
Visous pro�les for traveling waves of salarbalane laws: The uniformly hyperboli aseJ�org H�arterihFreie Universit�at BerlinArnimallee 2-6D-14195 BerlinGermanyJuly 26, 19991 IntrodutionWe are onerned with traveling wave solutions for salar hyperboli balane lawsut + f(u)x = g(u); x 2 IR; u 2 IR: (H)The question whether these traveling waves an be obtained as the limit of travelingwaves of the visous balane lawut + f(u)x = "uxx + g(u); x 2 IR; u 2 IR (P)when the visosity parameter " tends to zero is disussed in this artile. More pre-isely, the searh for suh visous pro�les leads to a singular perturbation problem.Hyperboli balane laws are extensions of hyperboli onservation laws where asoure term g is added. These reation terms an model hemial reations, om-bustion or other interations [7℄, [1℄. From the theoretial point of view, the soureterms dramatially hange the long-time behaviour of the equation ompared tohyperboli onservation laws. While for onservation laws the only traveling wavesolutions are shok waves, balane laws exhibit di�erent types of traveling waves. Alassi�ation of the traveling waves in the ase of a onvex ow funtion f has beendone by Masia [5℄. We summarize his results in setion 2.1.Sine hyperboli balane laws are often onsidered as a simpli�ed model for someparaboli (visous) equation with a very small visosity, it is important to know,whether traveling wave solutions of the hyperboli equation orrespond to travelingwaves of the visous equation. If this is true in a sense to be spei�ed below, we saythat the traveling wave admits a visous pro�le.1



In this paper we prove that under mild assumptions on f and g some types of wavesof the hyperboli equation admit a visous pro�le.The paper is organized as follows: In hapter 2 we introdue the notion of entropytraveling waves, make the meaning of visous pro�les more preise and state themain result. Sine three di�erent types of traveling waves our, in hapters 3-5the proofs are given for eah ase separately. The paper onludes with a shortdisussion.Aknowledgements: The author thanks B. Fiedler and C. Masia for valuableremarks and disussions.2 Entropy Traveling WavesWe assume the following about f and g:(F) f is onvex: f 2 C2, f 00(u) > 0(G) The zeroes of g are simpleWe denote the zeroes of g with ui where i 2 J � ZZ with indizes hosen suh thati � sign(g0(ui)) > 0:The set of all zeroes is alled Z(g). Depending on the sign of g0 the zeroes of g aredivided into two sets : R(g) := fui 2 Z(g) : g0(ui) > 0gA(g) := fui 2 Z(g) : g0(ui) < 0gLike hyperboli onservation laws, balane laws (H) do in general not possess globalsmooth solutions. Sine passing to weak solutions destroys the uniqueness, an en-tropy ondition has to be given whih hooses the \orret" solution among allweak solutions. Here we de�ne diretly for traveling waves what is meant by suhan entropy solution.De�nition 2.1 An entropy traveling wave is a solution of (H) of the formu(x; t) = u(�) with � = x � st for some wave speed s 2 IR with the followingproperties:(i) u is pieewise C1, i.e. u 2 C1(IR n J) and the set of aumulation points ofJ has only isolated points. At points where u is ontinuously di�erentiable itsatis�es the ordinary di�erential equation(f 0(u(�))� s) u0(�) = g(u(�)): (1)2



