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Abstra
t. Fun
tional di�erential equations with forward and ba
kward delays arise naturally, for instan
e, in thestudy of travelling waves in latti
e equations and as semi-dis
retizations of partial di�erential equations (PDEs) onunbounded domains. Linear fun
tional di�erential equations of mixed type are typi
ally ill-posed, i.e., there exists,in general, no solution to a given initial 
ondition. We prove that Fredholm properties of these equations implythe existen
e of exponential di
hotomies. Exponential di
hotomies 
an be used in dis
retized PDEs and in latti
edi�erential equations to 
onstru
t multi-pulses, to perform Evans-fun
tion type 
al
ulations, and to justify numeri
al
omputations using arti�
ial boundary 
onditions.
1 Introdu
tion
We are interested in linear non-autonomous fun
tional di�erential equations

v0(�) = mXj=�mAj(�)v(� + j); � 2 R (1.1)
of mixed type, where v 2 C n , and Aj(�) are 
ontinuous fun
tions with values in C n�n for jjj � m. Beforewe motivate our interest in this equation and list a number of appli
ations that we have in mind, we dis
ussa few properties of (1.1). The most important feature of (1.1), at least for the purpose of this paper, is thatthe asso
iated initial-value problem is ill-posed. To make this statement more pre
ise, we should �rst explainin what sense we want to solve (1.1): We say that a fun
tion v(�) satis�es (1.1) on an interval J = [a; b℄,where a = 1 and b = 1 are allowed, if v 2 L2lo
([a �m; b +m℄; C n) \H1lo
([a; b℄; C n), and (1.1) is met inL2lo
([a; b℄; C n). The initial-value problem asso
iated with (1.1) is given by

