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Abstrat. Funtional di�erential equations with forward and bakward delays arise naturally, for instane, in thestudy of travelling waves in lattie equations and as semi-disretizations of partial di�erential equations (PDEs) onunbounded domains. Linear funtional di�erential equations of mixed type are typially ill-posed, i.e., there exists,in general, no solution to a given initial ondition. We prove that Fredholm properties of these equations implythe existene of exponential dihotomies. Exponential dihotomies an be used in disretized PDEs and in lattiedi�erential equations to onstrut multi-pulses, to perform Evans-funtion type alulations, and to justify numerialomputations using arti�ial boundary onditions.
1 Introdution
We are interested in linear non-autonomous funtional di�erential equations

v0(�) = mXj=�mAj(�)v(� + j); � 2 R (1.1)
of mixed type, where v 2 C n , and Aj(�) are ontinuous funtions with values in C n�n for jjj � m. Beforewe motivate our interest in this equation and list a number of appliations that we have in mind, we disussa few properties of (1.1). The most important feature of (1.1), at least for the purpose of this paper, is thatthe assoiated initial-value problem is ill-posed. To make this statement more preise, we should �rst explainin what sense we want to solve (1.1): We say that a funtion v(�) satis�es (1.1) on an interval J = [a; b℄,where a = 1 and b = 1 are allowed, if v 2 L2lo([a �m; b +m℄; C n) \H1lo([a; b℄; C n), and (1.1) is met inL2lo([a; b℄; C n). The initial-value problem assoiated with (1.1) is given by

v0(�) = mXj=�mAj(�)v(� + j); vj[�m;m℄ = �; (1.2)
where � is a given funtion de�ned on [�m;m℄. Unfortunately, for a given funtion �, there is in general nosolution, in the above sense, to (1.2) on any nontrivial interval that ontains � = 0. A simple ounterexample(see [Rus℄) is provided by the equationv0(�) = v(� � 1) + v(� + 1); vj[�m;m℄ = 1 (1.3)with v 2 C . The only funtion that ould possibly be a solution of this initial-value problem is given byv(�) = (�1)k for � 2 (2k � 1; 2k + 1℄ with k 2 N ; this funtion, however, is not even ontinuous. Seekingsolutions of the form v(�) = e��, we see that the harateristi eigenvalue equation assoiated with (1.3) is� = e�� + e�:
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This equation has solutions � 2 C with Re� arbitrarily large and also admits solutions for whih �Re� isarbitrarily large. Therefore, the linear equation (1.3) does not generate a semiow on any spae that ontainsall its eigenfuntions. This explains why the initial-value problem (1.2) assoiated with (1.1) is ill-posed. Infat, funtional di�erential equations of mixed type behave quite similar to ellipti PDEs when onsideredas initial-value problems. Note also that solving (1.1) forward or bakward in the time variable � is equallydiÆult.Sine we annot solve (1.2) for all �, we should therefore �nd those funtions � for whih a solution to(1.2) exists on either R+ or R� . In partiular, we would expet to be able to solve the linear autonomousequation (1.3) for � > 0 for any initial ondition � that is a superposition of eigenfuntions assoiated withstable eigenvalues (i.e. eigenvalues with negative real part). In fat, the resulting solution should deay tozero exponentially as � ! 1. Analogously, we should be able to solve (1.3) on R� for any initial ondition� that is a superposition of eigenfuntions assoiated with unstable eigenvalues (i.e. eigenvalues of positivereal part), and the solution should deay exponentially as � ! �1. Using results from [BC℄ about theharateristi equation, Rustihini [Rus℄ proved these assertions for autonomous equations. His result leadsnaturally to the question how large the losure of all eigenfuntions assoiated with either stable or unstableeigenvalues is. Indeed, the sum of the resulting losed spaes gives the funtion spae on whih we anonstrut solutions to (1.1) on either R+ or R� . The diÆulty in determining