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1 Introduction
We are concerned with traveling wave solutions for scalar hyperbolic balance laws
u+ f(u), =g(u), z€IR, uelR. (H)

The question whether these traveling waves can be obtained as the limit of traveling
waves of the viscous balance law

U+ f(U)y = €Uy + 9(u), v €R, uveEIR (P)

when the viscosity parameter ¢ tends to zero is discussed in this article. More pre-
cisely, the search for such viscous profiles leads to a singular perturbation problem.
Hyperbolic balance laws are extensions of hyperbolic conservation laws where a
source term ¢ is added. These reaction terms can model chemical reactions, com-
bustion or other interactions [7], [1]. From the theoretical point of view, the source
terms dramatically change the long-time behaviour of the equation compared to
hyperbolic conservation laws. While for conservation laws the only traveling wave
solutions are shock waves, balance laws exhibit different types of traveling waves. A
classification of the traveling waves in the case of a convex flow function f has been
done by Mascia [5]. We summarize his results in section 2.1.

Since hyperbolic balance laws are often considered as a simplified model for some
parabolic (viscous) equation with a very small viscosity, it is important to know,
whether traveling wave solutions of the hyperbolic equation correspond to traveling
waves of the viscous equation. If this is true in a sense to be specified below, we say
that the traveling wave admits a viscous profile.
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In this paper we prove that under mild assumptions on f and g some types of waves
of the hyperbolic equation admit a viscous profile.

The paper is organized as follows: In chapter 2 we introduce the notion of entropy
traveling waves, make the meaning of viscous profiles more precise and state the
main result. Since three different types of traveling waves occur, in chapters 3-5
the proofs are given for each case separately. The paper concludes with a short
discussion.

Acknowledgements: The author thanks B. Fiedler and C. Mascia for valuable
remarks and discussions.

2 Entropy Traveling Waves
We assume the following about f and g¢:

(F) fis convex: f € C? f"(u) >0

(G) The zeroes of g are simple

We denote the zeroes of g with u; where + € J C Z with indizes chosen such that
i+ sign(g'(u;)) > 0.

The set of all zeroes is called Z(g). Depending on the sign of ¢’ the zeroes of g are
divided into two sets :

R(g9) = {u; € Z(g): ¢'(u;) > 0}
Alg) = {ui€ Z(g):g¢'(ui) <0}

Like hyperbolic conservation laws, balance laws (H) do in general not possess global
smooth solutions. Since passing to weak solutions destroys the uniqueness, an en-
tropy condition has to be given which chooses the “correct” solution among all
weak solutions. Here we define directly for traveling waves what is meant by such
an entropy solution.

Definition 2.1 An entropy traveling wave is a solution of (H) of the form
u(z,t) = u(€) with & = x — st for some wave speed s € IR with the following
properties:

(i) u is piecewise C', i.e. u € C'(IR\ J) and the set of accumulation points of
J has only isolated points. At points where u is continuously differentiable it
satisfies the ordinary differential equation

(f'(u(§)) = ) u'(§) = g(u(&)). (1)



(i1) At points of discontinuity the one-sided limits u(é+) and u(é—) of u satisfy
both the Rankine-Hugoniot condition
s (w(é+) —u(§=)) = flul€+)) — f(u(§-))

and the entropy condition

u(+) < u(-).

Due to the convexity assumption (F), for any u € IR and any speed s there is at
most one other value h(u, s) which satisfies the Rankine-Hugoniot condition

Flu) = f(hlu,s))
u— h(u,s)

If there is no such h(u, s) we set

| —oo for f(u)—s>0
hlu, 5) = { +oo for f'(u) —s<0

Definition 2.2 A traveling wave u is said to be a heteroclinic wave if

Jim u(§) = w
i w6) =

for some u;, u; € IR.

Remark 2.3 From (H) we can immediately conclude that g(u;) = g(u;) = 0. For
this reason, we say that there is a connection between the equilibria u; and u,;.