v0(�) = mXj=�mAj(�)v(� + j); vj[�m;m℄ = �; (1.2)
where � is a given fun
tion de�ned on [�m;m℄. Unfortunately, for a given fun
tion �, there is in general nosolution, in the above sense, to (1.2) on any nontrivial interval that 
ontains � = 0. A simple 
ounterexample(see [Rus℄) is provided by the equationv0(�) = v(� � 1) + v(� + 1); vj[�m;m℄ = 1 (1.3)with v 2 C . The only fun
tion that 
ould possibly be a solution of this initial-value problem is given byv(�) = (�1)k for � 2 (2k � 1; 2k + 1℄ with k 2 N ; this fun
tion, however, is not even 
ontinuous. Seekingsolutions of the form v(�) = e��, we see that the 
hara
teristi
 eigenvalue equation asso
iated with (1.3) is� = e�� + e�:
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This equation has solutions � 2 C with Re� arbitrarily large and also admits solutions for whi
h �Re� isarbitrarily large. Therefore, the linear equation (1.3) does not generate a semi
ow on any spa
e that 
ontainsall its eigenfun
tions. This explains why the initial-value problem (1.2) asso
iated with (1.1) is ill-posed. Infa
t, fun
tional di�erential equations of mixed type behave quite similar to ellipti
 PDEs when 
onsideredas initial-value problems. Note also that solving (1.1) forward or ba
kward in the time variable � is equallydiÆ
ult.Sin
e we 
annot solve (1.2) for all �, we should therefore �nd those fun
tions � for whi
h a solution to(1.2) exists on either R+ or R� . In parti
ular, we would expe
t to be able to solve the linear autonomousequation (1.3) for � > 0 for any initial 
ondition � that is a superposition of eigenfun
tions asso
iated withstable eigenvalues (i.e. eigenvalues with negative real part). In fa
t, the resulting solution should de
ay tozero exponentially as � ! 1. Analogously, we should be able to solve (1.3) on R� for any initial 
ondition� that is a superposition of eigenfun
tions asso
iated with unstable eigenvalues (i.e. eigenvalues of positivereal part), and the solution should de
ay exponentially as � ! �1. Using results from [BC℄ about the
hara
teristi
 equation, Rusti
hini [Rus℄ proved these assertions for autonomous equations. His result leadsnaturally to the question how large the 
losure of all eigenfun
tions asso
iated with either stable or unstableeigenvalues is. Indeed, the sum of the resulting 
losed spa
es gives the fun
tion spa
e on whi
h we 
an
onstru
t solutions to (1.1) on either R+ or R� . The diÆ
ulty in determining whether this sum is the entireunderlying fun
tion spa
e, i.e. whether the set of eigenfun
tions is 
omplete, lies in the problem of ex
ludingsolutions that de
ay super-exponentially, so-
alled small solutions. Verduyn Lunel [VL℄ gave 
onditions thatguarantee that the set of eigenfun
tions asso
iated with an autonomous fun
tional di�erential equation is
omplete.In this paper, we address the above issues for non-autonomous fun
tional di�erential equations of mixedtype. The obvious diÆ
ulty is that the spa
es on whi
h we 
an solve (1.1) forward or ba
kward in time willdepend on �. It is not apriori 
lear whi
h spa
es will repla
e the unstable and stable eigenspa
es that wereso useful for autonomous equations. It turns out that the 
orre
t notion in the non-autonomous setup areexponential di
hotomies. An exponential di
hotomy formalizes the idea of solving (1.1) either forward orba
kward in � for initial 
onditions in 
ertain 
omplementary subspa
es even though these subspa
es willdepend on �.To formulate the de�nition of exponential di
hotomies in the present 
ontext, it is 
onvenient to introdu
ethe following notation, whi
h we shall use frequently. For a given fun
tion v : [�m;1) ! C n , we de�nev� : [�m;m℄! C n via v�(�) := v(� + �) for � 2 [�m;m℄.De�nition 1.1 ([PSS℄). Let J = [a; b℄ be R+ , R� or R . Equation (1.1) is said to have an exponentialdi
hotomy on the interval J if there exist positive 
onstants K and �, and a strongly 
ontinuous familyof proje
tions P (�) : L2([�m;m℄; C n) ! L2([�m;m℄; C n) su
h that the following is true for any � 2L2([�m;m℄; C n) and � 2 J .(i) There exists a unique solution v on [�; b℄ of (1.1) su
h that v� = P (�)�. In addition, v� 2 R(P (�)) andkv�kL2([�m;m℄;Cn ) � Ke��j���jk�kL2([�m;m℄;Cn )for all � � � with �, � 2 J .(ii) There exists a unique solution v on [a; �℄ of (1.1) su
h that v� = (id�P (�))�. In addition, v� 2 N(P (�))and kv�kL2([�m;m℄;Cn ) � Ke��j���jk�kL2([�m;m℄;Cn )for all � � � with �, � 2 J .
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Exponential di
hotomies have been shown to exist in ordinary di�erential equations [Cop℄, paraboli
 PDEs[Hen℄ and delay equations [HL℄, where the unstable subspa
e N(P (�)) is always �nite-dimensional, and theinitial-value problem is well-posed. In [PSS℄, the existen
e of exponential di
hotomies has been establishedfor ellipti
 PDEs on unbounded domains. Here, both R(P (�)) and N(P (�)) are in�nite-dimensional, and theinitial-value problem is ill-posed.Asso
iated with (1.1) is the operatorL : H1(R ; C n) �! L2(R ; C n); (Lv)(�) = dvd� (�)� mXj=�mAj(�)v(� + j)
and its formal adjoint L�, de�ned on the same spa
es, given by(L�w)(�) = �dwd� (�)� mXj=�mA�j (� � j)w(� � j):
We need the following weak uniqueness assumption.Hypothesis 1. If v is in the null spa
e of L or the adjoint operator L� su
h that vj[�0�m;�0+m℄ = 0 for some�0, then v vanishes identi
ally.Our main result is the following theorem.Theorem 1. If L is a Fredholm operator and if Hypothesis 1 is met, then (1.1) has exponential di
hotomieson R+ and on R� .A weaker but perhaps more expli
it version of the above theorem is the following statement.Theorem 2. If (1.1) is asymptoti
ally hyperboli
 (see De�nition 2.1 below) and if neither detAm(�) nordetA�m(�) vanish on any open interval, then (1.1) has exponential di
hotomies on R+ and on R� .Analogous results have been shown, independently and simultaneously, in [MPVL℄.The existen
e of exponential di
hotomies on R+ and R� has a number of 
onsequen
es: for instan
e, the nullspa
e and the orthogonal 
omplement of the range of L are isomorphi
 to the spa
es R(P+(0)) \ N(P�(0))and (R(P+(0)) + N(P�(0)))?, respe
tively. In addition, it is possible to 
hara
terize the Fredholm index ofL by the di�eren
e of relative Morse indi
es. We refer to [SS℄ for details.Lastly, we motivate why fun
tional di�erential equations are interesting and outline some appli
ations ofexponential di
hotomies that we intend to pursue in future work. Linear non-autonomous fun
tional dif-ferential equations of mixed type arise in many di�erent problems. We may, for instan
e, be interested intravelling waves of latti
e di�erential equations�tuk = mXj=�m fj(uk+j); k 2 Z;
where uj = uj(t) for j 2 Z. A travelling-wave solution is a fun
tion v(�) su
h that, for some wave speed
 2 R , we have uk(t) = '(k + 
t) for t 2 R and k 2 Z. Upon substituting this expression for uk into theabove latti
e equation, we obtain 
'0(�) = mXj=�m fj('(� + j)); � 2 R ;
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where we set � = k + 
t. The linearization about the wave '(�) is then given by
v0(�) = mXj=�mDfj('(� + j))v(� + j) =: mXj=�mAj(�)v(� + j)whi
h is of the form (1.1) provided the wave speed 
 does not vanish. Note that, if 
 = 0, then the aboveequation is a di�eren
e equation. A se
ond example are semi-dis
retizations of paraboli
 PDEs su
h as�tu = D�2xu+ f(u); u 2 Rn ; x 2 Rthat admit travelling-wave solutions whi
h 
onne
t two, possibly di�erent, homogeneous equilibria. Sin
e su
hequations are often too 
ompli
ated to allow for a 
omplete analysis, numeri
al methods have to be employedto 
ompute travelling waves and to 
ontinue them in parameter spa
e. An important question is then towhi
h extent the numeri
al s
heme is able to reprodu
e travelling waves of the original PDE and whether thestability properties of the wave are retained upon dis
retizing. We shall investigate these issues in a simpli�edsetting: instead of 
onsidering a fully dis
rete numeri
al s
heme, we may study semi-dis
retizations, i.e.,equations where only the spatial derivatives are repla
ed by �nite di�eren
e approximations. The resultinglatti
e equations are of the form�tu(x; t) = mXj=�m�ju(x+ jh; t) + f(u(x; t));where the 
oeÆ
ients �j may depend on the mesh size h. Let � := x+
th , then a travelling wave of the formu(x; t) = '(x+
th ) satis�es the nonlinear fun
tional di�erential equation
h'0(�) = mXj=�m�j'(� + j) + f('(�)):We assume that we have found a solution '(�) of this equation and 
onsider the linearization
hv0(�) = mXj=�m�jv(� + j) + Df('(�))v(�)about the wave. If the wave speed 
 6= 0 is not zero, we obtain a fun
tional di�erential equation of mixedtype as in our �rst example. Exponential di
hotomies provide a useful tool to investigate su
h equations.In a nutshell (see [SS℄ for a more 
omprehensive dis
ussion), exponential di
hotomies allow for a mu
hmore re�ned perturbation analysis 
ompared with, for instan
e, Fredholm properties. One example wheredi
hotomies are useful is in providing 
orre
t 
hoi
es of boundary 
onditions so that (1.1) trun
ated to aninterval (�L;L) with L� 1 is well-posed (see [LPSS℄ and the referen
es therein). Di
hotomies are also usefulin the 
onstru
tion of Evans fun
tions that 
an be used to investigate linear stability of travelling waves (see,for instan
e, [BG,SS,San2℄ and referen
es therein). Lastly, exponential di
hotomies 
an be used to 
onstru
tnew patterns, su
h as periodi
 or multi-hump waves, from a given travelling wave by using, for example,Lin's method [Lin,San1℄. Some of the above issues will be investigated in more detail in a forth
oming arti
le.This paper is organized as follows. In Se
tion 2, we formulate (1.1) as an evolution problem and introdu
eseveral operators relevant to that formulation. In Se
tion 3, we then show the existen
e of exponentialdi
hotomies for the 
orresponding autonomous equation. The analysis is similar to the one given in [Rus℄and uses additional results from [VL℄. Lastly, in Se
tion 4, we 
onsider the non-autonomous equation forwhi
h we prove the existen
e of exponential di
hotomies following the strategy in [SS℄.A
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haft under grantHa 3008/1-1. B. Sandstede was partially supported by the National S
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2 The operators L and T
In this se
tion we des
ribe two linear operators that 
an be asso
iated with the linear fun
tional di�erentialequation v0(�) = mXj=�mAj(�)v(� + j) (2.1)and show how they are related.
2.1 The operators L and L�We de�ne the 
losed and densely de�ned linear operatorL : D(L) = H1(R ; C n) �! L2(R ; C n)(Lv)(�) = dvd� (�)� mXj=�mAj(�)v(� + j)
asso
iated with equation (2.1). The adjoint operator L� of L is given by(L�w)(�) = �dwd� (�)� mXj=�mA�j (� � j)w(� � j):
It is easily 
he
ked that Z 1�1(Lv)(�) � w(�) d� = Z 1�1 v(�) � (L�w)(�) d�for all v; w 2 H1(R ; C n), where we denote the s
alar produ
t in C n by a � b =Pnk=1 akbk for a; b 2 C n . Theoperator L has parti
ularly ni
e properties if the 
oeÆ
ients Aj satisfy a 
ertain hyperboli
ity 
ondition.De�nition 2.1. The linear fun
tional di�erential equation (2.1) is 
alled asymptoti
ally 
onstant if the limitsA�j := lim�!�1Aj(�) exist for all j. The equation is 
alled asymptoti
ally hyperboli
 if it is asymptoti
ally
onstant and if the 
hara
teristi
 equations