whether this sum is the entireunderlying funtion spae, i.e. whether the set of eigenfuntions is omplete, lies in the problem of exludingsolutions that deay super-exponentially, so-alled small solutions. Verduyn Lunel [VL℄ gave onditions thatguarantee that the set of eigenfuntions assoiated with an autonomous funtional di�erential equation isomplete.In this paper, we address the above issues for non-autonomous funtional di�erential equations of mixedtype. The obvious diÆulty is that the spaes on whih we an solve (1.1) forward or bakward in time willdepend on �. It is not apriori lear whih spaes will replae the unstable and stable eigenspaes that wereso useful for autonomous equations. It turns out that the orret notion in the non-autonomous setup areexponential dihotomies. An exponential dihotomy formalizes the idea of solving (1.1) either forward orbakward in � for initial onditions in ertain omplementary subspaes even though these subspaes willdepend on �.To formulate the de�nition of exponential dihotomies in the present ontext, it is onvenient to introduethe following notation, whih we shall use frequently. For a given funtion v : [�m;1) ! C n , we de�nev� : [�m;m℄! C n via v�(�) := v(� + �) for � 2 [�m;m℄.De�nition 1.1 ([PSS℄). Let J = [a; b℄ be R+ , R� or R . Equation (1.1) is said to have an exponentialdihotomy on the interval J if there exist positive onstants K and �, and a strongly ontinuous familyof projetions P (�) : L2([�m;m℄; C n) ! L2([�m;m℄; C n) suh that the following is true for any � 2L2([�m;m℄; C n) and � 2 J .(i) There exists a unique solution v on [�; b℄ of (1.1) suh that v� = P (�)�. In addition, v� 2 R(P (�)) andkv�kL2([�m;m℄;Cn ) � Ke��j���jk�kL2([�m;m℄;Cn )for all � � � with �, � 2 J .(ii) There exists a unique solution v on [a; �℄ of (1.1) suh that v� = (id�P (�))�. In addition, v� 2 N(P (�))and kv�kL2([�m;m℄;Cn ) � Ke��j���jk�kL2([�m;m℄;Cn )for all � � � with �, � 2 J .
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Exponential dihotomies have been shown to exist in ordinary di�erential equations [Cop℄, paraboli PDEs[Hen℄ and delay equations [HL℄, where the unstable subspae N(P (�)) is always �nite-dimensional, and theinitial-value problem is well-posed. In [PSS℄, the existene of exponential dihotomies has been establishedfor ellipti PDEs on unbounded domains. Here, both R(P (�)) and N(P (�)) are in�nite-dimensional, and theinitial-value problem is ill-posed.Assoiated with (1.1) is the operatorL : H1(R ; C n) �! L2(R ; C n); (Lv)(�) = dvd� (�)� mXj=�mAj(�)v(� + j)
and its formal adjoint L�, de�ned on the same spaes, given by(L�w)(�) = �dwd� (�)� mXj=�mA�j (� � j)w(� � j):
We need the following weak uniqueness assumption.Hypothesis 1. If v is in the null spae of L or the adjoint operator L� suh that vj[�0�m;�0+m℄ = 0 for some�0, then v vanishes identially.Our main result is the following theorem.Theorem 1. If L is a Fredholm operator and if Hypothesis 1 is met, then (1.1) has exponential dihotomieson R+ and on R� .A weaker but perhaps more expliit version of the above theorem is the following statement.Theorem 2. If (1.1) is asymptotially hyperboli (see De�nition 2.1 below) and if neither detAm(�) nordetA�m(�) vanish on any open interval, then (1.1) has exponential dihotomies on R+ and on R� .Analogous results have been shown, independently and simultaneously, in [MPVL℄.The existene of exponential dihotomies on R+ and R� has a number of onsequenes: for instane, the nullspae and the orthogonal omplement of the range of L are isomorphi to the spaes R(P+(0)) \ N(P�(0))and (R(P+(0)) + N(P�(0)))?, respetively. In addition, it is possible to haraterize the Fredholm index ofL by the di�erene of relative Morse indies. We refer to [SS℄ for details.Lastly, we motivate why funtional di�erential equations are interesting and outline some appliations ofexponential dihotomies that we intend to pursue in future work. Linear non-autonomous funtional dif-ferential equations of mixed type arise in many di�erent problems. We may, for instane, be interested intravelling waves of lattie di�erential equations�tuk = mXj=�m fj(uk+j); k 2 Z;