2.1 Heteroclinic waves of the hyperbolic equation

Mascia [5] has classified the heteroclinic waves that occur for convex f. We collect
here the results of [5, theorems 2.3-2.5] but sort them in a different way and make
the statements on wave speeds more precise. To this end we distinguish three types
of waves:

e Heteroclinic waves which exist for a whole interval of wave speeds s

e waves which can be found only if the speed s takes the discrete value f’(u;)
for some ¢ and

e undercompressive waves which do also show up only for particular shock
speeds.

Proposition 2.4 Heteroclinic connections from u; to u; that exist for a range of
wave speeds are of the following types:



(A1) Continuous monotone waves that connect adjacent equilibria

(i) j=1i+1, u; € A(g) and s > f'(u;js1)
(i) j=1i—1, u; € A(g) and s > f'(u;)
(1)) j =i+ 1, u; € R(g) and s < f'(u;)
(iv) j=1—1, u; € R(g) and s < f'(u; 1)

(A2) Discontinuous heteroclinic waves

(i) i >4, u; € Ag), u; € R(g), ui € (h(ujy1,s), h(uj1,5))
(“) 1>, u; € R(g), uj € R(g), (h(uj-l-l’ S)’ h(uj—la S)) N (ui—la ui-l-l) 7é 0
(ZZZ) 1> 7, u; € R(g), u; € A(g), h(uj,s) S (ui_l,uﬂ_l).

Proposition 2.5 Heteroclinic connections from u; to u; that exist only for a par-
ticular wave speed are of the following types:

(B1) Continuous, monotone waves

(1) j=1+2, uj,u; € A(g) and s = f'(u;y1) with an increasing profile

)
(i) j=1i—2, uj,u; € R(g)

1
and s = f'(u;_1)

(B2) (i) i>j, u; € Alg), uj € A(g) , s = f'(uis1) and h(u;, s) < ujyo,
(it) i > 7, u; € A(9), u; € R(g), s = f'(uit1) and h(uj_1,s) < uito,
(iii) i > j, u; € R(g), uj € A(g), s = f'(uj_1) and h(uj_s,s) < u;_y,
(iv) i > 7, u; € Alg), u; € A(g), s = f'(uj—1) and h(u;, s) < uj_s.

(B3) (i) Discontinuous waves that connect u; to u; o with speed s = f'(u;y1),

(i1) Discontinuous waves that connect u; to u;y with speed s = f'(u;yq).

S (ui) — f(uj)'

(C) Undercompressive shocks: i > j, u;, u; € A(g), s = TR

2.2 Viscous Profiles

Unlike for viscosity solutions of hyperbolic conservation laws, we cannot get rid of
the viscosity parameter ¢ by a simple scaling but have to discuss the full singularly
perturbed system (P).

With the traveling wave ansatz u(z,t) = u(z — st) we get from (P) the equation

eu’ = (f'(u) — s)u’ — g(u). (2)

Here the prime denotes differentiation with respect to a new coordinate £ := x — st.
We are now able to define what we mean by a viscosity traveling wave solution.
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Definition 2.6 A traveling wave solution ug of (H) is called a viscosity traveling
wave solution with wave speed sy if there is a sequence (u™) of solutions of (2)
such that £, \, 0, s, = so and ||u*" — ug||1ry — 0. The heteroclinic wave of the
hyperbolic equation is said to admit a viscous profile.

In this paper we will prove the admissibility for some of the heteroclinic waves. The
main result is the following:

Theorem 2.7 The heteroclinic waves of type (A1), (A2) and (C) admit a viscous
profile.

We concentrate on these types of traveling waves, since they fit into the classical
theory of geometrical singular perturbation theory and can be treated in a similar
way.

Although our main interest is in L'-convergence, we will be more general and prove
convergence in spaces with exponentially weighted norms. To this end, we define
for > 0 the norm

lullpy = [ (1 +e"€)/u(e)] de

and the space
Ly:={uel, ||u||L23 < oo}

Obviously, the choice 8 = 0 is equivalent to the usual L'-norm. We state now a
short lemma which will simplify the later proofs.

