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tionWe are 
on
erned with traveling wave solutions for s
alar hyperboli
 balan
e lawsut + f(u)x = g(u); x 2 IR; u 2 IR: (H)The question whether these traveling waves 
an be obtained as the limit of travelingwaves of the vis
ous balan
e lawut + f(u)x = "uxx + g(u); x 2 IR; u 2 IR (P)when the vis
osity parameter " tends to zero is dis
ussed in this arti
le. More pre-
isely, the sear
h for su
h vis
ous pro�les leads to a singular perturbation problem.Hyperboli
 balan
e laws are extensions of hyperboli
 
onservation laws where asour
e term g is added. These rea
tion terms 
an model 
hemi
al rea
tions, 
om-bustion or other intera
tions [7℄, [1℄. From the theoreti
al point of view, the sour
eterms dramati
ally 
hange the long-time behaviour of the equation 
ompared tohyperboli
 
onservation laws. While for 
onservation laws the only traveling wavesolutions are sho
k waves, balan
e laws exhibit di�erent types of traveling waves. A
lassi�
ation of the traveling waves in the 
ase of a 
onvex 
ow fun
tion f has beendone by Mas
ia [5℄. We summarize his results in se
tion 2.1.Sin
e hyperboli
 balan
e laws are often 
onsidered as a simpli�ed model for someparaboli
 (vis
ous) equation with a very small vis
osity, it is important to know,whether traveling wave solutions of the hyperboli
 equation 
orrespond to travelingwaves of the vis
ous equation. If this is true in a sense to be spe
i�ed below, we saythat the traveling wave admits a vis
ous pro�le.1



In this paper we prove that under mild assumptions on f and g some types of wavesof the hyperboli
 equation admit a vis
ous pro�le.The paper is organized as follows: In 
hapter 2 we introdu
e the notion of entropytraveling waves, make the meaning of vis
ous pro�les more pre
ise and state themain result. Sin
e three di�erent types of traveling waves o

ur, in 
hapters 3-5the proofs are given for ea
h 
ase separately. The paper 
on
ludes with a shortdis
ussion.A
knowledgements: The author thanks B. Fiedler and C. Mas
ia for valuableremarks and dis
ussions.2 Entropy Traveling WavesWe assume the following about f and g:(F) f is 
onvex: f 2 C2, f 00(u) > 0(G) The zeroes of g are simpleWe denote the zeroes of g with ui where i 2 J � ZZ with indizes 
hosen su
h thati � sign(g0(ui)) > 0:The set of all zeroes is 
alled Z(g). Depending on the sign of g0 the zeroes of g aredivided into two sets : R(g) := fui 2 Z(g) : g0(ui) > 0gA(g) := fui 2 Z(g) : g0(ui) < 0gLike hyperboli
 
onservation laws, balan
e laws (H) do in general not possess globalsmooth solutions. Sin
e passing to weak solutions destroys the uniqueness, an en-tropy 
ondition has to be given whi
h 
hooses the \
orre
t" solution among allweak solutions. Here we de�ne dire
tly for traveling waves what is meant by su
han entropy solution.De�nition 2.1 An entropy traveling wave is a solution of (H) of the formu(x; t) = u(�) with � = x � st for some wave speed s 2 IR with the followingproperties:(i) u is pie
ewise C1, i.e. u 2 C1(IR n J) and the set of a

umulation points ofJ has only isolated points. At points where u is 
ontinuously di�erentiable itsatis�es the ordinary di�erential equation(f 0(u(�))� s) u0(�) = g(u(�)): (1)2



(ii) At points of dis
ontinuity the one-sided limits u(�+) and u(��) of u satisfyboth the Rankine-Hugoniot 
onditions (u(�+)� u(��)) = f(u(�+))� f(u(��))and the entropy 
ondition u(�+) � u(��):Due to the 
onvexity assumption (F), for any u 2 IR and any speed s there is atmost one other value h(u; s) whi
h satis�es the Rankine-Hugoniot 
onditionf(u)� f(h(u; s))u� h(u; s) = s:If there is no su
h h(u; s) we seth(u; s) := ( �1 for f 0(u)� s > 0+1 for f 0(u)� s < 0De�nition 2.2 A traveling wave u is said to be a hetero
lini
 wave iflim�!�1u(�) = uilim�!+1u(�) = ujfor some ui, uj 2 IR.Remark 2.3 From (H) we 
an immediately 
on
lude that g(ui) = g(uj) = 0. Forthis reason, we say that there is a 
onne
tion between the equilibria ui and uj.2.1 Hetero
lini
 waves of the hyperboli
 equationMas
ia [5℄ has 
lassi�ed the hetero
lini
 waves that o