(ii) At points of disontinuity the one-sided limits u(�+) and u(��) of u satisfyboth the Rankine-Hugoniot onditions (u(�+)� u(��)) = f(u(�+))� f(u(��))and the entropy ondition u(�+) � u(��):Due to the onvexity assumption (F), for any u 2 IR and any speed s there is atmost one other value h(u; s) whih satis�es the Rankine-Hugoniot onditionf(u)� f(h(u; s))u� h(u; s) = s:If there is no suh h(u; s) we seth(u; s) := ( �1 for f 0(u)� s > 0+1 for f 0(u)� s < 0De�nition 2.2 A traveling wave u is said to be a heterolini wave iflim�!�1u(�) = uilim�!+1u(�) = ujfor some ui, uj 2 IR.Remark 2.3 From (H) we an immediately onlude that g(ui) = g(uj) = 0. Forthis reason, we say that there is a onnetion between the equilibria ui and uj.2.1 Heterolini waves of the hyperboli equationMasia [5℄ has lassi�ed the heterolini waves that our for onvex f . We ollethere the results of [5, theorems 2.3-2.5℄ but sort them in a di�erent way and makethe statements on wave speeds more preise. To this end we distinguish three typesof waves:� Heterolini waves whih exist for a whole interval of wave speeds s� waves whih an be found only if the speed s takes the disrete value f 0(ui)for some i and� underompressive waves whih do also show up only for partiular shokspeeds.Proposition 2.4 Heterolini onnetions from ui to uj that exist for a range ofwave speeds are of the following types: 3



(A1) Continuous monotone waves that onnet adjaent equilibria(i) j = i+ 1, ui 2 A(g) and s � f 0(ui+1)(ii) j = i� 1, ui 2 A(g) and s � f 0(ui)(iii) j = i+ 1, ui 2 R(g) and s � f 0(ui)(iv) j = i� 1, ui 2 R(g) and s � f 0(ui�1)(A2) Disontinuous heterolini waves(i) i > j, ui 2 A(g), uj 2 R(g), ui 2 (h(uj+1; s); h(uj�1; s))(ii) i > j, ui 2 R(g), uj 2 R(g), (h(uj+1; s); h(uj�1; s)) \ (ui�1; ui+1) 6= ;(iii) i > j, ui 2 R(g), uj 2 A(g), h(uj; s) 2 (ui�1; ui+1).Proposition 2.5 Heterolini onnetions from ui to uj that exist only for a par-tiular wave speed are of the following types:(B1) Continuous, monotone waves(i) j = i+ 2, ui; uj 2 A(g) and s = f 0(ui+1) with an inreasing pro�le(ii) j = i� 2, ui; uj 2 R(g) and s = f 0(ui�1)(B2) (i) i � j, ui 2 A(g), uj 2 A(g) , s = f 0(ui+1) and h(uj; s) < ui+2,(ii) i > j, ui 2 A(g), uj 2 R(g), s = f 0(ui+1) and h(uj�1; s) < ui+2,(iii) i > j, ui 2 R(g), uj 2 A(g), s = f 0(uj�1) and h(uj�2; s) < ui�1,(iv) i � j, ui 2 A(g), uj 2 A(g), s = f 0(uj�1) and h(ui; s) < uj�2.(B3) (i) Disontinuous waves that onnet ui to ui+2 with speed s = f 0(ui+1),(ii) Disontinuous waves that onnet ui to ui+1 with speed s = f 0(ui+1).(C) Underompressive shoks: i > j, ui, uj 2 A(g), s = f(ui)� f(uj)ui � uj .2.2 Visous Pro�lesUnlike for visosity solutions of hyperboli onservation laws, we annot get rid ofthe visosity parameter " by a simple saling but have to disuss the full singularlyperturbed system (P).With the traveling wave ansatz u(x; t) = u(x� st) we get from (P) the equation"u00 = (f 0(u)� s)u0 � g(u): (2)Here the prime denotes di�erentiation with respet to a new oordinate � := x� st.We are now able to de�ne what we mean by a visosity traveling wave solution.4



