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Abstract. Functional differential equations with forward and backward delays arise naturally, for instance, in the
study of travelling waves in lattice equations and as semi-discretizations of partial differential equations (PDEs) on
unbounded domains. Linear functional differential equations of mixed type are typically ill-posed, i.e., there exists,
in general, no solution to a given initial condition. We prove that Fredholm properties of these equations imply
the existence of exponential dichotomies. Exponential dichotomies can be used in discretized PDEs and in lattice
differential equations to construct multi-pulses, to perform Evans-function type calculations, and to justify numerical

computations using artificial boundary conditions.

1 Introduction

We are interested in linear non-autonomous functional differential equations

V€)= D0 A(©uE+)),  EER (11)

j=-m

of mixed type, where v € C”, and A,(&) are continuous functions with values in C**" for |j| < m. Before
we motivate our interest in this equation and list a number of applications that we have in mind, we discuss
a few properties of (1.1). The most important feature of (1.1), at least for the purpose of this paper, is that
the associated initial-value problem is ill-posed. To make this statement more precise, we should first explain
in what sense we want to solve (1.1): We say that a function v(¢§) satisfies (1.1) on an interval J = [a,b],

where a = co and b = oo are allowed, if v € LZ ([a — m,b+ m],C") N HL ([a,],C"), and (1.1) is met in
2

loc

([a, b],C™). The initial-value problem associated with (1.1) is given by
’Ul(g) = Z AJ(£)U(£ +])’ v‘[—m,m] = ¢a (12)
j=—m

where ¢ is a given function defined on [—m, m]. Unfortunately, for a given function ¢, there is in general no
solution, in the above sense, to (1.2) on any nontrivial interval that contains ¢ = 0. A simple counterexample
(see [Rus]) is provided by the equation

V(€) =v(€ 1) +v(€+1), V| _mm) =1 (1.3)

with v € C. The only function that could possibly be a solution of this initial-value problem is given by
v(€) = (=1)* for € € (2k — 1,2k + 1] with k € N; this function, however, is not even continuous. Seeking

solutions of the form v(¢) = e*¢, we see that the characteristic eigenvalue equation associated with (1.3) is

A=e "+ et
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This equation has solutions A € C with Re A arbitrarily large and also admits solutions for which —Re ) is
arbitrarily large. Therefore, the linear equation (1.3) does not generate a semiflow on any space that contains
all its eigenfunctions. This explains why the initial-value problem (1.2) associated with (1.1) is ill-posed. In
fact, functional differential equations of mixed type behave quite similar to elliptic PDEs when considered
as initial-value problems. Note also that solving (1.1) forward or backward in the time variable £ is equally
difficult.

Since we cannot solve (1.2) for all ¢, we should therefore find those functions ¢ for which a solution to
(1.2) exists on either RT or R™. In particular, we would expect to be able to solve the linear autonomous
equation (1.3) for & > 0 for any initial condition ¢ that is a superposition of eigenfunctions associated with
stable eigenvalues (i.e. eigenvalues with negative real part). In fact, the resulting solution should decay to
zero exponentially as £ — co. Analogously, we should be able to solve (1.3) on R~ for any initial condition
¢ that is a superposition of eigenfunctions associated with unstable eigenvalues (i.e. eigenvalues of positive
real part), and the solution should decay exponentially as £ — —oc. Using results from [BC] about the
characteristic equation, Rustichini [Rus| proved these assertions for autonomous equations. His result leads
naturally to the question how large the closure of all eigenfunctions associated with either stable or unstable
eigenvalues is. Indeed, the sum of the resulting closed spaces gives the function space on which we can
construct solutions to (1.1) on either R* or R™. The difficulty in determining whether this sum is the entire
underlying function space, i.e. whether the set of eigenfunctions is complete, lies in the problem of excluding
solutions that decay super-exponentially, so-called small solutions. Verduyn Lunel [VL] gave conditions that
guarantee that the set of eigenfunctions associated with an autonomous functional differential equation is

complete.

In this paper, we address the above issues for non-autonomous functional differential equations of mixed
type. The obvious difficulty is that the spaces on which we can solve (1.1) forward or backward in time will
depend on &. Tt is not apriori clear which spaces will replace the unstable and stable eigenspaces that were
so useful for autonomous equations. It turns out that the correct notion in the non-autonomous setup are
exponential dichotomies. An exponential dichotomy formalizes the idea of solving (1.1) either forward or
backward in £ for initial conditions in certain complementary subspaces even though these subspaces will
depend on €.

To formulate the definition of exponential dichotomies in the present context, it is convenient to introduce
the following notation, which we shall use frequently. For a given function v : [-m,00) — C", we define

ve : [-m,m] — C™ via ve(n) := v(€ +n) for n € [-m,m].

Definition 1.1 ([PSS]). Let J = [a,b] be R*, R~ or R. Equation (1.1) is said to have an exponential
dichotomy on the interval .J if there exist positive constants K and &, and a strongly continuous family
of projections P(¢) : L%([-m,m],C") — L%*([-m,m],C") such that the following is true for any ¢ €
L?([~m,m],C") and ¢ € J.

(i) There exists a unique solution v on [, b] of (1.1) such that v, = P({)¢. In addition, v¢ € R(P(£)) and

Vel L2 ([ moml,cny < Ke ™8]] 2 ([ m,m],cn)

for all £ > ¢ with &, ( € J.
(ii) There exists a unique solution v on [a, ¢] of (1.1) such that v = (id —P(¢))¢. In addition, v¢ € N(P(£))

and
vl 22 (mm,cny < Ke @] 2 mmicn)
for all £ < with &, ( € J.
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Exponential dichotomies have been shown to exist in ordinary differential equations [Cop], parabolic PDEs
[Hen] and delay equations [HL], where the unstable subspace N(P(¢)) is always finite-dimensional, and the
initial-value problem is well-posed. In [PSS], the existence of exponential dichotomies has been established
for elliptic PDEs on unbounded domains. Here, both R(P(§)) and N(P(£)) are infinite-dimensional, and the
initial-value problem is ill-posed.

Associated with (1.1) is the operator

m

&)= > Ai(©v(E+4)

j=—m

dv

‘C:Hl(Ra(Cn) —>L2(R7Cn)a (L‘v)(g):d_g

and its formal adjoint £*, defined on the same spaces, given by
" dw - . . .
(Lrw)(©) = 36O~ D A€~ wle —d).
j=—m

We need the following weak uniqueness assumption.

Hypothesis 1. If v is in the null space of L or the adjoint operator L* such that v|g,—m ¢, +m) = 0 for some

&o, then v vanishes identically.
Our main result is the following theorem.