ur for 
onvex f . We 
olle
there the results of [5, theorems 2.3-2.5℄ but sort them in a di�erent way and makethe statements on wave speeds more pre
ise. To this end we distinguish three typesof waves:� Hetero
lini
 waves whi
h exist for a whole interval of wave speeds s� waves whi
h 
an be found only if the speed s takes the dis
rete value f 0(ui)for some i and� under
ompressive waves whi
h do also show up only for parti
ular sho
kspeeds.Proposition 2.4 Hetero
lini
 
onne
tions from ui to uj that exist for a range ofwave speeds are of the following types: 3



(A1) Continuous monotone waves that 
onne
t adja
ent equilibria(i) j = i+ 1, ui 2 A(g) and s � f 0(ui+1)(ii) j = i� 1, ui 2 A(g) and s � f 0(ui)(iii) j = i+ 1, ui 2 R(g) and s � f 0(ui)(iv) j = i� 1, ui 2 R(g) and s � f 0(ui�1)(A2) Dis
ontinuous hetero
lini
 waves(i) i > j, ui 2 A(g), uj 2 R(g), ui 2 (h(uj+1; s); h(uj�1; s))(ii) i > j, ui 2 R(g), uj 2 R(g), (h(uj+1; s); h(uj�1; s)) \ (ui�1; ui+1) 6= ;(iii) i > j, ui 2 R(g), uj 2 A(g), h(uj; s) 2 (ui�1; ui+1).Proposition 2.5 Hetero
lini
 
onne
tions from ui to uj that exist only for a par-ti
ular wave speed are of the following types:(B1) Continuous, monotone waves(i) j = i+ 2, ui; uj 2 A(g) and s = f 0(ui+1) with an in
reasing pro�le(ii) j = i� 2, ui; uj 2 R(g) and s = f 0(ui�1)(B2) (i) i � j, ui 2 A(g), uj 2 A(g) , s = f 0(ui+1) and h(uj; s) < ui+2,(ii) i > j, ui 2 A(g), uj 2 R(g), s = f 0(ui+1) and h(uj�1; s) < ui+2,(iii) i > j, ui 2 R(g), uj 2 A(g), s = f 0(uj�1) and h(uj�2; s) < ui�1,(iv) i � j, ui 2 A(g), uj 2 A(g), s = f 0(uj�1) and h(ui; s) < uj�2.(B3) (i) Dis
ontinuous waves that 
onne
t ui to ui+2 with speed s = f 0(ui+1),(ii) Dis
ontinuous waves that 
onne
t ui to ui+1 with speed s = f 0(ui+1).(C) Under
ompressive sho
ks: i > j, ui, uj 2 A(g), s = f(ui)� f(uj)ui � uj .2.2 Vis
ous Pro�lesUnlike for vis
osity solutions of hyperboli
 
onservation laws, we 
annot get rid ofthe vis
osity parameter " by a simple s
aling but have to dis
uss the full singularlyperturbed system (P).With the traveling wave ansatz u(x; t) = u(x� st) we get from (P) the equation"u00 = (f 0(u)� s)u0 � g(u): (2)Here the prime denotes di�erentiation with respe
t to a new 
oordinate � := x� st.We are now able to de�ne what we mean by a vis
osity traveling wave solution.4