De�nition 2.6 A traveling wave solution u0 of (H) is alled a visosity travelingwave solution with wave speed s0 if there is a sequene (u"n) of solutions of (2)suh that "n & 0, sn ! s0 and ku"n � u0kL1(IR) ! 0. The heterolini wave of thehyperboli equation is said to admit a visous pro�le.In this paper we will prove the admissibility for some of the heterolini waves. Themain result is the following:Theorem 2.7 The heterolini waves of type (A1), (A2) and (C) admit a visouspro�le.We onentrate on these types of traveling waves, sine they �t into the lassialtheory of geometrial singular perturbation theory and an be treated in a similarway.Although our main interest is in L1-onvergene, we will be more general and proveonvergene in spaes with exponentially weighted norms. To this end, we de�nefor � � 0 the norm kukL1� := ZIR(1 + e�j�j)ju(�)j d�and the spae L1� := fu 2 L1; kukL1� <1g:Obviously, the hoie � = 0 is equivalent to the usual L1-norm. We state now ashort lemma whih will simplify the later proofs.Lemma 2.8 For " � 0, onsider a family of funtions u" 2 L1(IR). Assume thatthere exist limiting states u� = lim�!�1u"(�)independent of " and onstants C,  > 0, �1 < �� < �+ < 1 suh that thefollowing onditions are satis�ed:(i) ju"(�)� u�j � Ce� for all � � �� and all " � 0,(ii) ju"(�)� u+j � Ce�� for all � � �+ and all " � 0,(iii) For any �1 < a < b < +1lim"&0 Z ba ju"(�)� u0(�)j d� = 0:Then for any � <  we have lim"&0 ku" � u0kL1� = 0:5



Proof: Given any integer n, we an �nd an suh thatZ an�1Ce(��)� d� � 110n:Using (i), we get by omparisonZ an�1 ju" � u�j(1 + e�j�j) d� � 15n:Similarly, by (ii), we an �nd bn withZ +1bn ju" � u+j(1 + e�j�j) d� � 15n:Using (iii), we an hoose " suÆiently small suh thatZ bnan ju"(�)� u0(�)j d� � 15n(1 + maxfe�janj; e�jbnjg)and estimate the L1�-norm of u0 � u" asku0 � u"kL1� = Z an�1 ju� � u"(�)j(1 + e�j�j) d� + Z an�1 ju� � u0(�)j(1 + e�j�j) d�+ Z bnan ju0(�)� u"(�)j(1 + e�j�j) d�+ Z 1bn ju+ � u"(�)j(1 + e�j�j) d� + Z +1bn ju+ � u0(�)j(1 + e�j�j) d�� 1nwhih ompletes the proof of the lemma. 2This lemma, althoughsimple, shows the key ingredients in our later onvergeneproofs. Typially, (i) and (ii) will be onsequenes of the hyperboliity of some �xedpoints, while (iii) is the point where one has to do some work.2.3 Singular PerturbationsA onvenient way to write the seond-order equation (2) as a �rst-order system isthe Li�enard plane "u0 = v + f(u)� suv0 = �g(u): ) (3)From this \slow-fast"-system two limiting systems an be derived whih both apturea part of the behavior that is observed for " > 0.6



One is the \slow" system obtained by simply putting " = 0:0 = v + f(u)� suv0 = �g(u): ) (4)In this ase the ow is on�ned to a urveCs := f(u; v) : v + f(u)� su = 0gthat we all the singular urve. The other, \fast" system originates in a di�erentsaling. With � =: "� and a dot denoting di�erentiation with respet to � we arriveat _u = v + f(u)� su_v = �"g(u): ) (5)In the limit " = 0, equation (5) de�nes a vetor �eld for whih the singular urve Csonsists of equilibrium points only. This vetor �eld is alled the \fast" system. Itpoints to the left below the urve Cs and to the right above.Trajetories of the fast system onnet only points for whih v + f(u)� su has thesame values. This is exatly the Rankine-Hugoniot ondition for waves propagatingwith speed s. Moreover the diretion of the fast vetor �eld is in aordane withthe Oleinik entropy ondition.Geometri singular perturbation theory in the spirit of Fenihel [2℄ makes preisestatements how the slow and the fast equations together desribe the dynamis of(3) for small " > 0. It is a strong tool in regions where the singular urve is normallyhyperboli, i.e. where the points on Cs are hyperboli with respet to the fast �eld.The only non-hyperboli point on Cs is the point where f 0(u) = s. The heteroliniwaves of type (A1), (A2) and (C) stay away from these points and hene �t into thelassial framework. The other ases involving non-hyperboli points on the singularurve are more subtle and will be treated by blow-up tehniques in a forthomingpaper [?℄.The steady states of system (2) are exatly the pointsf(u; v) : (u; v) 2 Cs; u 2 Z(g)g:The linearization of (3) in a steady state (ui;�f(ui)+sui), possesses the eigenvalues��i = f 0(ui)� s�q(f 0(ui)� s)2 � 4"g0(ui)2" (6)whih are real exept for the ase when g0(ui) > 0 and(f 0(ui)� s)2 < 4"g0(ui): (7)We all the region in (s; ")-parameter spae where all eigenvalues assoiated to thesteady states are realR := f(s; ") : (f 0(ui)� s)2 � 4"g0(ui) 8ig:Note that any point on the axis " = 0 an be approximated with a sequene ofpoints from the interior of R. 7