Theorem 1. If L is a Fredholm operator and if Hypothesis 1 is met, then (1.1) has exponential dichotomies
on RT and on R™.

A weaker but perhaps more explicit version of the above theorem is the following statement.

Theorem 2. If (1.1) is asymptotically hyperbolic (see Definition 2.1 below) and if neither det A,,(§) nor

det A_,,,(€) vanish on any open interval, then (1.1) has exponential dichotomies on RT and on R™.

Analogous results have been shown, independently and simultaneously, in [MPVL].

The existence of exponential dichotomies on RT and R~ has a number of consequences: for instance, the null
space and the orthogonal complement of the range of £ are isomorphic to the spaces R(P+(0)) N N(P_(0))
and (R(Py(0)) + N(P_(0)))*, respectively. In addition, it is possible to characterize the Fredholm index of
L by the difference of relative Morse indices. We refer to [SS] for details.

Lastly, we motivate why functional differential equations are interesting and outline some applications of
exponential dichotomies that we intend to pursue in future work. Linear non-autonomous functional dif-
ferential equations of mixed type arise in many different problems. We may, for instance, be interested in

travelling waves of lattice differential equations

m
8tuk = Z f]‘(uk+j), ke Z,
j=—m
where u; = u;(t) for j € Z. A travelling-wave solution is a function v(§) such that, for some wave speed
¢ € R, we have ui(t) = p(k + ct) for t € R and k € Z. Upon substituting this expression for uj into the

above lattice equation, we obtain
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where we set £ = k + ct. The linearization about the wave ¢(&) is then given by

}: Dfi(p(€+4))o(€ + ) = }: A;(€)v(€ + )

j=—m j=—m
which is of the form (1.1) provided the wave speed ¢ does not vanish. Note that, if ¢ = 0, then the above

equation is a difference equation. A second example are semi-discretizations of parabolic PDEs such as
Ou = DO2u + f(u), u € R", zeR

that admit travelling-wave solutions which connect two, possibly different, homogeneous equilibria. Since such
equations are often too complicated to allow for a complete analysis, numerical methods have to be employed
to compute travelling waves and to continue them in parameter space. An important question is then to
which extent the numerical scheme is able to reproduce travelling waves of the original PDE and whether the
stability properties of the wave are retained upon discretizing. We shall investigate these issues in a simplified
setting: instead of considering a fully discrete numerical scheme, we may study semi-discretizations, i.e.,
equations where only the spatial derivatives are replaced by finite difference approximations. The resulting

lattice equations are of the form

m

Opu(z, t) = Z aju(z + jh, t) + f(u(z,t)),

j=—m

where the coefficients a; may depend on the mesh size h. Let £ := ’”J;ft, then a travelling wave of the form

u(z,t) = ¢(*5) satisfies the nonlinear functional differential equation

2:%¢§+J+f(@»

We assume that we have found a solution ga(f) of this equation and consider the linearization

ﬁf o(€ +7) + D ((€))e(e)

about the wave. If the wave speed ¢ # 0 is not zero, we obtain a functional differential equation of mixed
type as in our first example. Exponential dichotomies provide a useful tool to investigate such equations.
In a nutshell (see [SS] for a more comprehensive discussion), exponential dichotomies allow for a much
more refined perturbation analysis compared with, for instance, Fredholm properties. One example where
dichotomies are useful is in providing correct choices of boundary conditions so that (1.1) truncated to an
interval (—L, L) with L > 1 is well-posed (see [LPSS] and the references therein). Dichotomies are also useful
in the construction of Evans functions that can be used to investigate linear stability of travelling waves (see,
for instance, [BG,SS,San2] and references therein). Lastly, exponential dichotomies can be used to construct
new patterns, such as periodic or multi-hump waves, from a given travelling wave by using, for example,

Lin’s method [Lin,San1]. Some of the above issues will be investigated in more detail in a forthcoming article.

This paper is organized as follows. In Section 2, we formulate (1.1) as an evolution problem and introduce
several operators relevant to that formulation. In Section 3, we then show the existence of exponential
dichotomies for the corresponding autonomous equation. The analysis is similar to the one given in [Rus]
and uses additional results from [VL]. Lastly, in Section 4, we consider the non-autonomous equation for

which we prove the existence of exponential dichotomies following the strategy in [SS].

Acknowledgments. J. Harterich was supported by the Deutsche Forschungsgemeinschaft under grant
Ha 3008/1-1. B. Sandstede was partially supported by the National Science Foundation under grant DMS-
9971703 and by an Alfred P. Sloan Research Fellowship.
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2 The operators £ and T

In this section we describe two linear operators that can be associated with the linear functional differential

equation

VO = D AOv(E+)) (2.1)

and show how they are related.

2.1 The operators £ and L*

We define the closed and densely defined linear operator
L : D(L)=H'(R,C") — L*(R,C")

dv - )
(£0)(&) = 3¢ (&) ~ > Ai(©)o(E+7)
j=—m

associated with equation (2.1). The adjoint operator £* of L is given by

" dw e . . .

(L)) = 36O~ D A€~ Dwle—d).
j=—m

It is easily checked that

/ T (Lo)(€) - w(€) de = / () (Lrw)(€) de

for all v,w € H'(R,C"), where we denote the scalar product in C" by a-b = >_,_, axby, for a,b € C*. The

operator £ has particularly nice properties if the coefficients A; satisfy a certain hyperbolicity condition.

Definition 2.1. The linear functional differential equation (2.1) is called asymptotically constant if the limits
A;t = limg_, 400 A;(§) exist for all j. The equation is called asymptotically hyperbolic if it is asymptotically
constant and if the characteristic equations

det Ay (p) := det Z Ajie"j —pid | =0

j=—m

associated with the limiting equations at & = oo have no solutions p on the imaginary axis. If the coeflicients
do not depend on &, then we call (2.1) hyperbolic if det A(u) has no purely imaginary zeros p.

The following result is due to Mallet-Paret [MP].

Proposition 2.1 ([MP]). If L is asymptotically hyperbolic, then L is a Fredholm operator.

2.2 The operator T

A different way of viewing (2.1) is to write it in the form

dVv
d—g(E) = AV(E) (2.2)
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where, for each fixed £ € R, we define

. o ¢ e
AQ): DAR) =Y =7, (> — (Ao(@a e Aj<£>¢<j>>
with
Y = L*([-m, m],C") x C (2.3)

Y'i={(g,a) € H'([=m,m],C") x C*; ¢(0) = a}.