Lemma 2.8 For ¢ > 0, consider a family of functions u. € L'(IR). Assume that
there exist limiting states

ue = lim (0

independent of € and constants C', ¢ > 0, —o0 < £ < &, < oo such that the
following conditions are satisfied:

(i) |us(€) —u_| < Ce® for all € <& and all € > 0,
(ii) |ue(§) —uy| < Ce < for all €> &, and all € > 0,

(11i) For any —oo < a < b < +00

b
lim [ u.(€) = uo(€)] d = 0.

Then for any 3 < ¢ we have

tm . ~ ol = 0.



Proof: Given any integer n, we can find a, such that

/ Cels 5d§<i
10n

Using (i), we get by comparison

an 1
—u_|(1 BIEN ge < —.
e ) de <
Similarly, by (ii), we can find b, with
+oo 1
c—ug (148 de < —.
[ = w0+ 96 de <

Using (iii), we can choose ¢ sufficiently small such that

1
1+ max{eﬁ‘an" @mbn\})

[ lel€) = wole) e < o

and estimate the Lé—norm of ug — u. as

fuo—uclly = [ = @10+ ) d+ [ fus —ua(€)I(1+ 7€) de

7 uolE) — ua(€)](1 + ) de

+/ 11+ ) de+ [ fuy = uo(€)](1 +¢7€) de
1

< =
n

which completes the proof of the lemma.

O
This lemma, althoughsimple, shows the key ingredients in our later convergence
proofs. Typically, (i) and (ii) will be consequences of the hyperbolicity of some fixed
points, while (iii) is the point where one has to do some work.

2.3 Singular Perturbations

A convenient way to write the second-order equation (2) as a first-order system is
the Liénard plane

!

v'o= —g(u).

From this “slow-fast”-system two limiting systems can be derived which both capture
a part of the behavior that is observed for ¢ > 0.

cu' = v+f(u)—su} 3)
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One is the “slow” system obtained by simply putting ¢ = 0:

0 = v+ f(u) —su
Vo= —g(u). } “
In this case the flow is confined to a curve
Cs = {(u,v) v+ f(u) —su=0}

that we call the singular curve. The other, “fast” system originates in a different
scaling. With £ =: en and a dot denoting differentiation with respect to n we arrive
) ' f(u)

u = v+ f(u) —su

v = —eg(u). } Q
In the limit £ = 0, equation (5) defines a vector field for which the singular curve C;
consists of equilibrium points only. This vector field is called the “fast” system. It
points to the left below the curve C; and to the right above.
Trajectories of the fast system connect only points for which v 4+ f(u) — su has the
same values. This is exactly the Rankine-Hugoniot condition for waves propagating
with speed s. Moreover the direction of the fast vector field is in accordance with
the Oleinik entropy condition.
Geometric singular perturbation theory in the spirit of Fenichel [2] makes precise
statements how the slow and the fast equations together describe the dynamics of
(3) for small ¢ > 0. It is a strong tool in regions where the singular curve is normally
hyperbolic, i.e. where the points on C, are hyperbolic with respect to the fast field.
The only non-hyperbolic point on Cy is the point where f’(u) = s. The heteroclinic
waves of type (A1), (A2) and (C) stay away from these points and hence fit into the
classical framework. The other cases involving non-hyperbolic points on the singular
curve are more subtle and will be treated by blow-up techniques in a forthcoming
paper [?].
The steady states of system (2) are exactly the points

{(u,v) s (u,v) €Cs, ue Z(g)}.

The linearization of (3) in a steady state (u;, —f(u;) + su;), possesses the eigenvalues

Fug) = 52\ /(F/ (i) — 5)2 — deg’ (u;)
2

€

AE =

7

(6)
which are real except for the case when ¢'(u;) > 0 and
(f'(w;) — 5)* < deg'(ui). (7)

We call the region in (s, e)-parameter space where all eigenvalues associated to the
steady states are real

R:={(s,€): (f'(u;) — 5)* > 4eqg'(u;) Vi}.
Note that any point on the axis ¢ = 0 can be approximated with a sequence of
points from the interior of R.



3 Heteroclinic connections between adjacent equi-
libria

In this chapter we will prove that the heteroclinic waves of type (A1) possess a
viscous profile.

Lemma 3.1 The monotone heteroclinic waves of type (A1) admit a viscous profile.