det��(�) := det0� mXj=�mA�j e�j � � id1A = 0
asso
iated with the limiting equations at � = �1 have no solutions � on the imaginary axis. If the 
oeÆ
ientsdo not depend on �, then we 
all (2.1) hyperboli
 if det�(�) has no purely imaginary zeros �.The following result is due to Mallet-Paret [MP℄.Proposition 2.1 ([MP℄). If L is asymptoti
ally hyperboli
, then L is a Fredholm operator.
2.2 The operator TA di�erent way of viewing (2.1) is to write it in the formdVd� (�) = A(�)V (�) (2.2)
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where, for ea
h �xed � 2 R , we de�neA(�) : D(A(�)) = Y 1 �! Y; ��a� 7�! � d�d�A0(�)a+P1�jjj�mAj(�)�(j)�with Y := L2([�m;m℄; C n)� C n (2.3)Y 1 := f(�; a) 2 H1([�m;m℄; C n)� C n ; �(0) = ag:The spa
e Y 1 is well-de�ned sin
e H1([�m;m℄; C n) is embedded in C0([�m;m℄; C n). Note also that Y 1 isdense in Y sin
e the set of C1-fun
tions � with �(0) = a is dense in the set of step fun
tions in the L2-norm.The operator A(�) has domain Y 1 and is 
losed for any �xed �. In the 
ase of 
onstant 
oeÆ
ients, we writeA0 instead of A(�).Before we de�ne the operator T , we state the following lemma that we use below to de�ne the domain of T .Lemma 2.1. Using the notation I = [�m;m℄ and (�; �) 2 R � I, we have that L2(R ; L2(I; C n)) = L2(R �I; C n). Furthermore, there is a 
onstant C with the following property. If � 2 L2(R � I; C n) su
h thatthe weak derivative (�� � ��)� 2 L2(R � I; C n) exists, then �(�; k) 2 L2(R ; C n) for every �xed k 2 I and�(0; �) 2 L2(I; C n); in addition, we havek�(0; �)kL2(I;Cn ) + k�(�; k)kL2(R;Cn ) � C(k�kL2(R�I;Cn ) + k(�� � ��)�kL2(R�I;Cn )):Proof. The identity L2(R ; L2(I; C n)) = L2(R�I; C n) is a 
onsequen
e of Fubini's theorem. Upon introdu
ingthe 
oordinates (~�; ~�) = (� + �; �) 2 R � I, we see that �(�; �) 2 L2(R � I; C n) with (�� � ��)�(�; �) 2L2(R � I; C n) if, and only if, ~�(~�; ~�) := �(~� � ~�; ~�) 2 L2(R ; H1(I; C n)). In parti
ular, ~� 2 L2(R ; C0(I; C n)),and we 
on
lude that ~�(�; k) 2 L2(R ; C n) for every �xed k 2 I. Hen
e, �(�; k) = ~�(� + k; k) 2 L2(R ; C n)for �xed k. Lastly, for any su
h �, we also have that �(0; �) = ~�(�; �) exists for almost every � 2 I. It isstraightforward to see that the L2-norm of ~�(�; �) 
an be bounded by the L2(R�I)-norms of � and (�����)�upon using the 
oordinates (~�; ~�).Asso
iated with (2.2) is the operatorT : L2(R ; Y ) �! L2(R ; Y ); V 7�! dVd� (�)�A(�)V (�)

(�; a) 7�! 0�d�d� � d�d� ; dad� (�)�A0(�)a(�)� X1�jjj�mAj(�)[�(�)℄(j)1A
whi
h is 
onsidered as an unbounded operator on L2(R ; Y ) with domainD(T ) = f(�; a) 2 L2(R ; Y ); (�� � ��)� 2 L2(R � I; C n); a 2 H1(R ; C n); [�(�)℄(0) = a(�) 8�g (2.4)where we use the notation I = [�m;m℄. Note that D(T ) is well-de�ned owing to Lemma 2.1. Using againLemma 2.1, it is not diÆ
ult to prove that T is 
losed and densely de�ned.Note that we have L2(R ; Y 1)\H1(R ; Y ) � D(T ). It is tempting to take L2(R ; Y 1)\H1(R ; Y ) as the domainof T . The operator T is, however, not 
losed if 
onsidered with this domain.The following lemma shows how the null spa
es of the operators L and T are related.
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Lemma 2.2. If a fun
tion v 2 H1(R ; C n) satis�es Lv = 0, then V (�) := (vj[��m;�+m℄; v(�)) satis�es V 2D(T ) and T V = 0. Conversely, if V = (�; a) 2 D(T ) satis�es T V = 0, then a 2 H1(R ; C n) satis�es La = 0.In parti
ular, N(L) �= N(T ).Proof. If v 2 H1(R ; C n) is a solution to Lv = 0, then v is in fa
t of 
lass C1. To see this, it suÆ
es toshow that v 2 Ck([�`; `℄; C n) for arbitrarily large numbers k and `. By the Sobolev embedding theorem, vis in C0 on the interval [�`�mk; `+mk℄. Sin
e v satis�es (2.1), it is C1 on the smaller interval [�`� (k �1)m; `+ (k � 1)m℄. Indu
tively one 
an then show that v is indeed of 
lass Ck on [�`; `℄. As a 
onsequen
e,V (�) := (v�; v(�)) is a 
lassi
al solution of (2.2). It remains to 
he
k that V is in the domain of T . Sin
ev 2 H1(R ; C n), we know thatkV kL2(R;Y 1) = ZR Z m�m(jv�(�)j2 + j��v�(�)j2) d� d� + kvkH1(R;Cn )= ZR Z m�m(jv(� + �)j2 + jv0(� + �)j2) d� d� + kvkH1(R;Cn )= (2m+ 1)kvkH1(R;Cn );and we 
on
lude that V is in L2(R ; Y 1). Note that v 2 H1(R ; C n) is in the domain of the derivative whi
his the generator of the shift semigroup on L2(R ; C n). Therefore,dd� v(� + �) = dd� v(� + �):Hen
e V is in H1(R ; Y ) and therefore indeed in L2(R ; Y 1)�H1(R ; Y ) � D(T ).To show the other dire
tion, assume that V = (�; a) 2 D(T ) satis�es T V = 0. It follows from the de�nition ofD(T ) that v(�) = a(�) = [�(�)℄(0) is well-de�ned and v 2 H1(R ; C n). It remains to show that aj[��m;�+m℄ =�(�), i.e., [�(� + �)℄(0) = [�(�)℄(�). As in Lemma 2.1, we use the 
oordinates (~�; ~�) = (� + �; �) 2 R � I andset ~�(~�; ~�) := [�(~� � ~�)℄(~�). From dd�� = dd��, we 
on
lude that ~�(~�; ~�) = ~�(~�; 0) for almost every ~�, andtherefore for every ~� as [�(�)℄(0) is 
ontinuous. Hen
e, [�(� � �)℄(�) = [�(�)℄(0) for every � and �, and we
on
lude that [�(� + �)℄(0) = [�(�)℄(�).
2.3 The adjoint operator T �
We denote by h�; �i the inner produ
t���a�;� b�� := Z 1�1 Z m�m �(�; �) �  (�; �) d� d� + Z 1�1 a(�) � b(�) d�on L2(R ; Y ).Remark 2.1. Let j be an integer with �m � j < m. If  2 L2(R � [j; j + 1℄; C n) with weak derivative(�� � ��) 2 L2(R � (j; j + 1); C n), then  (�; j) and  (�; j + 1) are in L2(R ; C n) by Lemma 2.1. We usethe notation  (�; j+) :=  (�; j) and  (�; (j + 1)�) :=  (�; j + 1). For 
onvenien
e, we also de�ne  (�;m+) = (�;�m�) = 0.Lemma 2.3. The adjoint operator T � is given byT � : L2(R ; Y ) �! L2(R ; Y ); ( ; b) 7�! ��d d� + d d� ;�dbd� �A�0(�)b+  (�; 0�)�  (�; 0+)�
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with D(T �) = f( ; b) 2 L2(R ; Y ); (�� � ��) 2 L2(R � (j; j + 1); C n) 8j with �m � j < m;b 2 H1(R ; C n);  (�; j�)�  (�; j+) = A�j (�)b(�) 8� and 0 < jjj � mg(see Remark 2.1 for the notation). Furthermore, T �( ; b) = 0 if, and only if, L�b = 0.Proof. The domain D(T �) of the adjoint operator T � is given byD(T �) = f( ; b) 2 L2(R ; Y ); 9( �; b�) 2 L2(R ; Y ) : hT (�; a); ( ; b)i = h(�; a); ( �; b�)i 8(�; a) 2 D(T )g;in whi
h 
ase T �( ; b) := ( �; b�). Thus, we 
onsider the equation1Z�1

mZ�m �d�d� � d�d�� �  d� d� + 1Z�1
0�dad� �A0(�)a�Xj 6=0Aj(�)�(�; j)1A � b d� (2.5)