The space Y is well-defined since H'([—m,m],C") is embedded in C°([—m,m],C"). Note also that Y is
dense in Y since the set of C''-functions ¢ with ¢(0) = a is dense in the set of step functions in the L?-norm.
The operator A(£) has domain Y! and is closed for any fixed £. In the case of constant coefficients, we write

Ay instead of A(E).

Before we define the operator T, we state the following lemma that we use below to define the domain of 7.

Lemma 2.1. Using the notation I = [~m,m] and (£,m) € R x I, we have that L*(R, L?(I,C")) = L*(R x
I,C™). Furthermore, there is a constant C with the following property. If ¢ € L*(R x I,C") such that
the weak derivative (0 — 8,)¢ € L*(R x I,C") exists, then ¢(-,k) € L*(R,C") for every fized k € I and
#(0,-) € L%(I,C"); in addition, we have

1600, M z2(z,cny + 180 B) | z2m,cny < CU[BllL2mx1,cm) + |0 — Oy) bl L2mx1,Cm))-

Proof. The identity L?(R, L*(I,C")) = L?(RxI,C") is a consequence of Fubini’s theorem. Upon introducing
the coordinates (£,7) = (€ + n,1) € R x I, we see that ¢(&,7) € L*(R x I,C") with (d¢ — 8,)¢(£,1) €
L2(R x I,C") if, and only if, ¢(¢,7) := ¢(€ — 71,7) € L2(R, H*(I,C")). In particular, ¢ € L*(R,C°(I,C")),
and we conclude that ¢(-, k) € L?(R,C") for every fixed k € I. Hence, ¢(£,k) = (€ + k, k) € L*(R,C")
for fixed k. Lastly, for any such ¢, we also have that ¢(0,7) = ¢(n,7) exists for almost every n € I. Tt is
straightforward to see that the L?-norm of ¢(1, ) can be bounded by the L?(Rx I)-norms of ¢ and (9 —0,)¢

upon using the coordinates (é, 7). |

Associated with (2.2) is the operator

T: L*RY) — L*R,Y), vV — i—‘g(-)fA(-)V(-)
(¢,a) %—%,j—g(owwa(@f S A4,0)6()10)

1<]j|<m
which is considered as an unbounded operator on L?(R,Y ) with domain
D(T) = {(¢,a) € L*(RY); (0 — 0p)d € L*(R x I,C"), a € H'(R,C"), [$()](0) = a(€) ¥E}  (2.4)

where we use the notation I = [—-m, m]. Note that D(7) is well-defined owing to Lemma 2.1. Using again

Lemma 2.1, it is not difficult to prove that 7T is closed and densely defined.
Note that we have L2(R, Y)NHY(R,Y) C D(T). It is tempting to take L?(R, Y !)N H*(R,Y') as the domain

of 7. The operator 7T is, however, not closed if considered with this domain.

The following lemma shows how the null spaces of the operators £ and 7T are related.
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Lemma 2.2. If a function v € H*(R,C") satisfies Lv = 0, then V(§) := (V][e—m,e+m], v(&)) satisfies V €
D(T) and TV = 0. Conversely, if V. = (¢,a) € D(T) satisfies TV = 0, then a € H'(R,C") satisfies La = 0.
In particular, N(L£) = N(T).

Proof. If v € H}(R,C") is a solution to Lv = 0, then v is in fact of class C™. To see this, it suffices to
show that v € C*([—¢,¢],C") for arbitrarily large numbers k¥ and ¢. By the Sobolev embedding theorem, v
is in C° on the interval [—¢ — mk, £ + mk]. Since v satisfies (2.1), it is C'! on the smaller interval [—¢ — (k —
1)m, £+ (k — 1)m]. Inductively one can then show that v is indeed of class C* on [/, £]. As a consequence,
V(&) = (ve,v(€)) is a classical solution of (2.2). It remains to check that V is in the domain of 7. Since
v € HY(R,C"), we know that

IVll2geys) = / / (e (m)? + 1Byve (m)[2) dn dé + o]l s .com)

= [ [ (et mi? + 1€ + ) dnde + ol
= (2m + D)|Jv[| g1 (rcnys

and we conclude that V is in L?(R,Y!). Note that v € H}(R,C") is in the domain of the derivative which
is the generator of the shift semigroup on L?(R,C"). Therefore,

d
£+ = et ).
e+ ) = Aol +)
Hence V is in H'(R,Y') and therefore indeed in L?(R, Y1) x H'(R,Y) c D(T).

To show the other direction, assume that V = (¢, a) € D(T) satisfies TV = 0. It follows from the definition of
D(T) that v(§) = a(§) = [¢(£)](0) is well-defined and v € H*(R, C"). It remains to show that alie_, ¢1m) =
(&), i.e., [p(€ + 17)]( ) = [#(6)](n). As in Lemma 2.1, we use the coordinates (£,7) = (£ +7,1) € R x I and

set ¢(€,7) := [p(€ — 7)](7). From dg¢ = d 47 ®, we conclude that d(€,7) = ¢(£,0) for almost every &, and
therefore for every € as [¢(£)](0) is contlnuous Hence, [¢(& — 1n)](n) = [¢(£)](0) for every £ and 7, and we
conclude that [¢(§ + n)](0) = [$(£)](n). u

2.3 The adjoint operator T*
We denote by (-, -) the inner product
¢ NN [T dnd h b(&)d
o) \s)) =] 7m¢(£,77) ~9p(&,m) dndg + ma(é)- (€) d¢
on L?(R,Y).
Remark 2.1. Let j be an integer with —m < j < m. If » € L%(R x [§,j + 1],C*) with weak derivative
(0 — On)p € L2(R x (4,5 + 1),C"), then 9(-,j) and (-, j + 1) are in L*(R,C") by Lemma 2.1. We use

the notation ¢ (-, j+) := ¢(-,j) and (-, (j + 1)—) := ¥(-,j + 1). For convenience, we also define ¢(-, m+) =
Y(,—m—) = 0.

Lemma 2.3. The adjoint operator T* is given by

T DRY)— PRY), (0.0)— (G + GG - A+ u(0-) - u(.04)
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with

D(T*) = {(¢,b) € L*(R,Y); (0 — 0p)¥ € L*(R x (j,j +1),C*) Vj with —m < j <m,
be HY(R,C"), %(&,5—) — (& j+) = A5(€)b(E) V€ and 0 < |j] < m}

(see Remark 2.1 for the notation). Furthermore, T*(1,b) = 0 if, and only if, L*b = 0.