Proof: We concentrate on the case (A1)(i) since the other statements can be proved
similarly. In that case, since u; € A(g) we know already that w; is of saddle type,
u;1 is a sink and g(u) < 0 for u € (u;,u;11). The wave speed of the hyperbolic
traveling wave will be denoted by sq.

Two cases have to be distinguished, depending on the smoothness of the hyperbolic
wave:

I. so > f'(uir1): Since we want to apply lemma 2.8 we need to find a family (u.) of
candidates for a viscous profile, i.e. a family of heteroclinic orbits of the system (3)
for all sufficiently small . It turns out that such a family can be found by varying
only € while keeping s fixed at the value sy of the hyperbolic traveling wave.

To this end, we refine lemma 3.5 of [4] and show that for a (large) positive number
k and all € sufficiently small the region

P := {(u,v);ui < u < uiyy, ke?g(u) < v+ fu) — su— 5% < —kng(u)}

is positively invariant and contains a heteroclinic orbit from u; to u;;1. As a short
notation, we will write

g(u) s)
f'(u) = s
The scalar product of the outer normal vector with the vector field along the upper
boundary of P is

v1(u) =

for k large enough and e small, since both g(u) and f'(u)—s are negative on (u;, u;11).
An analogous calculation for the lower boundary of P completes the proof that P
is positively invariant.

To establish the existence of a heteroclinic connection, it remains to show that a
branch of the unstable manifold W"(u;) of u; enters P. The eigenvector associated
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with the positive eigenvalue A" of u; is

2

V() = )2 — deg/(u;) — (' (u;) — s)

Expanding the square root with respect to £ one obtains for the slope of W*(u;) in
u; the expression

: g'(ui) gw)? 3
B B 0 R 1y R s

It is easily checked that this is up to order £ the slope of the boundary of P at
u;. Now by choosing k larger, if necessary, it can be achieved that a branch of the
unstable manifold W*(u;) lies in P while P is still positively invariant. Since there
are no equilibria in the interior of P there cannot be any periodic orbits in the
interior of P, so by the Poincaré-Bendixson theorem there has to be a heteroclinic
orbit u. from u; to the only other equilibrium u;; on the boundary of P. Monotony
of u, follows from the fact that it lies above the singular curve Cs;.

As indicated above, we want to apply lemma 2.8. First we parametrize all the
heteroclinic orbits u.(£) of the parabolic problem (P) and the heteroclinic orbit
up (&) of the hyperbolic equation (H) in a way such that

Ui + Ujt1

up(0) := u.(0) := 5

Then we fix some § > 0 with the property that for u; < u < u; + we have

_ﬂ — kgg(u) < —c(u - u,) (9)

f'(u) = s
for the number k£ from the preceding lemma, some constant ¢ and all ¢ < ¢;.
Similarly, we require for u; 1 — 0 < u < u;4q

_ﬂ — keg(u) < —c(ujpr — u).

f'(u) —s
By choosing &£ as the supremum

§- = sup {&:u(§) =u;+ 0}

0<e<er

and &, as

&= inf {&€:u.(§) =uip — 0}

0<e<er

and a comparison argument we can make sure that the assumptions (i) and (ii) of

lemma 2.8 are met for some constant C' > 0. In other words, (i) and (ii) are simple
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consequences of the uniform hyperbolicity of the equilibria u; and u;,¢. It remains
to show that

/b|ug(€)—u0(§)| dé — 0 forall —oco<a<b< +oo.

For a < ¢ < b we have

a6 —wo@)] < | [ o) — (o)

3
< [ o)) = o (o )|+ el ()]
< [ (Dlueton) = wol)] + ehsup lg(u)) d

where L is a Lipschitz constant for the function v; from (8) on the interval [u;, u; ]
and the sup is taken over the same interval. In particular, this estimate is indepen-
dent of a and b. Applying the Gronwall inequality we get

€) — wo(6)] < 2RI (e )

for &€ € [a,b]. Hence

[ o€~ ue(e) e < [ FURIL (o) gy

as ¢ \, 0. Consequently, assumption (iii) of lemma 2.8 been checked and as a
consequence of this lemma, the hyperbolic wave of type (Al)(i) admits a viscous
profile.