De�nition 2.6 A traveling wave solution u0 of (H) is 
alled a vis
osity travelingwave solution with wave speed s0 if there is a sequen
e (u"n) of solutions of (2)su
h that "n & 0, sn ! s0 and ku"n � u0kL1(IR) ! 0. The hetero
lini
 wave of thehyperboli
 equation is said to admit a vis
ous pro�le.In this paper we will prove the admissibility for some of the hetero
lini
 waves. Themain result is the following:Theorem 2.7 The hetero
lini
 waves of type (A1), (A2) and (C) admit a vis
ouspro�le.We 
on
entrate on these types of traveling waves, sin
e they �t into the 
lassi
altheory of geometri
al singular perturbation theory and 
an be treated in a similarway.Although our main interest is in L1-
onvergen
e, we will be more general and prove
onvergen
e in spa
es with exponentially weighted norms. To this end, we de�nefor � � 0 the norm kukL1� := ZIR(1 + e�j�j)ju(�)j d�and the spa
e L1� := fu 2 L1; kukL1� <1g:Obviously, the 
hoi
e � = 0 is equivalent to the usual L1-norm. We state now ashort lemma whi
h will simplify the later proofs.Lemma 2.8 For " � 0, 
onsider a family of fun
tions u" 2 L1(IR). Assume thatthere exist limiting states u� = lim�!�1u"(�)independent of " and 
onstants C, 
 > 0, �1 < �� < �+ < 1 su
h that thefollowing 
onditions are satis�ed:(i) ju"(�)� u�j � Ce
� for all � � �� and all " � 0,(ii) ju"(�)� u+j � Ce�
� for all � � �+ and all " � 0,(iii) For any �1 < a < b < +1lim"&0 Z ba ju"(�)� u0(�)j d� = 0:Then for any � < 
 we have lim"&0 ku" � u0kL1� = 0:5



Proof: Given any integer n, we 
an �nd an su
h thatZ an�1Ce(��
)� d� � 110n:Using (i), we get by 
omparisonZ an�1 ju" � u�j(1 + e�j�j) d� � 15n:Similarly, by (ii), we 
an �nd bn withZ +1bn ju" � u+j(1 + e�j�j) d� � 15n:Using (iii), we 
an 
hoose " suÆ
iently small su
h thatZ bnan ju"(�)� u0(�)j d� � 15n(1 + maxfe�janj; e�jbnjg)and estimate the L1�-norm of u0 � u" asku0 � u"kL1� = Z an�1 ju� � u"(�)j(1 + e�j�j) d� + Z an�1 ju� � u0(�)j(1 + e�j�j) d�+ Z bnan ju0(�)� u"(�)j(1 + e�j�j) d�+ Z 1bn ju+ � u"(�)j(1 + e�j�j) d� + Z +1bn ju+ � u0(�)j(1 + e�j�j) d�� 1nwhi
h 
ompletes the proof of the lemma. 2This lemma, althoughsimple, shows the key ingredients in our later 
onvergen
eproofs. Typi
ally, (i) and (ii) will be 
onsequen
es of the hyperboli
ity of some �xedpoints, while (iii) is the point where one has to do some work.2.3 Singular PerturbationsA 
onvenient way to write the se
ond-order equation (2) as a �rst-order system isthe Li�enard plane "u0 = v + f(u)� suv0 = �g(u): ) (3)From this \slow-fast"-system two limiting systems 
an be derived whi
h both 
apturea part of the behavior that is observed for " > 0.6



One is the \slow" system obtained by simply putting " = 0:0 = v + f(u)� suv0 = �g(u): ) (4)In this 
ase the 
ow is 
on�ned to a 
urveCs := f(u; v) : v + f(u)� su = 0gthat we 
all the singular 
urve. The other, \fast" system originates in a di�erents
aling. With � =: "� and a dot denoting di�erentiation with respe
t to � we arriveat _u = v + f(u)� su_v = �"g(u): ) (5)In the limit " = 0, equation (5) de�nes a ve
tor �eld for whi
h the singular 
urve Cs
onsists of equilibrium points only. This ve
tor �eld is 
alled the \fast" system. Itpoints to the left below the 
urve Cs and to the right above.Traje
tories of the fast system 
onne
t only points for whi
h v + f(u)� su has thesame values. This is exa
tly the Rankine-Hugoniot 
ondition for waves propagatingwith speed s. Moreover the dire
tion of the fast ve
tor �eld is in a