3 Heterolini onnetions between adjaent equi-libriaIn this hapter we will prove that the heterolini waves of type (A1) possess avisous pro�le.Lemma 3.1 The monotone heterolini waves of type (A1) admit a visous pro�le.Proof: We onentrate on the ase (A1)(i) sine the other statements an be provedsimilarly. In that ase, sine ui 2 A(g) we know already that ui is of saddle type,ui+1 is a sink and g(u) < 0 for u 2 (ui; ui+1). The wave speed of the hyperbolitraveling wave will be denoted by s0.Two ases have to be distinguished, depending on the smoothness of the hyperboliwave:I. s0 > f 0(ui+1): Sine we want to apply lemma 2.8 we need to �nd a family (u") ofandidates for a visous pro�le, i.e. a family of heterolini orbits of the system (3)for all suÆiently small ". It turns out that suh a family an be found by varyingonly " while keeping s �xed at the value s0 of the hyperboli traveling wave.To this end, we re�ne lemma 3.5 of [4℄ and show that for a (large) positive numberk and all " suÆiently small the regionP := ((u; v); ui � u � ui+1; k"2g(u) � v + f(u)� su� " g(u)f 0(u)� s � �k"2g(u))is positively invariant and ontains a heterolini orbit from ui to ui+1. As a shortnotation, we will write v1(u) := g(u)f 0(u)� s: (8)The salar produt of the outer normal vetor with the vetor �eld along the upperboundary of P is f 0(u)� s� "v01 + k"2g0(u)1 !T �  v + f(u)� su�"g(u) != �"2g(u) (f 0(u)� s)g0(u)� g(u)f 00(u)(f 0(u)� s)3 + k(f 0(u)� s)!+O("3)< 0for k large enough and " small, sine both g(u) and f 0(u)�s are negative on (ui; ui+1).An analogous alulation for the lower boundary of P ompletes the proof that Pis positively invariant.To establish the existene of a heterolini onnetion, it remains to show that abranh of the unstable manifold W u(ui) of ui enters P . The eigenvetor assoiated8



with the positive eigenvalue �+i of ui is0BB� 2q(f 0(ui)� s)2 � 4"g0(ui)� (f 0(ui)� s) 1CCAExpanding the square root with respet to " one obtains for the slope of W u(ui) inui the expression�(f 0(ui)� s)� g0(ui)f 0(ui)� s"� g0(ui)24(f 0(ui)� s)3 "2 +O("3):It is easily heked that this is up to order " the slope of the boundary of P atui. Now by hoosing k larger, if neessary, it an be ahieved that a branh of theunstable manifold W u(ui) lies in P while P is still positively invariant. Sine thereare no equilibria in the interior of P there annot be any periodi orbits in theinterior of P , so by the Poinar�e-Bendixson theorem there has to be a heteroliniorbit u" from ui to the only other equilibrium ui+1 on the boundary of P . Monotonyof u" follows from the fat that it lies above the singular urve Cs.As indiated above, we want to apply lemma 2.8. First we parametrize all theheterolini orbits u"(�) of the paraboli problem (P) and the heterolini orbitu0(�) of the hyperboli equation (H) in a way suh thatu0(0) := u"(0) := ui + ui+12 :Then we �x some Æ > 0 with the property that for ui � u � ui + Æ we have� g(u)f 0(u)� s � k"g(u) � �(u� ui) (9)for the number k from the preeding lemma, some onstant � and all " � "1.Similarly, we require for ui+1 � Æ � u � ui+1� g(u)f 0(u)� s � k"g(u) � �(ui+1 � u):By hoosing �� as the supremum�� := sup0�"�"1f� : u"(�) = ui + Ægand �+ as �+ := inf0�"�"1f� : u"(�) = ui+1 � Ægand a omparison argument we an make sure that the assumptions (i) and (ii) oflemma 2.8 are met for some onstant C > 0. In other words, (i) and (ii) are simple9