II. sy = f'(u;41): This limiting case has to be treated seperately because the
traveling wave wug of the hyperbolic equation is only continuous but not C'. Fixing
a parametrization we have ug(§) = u;yq for & > 0 while for & < 0 ug solves the
differential equation

% for wuy # i
up© =4
% for Uy = Ujq1

with uo(0) = u;;1. We approximate sq by a sequence s, with s, N\ so such that the
corresponding traveling waves u(()") satisfy

(n) _ <1 10
|ug” — uol[z1 < o (10)
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Since for each s, the inequality of case I is satisfied, there exists ¢, with ¢, ~\, 0 such
that the corresponding heteroclinic orbit u., from u; to u;, with speed s, satisfies

1
e, =g 12 < 5

Putting this estimate together with (10) shows that the heteroclinic wave u, admits
a viscous profile.

We still have to show that (10) can be satisfied by an appropriate sequence (u(()")).
Note that in this step of the proof only traveling waves of the hyperbolic equations
are involved. For ¢ sufficiently small we find £ = £(0) < 0 such that ug(§) = w1 — 6
and

o0 1
o = wisallissoeny = [, u0(€) = i d€ < g

For s — so small, let u be the solution of (1) with wave speed s and uj(&) = u;41 — 9.
Since the linearization of (1) at u = w;;; tends to —oo as s approaches sq, by
choosing 0 small enough, we can achieve that

s 1
= woll 1o < T (1)

for all |s— s| sufficiently small. Since for any s the heteroclinic orbits u§(£) converge
to u; exponentially as £ — —oo we find some £ such that

1

< — 12
— 10n ( )

g — wollLr((—oo.g))

for all wave speeds s > sy which are sufficiently close to sq. On the intermediate

part [£, €] the vector fields for the wave speeds s and sy are O(|s — so|)-close, hence
by choosing |s — s¢| small enough one can achieve

. 1
lug = woll ey < 75, (13)

So by the choice s, := sup{5 > s¢; (11),(12),(13) hold for all sy < s < §} we can
satisfy (10).
O

4 More discontinuous waves

This chapter is devoted to the waves of type (A2). We distinguish two cases de-
pending on type of the equilibria involved. In the “Lax”-like situation the Morse
indices differ by one, while the waves of type (A2)(ii) connect equilibria whose Morse
indices differ by two. This is analogous to the case of overcompressive shock waves
of hyperbolic conservation laws.
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Figure 1: A “Lax” heteroclinic traveling wave (dashed) and its viscous counterpart

4.1 The “Lax” case

The heteroclinic waves of type (A2)(i) and (A2)(iii) are related via the symmetry
& — —&. For this reason, we treat only waves of type (A2)(i), see figure 1.

We claim that for € small and the correct value s a branch of the unstable manifold
of u; is a heteroclinic orbit from u; to u; and that these heteroclinic orbits provide
a viscous profile. The existence of the heteroclinic orbit is shown as follows: The
unstable manifold is C''-close to the stable eigenspace, so the manifold leaves a
small neighborhood of u; with at the point (@,7;) with @; = u; — 0 and 9, =
—f(u;) + su; + O(e), see figure 1. Outside a neighborhood of the singular curve
Cs the vector field (3) is of order O(s7!), so following the unstable manifold, a
neighborhood of the other branch of C; is reached at (@g, o) with @y = h(u;, s) + 0
and 79 = —f(u;) + su; + O(g). Near the singular curve the vector field can be
transformed to a normal form due to Takens [8]. By calculations analogous to those
in [3] it can be shown that it takes a “time” £ of order O(eIn 1) until the trajectory
reaches the invariant region of width ke? that was already used in the proof of lemma
3.1. Moreover, it enters this region at a v-value — f(u;) + su; + O(¢In ). The same
asymptotics have been obtained by Mishchenko and Rozov [6]. After the manifold
has entered the positively invariant invariant region near C, it has to remain there
forever and by the Poincaré-Bendixson theorem the branch of the unstable manifold
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must converge to u;.