Proof. The domain D(7*) of the adjoint operator 7* is given by

D(T*) = {(¥,b) € L*(R,Y); 3(¢s,bs) € L (R,Y) : (T (6, 0), (4, ) = ((¢, a), (¢s, bs)) V(,a) € D(T)},

in which case T*(¢,b) := (¢4, bx). Thus, we consider the equation

Z_Z <%%> v “Z(%AO )agAj(E)Qﬁ(ﬁ,j))-bdf (2.5)
://¢'1/J*dnd§+7a-b*dg.

Upon setting a = 0, so that ¢(&,0) = 0, we obtain

7/771(__) wdn df*/ZA £,7) bdi—//qs 3, dndé. (2.6)

— 00 Jj#0 —00 —m

If we restrict to test functions ¢ with ¢(§,j) = 0 for all integers j, we see that ¢, = (9, — 0¢)¥ in
L*(Rx (j,j+1),C") for all j with —m < j < m. Note that this defines 1, uniquely in L?(R x [-m, m], C").
Using the notation introduced in Remark 2.1 and considering arbitrary test functions ¢ with ¢(&,0) = 0, we

obtain
ZZ<___> v dﬁ—é 4‘75 w*dﬂdf+4;¢sg j=) = (& i+) dn,

and conclude that (2.6) is met for all ¢ with ¢(&,0) = 0 provided
P(5=) = (a+) = AF()b()

in L?(R,C") for all j # 0. We return to (2.5) which, based on the results established above, reduces to

/Tn(ﬁ(ﬁao)-(¢(f,0—)—¢(§,0+))dn+/m (j—g—AO(g) >'bd§=/2a-b*d§

and therefore to

[ Gebde= [ a4 A€ - v(e.0-) + wle 04) e
for all a € HY(R,C™), since ¢(, 0) = a for every (¢,a) € D(T). This shows that b € H(R,C") and
db .
b* - _d_f - A0b+ ¢(70_) - ¢(70+)

Lastly, the proof that the null spaces of 7* and L* are isomorphic is quite analogous to the proof of
Lemma 2.2. The following argument is the key. Suppose that (1,b) € D(T*) with 7*(¢,b) = 0. Using that
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(9 — By = 0 and that Y(€, j=) = (€, j+) + A5 (E)b(E) for j > 0 with (¢, m—) = A}, (€)b(E), it follows
inductively that

m

Y€ G—) =Y ALE—k+5)bE—k+])

k=j

for j > 0. Hence,
P(E,0+) =y - 1,1-) = iA;f(f — )b~ j)-
Similarly, we obtain a
$(E0-)=9(E+1,-14) = ZT:A;(E — J)b(€ — )
i

and therefore

3—2 = —AG(Ob+ $(-,0-) = P(- 04+) = —AG(E)b— Y Aj(€ — )b~ j)-
j=—m
We omit the remaining details. ]

As a consequence, T is Fredholm whenever L is.
Lemma 2.4. If L is Fredholm with indez i, then T is Fredholm with the same index 1.

Proof. On account of Lemma 2.2 and Lemma 2.3, we have dimN(£) = dimN(7) and dimN(L*) =
dim N(7*). To show that the range of T is closed, assume that T (¢,,a,) — (¥,3) is a convergent se-
quence in R(7). Define v,(¢) = ¢,(£)(0) = a,(£) which gives a sequence (vy)nen in H'(R,C"). The
sequence (Lv,) converges in L?(R,C") to 3. Since R(L) is closed, we know that Lv, — Lvs for some
Voo € H'(R,C™). Lemma 2.2 implies that (¢, 8) = T ($oc; (o) f0r ¢oo(€) := Voo |jg—m e4+m] a0d Qoo := Voo
Thus, R(T) is closed, and we conclude that R(7™) is also closed [Kato, Theorem IV.5.13]. In addition, we
then have codim R(£L) = codim R(T") since

codimR(£) = dimN(L*) = dim N(7™) = codimR(T)

by the arguments at the beginning of the proof. [ |

3 The constant-coefficient operator A

For given matrices A; with |j| < m, consider the constant-coefficient operator

. ¢> < o >
Ay: Y Y, n ) 3.1
° — <a — AOG+Z1§\j\§m Aj¢(]) (3-1)

which is densely defined with domain D(Ag) = Y (see (2.3)). The characteristic equation associated with
Ap is det A(p) = 0 where
m
Ap) = Z Ajel* — pid.
j=—m
We are interested in proving the existence of exponential dichotomies for the equation

dv
d_f = A()V,
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since this equation with constant coefficients serves as a reference equation for the more general case that we
consider in Section 4 below. To prove the existence of exponential dichotomies for equations with constant
coefficients, we first show that A has only point spectrum and provide estimates for its resolvent. Afterwards,
we establish in Section 3.2 the completeness of eigenfunctions and proceed then in Section 3.3 with the
construction of exponential dichotomies in a fashion similar to Rustichini [Rus] who proved the existence of

dichotomies for slightly different operators in C°([—m,m],C").

3.1 Spectrum, and resolvent estimates

We begin by establishing that the spectrum of Ag consists entirely of eigenvalues.

Lemma 3.1. The operator Ag has only point spectrum. Moreover, u € C is in the spectrum of Ag if, and
only if, det A(u) = 0. If pu is an eigenvalue, the corresponding eigenfunction is of the form (¢,a) with a € C"
and ¢(n) = ae™.

Proof. To determine the spectrum and the resolvent of Ay we have to discuss the equation

()~ ()

where ¢ € L?([~m, m],C") and b € C". This equation is equivalent to

d¢ B

%—Ms—iﬂ

(Ao —pa+ D A;j9(j) =b.
1<]jI<m

Solving the first equation by the variations-of-constants formula shows that
n
8(0) = 9(0) + [ e (a) do,
0

Substituting this expression for ¢ into the second equation and exploiting that ¢(0) = a, we get

Aa=b-3 4 / T ey (o) do

j#0 70
Therefore, for any p with det A(u) # 0, i.e., for any u that is not in the point spectrum of Ay, the resolvent
of Aq is given by

o(m) = e AGw) (b3 4, /]e“*%(o)do - /"e@*%(a)do (3.2)

izo 70 0

a=Ap) b ZAj /j U=y (o) do

jz0 70

For later use, we derive estimates for the resolvent of Ag. Rustichini [Rus] proved similar estimates for linear

operators associated with constant-coefficient equations considered in C°([—m,m],C").
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Lemma 38.2. Fiz a constant k > 0. There is then a constant M > 0 such that, for any p with det A(u) # 0
and |Re p| > K, we have

em|Reu\ eZmRep)