= 1Z�1
mZ�m � �  � d� d� + 1Z�1 a � b� d�:

Upon setting a = 0, so that �(�; 0) = 0, we obtain1Z�1
mZ�m �d�d� � d�d�� �  d� d� � 1Z�1 Xj 6=0Aj(�)�(�; j) � b d� = 1Z�1

mZ�m � �  � d� d�: (2.6)
If we restri
t to test fun
tions � with �(�; j) = 0 for all integers j, we see that  � = (�� � ��) inL2(R � (j; j +1); C n) for all j with �m � j < m. Note that this de�nes  � uniquely in L2(R � [�m;m℄; C n).Using the notation introdu
ed in Remark 2.1 and 
onsidering arbitrary test fun
tions � with �(�; 0) = 0, weobtain 1Z�1

mZ�m �d�d� � d�d�� �  d� d� = 1Z�1
mZ�m � �  � d� d� + mZ�m Xj 6=0 �(�; j) � ( (�; j�)�  (�; j+)) d�;

and 
on
lude that (2.6) is met for all � with �(�; 0) = 0 provided (�; j�)�  (�; j+) = A�j (�)b(�)in L2(R ; C n) for all j 6= 0. We return to (2.5) whi
h, based on the results established above, redu
es toZ m�m �(�; 0) � ( (�; 0�)�  (�; 0+)) d� + Z 1�1�dad� �A0(�)a� � b d� = Z 1�1 a � b� d�and therefore to Z 1�1 dad� � b d� = Z 1�1 a � (b� +A�0(�)b�  (�; 0�) +  (�; 0+)) d�for all a 2 H1(R ; C n), sin
e �(�; 0) = a for every (�; a) 2 D(T ). This shows that b 2 H1(R ; C n) andb� = �dbd� �A�0b+  (�; 0�)�  (�; 0+):Lastly, the proof that the null spa
es of T � and L� are isomorphi
 is quite analogous to the proof ofLemma 2.2. The following argument is the key. Suppose that ( ; b) 2 D(T �) with T �( ; b) = 0. Using that
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(�� � ��) = 0 and that  (�; j�) =  (�; j+) + A�j (�)b(�) for j > 0 with  (�;m�) = A�m(�)b(�), it followsindu
tively that  (�; j�) = mXk=jA�k(� � k + j)b(� � k + j)for j > 0. Hen
e,  (�; 0+) =  (� � 1; 1�) = mXj=0A�j (� � j)b(� � j):Similarly, we obtain  (�; 0�) =  (� + 1;�1+) = � �mXj=0A�j (� � j)b(� � j)and therefore dbd� = �A�0(�)b+  (�; 0�)�  (�; 0+) = �A�0(�)b� mXj=�mA�j (� � j)b(� � j):
We omit the remaining details.As a 
onsequen
e, T is Fredholm whenever L is.Lemma 2.4. If L is Fredholm with index i, then T is Fredholm with the same index i.Proof. On a

ount of Lemma 2.2 and Lemma 2.3, we have dimN(L) = dimN(T ) and dimN(L�) =dimN(T �). To show that the range of T is 
losed, assume that T (�n; �n) ! ( ; �) is a 
onvergent se-quen
e in R(T ). De�ne vn(�) := �n(�)(0) = �n(�) whi
h gives a sequen
e (vn)n2N in H1(R ; C n). Thesequen
e (Lvn) 
onverges in L2(R ; C n) to �. Sin
e R(L) is 
losed, we know that Lvn ! Lv1 for somev1 2 H1(R ; C n). Lemma 2.2 implies that ( ; �) = T (�1; �1) for �1(�) := v1j[��m;�+m℄ and �1 := v1.Thus, R(T ) is 
losed, and we 
on
lude that R(T �) is also 
losed [Kato, Theorem IV.5.13℄. In addition, wethen have 
odimR(L) = 
odimR(T ) sin
e
odimR(L) = dimN(L�) = dimN(T �) = 
odimR(T )by the arguments at the beginning of the proof.
3 The 
onstant-
oeÆ
ient operator A0For given matri
es Aj with jjj � m, 
onsider the 
onstant-
oeÆ
ient operatorA0 : Y �! Y; ��a� 7�! � d�d�A0a+P1�jjj�mAj�(j)� (3.1)whi
h is densely de�ned with domain D(A0) = Y 1 (see (2.3)). The 
hara
teristi
 equation asso
iated withA0 is det�(�) = 0 where �(�) := mXj=�mAjej� � � id :We are interested in proving the existen
e of exponential di
hotomies for the equationdVd� = A0V;
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sin
e this equation with 
onstant 
oeÆ
ients serves as a referen
e equation for the more general 
ase that we
onsider in Se
tion 4 below. To prove the existen
e of exponential di
hotomies for equations with 
onstant
oeÆ
ients, we �rst show that A0 has only point spe
trum and provide estimates for its resolvent. Afterwards,we establish in Se
tion 3.2 the 
ompleteness of eigenfun
tions and pro
eed then in Se
tion 3.3 with the
onstru
tion of exponential di
hotomies in a fashion similar to Rusti
hini [Rus℄ who proved the existen
e ofdi
hotomies for slightly di�erent operators in C0([�m;m℄; C n).
3.1 Spe
trum, and resolvent estimatesWe begin by establishing that the spe
trum of A0 
onsists entirely of eigenvalues.Lemma 3.1. The operator A0 has only point spe
trum. Moreover, � 2 C is in the spe
trum of A0 if, andonly if, det�(�) = 0. If � is an eigenvalue, the 
orresponding eigenfun
tion is of the form (�; a) with a 2 C nand �(�) = ae��.Proof. To determine the spe
trum and the resolvent of A0 we have to dis
uss the equation(A0 � �)��a� = � b�where  2 L2([�m;m℄; C n) and b 2 C n . This equation is equivalent tod�d� � �� =  (A0 � �)a+ X1�jjj�mAj�(j) = b:
Solving the �rst equation by the variations-of-
onstants formula shows that�(�) = e���(0) + Z �0 e(���)� (�) d�:Substituting this expression for � into the se
ond equation and exploiting that �(0) = a, we get�(�)a = b�Xj 6=0Aj Z j0 e(j��)� (�) d�:
Therefore, for any � with det�(�) 6= 0, i.e., for any � that is not in the point spe
trum of A0, the resolventof A0 is given by

�(�) = e���(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A� Z �0 e(���)� (�) d� (3.2)
a = �(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A :

For later use, we derive estimates for the resolvent of A0. Rusti
hini [Rus℄ proved similar estimates for linearoperators asso
iated with 
onstant-
oeÆ
ient equations 
onsidered in C0([�m;m℄; C n).
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Lemma 3.2. Fix a 
onstant � > 0. There is then a 
onstant M > 0 su
h that, for any � with det�(�) 6= 0and jRe�j > �, we have k(A0 � �)�1kL(Y ) �M �emjRe�jjRe�j + k�(�)�1ke2mjRe�jjRe�j � :Proof. We have shown that the equation(A0 � �)��a� = � b� 2 Yhas the solution

�(�) = e���(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A+ Z �0 e(���)� (�) d�
a = �(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A

whenever det�(�) 6= 0 with �(�) =Pmj=�mAjej� � � id. Note that����Z y0 e2(y��) Re� d�����1=2 � ejyRe�jp2jRe�j :Using this inequality in 
ombination with H�older's inequality, we �nd that
jaj � k�(�)�1k0�jbj+Xj 6=0 kAjk ejj Re�jp2jRe�j k kL21A

� k�(�)�1k jbj+M1 emjRe�jp2jRe�j k kL2!
� k�(�)�1k 1 +M1 emjRe�jp2jRe�j!