We still have to show that the heteroclinic orbits u. yield a viscous profile for the
heteroclinic wave of the hyperbolic equation. To this end, after chosing some n € IN,
we must find &, > 0 small such that ||ug — u.|| < 1/n, where u, is a parametrization
of the heteroclinic orbit of (3) at ¢ = £,. We parametrize u(§) and u. in the
following way:

B u; for £ <0
up(§) = { < h(u;, o) for £ >0
up(0) = u; =9

where we choose 0 later. In any case we know from the exponential decay of u, and
ug that conditions (i) and (ii) of lemma 2.8 are met.

4.2 The “overcompressive” case

Similarly as for overcompressive shocks of conservation laws, for a fixed wave speed
sg we have a whole one-parameter-family of heteroclinic waves with a shock at
¢ = 0, where the jump values u({+) plays the role of a parameter. To find hetero-
clinic waves of the parabolic equation (P) which provide a viscous profile for such a
heteroclinic wave, we define (u,,v.) as the solution of (3) with

U; + Uy

ue(0) = 5

and
ve(0) = = f(u(E+)) + su(é+) = —f(u(§—)) + su(§—)
where u(€+), u(§—) are the one-sided limits of the hyperbolic wave at the shock.

5 Undercompressive Shocks
In this chapter we consider the simple shock waves of type (C) which are of the form

_Jujfor x—st <0
u(:r,t)_{ u; forz — st >0

Ji)J(i) " Here the source term is only involved by the fact

with shock speed sy =
that shocks can connect only equilibria of the reaction dynamics. Since both equi-
libria are of saddle-type here, we call this shock undercompressive. In the traveling

wave setting this correspond to an entropy solution

Uj—Uj

uj for £ <0

u(€) = { u; for & > 0.
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To show that the heteroclinic waves of type (C) admit a viscous profile, we consider
the unstable manifold of u; and the stable manifold of u;. For s < M and ¢
sufficiently small the unstable manifold of u; passes below the stable mamfold of u;
in the u-v-plane.
This implies that there exist a wave speed s = s(g) such that W*(u;) "W (u;) # 0.
Since this intersection is one-dimensional, it must be a heteroclinic orbit u.. Also
since for any fixed s # sy and & small enough the unstable manifold of u; and the
stable manifold of u; miss each other, the limiting relation

lim s(e) = so
holds. To prove that the family of these heteroclinic orbits yields a viscous profile
for the shock wave, we use again lemma 2.8 and parametrize the heteroclinic orbits
in such a way that
U; + Uy
—
At both ends the convergence to the equilibria is exponentially fast with a rate of
order O(c/e), hence the assumptions (i) and (ii) of lemma 2.8 are met. To check
assumption (iii) for some interval a < 0 < b, we fix some neighborhoods of u; and
u; where the convergence is exponential. Outside this neighborhood u' = O(s71),
hence there exist () < 0 < zi, both of order O(g), such that for £ < &

ue(0) =

u(€) —u; < Ce = for ¢ < ¢

and )
u; — ue (&) < Ce /% for € > €.

To prove assumption (iii) of lemma 2.8 we need to calculate

/ao|uj |d§+/ i — ()] de
= /a§|uj—ug(f)|d€+/ luj —u(§)| d§

[ = el e+ [ = wefe) e

using our estimates on the exponential decay and the size of { and £. Note that
we could similarly prove convergence even in the weighted spaces Lé with arbitrary
large exponential weight 3.

6 Discussion

We have in this paper shown that using methods of classical singular perturbation
theory can be used to show that several heteroclinic waves of scalar balance laws
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admit a viscous profile. However, not all heteroclinic waves admit a viscous pro-
file: There are discontinuous waves with more than one discontinuity, which can be
shown not to possess a viscous profile by a simple application of the Jordan curve
theorem. These and all other remaining types of heteroclinic waves will be treated
in a forthcoming paper [?].

There are many obvious generalizations. For instance, the question of existence
and viscous admissibility of heteroclinic traveling waves can be asked for systems of
balance laws, too. While the existence part seems to be quite straightforward, the
existence of viscous profiles will lead to singularly perturbed equations with many
fast and many slow variables.
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