ordan
e withthe Oleinik entropy 
ondition.Geometri
 singular perturbation theory in the spirit of Feni
hel [2℄ makes pre
isestatements how the slow and the fast equations together des
ribe the dynami
s of(3) for small " > 0. It is a strong tool in regions where the singular 
urve is normallyhyperboli
, i.e. where the points on Cs are hyperboli
 with respe
t to the fast �eld.The only non-hyperboli
 point on Cs is the point where f 0(u) = s. The hetero
lini
waves of type (A1), (A2) and (C) stay away from these points and hen
e �t into the
lassi
al framework. The other 
ases involving non-hyperboli
 points on the singular
urve are more subtle and will be treated by blow-up te
hniques in a forth
omingpaper [?℄.The steady states of system (2) are exa
tly the pointsf(u; v) : (u; v) 2 Cs; u 2 Z(g)g:The linearization of (3) in a steady state (ui;�f(ui)+sui), possesses the eigenvalues��i = f 0(ui)� s�q(f 0(ui)� s)2 � 4"g0(ui)2" (6)whi
h are real ex
ept for the 
ase when g0(ui) > 0 and(f 0(ui)� s)2 < 4"g0(ui): (7)We 
all the region in (s; ")-parameter spa
e where all eigenvalues asso
iated to thesteady states are realR := f(s; ") : (f 0(ui)� s)2 � 4"g0(ui) 8ig:Note that any point on the axis " = 0 
an be approximated with a sequen
e ofpoints from the interior of R. 7



3 Hetero
lini
 
onne
tions between adja
ent equi-libriaIn this 
hapter we will prove that the hetero
lini
 waves of type (A1) possess avis
ous pro�le.Lemma 3.1 The monotone hetero
lini
 waves of type (A1) admit a vis
ous pro�le.Proof: We 
on
entrate on the 
ase (A1)(i) sin
e the other statements 
an be provedsimilarly. In that 
ase, sin
e ui 2 A(g) we know already that ui is of saddle type,ui+1 is a sink and g(u) < 0 for u 2 (ui; ui+1). The wave speed of the hyperboli
traveling wave will be denoted by s0.Two 
ases have to be distinguished, depending on the smoothness of the hyperboli
wave:I. s0 > f 0(ui+1): Sin
e we want to apply lemma 2.8 we need to �nd a family (u") of
andidates for a vis
ous pro�le, i.e. a family of hetero
lini
 orbits of the system (3)for all suÆ
iently small ". It turns out that su
h a family 
an be found by varyingonly " while keeping s �xed at the value s0 of the hyperboli
 traveling wave.To this end, we re�ne lemma 3.5 of [4℄ and show that for a (large) positive numberk and all " suÆ
iently small the regionP := ((u; v); ui � u � ui+1; k"2g(u) � v + f(u)� su� " g(u)f 0(u)� s � �k"2g(u))is positively invariant and 
ontains a hetero
lini
 orbit from ui to ui+1. As a shortnotation, we will write v1(u) := g(u)f 0(u)� s: (8)The s
alar produ
t of the outer normal ve
tor with the ve
tor �eld along the upperboundary of P is f 0(u)� s� "v01 + k"2g0(u)1 !T �  v + f(u)� su�"g(u) != �"2g(u) (f 0(u)� s)g0(u)� g(u)f 00(u)(f 0(u)� s)3 + k(f 0(u)� s)!+O("3)< 0for k large enough and " small, sin
e both g(u) and f 0(u)�s are negative on (ui; ui+1).An analogous 
al
ulation for the lower boundary of P 
ompletes the proof that Pis positively invariant.To establish the existen
e of a hetero
lini
 
onne
tion, it remains to show that abran
h of the unstable manifold W u(ui) of ui enters P . The eigenve
tor asso
iated8