where uj = uj(t) for j 2 Z. A travelling-wave solution is a funtion v(�) suh that, for some wave speed 2 R , we have uk(t) = '(k + t) for t 2 R and k 2 Z. Upon substituting this expression for uk into theabove lattie equation, we obtain '0(�) = mXj=�m fj('(� + j)); � 2 R ;
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where we set � = k + t. The linearization about the wave '(�) is then given byv0(�) = mXj=�mDfj('(� + j))v(� + j) =: mXj=�mAj(�)v(� + j)whih is of the form (1.1) provided the wave speed  does not vanish. Note that, if  = 0, then the aboveequation is a di�erene equation. A seond example are semi-disretizations of paraboli PDEs suh as�tu = D�2xu+ f(u); u 2 Rn ; x 2 Rthat admit travelling-wave solutions whih onnet two, possibly di�erent, homogeneous equilibria. Sine suhequations are often too ompliated to allow for a omplete analysis, numerial methods have to be employedto ompute travelling waves and to ontinue them in parameter spae. An important question is then towhih extent the numerial sheme is able to reprodue travelling waves of the original PDE and whether thestability properties of the wave are retained upon disretizing. We shall investigate these issues in a simpli�edsetting: instead of onsidering a fully disrete numerial sheme, we may study semi-disretizations, i.e.,equations where only the spatial derivatives are replaed by �nite di�erene approximations. The resultinglattie equations are of the form�tu(x; t) = mXj=�m�ju(x+ jh; t) + f(u(x; t));where the oeÆients �j may depend on the mesh size h. Let � := x+th , then a travelling wave of the formu(x; t) = '(x+th ) satis�es the nonlinear funtional di�erential equationh'0(�) = mXj=�m�j'(� + j) + f('(�)):We assume that we have found a solution '(�) of this equation and onsider the linearizationhv0(�) = mXj=�m�jv(� + j) + Df('(�))v(�)about the wave. If the wave speed  6= 0 is not zero, we obtain a funtional di�erential equation of mixedtype as in our �rst example. Exponential dihotomies provide a useful tool to investigate suh equations.In a nutshell (see [SS℄ for a more omprehensive disussion), exponential dihotomies allow for a muhmore re�ned perturbation analysis ompared with, for instane, Fredholm properties. One example wheredihotomies are useful is in providing orret hoies of boundary onditions so that (1.1) trunated to aninterval (�L;L) with L� 1 is well-posed (see [LPSS℄ and the referenes therein). Dihotomies are also usefulin the onstrution of Evans funtions that an be used to investigate linear stability of travelling waves (see,for instane, [BG,SS,San2℄ and referenes therein). Lastly, exponential dihotomies an be used to onstrutnew patterns, suh as periodi or multi-hump waves, from a given travelling wave by using, for example,Lin's method [Lin,San1℄. Some of the above issues will be investigated in more detail in a forthoming artile.This paper is organized as follows. In Setion 2, we formulate (1.1) as an evolution problem and introdueseveral operators relevant to that formulation. In Setion 3, we then show the existene of exponentialdihotomies for the orresponding autonomous equation. The analysis is similar to the one given in [Rus℄and uses additional results from [VL℄. Lastly, in Setion 4, we onsider the non-autonomous equation forwhih we prove the existene of exponential dihotomies following the strategy in [SS℄.Aknowledgments. J. H�arterih was supported by the Deutshe Forshungsgemeinshaft under grantHa 3008/1-1. B. Sandstede was partially supported by the National Siene Foundation under grant DMS-9971703 and by an Alfred P. Sloan Researh Fellowship.
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2 The operators L and T
In this setion we desribe two linear operators that an be assoiated with the linear funtional di�erentialequation v0(�) = mXj=�mAj(�)v(� + j) (2.1)and show how they are related.