) My < M S A S
140 1) laar < M (T + 140 1S

Proof. We have shown that the equation

e nfl)- (e

has the solution

b(m) = e AGw) b3 4, / G-My(o)do | + /O"eww(g)do

J#0

a=A(p)?! bfZA/ U=y (5) do

J#0

whenever det A(p) # 0 with A(p) = >7-  Aje’* — pid. Note that

J
Re
/yGQ(y_”)ReudU - elyReul .
0 ~ V2|Reyl

Using this inequality in combination with Hélder’s inequality, we find that

1/2

ol < A | 1Bl + Y 144 —— lelL

J#0 V2 ‘

m\Re |
< 1A <|b| +M1W|WJHL >

<A <1+M1 ?;2)“( )

My :=2m max |4,
—m<j<m

where

The same estimate appears when we bound the L?-norm of ¢:

Iz < o] 221 4G | (1+M1 Sl ) 1) ‘ kil T
V2[Rep| V2lReul |,
< A (H S )H( ).+ S toten
V2[Rey| V2| Re pl Kl
For |Re p| > &, this implies the desired inequality. |

Using results of Bellman and Cooke [BC], Rustichini demonstrated the following statement on the location
of zeros of A(u).

Lemma 3.3 ([Rus, Lemma 3.2]). Assume that det(A_,,A,) # 0, then the following is true.
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(i) For any k > 0, there exists a constant M (k) such that |Im u| < M (k) for any zero u of A(u) with
|Re u| < k. In particular, if there are no zeros of A(u) on the imaginary axis, then there is a strip
{p; |Rep| < k} that contains no eigenvalues of Ap.

(i) There exists a positive constant &k such that all zeros of A are contained in the union W, UW_ where
Wy = {,u € GC; |Rep| > K, |Re(p = %log,u)\ < Fa}
(i4i) There exists a constant C > 0 such that
|AGe) | < CemmIRen

along the curves |Re(u + L log p)| = &, i.e., along curves where |ulef™ Rerl is constant.

3.2 Completeness

An important property, which is not at all obvious for non-selfadjoint operators such as Ay, is completeness,
i.e., the property that the closure of the linear space spanned by the generalized eigenfunctions of A is the
entire underlying function space Y. We demonstrate that Ag is complete provided that the matrices A_,,

and A,, are not singular.

Theorem 3. Consider the operator Ay defined in (3.1). Assume that Ao has no spectrum on the imaginary
axis and that det(A_,,A,,) # 0. Let Ev be the closure in Y of the sum of generalized eigenspaces to all
eigenvalues with positive real part. Similarly, let ES be the closure of the sum of the generalized eigenspace

corresponding to eigenvalues with negative real part. We then have EY @ ES =Y.

Remark 3.1. An analogous statement holds if the spectrum has a center part, i.e., in the situation that

there are eigenvalues on the imaginary axis.

Our proof of Theorem 3 is based on a characterization of completeness given by Verduyn Lunel in [VL] (see

Lemma 3.8 below). We begin by recalling some facts from complex analysis.

Definition 3.1. Let X be a complex Banach space. An entire function F' : C — X is said to be of exponential
type E(F) if

1 .
li ~1 F(ré?)|| =: E(F
im sup ogog@ﬂ\l (re)|l (F) < o0

r—oc T

exists.

In the following proposition, we summarize some properties of entire functions of exponential type.
Lemma 3.4. Let Fy, Fs : C — C be entire functions of exponential type which are polynomially bounded in
the closed right half-plane Re u > 0. We then have E(F1Fy) = E(Fy) + E(F). If the quotient Fy/F> is an

entire function, then E(Fy/Fy) = E(Fy) — E(F3).

Note that the same holds for entire functions which are bounded in the left half-plane. This symmetry will

allow us later to relax some conditions. The following lemma will prove useful below.
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Lemma 3.5. If F: C — C is an entire function of exponential type that satisfies

1
limsup — log |F(£ir)| =0 and |F(p)| <M forpeR,
r

r—00

then F is constant.

Proof. The assertion is a consequence of [Boas, Thm. 6.2.4], which is a theorem by Duffin and Schaeffer
[DS], applied separately to F(u) and F(—pu) with p restricted to the upper half-plane in conjunction with

Liouville’s Theorem. [ ]

Using the identity

Ap) ' = mwm(m,

where cof A(u) is the matrix of cofactors, we can rewrite the solution of the equation

()0

given in (3.2) as

et

= _ , g (j—0o)u o)do K (n—o)u o) do
00) = g 2 4 40 (8- [ e mpto)do | + [Termo)a (33)

cof A(u) /j i
a=—"7+\|b— A; eU=Hy(o) do
detau |72 f, )

It is not hard to see that some of the functions involved in the above expression are entire functions of

exponential type.

Lemma 3.6. The exponential type of det A(u) is mn if, and only if, det A_,,, # 0 or det A, # 0. In this

case the exponential type of each entry of the cofactor matriz cof A(u) is m(n — 1).

Moreover, if det A_,,, # 0, then e~™"* det A(u) is of exponential type 2mn and bounded in the right half-
plane, while the entries of e~ ™~V cof A(u) are bounded in the right half-plane and have exponential type
2m(n —1).

Similarly, if det A,,, # 0, then e™™* det A(u) is of exponential type 2mn and bounded in the left half-plane,
while the entries of €™V cof A(u) are bounded in the left half-plane and have exponential type 2m(n —1).

Proof. The term det A(u) is a linear combination of terms of the form pfe/* where 0 < ¢ < n and
—mn < j < mn. This implies that the exponential type of det A(u) cannot be greater than mn. The
coefficient of ™" is det A,,, while the coefficient of e™""* is det A_,,,. If at least one of those coefficients is
nonzero, then the definition of exponential type with u restricted to the real line shows that E(det A) = mn.
On the other hand, the exponential type is strictly less than mn if both det A_,,, and det A,,, vanish. Similar
arguments apply to the entries of cof A(u). Note that, if det A4, # 0, then each sub-determinant of A4,

does not vanish either. The remaining estimates can be obtained by completely analogous arguments. n

In view of Lemma 3.5 it is also important to control the behavior of the resolvent along the imaginary axis.
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Lemma 3.7. We have the following asymptotic behavior on the imaginary axis:

lim det A(Zir) _1
r—oc rn
lim wzl fork=1,2,...,n
T—00 rn—
f A(+i
m w = ()" fork #1.
r—00 rn—

Proof. These relations are simple consequences of the fact that along the imaginary axis the polynomial

terms dominate the exponential terms. [ |
We use the following characterization of non-completeness.

