for � ! �1. Moreover,�u(�) = �"(�)1=2 � D2A� ! �pp1 + 4A2 � 1p2A�v(�) = �"(�) � ( D2A � D24A�2)! p1 + 4A2 � 12A
as � ! �1. Since all limits exist, the orbit  is indeed a connecting orbit between two equilibria
on S.
Below we will show by a Melnikov-like calculation that this heteroclinic orbit persists for s1 =s1(�1) providing a connection between the unstable manifold of u` and the stable manifold ofur.
In the second set of coordinates corresponding to �v � �1 in (23), the equations of motion are
more complicated:

From the relation �22 = �v � f(um) + sum we get2�2 _�2 = � _v = g(u) = D�2u2 +E�22u22 +O(�32) =: �2R(�2; u2):
From _" = 0 one concludes that �22 _"2 = ��2"2R(�2; u2):
Similarly, from the u–equation we derive2�2"2 _u2 = �2 + 2Au22 � 2u2s2 + 2B�2u32 � "2u2R(�2; u2) +O(�22):
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Hence, the vector field can (after rescaling by a factor 2�2"2) be written as_u2 = �2 + 2Au22 � 2u2s2 + 2B�2u32 � "2u2R(�2; u2) +O(�22)_�2 = "2�2R(�2; u2)_"2 = �2"22R(�2; u2) 9>>=>>; (27)

By (24), in these coordinates the unbounded solution  from the first set of coordinates corre-
sponds to "2(�) = 4AD2�2 � 2D; u2(�) = D�pA(D2�2 � 2D) ; �2 = s2 = 0 (28)

and hence converges to (u2; �2; "2) = (� 1pA ; 0; 0) as � ! �1. Due to the rescaling by 2�2"2,
(28) is not a solution of (27).

Apart from the invariant subspace f�2 = s2 = 0g containing parts of the heteroclinic orbit �,
equation (27) possesses other invariant subspaces that will help us to describe the dynamics.

For any s2 fixed, there is an invariant line f�2 = "2 = 0g. Restricting (27) to this line yields the
equation _u2 = �2 + 2Au22 � 2u2s2:
For small s2, there are two equilibria: An attracting equilibrium pa(s2)with u2 = � 1pA +O(s2)
and one repelling equilibrium pr(s2) with u2 = 1pA +O(s2).
For any fixed s2, the invariant subspace f�2 = "2 = 0g is contained in the invariant subspacesf"2 = 0g and f�2 = 0g which will be studied next.
In the invariant two-dimensional subspace f"2 = 0g, equations (27) simplify to_u2 = �2 + 2Au22 � 2u2s2 + 2B�2u32 +O(�22)_�2 = 0:
There exist a line La(s2) = f(ua(�2; s2); �2); �2 � 0g of equilibria emanating from pa(s2) withua(�2; s2) = � 1pA+O(js2j+�2). The linearization in (ua(�2; s2); �2) has one negative eigenvalue�4pA + O(�2 + js2j) 6= 0 and one zero eigenvalue. This means that the line of equilibria is
normally hyperbolic for all j�2j sufficiently small. A similar normally hyperbolic line Lr(s2) of
repelling equilibria emanates from pr(s2).
From the equations defining the blow-up, one can see that these manifolds La(s2) and Lr(s2)
correspond to the attracting and repelling parts As0 and Rs0 of the slow manifold Cs in our
original setting before the blow-up. In fact, La(s2) and Lr(s2) are the extension of As0 and Rs0 to� = 0.
The two-dimensional invariant subspace f�2 = 0g also contains pa(s2) and pr(s2) but as an easy
calculation shows, there are no other equilibria. For fixed js2j small, the linearization at pa(s2)
has one non-zero eigenvalue and one zero eigenvalue. Therefore there exists a one-dimensional

center manifold Ca(s2) of pa(s2). For s2 = 0 alias s = s0 this center manifold is exactly a branch
of the heteroclinic orbit � we have already found. Similarly, there exists a one-dimensional
center manifold Cr(s2) of pr(s2) in the plane f�2 = 0g.
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Nowwe return to the full phase space of the blown-up vector field, i.e. to equation (27). For js2j
sufficiently small, the linearization in the equilibrium pa(s2) possesses a positive eigenvalue
and a double zero eigenvalue. From this eigenvalue structure the existence of an invariant

manifold follows:

PROPOSITION 5.1 Fix s2 and consider the equilibrium psa = ( 1pA ; 0; 0) of (27). There exists a family
of two-dimensional center manifoldsMa(s2) of the equilibria pa(s2) which is attracting. The manifoldMa(s2) contains the line La(s2) of equilibria. Moreover, for s2 = 0 the manifoldMa(0) also contains
a piece of the heteroclinic orbit �.
Analogously, for fixed s2 with js2j sufficiently small, there exists a two-dimensional repelling center
manifold Mr(s2) near the equilibrium pr(s2). This manifold contains the line Lr(s2) of equilibria.
Again for s2 = 0 the manifoldMr(0) contains a part of �.�"

�u
�v�

pr Lr
paMa LaA" Mr

R"u = uru = u`
Figure 3: The dynamics in the blown up vector field for s = s0 and the connection to the global
heteroclinic orbit

We need to find conditions under which there are trajectories in the blown-up equation with� > 0 connecting a neighborhood of pa with a neighborhood of pr. This is necessary in order to
have a connection from As" to Rs". Such a connection will automatically be a heteroclinic orbit
in the original system (7).
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Wewill therefore determine by aMelnikov-type calculation the relation between�2 and s2 such
that an intersection betweenMr(s2) toMa(s2) exists. In fact, we know that such a connection
exists at �2 = s2 = 0.
Working in the first set of coordinates again, we apply some recent results of Wechselberger

[We02] to determine asymptotically the distance betweenMr andMa. To this end, let d(�1; s1)
be a distance function measuring the distance of the unstable manifold of pr and the stable
manifold of pa at u1 = 0. From the existence of the special solution  we conclude that d(0; 0) =0. A variant of Melnikov’s method can be used to determine the location of the zeroes of d for
small nonzero parameters �1 and s1. It has been shown in [KS01a] that the splitting of these
manifolds can be measured by the usual Melnikov integrals, although the situation is different

from the one typically considered in Melnikov theory: Instead of looking for an intersection

of stable and unstable manifolds of two hyperbolic equilibria one looks for the intersection

of two noncompact center–stable and center–unstable manifolds associated with unbounded

solutions of at most algebraic growth. However, since for this type of solutions the notion of

dichotomies is still well defined it is possible to derive Melnikov integrals as a measure for the

splitting of these invariant manifolds. For a complete treatment of this situation, see [We02].

We remark that in the second set of coordinates there is only a heteroclinic orbit at �2 = 0. It
is asymptotic to two non-hyperbolic equilibria which disappear for �2 6= 0. The Melnikov-like
analysis does not yield persistence of a heteroclinic orbit for other values of �2 in the blown-up
equations, see figure 5.

In particular, we may compute �d��1 and �d�s1 in the standard way, see [Van92]. To perform the
computation one needs explicitly all bounded solutions of the adjoint linearized equation. Lin-

earizing (26) around the solution 1 with �1 = s1 = 0 yields the non-autonomous linear system _u_v ! =  D� 1�D 0 ! uv ! :
The adjoint equation _ =  �D� D�1 0 ! 
has the (up to a constant factor) unique bounded solution (�) =  D�e�D2 �2e�D2 �2 ! : (29)

The Melnikov integral �d��1 is then computed by integrating the scalar product of  with the�1-derivative of (26) evaluated along the special unbounded solution :�d��1 = +1Z�1  D�1 !T  BD38A3 �3�D2E4A2 �2 ! e�D2 �2 d�



Canard traveling waves 23= +1Z�1 �BD48A3 �4 � D2E4A2 �2� e�D2 �2 d�= +1Z�1  BD3=2p2A3 �4 � D1=2Ep2A2 �2! e��2 d�= r�D2 �3BD4A3 � E2A2�
Similarly, we find �d�s1 = +1Z�1  D�e�D2 �2e�D2 �2 !T  � D2A�0 ! d�= � +1Z�1 D22A�2e�D2 �2 d�= �r�D2 1A:
By the implicit function theorem this implies that d(�1; s1) = 0 has a solution s1 = s1(�1) withs1(�1) = ��3BD4A2 + E2A��1 +O(�21)
translating this result of the Melnikov calculation back to the original coordinates, we have:

LEMMA 5.1 For " sufficiently small, there is a unique heteroclinic connection u" from u` to ur that
occurs at s(") = s0 ��f 000(um)g0(um)� g00(um)f 00(um)2f 00(um)2 � "+O("3=2):
This concludes the proof of theorem 1.2.
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