� b�



Ywhere M1 := 2m max�m�j�m kAjk:The same estimate appears when we bound the L2-norm of �:

k�kL2 � ke��kL2k�(�)�1k 1 +M1 emjRe�jp2jRe�j!



� b�



Y + 




 ej�Re�jp2jRe�j




L2 k kL2
� emjRe�jp2jRe�j k�(�)�1k 1 +M1 emjRe�jp2jRe�j!



� b�



Y + emjRe�jjRe�j k kL2 :

For jRe�j > �, this implies the desired inequality.Using results of Bellman and Cooke [BC℄, Rusti
hini demonstrated the following statement on the lo
ationof zeros of �(�).Lemma 3.3 ([Rus, Lemma 3.2℄). Assume that det(A�mAm) 6= 0, then the following is true.
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(i) For any � > 0, there exists a 
onstant M(�) su
h that j Im�j � M(�) for any zero � of �(�) withjRe�j � �. In parti
ular, if there are no zeros of �(�) on the imaginary axis, then there is a stripf�; jRe�j � �g that 
ontains no eigenvalues of A0.(ii) There exists a positive 
onstant ~� su
h that all zeros of � are 
ontained in the union W+ [W� whereW� := �� 2 C ; jRe�j > �; jRe(�� 1m log �)j � ~�� :(iii) There exists a 
onstant C > 0 su
h thatk�(�)�1k � Ce�mjRe�jalong the 
urves jRe(�� 1m log�)j = ~�, i.e., along 
urves where j�je�mjRe�j is 
onstant.

3.2 CompletenessAn important property, whi
h is not at all obvious for non-selfadjoint operators su
h as A0, is 
ompleteness,i.e., the property that the 
losure of the linear spa
e spanned by the generalized eigenfun
tions of A0 is theentire underlying fun
tion spa
e Y . We demonstrate that A0 is 
omplete provided that the matri
es A�mand Am are not singular.Theorem 3. Consider the operator A0 de�ned in (3.1). Assume that A0 has no spe
trum on the imaginaryaxis and that det(A�mAm) 6= 0. Let Eu be the 
losure in Y of the sum of generalized eigenspa
es to alleigenvalues with positive real part. Similarly, let Es be the 
losure of the sum of the generalized eigenspa
e
orresponding to eigenvalues with negative real part. We then have Eu � Es = Y .Remark 3.1. An analogous statement holds if the spe
trum has a 
enter part, i.e., in the situation thatthere are eigenvalues on the imaginary axis.Our proof of Theorem 3 is based on a 
hara
terization of 
ompleteness given by Verduyn Lunel in [VL℄ (seeLemma 3.8 below). We begin by re
alling some fa
ts from 
omplex analysis.De�nition 3.1. LetX be a 
omplex Bana
h spa
e. An entire fun
tion F : C ! X is said to be of exponentialtype E(F ) if lim supr!1 1r log max0���2� kF (rei�)k =: E(F ) <1exists.In the following proposition, we summarize some properties of entire fun
tions of exponential type.Lemma 3.4. Let F1; F2 : C ! C be entire fun
tions of exponential type whi
h are polynomially bounded inthe 
losed right half-plane Re� � 0. We then have E(F1F2) = E(F1) + E(F2). If the quotient F1=F2 is anentire fun
tion, then E(F1=F2) = E(F1)� E(F2).Note that the same holds for entire fun
tions whi
h are bounded in the left half-plane. This symmetry willallow us later to relax some 
onditions. The following lemma will prove useful below.
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Lemma 3.5. If F : C ! C is an entire fun
tion of exponential type that satis�eslim supr!1 1r log jF (�ir)j = 0 and jF (�)j �M for � 2 R ;then F is 
onstant.
Proof. The assertion is a 
onsequen
e of [Boas, Thm. 6.2.4℄, whi
h is a theorem by DuÆn and S
hae�er[DS℄, applied separately to F (�) and F (��) with � restri
ted to the upper half-plane in 
onjun
tion withLiouville's Theorem.
Using the identity �(�)�1 = 1det�(�) 
of�(�);where 
of�(�) is the matrix of 
ofa
tors, we 
an rewrite the solution of the equation(A0 � �)��a� = � b�given in (3.2) as

�(�) = e��det�(�) 
of�(�)0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A+ Z �0 e(���)� (�) d� (3.3)
a = 
of�(�)det�(�) 0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A :

It is not hard to see that some of the fun
tions involved in the above expression are entire fun
tions ofexponential type.
Lemma 3.6. The exponential type of det�(�) is mn if, and only if, detA�m 6= 0 or detAm 6= 0. In this
ase the exponential type of ea
h entry of the 
ofa
tor matrix 
of�(�) is m(n� 1).Moreover, if detA�m 6= 0, then e�mn� det�(�) is of exponential type 2mn and bounded in the right half-plane, while the entries of e�m(n�1)� 
of�(�) are bounded in the right half-plane and have exponential type2m(n� 1).Similarly, if detAm 6= 0, then emn� det�(�) is of exponential type 2mn and bounded in the left half-plane,while the entries of em(n�1)� 
of�(�) are bounded in the left half-plane and have exponential type 2m(n�1).
Proof. The term det�(�) is a linear 
ombination of terms of the form �qej� where 0 � q � n and�mn � j � mn. This implies that the exponential type of det�(�) 
annot be greater than mn. The
oeÆ
ient of emn� is detAm, while the 
oeÆ
ient of e�mn� is detA�m. If at least one of those 
oeÆ
ients isnonzero, then the de�nition of exponential type with � restri
ted to the real line shows that E(det�) = mn.On the other hand, the exponential type is stri
tly less than mn if both detA�m and detAm vanish. Similararguments apply to the entries of 
of�(�). Note that, if detA�m 6= 0, then ea
h sub-determinant of A�mdoes not vanish either. The remaining estimates 
an be obtained by 
ompletely analogous arguments.
In view of Lemma 3.5 it is also important to 
ontrol the behavior of the resolvent along the imaginary axis.
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Lemma 3.7. We have the following asymptoti
 behavior on the imaginary axis:limr!1 det�(�ir)rn = 1limr!1 (
of�(�ir))kkrn�1 = 1 for k = 1; 2; : : : ; nlimr!1 (
of�(�ir))klrn�2 = (�1)k+l for k 6= l:Proof. These relations are simple 
onsequen
es of the fa
t that along the imaginary axis the polynomialterms dominate the exponential terms.We use the following 
hara
terization of non-
ompleteness.Lemma 3.8 ([VL, Lemma 3.2℄). If B : X ! X is an unbounded operator with meromorphi
 resolvent,then the system of eigenfun
tions and generalized eigenfun
tions is not 
omplete if, and only if, there existsa y� 2 X� with y� 6= 0 su
h that the fun
tion� 7�! hy�; (B � �)�1xiis entire for every �xed x 2 X.We will show that no su
h y� exists in our situation. The expli
it form of the resolvent (A0 � �)�1 showsthat it is indeed a meromorphi
 fun
tion so that Lemma 3.8 applies to A0.Proof of Theorem 3. Assume that the system of eigenve
tors and generalized eigenve
tors of A0 isnot 
omplete. Applying Lemma 3.8 and the Riesz representation theorem to (3.3), we see that there are(�; a) 2 Y su
h that, for every �xed ( ; b) 2 Y , the fun
tion���a�; (A0 � �)�1� b��= a � 1det�(�) 
of�(�)0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A