Lemma 3.8 ([VL, Lemma 3.2]). If B: X — X is an unbounded operator with meromorphic resolvent,
then the system of eigenfunctions and generalized eigenfunctions is not complete if, and only if, there exists
a y* € X* with y* # 0 such that the function

B <y*a (B o /"’)71I>

is entire for every fized x € X.

We will show that no such y* exists in our situation. The explicit form of the resolvent (Ay — )~ ' shows

that it is indeed a meromorphic function so that Lemma 3.8 applies to Ag.

Proof of Theorem 3. Assume that the system of eigenvectors and generalized eigenvectors of Ay is
not complete. Applying Lemma 3.8 and the Riesz representation theorem to (3.3), we see that there are
(¢,a) € Y such that, for every fixed (¢,b) € Y, the function

oy ()

1 (i-o)n
:a-detA()cofA b—ZA/ Y(o)do

Jj#0

/ é(n et A( )COfA e"“b—ZA / e(1ti=ky(g)do | dn

70
+/n; () - </On el (o) d0> dn

is entire. In particular, this is true for ¢ = 0 for which the above expression reduces to

(0)- o= (3) ) = gy ot A0+ [ 0t g s cof Alulean,

If the right-hand side defines an entire function for all b € C", then each component Fj(u) of

. cof A(p) ~cof A(u)
Flp):=a det A(p / o detA( ) e dn

is an entire function. We prove that this implies that ¢ = 0 which leads to a contradiction.

We first show that each F(u) satisfies the assumptions of Lemma 3.5 with ¢ = 0. Note that, since det A_,,, #

0, by Lemma 3.6 both the numerator and the denominator of e ~™"# F}, (1) are entire functions of exponential
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type 2mn which are bounded in the right half-plane. Assuming that F} is itself entire, we can conclude
from Lemma 3.4 that F} is of exponential type 0. Regarding the behavior of Fj along the imaginary axis,
Lemma 3.7 shows that F(ir) converges to 0 for r — do0o. This implies directly the weaker statement

1
lim sup — log | Fj(£ir)] <0

r—oo T

which is used in Lemma 3.5. The last hypothesis that needs to be checked is the boundedness on the real
axis. Since by assumption F is an entire function, we only need to be concerned about the behavior for
@ — £oo. Since det A_,,, # 0 and det A,,, # 0, we conclude that

| det A()] > CemnH]

for some constant C' and |u| sufficiently large. On the other hand, cof A(u) is of exponential type m(n — 1),

whence we can estimate

/m @(n) - cof A(u)e™bdn| <

/m b (n)em = Dlilgmlulp gy

which implies that Fj(u) is uniformly bounded for large |u|.

Hence, Lemma 3.5 implies that each Fj is constant. Using the behavior along the imaginary axis, we conclude

immediately that this constant is zero so that

Fy(p) det A(u) = a - cof A(p) + /j" é(n) - cof A(u)e™ dn = 0.

This implies that
™m 2m
o= [ otmemdn= [ on— memrer
—m 0

is a constant independent of p. In other words, if we extend ¢ to R by setting ¢(n) = 0 for |n| > m,
then the constant function —a would be the Laplace transform of the function ¢(n — m)e™* which is in
L? and has compact support. However, as the Laplace of a function with compact support, —a would have
to be integrable along each line Re = const. This would imply @ = 0, and by inverse Laplace transform
¢ = 0. Therefore, by Lemma 3.8, the operator Ay has a complete system of eigenvectors and generalized

eigenvectors. [ |

3.3 Exponential dichotomies

We are now in a position to establish the existence of exponential dichotomies for the equation

dv
3 =AY (3.4)

with constant coefficients. We assume that Ay is hyperbolic, i.e., that A(u) # 0 for all y € iR. Recall from
Lemma 3.3 that the distance from the spectrum of Ay to the imaginary axis is strictly positive. Let ES and
EV be the closure in Y of the generalized eigenspaces associated with all eigenvalues of Ag that have negative

and positive real part, respectively.

Proposition 3.1. Assume that det(A_,,A,) # 0, and choose k > 0 such that & is smaller than the distance
from the spectrum of Aq to the imaginary azis. There exists then a strongly continuous semigroup ®°(§) :
Es — Es defined for € > 0 and a constant K such that °(0) = id and

19°() | vy < Ke ™.
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For any Vo € ES NY?!, the function V(€) = ®5(€)Vy is differentiable for ¢ > 0 and satisfies (3.4) with
V(0) = Vi. Analogous statements hold for ®%(¢) : Ev — EV defined for £ < 0.

Note that, for Vo € ES, the function V(¢) = &%(£)Vj is a mild solution of (3.4), i.e., it satisfies the integral

equation
3
VE) = Vot [ AV
0

for all £ > 0.

Proof. It suffices to prove the statement for #°(¢). We begin by constructing semigroups on the subspace

E* which is defined as the sum of all generalized eigenspaces of eigenvalues y of Ay with Re u < 0.

We construct the semigroup €° via an integral representation. We begin by choosing curves I} and I3 in C
by

1
Iy = {,u € C; Re (/.L—I— —log,u> =R, Impu<0,Rep < —K}
m
1 -
Iy := {,u € C; Re (,u—l— —10g,u> =R&,Impy >0,Rep < —Ii}
m
where & has been defined in Lemma 3.3. Note that I} and Iy can be parametrized by p = z + iy(z) where

y'(z) = O(e"™®) as  — —oo (see [Rus, p. 140]). Lastly, the curve Iy joins I} and I along the line
Repu = —k. By Lemma 3.3, the curve I' := I'1 UI3 U I3 lies to the right of the negative part of the spectrum.

For V4 € E® and & > 2m, we have

1 1
— Ho(Ag — p) " Wodp| < — SoRen|(Ag — p)7Y du | V&
e A e R L L
1 / em\Rem e2m\Rem
< = e&’Re“M<7+CemRe“7 du |[Volly
2r Jp, | Re yf | Re ul
1 [0 1+C
< — egome—sz_+ e~ dz [|Volly
21 J_ |z|
= K(&)[Volly

where we used the above parametrization of Iy to evaluate the line integral. Note that the last integral
converges for £y > 2m. Since the same calculation applies to the integral along I'y, we can define an operator
P*(€) on E® for £ > & > 2m by

S (Vo = [ (Ao ) Vo du. (3.5)

27 Jp

In particular, for £ > &y > 2m, we have

1
12°()Vally < H—% / e (Ag — ) Vo dpl|| < e "R (€0)e™|Vhlly (3.6)
r

for some K (&) > 1, which gives exponential decay for £ > &, > 2m. Note that, for V, € ESNY!, the function
V(&) = 95(&) V), satisfies (3.4) for & > 2m with V(0) = Vi (see [Pazy]).