with the positive eigenvalue �+i of ui is0BB� 2q(f 0(ui)� s)2 � 4"g0(ui)� (f 0(ui)� s) 1CCAExpanding the square root with respe
t to " one obtains for the slope of W u(ui) inui the expression�(f 0(ui)� s)� g0(ui)f 0(ui)� s"� g0(ui)24(f 0(ui)� s)3 "2 +O("3):It is easily 
he
ked that this is up to order " the slope of the boundary of P atui. Now by 
hoosing k larger, if ne
essary, it 
an be a
hieved that a bran
h of theunstable manifold W u(ui) lies in P while P is still positively invariant. Sin
e thereare no equilibria in the interior of P there 
annot be any periodi
 orbits in theinterior of P , so by the Poin
ar�e-Bendixson theorem there has to be a hetero
lini
orbit u" from ui to the only other equilibrium ui+1 on the boundary of P . Monotonyof u" follows from the fa
t that it lies above the singular 
urve Cs.As indi
ated above, we want to apply lemma 2.8. First we parametrize all thehetero
lini
 orbits u"(�) of the paraboli
 problem (P) and the hetero
lini
 orbitu0(�) of the hyperboli
 equation (H) in a way su
h thatu0(0) := u"(0) := ui + ui+12 :Then we �x some Æ > 0 with the property that for ui � u � ui + Æ we have� g(u)f 0(u)� s � k"g(u) � �
(u� ui) (9)for the number k from the pre
eding lemma, some 
onstant 
� and all " � "1.Similarly, we require for ui+1 � Æ � u � ui+1� g(u)f 0(u)� s � k"g(u) � �
(ui+1 � u):By 
hoosing �� as the supremum�� := sup0�"�"1f� : u"(�) = ui + Ægand �+ as �+ := inf0�"�"1f� : u"(�) = ui+1 � Ægand a 
omparison argument we 
an make sure that the assumptions (i) and (ii) oflemma 2.8 are met for some 
onstant C > 0. In other words, (i) and (ii) are simple9




onsequen
es of the uniform hyperboli
ity of the equilibria ui and ui+1. It remainsto show that Z ba ju"(�)� u0(�)j d� ! 0 for all �1 < a < b < +1:For a � � � b we haveju"(�)� u0(�)j � �����Z �0 u0"(�)� u00(�) d������� Z �0 jv1(u"(�))� v1(u0(�))j+ k"jg(u"(�))j d�� Z �0 (Lju"(�)� u0(�)j+ "k sup jg(u)j) d�where L is a Lips
hitz 
onstant for the fun
tion v1 from (8) on the interval [ui; ui+1℄and the sup is taken over the same interval. In parti
ular, this estimate is indepen-dent of a and b. Applying the Gronwall inequality we getju"(�)� u0(�)j � "k sup jgjL �eLj�j � 1�for � 2 [a; b℄. Hen
eZ ba ju0(�)� u"(�)j d� � Z ba "k sup jgjL �eLj�j � 1� d� ! 0as " & 0. Consequently, assumption (iii) of lemma 2.8 been 
he
ked and as a
onsequen
e of this lemma, the hyperboli
 wave of type (A1)(i) admits a vis
ouspro�le.II. s0 = f 0(ui+1): This limiting 
ase has to be treated seperately be
ause thetraveling wave u0 of the hyperboli
 equation is only 
ontinuous but not C1. Fixinga parametrization we have u0(�) � ui+1 for � � 0 while for � � 0 u0 solves thedi�erential equation u00(�) = 8>>>>>><>>>>>>: g(u0)f 0(u0)� s0 for u0 6= ui+1g0(ui+1)f 00(ui+1) for u0 = ui+1with u0(0) = ui+1. We approximate s0 by a sequen
e sn with sn & s0 su
h that the
orresponding traveling waves u(n)0 satisfyku(n)0 � u0kL1 � 12n: (10)10