+ Z m�m �(�) � 1det�(�) 
of�(�)0�e��b�Xj 6=0Aj Z j0 e(�+j��)� (�) d�1A d�
+ Z m�m �(�) � �Z �0 e(���)� (�) d�� d�is entire. In parti
ular, this is true for  = 0 for whi
h the above expression redu
es to���a�; (A0 � �)�1�0b�� = a � 1det�(�) 
of�(�)b+ Z m�m �(�) � 1det�(�) 
of�(�)e��b d�:If the right-hand side de�nes an entire fun
tion for all b 2 C n , then ea
h 
omponent Fk(�) ofF (�) := a � 
of�(�)det�(�) + Z m�m �(�) � 
of�(�)det�(�)e�� d�is an entire fun
tion. We prove that this implies that � = 0 whi
h leads to a 
ontradi
tion.We �rst show that ea
h Fk(�) satis�es the assumptions of Lemma 3.5 with 
 = 0. Note that, sin
e detA�m 6=0, by Lemma 3.6 both the numerator and the denominator of e�mn�Fk(�) are entire fun
tions of exponential
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type 2mn whi
h are bounded in the right half-plane. Assuming that Fk is itself entire, we 
an 
on
ludefrom Lemma 3.4 that Fk is of exponential type 0. Regarding the behavior of Fk along the imaginary axis,Lemma 3.7 shows that Fk(ir) 
onverges to 0 for r ! �1. This implies dire
tly the weaker statementlim supr!1 1r log jFk(�ir)j � 0whi
h is used in Lemma 3.5. The last hypothesis that needs to be 
he
ked is the boundedness on the realaxis. Sin
e by assumption F is an entire fun
tion, we only need to be 
on
erned about the behavior for�! �1. Sin
e detA�m 6= 0 and detAm 6= 0, we 
on
lude thatj det�(�)j � Cemnj�jfor some 
onstant C and j�j suÆ
iently large. On the other hand, 
of�(�) is of exponential type m(n� 1),when
e we 
an estimate����Z m�m �(�) � 
of�(�)e��b d����� � ����Z m�m �(�)em(n�1)j�jemj�jb d�����whi
h implies that Fk(�) is uniformly bounded for large j�j.Hen
e, Lemma 3.5 implies that ea
h Fk is 
onstant. Using the behavior along the imaginary axis, we 
on
ludeimmediately that this 
onstant is zero so thatFk(�) det�(�) = a � 
of�(�) + Z m�m �(�) � 
of�(�)e�� d� = 0:This implies that �a = Z m�m �(�)e�� d� = Z 2m0 �(� �m)em�e�� d�is a 
onstant independent of �. In other words, if we extend � to R by setting �(�) = 0 for j�j > m,then the 
onstant fun
tion �a would be the Lapla
e transform of the fun
tion �(� � m)em� whi
h is inL2 and has 
ompa
t support. However, as the Lapla
e of a fun
tion with 
ompa
t support, �a would haveto be integrable along ea
h line Re� = 
onst. This would imply a = 0, and by inverse Lapla
e transform� = 0. Therefore, by Lemma 3.8, the operator A0 has a 
omplete system of eigenve
tors and generalizedeigenve
tors.
3.3 Exponential di
hotomiesWe are now in a position to establish the existen
e of exponential di
hotomies for the equationdVd� = A0V (3.4)with 
onstant 
oeÆ
ients. We assume that A0 is hyperboli
, i.e., that �(�) 6= 0 for all � 2 iR . Re
all fromLemma 3.3 that the distan
e from the spe
trum of A0 to the imaginary axis is stri
tly positive. Let Es andEu be the 
losure in Y of the generalized eigenspa
es asso
iated with all eigenvalues of A0 that have negativeand positive real part, respe
tively.Proposition 3.1. Assume that det(A�mAm) 6= 0, and 
hoose � > 0 su
h that � is smaller than the distan
efrom the spe
trum of A0 to the imaginary axis. There exists then a strongly 
ontinuous semigroup �s(�) :Es ! Es de�ned for � � 0 and a 
onstant K su
h that �s(0) = id andk�s(�)kL(Y ) � Ke���:
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For any V0 2 Es \ Y 1, the fun
tion V (�) = �s(�)V0 is di�erentiable for � > 0 and satis�es (3.4) withV (0) = V0. Analogous statements hold for �u(�) : Eu ! Eu de�ned for � � 0.
Note that, for V0 2 Es, the fun
tion V (�) = �s(�)V0 is a mild solution of (3.4), i.e., it satis�es the integralequation V (�) = V0 + Z �0 A0V (�) d�for all � � 0.
Proof. It suÆ
es to prove the statement for �s(�). We begin by 
onstru
ting semigroups on the subspa
eEs whi
h is de�ned as the sum of all generalized eigenspa
es of eigenvalues � of A0 with Re� < 0.We 
onstru
t the semigroup �s via an integral representation. We begin by 
hoosing 
urves �1 and �2 in Cby �1 := �� 2 C ; Re��+ 1m log �� = ~�; Im� < 0;Re� � ����2 := �� 2 C ; Re��+ 1m log �� = ~�; Im� > 0;Re� � ���where ~� has been de�ned in Lemma 3.3. Note that �1 and �2 
an be parametrized by � = x+ iy(x) wherey0(x) = O(e�mx) as x ! �1 (see [Rus, p. 140℄). Lastly, the 
urve �3 joins �1 and �2 along the lineRe� = ��. By Lemma 3.3, the 
urve � := �1[�2[�3 lies to the right of the negative part of the spe
trum.For V0 2 Es and �0 > 2m, we have



 12�i Z�1 e��0(A0 � �)�1V0 d�



Y � 12� Z�1 e�0 Re�k(A0 � �)�1k d� kV0kY� 12� Z�1 e�0 Re�M �emjRe�jjRe�j + Ce�mjRe�j e2mjRe�jjRe�j � d� kV0kY� 12� Z 0�1 e�0xe�mxM 1 + Cjxj e�mx dx kV0kY= K(�0)kV0kYwhere we used the above parametrization of �1 to evaluate the line integral. Note that the last integral
onverges for �0 > 2m. Sin
e the same 
al
ulation applies to the integral along �2, we 
an de�ne an operator�s(�) on Es for � � �0 > 2m by �s(�)V0 := 12�i Z� e��(A0 � �)�1V0 d�: (3.5)In parti
ular, for � � �0 > 2m, we havek�s(�)V0kY � 