onsequenes of the uniform hyperboliity of the equilibria ui and ui+1. It remainsto show that Z ba ju"(�)� u0(�)j d� ! 0 for all �1 < a < b < +1:For a � � � b we haveju"(�)� u0(�)j � �����Z �0 u0"(�)� u00(�) d������� Z �0 jv1(u"(�))� v1(u0(�))j+ k"jg(u"(�))j d�� Z �0 (Lju"(�)� u0(�)j+ "k sup jg(u)j) d�where L is a Lipshitz onstant for the funtion v1 from (8) on the interval [ui; ui+1℄and the sup is taken over the same interval. In partiular, this estimate is indepen-dent of a and b. Applying the Gronwall inequality we getju"(�)� u0(�)j � "k sup jgjL �eLj�j � 1�for � 2 [a; b℄. HeneZ ba ju0(�)� u"(�)j d� � Z ba "k sup jgjL �eLj�j � 1� d� ! 0as " & 0. Consequently, assumption (iii) of lemma 2.8 been heked and as aonsequene of this lemma, the hyperboli wave of type (A1)(i) admits a visouspro�le.II. s0 = f 0(ui+1): This limiting ase has to be treated seperately beause thetraveling wave u0 of the hyperboli equation is only ontinuous but not C1. Fixinga parametrization we have u0(�) � ui+1 for � � 0 while for � � 0 u0 solves thedi�erential equation u00(�) = 8>>>>>><>>>>>>: g(u0)f 0(u0)� s0 for u0 6= ui+1g0(ui+1)f 00(ui+1) for u0 = ui+1with u0(0) = ui+1. We approximate s0 by a sequene sn with sn & s0 suh that theorresponding traveling waves u(n)0 satisfyku(n)0 � u0kL1 � 12n: (10)10



Sine for eah sn the inequality of ase I is satis�ed, there exists "n with "n & 0 suhthat the orresponding heterolini orbit u"n from ui to ui+1 with speed sn satis�esku"n � u(n)0 kL1 � 12n:Putting this estimate together with (10) shows that the heterolini wave u0 admitsa visous pro�le.We still have to show that (10) an be satis�ed by an appropriate sequene (u(n)0 ).Note that in this step of the proof only traveling waves of the hyperboli equationsare involved. For Æ suÆiently small we �nd � = ��(Æ) < 0 suh that u0(��) = ui+1� Æand ku0 � ui+1kL1([��;+1)) = Z 1�� ju0(�)� ui+1j d� � 110n:For s�s0 small, let us0 be the solution of (1) with wave speed s and us0(��) = ui+1�Æ.Sine the linearization of (1) at u = ui+1 tends to �1 as s approahes s0, byhoosing Æ small enough, we an ahieve thatkus0 � u0kL1([��;+1)) � 110n (11)for all js�s0j suÆiently small. Sine for any s the heterolini orbits us0(�) onvergeto ui exponentially as � ! �1 we �nd some � suh thatkus0 � u0kL1((�1;�℄) � 110n (12)for all wave speeds s � s0 whih are suÆiently lose to s0. On the intermediatepart [�; ��℄ the vetor �elds for the wave speeds s and s0 are O(js� s0j)-lose, heneby hoosing js� s0j small enough one an ahievekus0 � u0kL1([�;��℄) � 110n: (13)So by the hoie sn := supf�s � s0; (11); (12); (13) hold for all s0 � s � �sg we ansatisfy (10). 24 More disontinuous wavesThis hapter is devoted to the waves of type (A2). We distinguish two ases de-pending on type of the equilibria involved. In the \Lax"-like situation the Morseindies di�er by one, while the waves of type (A2)(ii) onnet equilibria whose Morseindies di�er by two. This is analogous to the ase of overompressive shok wavesof hyperboli onservation laws. 11