2.1 The operators L and L�We de�ne the losed and densely de�ned linear operatorL : D(L) = H1(R ; C n) �! L2(R ; C n)(Lv)(�) = dvd� (�)� mXj=�mAj(�)v(� + j)
assoiated with equation (2.1). The adjoint operator L� of L is given by(L�w)(�) = �dwd� (�)� mXj=�mA�j (� � j)w(� � j):
It is easily heked that Z 1�1(Lv)(�) � w(�) d� = Z 1�1 v(�) � (L�w)(�) d�for all v; w 2 H1(R ; C n), where we denote the salar produt in C n by a � b =Pnk=1 akbk for a; b 2 C n . Theoperator L has partiularly nie properties if the oeÆients Aj satisfy a ertain hyperboliity ondition.De�nition 2.1. The linear funtional di�erential equation (2.1) is alled asymptotially onstant if the limitsA�j := lim�!�1Aj(�) exist for all j. The equation is alled asymptotially hyperboli if it is asymptotiallyonstant and if the harateristi equations

det��(�) := det0� mXj=�mA�j e�j � � id1A = 0
assoiated with the limiting equations at � = �1 have no solutions � on the imaginary axis. If the oeÆientsdo not depend on �, then we all (2.1) hyperboli if det�(�) has no purely imaginary zeros �.The following result is due to Mallet-Paret [MP℄.Proposition 2.1 ([MP℄). If L is asymptotially hyperboli, then L is a Fredholm operator.
2.2 The operator TA di�erent way of viewing (2.1) is to write it in the formdVd� (�) = A(�)V (�) (2.2)
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where, for eah �xed � 2 R , we de�neA(�) : D(A(�)) = Y 1 �! Y; ��a� 7�! � d�d�A0(�)a+P1�jjj�mAj(�)�(j)�with Y := L2([�m;m℄; C n)� C n (2.3)Y 1 := f(�; a) 2 H1([�m;m℄; C n)� C n ; �(0) = ag:The spae Y 1 is well-de�ned sine H1([�m;m℄; C n) is embedded in C0([�m;m℄; C n). Note also that Y 1 isdense in Y sine the set of C1-funtions � with �(0) = a is dense in the set of step funtions in the L2-norm.The operator A(�) has domain Y 1 and is losed for any �xed �. In the ase of onstant oeÆients, we writeA0 instead of A(�).Before we de�ne the operator T , we state the following lemma that we use below to de�ne the domain of T .Lemma 2.1. Using the notation I = [�m;m℄ and (�; �) 2 R � I, we have that L2(R ; L2(I; C n)) = L2(R �I; C n). Furthermore, there is a onstant C with the following property. If � 2 L2(R � I; C n) suh thatthe weak derivative (�� � ��)� 2 L2(R � I; C n) exists, then �(�; k) 2 L2(R ; C n) for every �xed k 2 I and�(0; �) 2 L2(I; C n); in addition, we havek�(0; �)kL2(I;Cn ) + k�(�; k)kL2(R;Cn ) � C(k�kL2(R�I;Cn ) + k(�� � ��)�kL2(R�I;Cn )):Proof. The identity L2(R ; L2(I; C n)) = L2(R�I; C n) is a onsequene of Fubini's theorem. Upon introduingthe oordinates (~�; ~�) = (� + �; �) 2 R � I, we see that �(�; �) 2 L2(R � I; C n) with (�� � ��)�(�; �) 2L2(R � I; C n) if, and only if, ~�(~�; ~�) := �(~� � ~�; ~�) 2 L2(R ; H1(I; C n)). In partiular, ~� 2 L2(R ; C0(I; C n)),and we onlude that ~�(�; k) 2 L2(R ; C n) for every �xed k 2 I. Hene, �(�; k) = ~�(� + k; k) 2 L2(R ; C n)for �xed k. Lastly, for any suh �, we also have that �(0; �) = ~�(�; �) exists for almost every � 2 I. It isstraightforward to see that the L2-norm of ~�(�; �) an be bounded by the L2(R�I)-norms of � and (�����)�upon using the oordinates (~�; ~�).Assoiated with (2.2) is the operatorT : L2(R ; Y ) �! L2(R ; Y ); V 7�! dVd� (�)�A(�)V (�)

(�; a) 7�! 0�d�d� � d�d� ; dad� (�)�A0(�)a(�)� X1�jjj�mAj(�)[�(�)℄(j)1A
whih is onsidered as an unbounded operator on L2(R ; Y ) with domainD(T ) = f(�; a) 2 L2(R ; Y ); (�� � ��)� 2 L2(R � I; C n); a 2 H1(R ; C n); [�(�)℄(0) = a(�) 8�g (2.4)where we use the notation I = [�m;m℄. Note that D(T ) is well-de�ned owing to Lemma 2.1. Using againLemma 2.1, it is not diÆult to prove that T is losed and densely de�ned.Note that we have L2(R ; Y 1)\H1(R ; Y ) � D(T ). It is tempting to take L2(R ; Y 1)\H1(R ; Y ) as the domainof T . The operator T is, however, not losed if onsidered with this domain.The following lemma shows how the null spaes of the operators L and T are related.