Next, we define a filtration of E® by finite-dimensional generalized eigenspaces E} C Y! with j € N (see
[Rus]). For any Vy € Ef, we can readily solve (3.4) on Rt and get a solution V(£) that is differentiable
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with values in Y. On the interval [£y, 00), the solution V() coincides with #°(§)V, as defined in (3.5). In
particular, with Vo = (¢, ¢(0)) and V(§) = (ve, v(§)), the function v(&) is a solution of

V' (€) = 'Z Aju(€+ ) (3.7)

for £ > 0 with v|[_,, ,,) = ¢. Hence, using (3.6), we obtain the L?-estimate

Hv||L2([m+e.,3m+e]) < K(2m+€)”¢“L2 (3'8)

for any 0 < € < 1/2. Our goal is to estimate the solution v in L?([m,m + €]) in terms of the L?-norm of the
initial condition ¢. Let C; be a bound for the norms of the matrices A;. Using that v satisfies (3.7), we then
get the H'-estimate

1|zt ((me,ma2e) < MC1(1+ K (2m + ¢€))||¢]| L2,

and finally
[u(m +€)| < Ca(1+ K(2m + €))[| ]| 2 (3.9)

by Sobolev’s embedding theorem for some Cy that may depend on e. Multiplying (3.7) by v(§), we obtain

V(&) - v(€) = Agu(€) - v(€) + D Aju(€ +4) - v(é)
Jj#0

and therefore
d

gelv O < Cap(©) + > i€+ )| w(©)] < Cslv©)? + D Crlu(& + 5) .

j#0 Jj#0

N[ =

Integrating this inequality over [, m + €] with £ € [m,m + €] and € < 1/2, we obtain

m-te
WO < lotm+ 9P + [ Calol@)P + X Galolc+ P | ¢
¢ J#0

m-+te
< o(m + ¢)? +/€ Csl(Q)2 + S Cild(¢ + )P | dC+ Callgl2
j<0

m-+te
< C()4]? + /E Calo(Q)P d¢

where we used that v({+7) = ¢(£+7) for j < 0 and exploited the estimates (3.8) and (3.9). Using Gronwall’s
inequality, we get
|22 ((mmsey < ClISII5- (3.10)

In summary, from (3.6) and (3.10), we finally conclude that

lvell2((—m,m)) < Kll@lly (3.11)

for all £ > 0, where v(§) is the solution of (3.7) with initial condition ¢ associated with a given Vj =
(¢,#(0)) € E5. Note that the constant K that appears in (3.11) does not depend on j (and not on Vp). In
addition, we have

el 22 (-, m)) < CKe™™ |6y (3.12)

for £ > m by using (3.7) and (3.6).
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Having established these uniform estimates on E?, it remains to extend the semigroup ®°(¢) from Ej to
the closure FS, while maintaining the estimates (3.6). This can be done in a straightforward manner by
approximating initial conditions in ES by elements in E? in the L?-sense and using compactness properties
implied by the H'-estimate (3.12) on any given bounded interval in £. We omit the details as they are similar
(and in fact easier) than those given in [Rus]. ]

4 Fredholm properties of 7 imply the existence of dichotomies

In this section, we prove that the non-autonomous equation (2.1) has an exponential dichotomy. The argu-
ments are similar to those used in [SS] in the case of modulated travelling waves. For this reason, we give
an outline of the proof and provide details only where the arguments for forward-backward delay equations
are different. The main strategy is to compare the non-autonomous operator with the constant-coefficient
operator for which the existence of exponential dichotomies has been shown in the previous section.

After extending the operator 7 in Section 4.1 to a larger function space, we prove Theorem 1 in Sections 4.2
and 4.3, and Theorem 2 in Section 4.4.

4.1 The extension S of T

We consider the operator

dv
T: L*RY)— L*RY), Vs & AV
with domain D(7) given in (2.4). The adjoint 7* of T is also densely defined in L?(R,Y") with domain D(7*)
given in Lemma 2.3. Alternatively, we can consider 7* as a bounded operator, denoted by 7/'\*, from D(7T*)

to L2(R,Y). Here, we consider D(7*) as a Banach space equipped with the graph norm. We denote by S
the adjoint operator (7/'\*) of 7'\*, so that

S: L*RY) — D(T*)*"
Note that S restricted to D(7") coincides with 7. We remark that the notation (7*)®! instead of S is used
in [SS].

By definition, the equation SU = G means that (7*W,U) = (W, G) for all W € D(T*). The brackets denote
the duality pairing of D(7*) and D(7*)*. In other words, SU = G is a shortcut for

- /oo (W + A(E)W, Uy dé = /jo (W,G)y dé, YW eD(T")

— 00

where the scalar products (-,-)y are interpreted in the sense of distributions.

Lemma 4.1. Assume that T is Fredholm, then S is also Fredholm with the same index. Furthermore, N(S) =
N(T).

Proof. The statements are consequences of [Kato, Section III §5.5 on p. 168] and [Kato, Section IV §5.3 on
p. 236]. ]
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4.2 T is invertible

It is convenient to consider first the case that 7T is invertible before proceeding to the more general case that
T is only Fredholm.

Lemma 4.2 ([SS, Lemma 5.2]). Assume that T is invertible. For any & € R and any Gy € Y, define
G(€,m) == Go(n)8(€ — &) where § denotes the §-distribution. There is then a unique solution U € L?(R,Y)

of the equation

SU =G.

The restrictions of U to (—oc, &) and [£y, +00) belong to CO((—oc,&],Y) and C°([€y, +00),Y), respectively.
The limits U, (§o) := limg~ ¢, U(€) and U_(&o) := lime q¢, U(§) exist and satisfy the jump condition U, (&) —
U_(&) = Go. In addition, we have the estimate

WUl Loo (r,yy + U2 m,yy < ClGoly

where the constant C' is independent of Gy.

Proof. Note that the equation SU = G is well-defined since G € D(7)* by Lemma 2.1. Without loss of
generality, let &, = 0.

The proof is based on the comparison with an appropriate reference equation. Choose matrices A;-ef for

0 < |j| < m such that det(A™f Ar) +£ 0 and such that det A(u) # 0 for all u € iR where

Ap) = Z A;efej" — pid.
j=—m

Define "
) ¢ an

Aref . <a> — <Arefa + Z ! Aref¢( )

0 1<|jl<m 45 P\

so that Aq is hyperbolic. We write 7 as
T ="Tet+B

where Trer = d% — A,ef and

¢ 0
a) — <(ABEf —Ao(€))a+ 1< jjem (A5 — Aj(é))qﬁ(j))'

The strategy is to first seek a solution V' € L?(R,Y) of the reference equation StV = G and afterwards a
continuous solution U that satisfies SU = —BV. The sum U := V + U then satisfies

B(é) = Aref - A(é) : (

SU=8(V+4U) =S8V +BV+8U-=0aC

as desired.