v + f(u)� su = 0

u = ui � Æu = h(ui; s) + Æ (�u1; �v1)(�u2; �v2) ui

ui+1
uj

Figure 1: A \Lax" heterolini traveling wave (dashed) and its visous ounterpart4.1 The \Lax" aseThe heterolini waves of type (A2)(i) and (A2)(iii) are related via the symmetry� 7! ��. For this reason, we treat only waves of type (A2)(i), see �gure 1.We laim that for " small and the orret value s a branh of the unstable manifoldof ui is a heterolini orbit from ui to uj and that these heterolini orbits providea visous pro�le. The existene of the heterolini orbit is shown as follows: Theunstable manifold is C1-lose to the stable eigenspae, so the manifold leaves asmall neighborhood of ui with at the point (�u1; �v1) with �u1 = ui � Æ and �v1 =�f(ui) + sui + O("), see �gure 1. Outside a neighborhood of the singular urveCs the vetor �eld (3) is of order O("�1), so following the unstable manifold, aneighborhood of the other branh of Cs is reahed at (�u2; �v2) with �u2 = h(ui; s) + Æand �v2 = �f(ui) + sui + O("). Near the singular urve the vetor �eld an betransformed to a normal form due to Takens [8℄. By alulations analogous to thosein [3℄ it an be shown that it takes a \time" � of order O(" ln 1") until the trajetoryreahes the invariant region of width k"2 that was already used in the proof of lemma3.1. Moreover, it enters this region at a v-value �f(ui) + sui +O(" ln 1"). The sameasymptotis have been obtained by Mishhenko and Rozov [6℄. After the manifoldhas entered the positively invariant invariant region near Cs it has to remain thereforever and by the Poinar�e-Bendixson theorem the branh of the unstable manifold12



must onverge to uj.We still have to show that the heterolini orbits u" yield a visous pro�le for theheterolini wave of the hyperboli equation. To this end, after hosing some n 2 IN,we must �nd "n > 0 small suh that ku0�u"k � 1=n, where u" is a parametrizationof the heterolini orbit of (3) at " = "n. We parametrize u0(�) and u" in thefollowing way: u0(�) = ( ui for � � 0� h(ui; s0) for � > 0u0(0) = ui � Æwhere we hoose Æ later. In any ase we know from the exponential deay of u" andu0 that onditions (i) and (ii) of lemma 2.8 are met.4.2 The \overompressive" aseSimilarly as for overompressive shoks of onservation laws, for a �xed wave speeds0 we have a whole one-parameter-family of heterolini waves with a shok at� = 0, where the jump values u(�+) plays the role of a parameter. To �nd hetero-lini waves of the paraboli equation (P) whih provide a visous pro�le for suh aheterolini wave, we de�ne (u"; v") as the solution of (3) withu"(0) = ui + uj2and v"(0) = �f(u(�+)) + su(�+) = �f(u(��)) + su(��)where u(�+), u(��) are the one-sided limits of the hyperboli wave at the shok.5 Underompressive ShoksIn this hapter we onsider the simple shok waves of type (C) whih are of the formu(x; t) = ( uj for x� st < 0ui for x� st > 0with shok speed s0 = f(ui)�f(uj)ui�uj . Here the soure term is only involved by the fatthat shoks an onnet only equilibria of the reation dynamis. Sine both equi-libria are of saddle-type here, we all this shok underompressive. In the travelingwave setting this orrespond to an entropy solutionu(�) = ( uj for � < 0ui for � > 0:13