Sin
e for ea
h sn the inequality of 
ase I is satis�ed, there exists "n with "n & 0 su
hthat the 
orresponding hetero
lini
 orbit u"n from ui to ui+1 with speed sn satis�esku"n � u(n)0 kL1 � 12n:Putting this estimate together with (10) shows that the hetero
lini
 wave u0 admitsa vis
ous pro�le.We still have to show that (10) 
an be satis�ed by an appropriate sequen
e (u(n)0 ).Note that in this step of the proof only traveling waves of the hyperboli
 equationsare involved. For Æ suÆ
iently small we �nd � = ��(Æ) < 0 su
h that u0(��) = ui+1� Æand ku0 � ui+1kL1([��;+1)) = Z 1�� ju0(�)� ui+1j d� � 110n:For s�s0 small, let us0 be the solution of (1) with wave speed s and us0(��) = ui+1�Æ.Sin
e the linearization of (1) at u = ui+1 tends to �1 as s approa
hes s0, by
hoosing Æ small enough, we 
an a
hieve thatkus0 � u0kL1([��;+1)) � 110n (11)for all js�s0j suÆ
iently small. Sin
e for any s the hetero
lini
 orbits us0(�) 
onvergeto ui exponentially as � ! �1 we �nd some � su
h thatkus0 � u0kL1((�1;�℄) � 110n (12)for all wave speeds s � s0 whi
h are suÆ
iently 
lose to s0. On the intermediatepart [�; ��℄ the ve
tor �elds for the wave speeds s and s0 are O(js� s0j)-
lose, hen
eby 
hoosing js� s0j small enough one 
an a
hievekus0 � u0kL1([�;��℄) � 110n: (13)So by the 
hoi
e sn := supf�s � s0; (11); (12); (13) hold for all s0 � s � �sg we 
ansatisfy (10). 24 More dis
ontinuous wavesThis 
hapter is devoted to the waves of type (A2). We distinguish two 
ases de-pending on type of the equilibria involved. In the \Lax"-like situation the Morseindi
es di�er by one, while the waves of type (A2)(ii) 
onne
t equilibria whose Morseindi
es di�er by two. This is analogous to the 
ase of over
ompressive sho
k wavesof hyperboli
 
onservation laws. 11



v + f(u)� su = 0

u = ui � Æu = h(ui; s) + Æ (�u1; �v1)(�u2; �v2) ui

ui+1
uj

Figure 1: A \Lax" hetero
lini
 traveling wave (dashed) and its vis
ous 
ounterpart4.1 The \Lax" 
aseThe hetero
lini
 waves of type (A2)(i) and (A2)(iii) are related via the symmetry� 7! ��. For this reason, we treat only waves of type (A2)(i), see �gure 1.We 
laim that for " small and the 
orre
t value s a bran
h of the unstable manifoldof ui is a hetero
lini
 orbit from ui to uj and that these hetero
lini
 orbits providea vis
ous pro�le. The existen
e of the hetero
lini
 orbit is shown as follows: Theunstable manifold is C1-
lose to the stable eigenspa
e, so the manifold leaves asmall neighborhood of ui with at the point (�u1; �v1) with �u1 = ui � Æ and �v1 =�f(ui) + sui + O("), see �gure 1. Outside a neighborhood of the singular 
urveCs the ve
tor �eld (3) is of order O("�1), so following the unstable manifold, aneighborhood of the other bran
h of Cs is rea
hed at (�u2; �v2) with �u2 = h(ui; s) + Æand �v2 = �f(ui) + sui + O("). Near the singular 
urve the ve
tor �eld 
an betransformed to a normal form due to Takens [8℄. By 
al
ulations analogous to thosein [3℄ it 
an be shown that it takes a \time" � of order O(" ln 1") until the traje
toryrea
hes the invariant region of width k"2 that was already used in the proof of lemma3.1. Moreover, it enters this region at a v-value �f(ui) + sui +O(" ln 1"). The sameasymptoti
s have been obtained by Mish
henko and Rozov [6℄. After the manifoldhas entered the positively invariant invariant region near Cs it has to remain thereforever and by the Poin
ar�e-Bendixson theorem the bran
h of the unstable manifold12