 12�i Z� e��(A0 � �)�1V0 d�



 � e���K(�0)e��0kV0kY (3.6)for some K(�0) � 1, whi
h gives exponential de
ay for � � �0 > 2m. Note that, for V0 2 Es\Y 1, the fun
tionV (�) = �s(�)V0 satis�es (3.4) for � > 2m with V (0) = V0 (see [Pazy℄).Next, we de�ne a �ltration of Es by �nite-dimensional generalized eigenspa
es Esj � Y 1 with j 2 N (see[Rus℄). For any V0 2 Esj , we 
an readily solve (3.4) on R+ and get a solution V (�) that is di�erentiable
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with values in Y . On the interval [�0;1), the solution V (�) 
oin
ides with �s(�)V0 as de�ned in (3.5). Inparti
ular, with V0 = (�; �(0)) and V (�) = (v�; v(�)), the fun
tion v(�) is a solution of

v0(�) = mXj=�mAjv(� + j) (3.7)
for � � 0 with vj[�m;m℄ = �. Hen
e, using (3.6), we obtain the L2-estimatekvkL2([m+�;3m+�℄) � K(2m+ �)k�kL2 (3.8)for any 0 < � < 1=2. Our goal is to estimate the solution v in L2([m;m+ �℄) in terms of the L2-norm of theinitial 
ondition �. Let C1 be a bound for the norms of the matri
es Aj . Using that v satis�es (3.7), we thenget the H1-estimate kvkH1([m+�;m+2�℄) � mC1(1 +K(2m+ �))k�kL2 ;and �nally jv(m+ �)j � C2(1 +K(2m+ �))k�kL2 (3.9)by Sobolev's embedding theorem for some C2 that may depend on �. Multiplying (3.7) by v(�), we obtainv0(�) � v(�) = A0v(�) � v(�) +Xj 6=0Ajv(� + j) � v(�)
and therefore 12 dd� jv(�)j2 � C1jv(�)j2 +Xj 6=0C1jv(� + j)j jv(�)j � C3jv(�)j2 +Xj 6=0C1jv(� + j)j2:
Integrating this inequality over [�;m+ �℄ with � 2 [m;m+ �℄ and � � 1=2, we obtain

jv(�)j2 � jv(m+ �)j2 + Z m+�� 0�C3jv(�)j2 +Xj 6=0C1jv(� + j)j21A d�
� jv(m+ �)j2 + Z m+�� 0�C3jv(�)j2 +Xj<0C1j�(� + j)j21A d� + C4k�k2L2
� C(�)k�k2 + Z m+�� C3jv(�)j2 d�where we used that v(�+j) = �(�+j) for j < 0 and exploited the estimates (3.8) and (3.9). Using Gronwall'sinequality, we get kvk2L2([m;m+�℄) � ~Ck�k2Y : (3.10)In summary, from (3.6) and (3.10), we �nally 
on
lude thatkv�kL2([�m;m℄) � Kk�kY (3.11)for all � � 0, where v(�) is the solution of (3.7) with initial 
ondition � asso
iated with a given V0 =(�; �(0)) 2 Esj . Note that the 
onstant K that appears in (3.11) does not depend on j (and not on V0). Inaddition, we have kv�kH1([�m;m℄) � CKe���k�kY (3.12)for � � m by using (3.7) and (3.6).
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Having established these uniform estimates on Esj , it remains to extend the semigroup �s(�) from Esj tothe 
losure Es, while maintaining the estimates (3.6). This 
an be done in a straightforward manner byapproximating initial 
onditions in Es by elements in Esj in the L2-sense and using 
ompa
tness propertiesimplied by the H1-estimate (3.12) on any given bounded interval in �. We omit the details as they are similar(and in fa
t easier) than those given in [Rus℄.
4 Fredholm properties of T imply the existen
e of di
hotomies
In this se
tion, we prove that the non-autonomous equation (2.1) has an exponential di
hotomy. The argu-ments are similar to those used in [SS℄ in the 
ase of modulated travelling waves. For this reason, we givean outline of the proof and provide details only where the arguments for forward-ba
kward delay equationsare di�erent. The main strategy is to 
ompare the non-autonomous operator with the 
onstant-
oeÆ
ientoperator for whi
h the existen
e of exponential di
hotomies has been shown in the previous se
tion.After extending the operator T in Se
tion 4.1 to a larger fun
tion spa
e, we prove Theorem 1 in Se
tions 4.2and 4.3, and Theorem 2 in Se
tion 4.4.
4.1 The extension S of TWe 
onsider the operator T : L2(R ; Y ) �! L2(R ; Y ); V 7�! dVd� �AVwith domain D(T ) given in (2.4). The adjoint T � of T is also densely de�ned in L2(R ; Y ) with domain D(T �)given in Lemma 2.3. Alternatively, we 
an 
onsider T � as a bounded operator, denoted by 
T �, from D(T �)to L2(R ; Y ). Here, we 
onsider D(T �) as a Bana
h spa
e equipped with the graph norm. We denote by Sthe adjoint operator �
T ��� of 
T �, so thatS : L2(R ; Y ) �! D(T �)�:Note that S restri
ted to D(T ) 
oin
ides with T . We remark that the notation (T �)ad instead of S is usedin [SS℄.By de�nition, the equation SU = G means that (T �W;U) = (W;G) for all W 2 D(T �). The bra
kets denotethe duality pairing of D(T �) and D(T �)�. In other words, SU = G is a short
ut for� Z 1�1h��W +A(�)�W;UiY d� = Z 1�1hW;GiY d�; 8W 2 D(T �)where the s
alar produ
ts h�; �iY are interpreted in the sense of distributions.
Lemma 4.1. Assume that T is Fredholm, then S is also Fredholm with the same index. Furthermore, N(S) =N(T ).
Proof. The statements are 
onsequen
es of [Kato, Se
tion III x5.5 on p. 168℄ and [Kato, Se
tion IV x5.3 onp. 236℄.
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4.2 T is invertibleIt is 
onvenient to 
onsider �rst the 
ase that T is invertible before pro
eeding to the more general 
ase thatT is only Fredholm.Lemma 4.2 ([SS, Lemma 5.2℄). Assume that T is invertible. For any �0 2 R and any G0 2 Y , de�neG(�; �) := G0(�)Æ(� � �0) where Æ denotes the Æ-distribution. There is then a unique solution U 2 L2(R ; Y )of the equation SU = G:The restri
tions of U to (�1; �0℄ and [�0;+1) belong to C0((�1; �0℄; Y ) and C0([�0;+1); Y ), respe
tively.The limits U+(�0) := lim�&�0 U(�) and U�(�0) := lim�%�0 U(�) exist and satisfy the jump 
ondition U+(�0)�U�(�0) = G0. In addition, we have the estimatekUkL1(R;Y ) + kUkL2(R;Y ) � CjG0jYwhere the 
onstant C is independent of G0.Proof. Note that the equation SU = G is well-de�ned sin
e G 2 D(T )� by Lemma 2.1. Without loss ofgenerality, let �0 = 0.The proof is based on the 
omparison with an appropriate referen
e equation. Choose matri
es Arefj for0 � jjj � m su
h that det(Aref�mArefm ) 6= 0 and su
h that det�(�) 6= 0 for all � 2 iR where