We begin by solving the equation

d
Srer - <d£ - Aref> V =G.

According to Proposition 3.1, the equation

dv
A = AtV (4.1)



20 J. HARTERICH, B. SANDSTEDE AND A. SCHEEL

has exponential dichotomies. Let P,f and (id — Pref) be the corresponding projections such that (4.1) gener-
ates exponentially decaying C°-semigroups on both R(P,ct) and R(id — Py¢). For any Go € Y1, define

V(E) = ehret et P .3 for £ >0
eA"f(id_P"f)g(id —Per)Gy  for £ < 0.

By standard semigroup theory, the function V is differentiable for £ # 0 and satisfies (4.1) for £ # 0. Fur-
thermore, the limits V := limg\ o V(£) and VO := lim¢ o V(£) exist. For any test function x € C§°(R,Y'!),

we obtain

7/ < d)g + ArefX> d£

oc 0
= —/ <e wetPretl PG,y 5 +ArefX> d§+/ <6A“f('d Pre)é p, fGUa +-'4refX> d¢
0 £ — 00 5 Y
_ <eArefPref£PrefG0’X>Y ‘ - + <eAref(ld Pret) EP tGo, X >Y ‘570
VP VO= (G x(O)y = [ (Gobl€) x)v- e

using integration by parts and the fact that V satisfies (4.1) for £ # 0. This shows that, for Go € Y1, V
satisfies SyetV = G. For Gy € Y, we define a solution V € L? (R,Y) of S,V = G by approximating Gy by

a sequence in Y1 and using the strong continuity of the semigroup (see [SS, Section 5.3.1] for details).

In the next step, we solve
SU = -BV (4.2)

that involves the solution V' of the reference equation. The right-hand side —BV of (4.2) is in L%(R,Y) since
its first component vanishes completely, while the second component is continuous except at £ = 0 and decays
exponentially as £ — £00. Since S restricted to D(7) coincides with 7, and since both operators are invertible
by assumption and by Lemma 4.1, we can solve (4.2) and obtain a unique solution U = (¢,a) € D(T). Using
the fact that the first component of —BV vanishes, we see that ¢(¢,n) = a(¢ +n) with @ € H*(R,C"). In
particular, U is continuous on R with values in ¥ and

1Ol vy + 101 2y ny < ClVIE2,y)-

Lastly, as mentioned earlier, the sum U = U+V satisfies all the properties stated in the lemma. In particular,
it is continuous on R~ and R*, and the jump at ¢ = 0 is exactly the jump of V at ¢ = 0. Therefore,
U4 (0) — U-(0) = Go. [

The previous lemma allows us to define a continuous, injective map
H&): Y —=YxY, Gor— (Us(éo) U-(6))-

Using the canonical projections P;(§y) : Y XY — Y defined by P;(&)(U1,Uz) = U; for i = 1,2, we have the

relation
Go = P1(&0) 11 (&0)Go — P2(&0)11(&0)Go
for any Gy € Y.

Lemma 4.3 ([SS, Lemma 5.3]). Suppose that T is invertible. The images R(P;(&0)II(&)) are then closed
subspaces, and we have R(Py (&)1 (&0)) ® R(P2(&0)II(&o)) =Y for each & € R.
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We can then define a family of projections P(£) such that R(P(€)) = R(P(§)I1(¢)) and N(P(§)) =
R(P2(&)I1(£)). Note that, for any U; € R(P(&)), there exists a unique strong solution V*(¢) of (2.2),
defined for £ > &g, with initial value V®(&y) = Uy. Analogously, for any U_ € N(P(&)), there exists a unique
strong solution V(&) of (2.2), defined for £ < &g, with initial value V*(§y) = U_. This projections define the
desired exponential dichotomies.

Lemma 4.4 ([SS, Lemma 5.5]). The family P(§) of projections together with the solutions V° and V"

defines an exponential dichotomy on R.

4.3 T is Fredholm

Again, we closely follow the proof given in [SS] for parabolic equations in cylinders. Since most of the details
are identical, save for notation, we comment only on those two parts of the proof where the arguments in
[SS, Section 5.3.2] need to be modified. First, the proof given in [SS, Section 5.3.2] uses the fact that the
null spaces of 7 and S coincide. We proved in Lemma 4.1 that this is always the case. Second, the following

weak uniqueness condition (U1) has been used in [SS].

(Ul) IfV is in the null space of T or the adjoint operator T* and V(&) = 0 for some &y, then V vanishes
identically.

This assumption is, however, equivalent to Hypothesis 1 on account of Lemma 2.2. Now that the above
two properties are established, the abstract proof in [SS] applies to our situation and gives the existence of

exponential dichotomies. This completes the proof of Theorem 1 on the existence of exponential dichotomies.

4.4 Proof of Theorem 2

It suffices to show that the hypotheses of Theorem 2 imply the hypotheses of Theorem 1 which we proved
in the last section. Proposition 2.1 which is due to Mallet-Paret [MP] implies that £ is Fredholm provided
it is asymptotically hyperbolic. We established in Lemma 2.4 that 7T is Fredholm whenever L is. It therefore
remains to demonstrate that Hypothesis 1 is a consequence of the following Hypothesis 1 which we assumed
in Theorem 2.

Hypothesis 1. Assume that neither det A,,(§) nor det A_,(£) vanish on any open interval.

To establish that Hypothesis 1 follows from Hypothesis 1, suppose that a € N(£) such that a(£) vanishes
identically on the interval [{; — m, & + m]. We want to prove that this implies that a(§) = 0 for all £ € R
and argue by contradiction. Note that, by Lemma 2.2, a is a classical solution of (2.1). Thus, without loss

of generality, we assume that
&1 = 1nf{€ > &o; a(§+ m) # 0}

exists and is finite. Since a(§ + j) = 0 for |j| < m and &, < £ < &, we have

d€) = D Ai(ale+]) = Am(€)ale +m)
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for all £ € [£1,&; + 1). By the definition of £;, there exists an open and non-empty interval J C (£1,&; + 1)
such that a(§ + m) # 0 for any £ € J. Thus, we conclude that

a'(§) = Am(§)a(§ +m) #0

for some ¢ € J, since det A,,(§) does not vanish identically on J by Hypothesis 1. This contradicts the
definition of &;.
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