must 
onverge to uj.We still have to show that the hetero
lini
 orbits u" yield a vis
ous pro�le for thehetero
lini
 wave of the hyperboli
 equation. To this end, after 
hosing some n 2 IN,we must �nd "n > 0 small su
h that ku0�u"k � 1=n, where u" is a parametrizationof the hetero
lini
 orbit of (3) at " = "n. We parametrize u0(�) and u" in thefollowing way: u0(�) = ( ui for � � 0� h(ui; s0) for � > 0u0(0) = ui � Æwhere we 
hoose Æ later. In any 
ase we know from the exponential de
ay of u" andu0 that 
onditions (i) and (ii) of lemma 2.8 are met.4.2 The \over
ompressive" 
aseSimilarly as for over
ompressive sho
ks of 
onservation laws, for a �xed wave speeds0 we have a whole one-parameter-family of hetero
lini
 waves with a sho
k at� = 0, where the jump values u(�+) plays the role of a parameter. To �nd hetero-
lini
 waves of the paraboli
 equation (P) whi
h provide a vis
ous pro�le for su
h ahetero
lini
 wave, we de�ne (u"; v") as the solution of (3) withu"(0) = ui + uj2and v"(0) = �f(u(�+)) + su(�+) = �f(u(��)) + su(��)where u(�+), u(��) are the one-sided limits of the hyperboli
 wave at the sho
k.5 Under
ompressive Sho
ksIn this 
hapter we 
onsider the simple sho
k waves of type (C) whi
h are of the formu(x; t) = ( uj for x� st < 0ui for x� st > 0with sho
k speed s0 = f(ui)�f(uj)ui�uj . Here the sour
e term is only involved by the fa
tthat sho
ks 
an 
onne
t only equilibria of the rea
tion dynami
s. Sin
e both equi-libria are of saddle-type here, we 
all this sho
k under
ompressive. In the travelingwave setting this 
orrespond to an entropy solutionu(�) = ( uj for � < 0ui for � > 0:13



To show that the hetero
lini
 waves of type (C) admit a vis
ous pro�le, we 
onsiderthe unstable manifold of ui and the stable manifold of uj. For s < f(ui)�f(uj)ui�uj and "suÆ
iently small the unstable manifold of ui passes below the stable manifold of ujin the u-v-plane.This implies that there exist a wave speed s = s(") su
h that W u(ui)\W s(uj) 6= ;.Sin
e this interse
tion is one-dimensional, it must be a hetero
lini
 orbit u". Alsosin
e for any �xed s 6= s0 and " small enough the unstable manifold of uj and thestable manifold of ui miss ea
h other, the limiting relationlim"&0 s(") = s0holds. To prove that the family of these hetero
lini
 orbits yields a vis
ous pro�lefor the sho
k wave, we use again lemma 2.8 and parametrize the hetero
lini
 orbitsin su
h a way that u"(0) = ui + uj2 :At both ends the 
onvergen
e to the equilibria is exponentially fast with a rate oforder O(
="), hen
e the assumptions (i) and (ii) of lemma 2.8 are met. To 
he
kassumption (iii) for some interval a < 0 < b, we �x some neighborhoods of uj andui where the 
onvergen
e is exponential. Outside this neighborhood u0 = O("�1),hen
e there exist (�) < 0 < �xi, both of order O("), su
h that for � < �u"(�)� uj � Ce�
j�j=" for � < �and ui � u"(�) � Ce�
�=" for � > ��:To prove assumption (iii) of lemma 2.8 we need to 
al
ulateZ 0a juj � u"(�)j d� + Z b0 jui � u"(�)j d�= Z �a juj � u"(�)j d� + Z 0� juj � u"(�)j d�+ Z ��0 jui � u"(�)j d� + Z b�� jui � u"(�)j d�= O(")using our estimates on the exponential de
ay and the size of � and ��. Note thatwe 
ould similarly prove 
onvergen
e even in the weighted spa
es L1� with arbitrarylarge exponential weight �.6 Dis
ussionWe have in this paper shown that using methods of 
lassi
al singular perturbationtheory 
an be used to show that several hetero
lini
 waves of s
alar balan
e laws14



admit a vis
ous pro�le. However, not all hetero
lini
 waves admit a vis
ous pro-�le: There are dis
ontinuous waves with more than one dis
ontinuity, whi
h 
an beshown not to possess a vis
ous pro�le by a simple appli
ation of the Jordan 
urvetheorem. These and all other remaining types of hetero
lini
 waves will be treatedin a forth
oming paper [?℄.There are many obvious generalizations. For instan
e, the question of existen
eand vis
ous admissibility of hetero
lini
 traveling waves 
an be asked for systems ofbalan
e laws, too. While the existen
e part seems to be quite straightforward, theexisten
e of vis
ous pro�les will lead to singularly perturbed equations with manyfast and many slow variables.Referen
es[1℄ A. Majda A. Bourlioux and V. Roytburn. Theoreti
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