To show that the heterolini waves of type (C) admit a visous pro�le, we onsiderthe unstable manifold of ui and the stable manifold of uj. For s < f(ui)�f(uj)ui�uj and "suÆiently small the unstable manifold of ui passes below the stable manifold of ujin the u-v-plane.This implies that there exist a wave speed s = s(") suh that W u(ui)\W s(uj) 6= ;.Sine this intersetion is one-dimensional, it must be a heterolini orbit u". Alsosine for any �xed s 6= s0 and " small enough the unstable manifold of uj and thestable manifold of ui miss eah other, the limiting relationlim"&0 s(") = s0holds. To prove that the family of these heterolini orbits yields a visous pro�lefor the shok wave, we use again lemma 2.8 and parametrize the heterolini orbitsin suh a way that u"(0) = ui + uj2 :At both ends the onvergene to the equilibria is exponentially fast with a rate oforder O(="), hene the assumptions (i) and (ii) of lemma 2.8 are met. To hekassumption (iii) for some interval a < 0 < b, we �x some neighborhoods of uj andui where the onvergene is exponential. Outside this neighborhood u0 = O("�1),hene there exist (�) < 0 < �xi, both of order O("), suh that for � < �u"(�)� uj � Ce�j�j=" for � < �and ui � u"(�) � Ce��=" for � > ��:To prove assumption (iii) of lemma 2.8 we need to alulateZ 0a juj � u"(�)j d� + Z b0 jui � u"(�)j d�= Z �a juj � u"(�)j d� + Z 0� juj � u"(�)j d�+ Z ��0 jui � u"(�)j d� + Z b�� jui � u"(�)j d�= O(")using our estimates on the exponential deay and the size of � and ��. Note thatwe ould similarly prove onvergene even in the weighted spaes L1� with arbitrarylarge exponential weight �.6 DisussionWe have in this paper shown that using methods of lassial singular perturbationtheory an be used to show that several heterolini waves of salar balane laws14



admit a visous pro�le. However, not all heterolini waves admit a visous pro-�le: There are disontinuous waves with more than one disontinuity, whih an beshown not to possess a visous pro�le by a simple appliation of the Jordan urvetheorem. These and all other remaining types of heterolini waves will be treatedin a forthoming paper [?℄.There are many obvious generalizations. For instane, the question of existeneand visous admissibility of heterolini traveling waves an be asked for systems ofbalane laws, too. While the existene part seems to be quite straightforward, theexistene of visous pro�les will lead to singularly perturbed equations with manyfast and many slow variables.Referenes[1℄ A. Majda A. Bourlioux and V. Roytburn. Theoretial and numerial struturefor unstable one-dimensional detonations. SIAM J. Appl. Math., 51:303{343,1991.[2℄ N. Fenihel. Geometri singular perturbation theory for ordinary di�erentialequations. J.Di�.Eq., 31:53{98, 1979.[3℄ J. H�arterih. Equilibrium solutions of visous salar balane laws with a onvexux. Preprint, Freie Universit�at Berlin, to appear in NoDEA, 1997.[4℄ J. H�arterih. Attrators of visous balane laws: Uniform estimates for thedimension. J. Di�. Equ., 142:188{211, 1998.[5℄ C. Masia. Travelling wave solutions for a balane law. Pro. Roy. So. Edin-burgh, 127 A:567{593, 1997.[6℄ E. F. Mishhenko and N. Kh. Rozov. Di�erential Equations with Small Param-eters and Relaxation Osillations. Plenum Press, New York, 1980.[7℄ V. Roytburd P. Colella, A. Majda. Theoretial and numerial struture forreating shok waves. SIAM J. Si. Stat. Comp., 4:1059{1080, 1986.[8℄ F. Takens. Partially hyperboli �xed points. Topology, 10:133{147, 1971.
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