�(�) = mXj=�mArefj ej� � � id :
De�ne Aref : ��a� 7�! � d�d�Aref0 a+P1�jjj�mArefj �(j)�so that A0 is hyperboli
. We write T as T = Tref + Bwhere Tref = dd� �Aref andB(�) = Aref �A(�) : ��a� 7�! � 0(Aref0 �A0(�))a+P1�jjj�m(Arefj �Aj(�))�(j)�:The strategy is to �rst seek a solution V 2 L2(R ; Y ) of the referen
e equation SrefV = G and afterwards a
ontinuous solution ~U that satis�es S ~U = �BV . The sum U := V + ~U then satis�esSU = S(V + ~U) = SrefV + BV + S ~U = Gas desired.We begin by solving the equation SrefV = � dd� �Aref�V = G:A

ording to Proposition 3.1, the equation dVd� = ArefV (4.1)
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has exponential di
hotomies. Let Pref and (id�Pref) be the 
orresponding proje
tions su
h that (4.1) gener-ates exponentially de
aying C0-semigroups on both R(Pref) and R(id�Pref). For any G0 2 Y 1, de�ne

V (�) := ( eArefPref�PrefG0 for � > 0�eAref(id�Pref)�(id�Pref)G0 for � < 0:By standard semigroup theory, the fun
tion V is di�erentiable for � 6= 0 and satis�es (4.1) for � 6= 0. Fur-thermore, the limits V 0+ := lim�&0 V (�) and V 0� := lim�%0 V (�) exist. For any test fun
tion � 2 C10 (R ; Y 1),we obtain� Z 1�1�V; d�d� +A�ref��Y d�= � Z 10 �eArefPref�PrefG0; d�d� +A�ref��Y d� + Z 0�1�eAref(id�Pref)�PrefG0; d�d� +A�ref��Y d�= 
eArefPref�PrefG0; ��Y ����=0 + DeAref(id�Pref)�PrefG0; �EY ����=0= V 0+ � V 0� = hG0; �(0)iY = Z 1�1hG0Æ(�); �iY d�using integration by parts and the fa
t that V satis�es (4.1) for � 6= 0. This shows that, for G0 2 Y 1, Vsatis�es SrefV = G. For G0 2 Y , we de�ne a solution V 2 L2(R ; Y ) of SrefV = G by approximating G0 bya sequen
e in Y 1 and using the strong 
ontinuity of the semigroup (see [SS, Se
tion 5.3.1℄ for details).In the next step, we solve S ~U = �BV (4.2)that involves the solution V of the referen
e equation. The right-hand side �BV of (4.2) is in L2(R ; Y ) sin
eits �rst 
omponent vanishes 
ompletely, while the se
ond 
omponent is 
ontinuous ex
ept at � = 0 and de
aysexponentially as � ! �1. Sin
e S restri
ted to D(T ) 
oin
ides with T , and sin
e both operators are invertibleby assumption and by Lemma 4.1, we 
an solve (4.2) and obtain a unique solution ~U = (~�; ~a) 2 D(T ). Usingthe fa
t that the �rst 
omponent of �BV vanishes, we see that ~�(�; �) = ~a(� + �) with ~a 2 H1(R ; C n). Inparti
ular, ~U is 
ontinuous on R with values in Y andk ~UkH1(R;Y ) + k ~UkL2(R;Y 1) � CkV kL2(R;Y ):Lastly, as mentioned earlier, the sum U = ~U+V satis�es all the properties stated in the lemma. In parti
ular,it is 
ontinuous on R� and R+ , and the jump at � = 0 is exa
tly the jump of V at � = 0. Therefore,U+(0)� U�(0) = G0.The previous lemma allows us to de�ne a 
ontinuous, inje
tive map�(�0) : Y �! Y � Y; G0 7�! (U+(�0); U�(�0)):Using the 
anoni
al proje
tions Pi(�0) : Y � Y ! Y de�ned by Pi(�0)(U1; U2) = Ui for i = 1; 2, we have therelation G0 = P1(�0)�(�0)G0 � P2(�0)�(�0)G0for any G0 2 Y .Lemma 4.3 ([SS, Lemma 5.3℄). Suppose that T is invertible. The images R(Pi(�0)�(�0)) are then 
losedsubspa
es, and we have R(P1(�0)�(�0))� R(P2(�0)�(�0)) = Y for ea
h �0 2 R .
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We 
an then de�ne a family of proje
tions P (�) su
h that R(P (�)) = R(P1(�)�(�)) and N(P (�)) =R(P2(�)�(�)). Note that, for any U+ 2 R(P (�0)), there exists a unique strong solution V s(�) of (2.2),de�ned for � > �0, with initial value V s(�0) = U+. Analogously, for any U� 2 N(P (�0)), there exists a uniquestrong solution V u(�) of (2.2), de�ned for � < �0, with initial value V u(�0) = U�. This proje
tions de�ne thedesired exponential di
hotomies.
Lemma 4.4 ([SS, Lemma 5.5℄). The family P (�) of proje
tions together with the solutions V s and V ude�nes an exponential di
hotomy on R .
4.3 T is FredholmAgain, we 
losely follow the proof given in [SS℄ for paraboli
 equations in 
ylinders. Sin
e most of the detailsare identi
al, save for notation, we 
omment only on those two parts of the proof where the arguments in[SS, Se
tion 5.3.2℄ need to be modi�ed. First, the proof given in [SS, Se
tion 5.3.2℄ uses the fa
t that thenull spa
es of T and S 
oin
ide. We proved in Lemma 4.1 that this is always the 
ase. Se
ond, the followingweak uniqueness 
ondition (U1) has been used in [SS℄.
(U1) If V is in the null spa
e of T or the adjoint operator T � and V (�0) = 0 for some �0, then V vanishesidenti
ally.
This assumption is, however, equivalent to Hypothesis 1 on a

ount of Lemma 2.2. Now that the abovetwo properties are established, the abstra
t proof in [SS℄ applies to our situation and gives the existen
e ofexponential di
hotomies. This 
ompletes the proof of Theorem 1 on the existen
e of exponential di
hotomies.
4.4 Proof of Theorem 2It suÆ
es to show that the hypotheses of Theorem 2 imply the hypotheses of Theorem 1 whi
h we provedin the last se
tion. Proposition 2.1 whi
h is due to Mallet-Paret [MP℄ implies that L is Fredholm providedit is asymptoti
ally hyperboli
. We established in Lemma 2.4 that T is Fredholm whenever L is. It thereforeremains to demonstrate that Hypothesis 1 is a 
onsequen
e of the following Hypothesis 1 whi
h we assumedin Theorem 2.
Hypothesis 1. Assume that neither detAm(�) nor detA�m(�) vanish on any open interval.
To establish that Hypothesis 1 follows from Hypothesis 1, suppose that a 2 N(L) su
h that a(�) vanishesidenti
ally on the interval [�0 �m; �0 +m℄. We want to prove that this implies that a(�) = 0 for all � 2 Rand argue by 
ontradi
tion. Note that, by Lemma 2.2, a is a 
lassi
al solution of (2.1). Thus, without lossof generality, we assume that �1 := inff� � �0; a(� +m) 6= 0gexists and is �nite. Sin
e a(� + j) = 0 for jjj � m and �0 � � � �1, we havea0(�) = mXj=�mAj(�)a(� + j) = Am(�)a(� +m)
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for all � 2 [�1; �1 + 1). By the de�nition of �1, there exists an open and non-empty interval J � (�1; �1 + 1)su
h that a(� +m) 6= 0 for any � 2 J . Thus, we 
on
lude thata0(�) = Am(�)a(� +m) 6= 0for some � 2 J , sin
e detAm(�) does not vanish identi
ally on J by Hypothesis 1. This 
ontradi
ts thede�nition of �1.
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