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Lemma 2.2. If a funtion v 2 H1(R ; C n) satis�es Lv = 0, then V (�) := (vj[��m;�+m℄; v(�)) satis�es V 2D(T ) and T V = 0. Conversely, if V = (�; a) 2 D(T ) satis�es T V = 0, then a 2 H1(R ; C n) satis�es La = 0.In partiular, N(L) �= N(T ).Proof. If v 2 H1(R ; C n) is a solution to Lv = 0, then v is in fat of lass C1. To see this, it suÆes toshow that v 2 Ck([�`; `℄; C n) for arbitrarily large numbers k and `. By the Sobolev embedding theorem, vis in C0 on the interval [�`�mk; `+mk℄. Sine v satis�es (2.1), it is C1 on the smaller interval [�`� (k �1)m; `+ (k � 1)m℄. Indutively one an then show that v is indeed of lass Ck on [�`; `℄. As a onsequene,V (�) := (v�; v(�)) is a lassial solution of (2.2). It remains to hek that V is in the domain of T . Sinev 2 H1(R ; C n), we know thatkV kL2(R;Y 1) = ZR Z m�m(jv�(�)j2 + j��v�(�)j2) d� d� + kvkH1(R;Cn )= ZR Z m�m(jv(� + �)j2 + jv0(� + �)j2) d� d� + kvkH1(R;Cn )= (2m+ 1)kvkH1(R;Cn );and we onlude that V is in L2(R ; Y 1). Note that v 2 H1(R ; C n) is in the domain of the derivative whihis the generator of the shift semigroup on L2(R ; C n). Therefore,dd� v(� + �) = dd� v(� + �):Hene V is in H1(R ; Y ) and therefore indeed in L2(R ; Y 1)�H1(R ; Y ) � D(T ).To show the other diretion, assume that V = (�; a) 2 D(T ) satis�es T V = 0. It follows from the de�nition ofD(T ) that v(�) = a(�) = [�(�)℄(0) is well-de�ned and v 2 H1(R ; C n). It remains to show that aj[��m;�+m℄ =�(�), i.e., [�(� + �)℄(0) = [�(�)℄(�). As in Lemma 2.1, we use the oordinates (~�; ~�) = (� + �; �) 2 R � I andset ~�(~�; ~�) := [�(~� � ~�)℄(~�). From dd�� = dd��, we onlude that ~�(~�; ~�) = ~�(~�; 0) for almost every ~�, andtherefore for every ~� as [�(�)℄(0) is ontinuous. Hene, [�(� � �)℄(�) = [�(�)℄(0) for every � and �, and weonlude that [�(� + �)℄(0) = [�(�)℄(�).
2.3 The adjoint operator T �
We denote by h�; �i the inner produt���a�;� b�� := Z 1�1 Z m�m �(�; �) �  (�; �) d� d� + Z 1�1 a(�) � b(�) d�on L2(R ; Y ).Remark 2.1. Let j be an integer with �m � j < m. If  2 L2(R � [j; j + 1℄; C n) with weak derivative(�� � ��) 2 L2(R � (j; j + 1); C n), then  (�; j) and  (�; j + 1) are in L2(R ; C n) by Lemma 2.1. We usethe notation  (�; j+) :=  (�; j) and  (�; (j + 1)�) :=  (�; j + 1). For onveniene, we also de�ne  (�;m+) = (�;�m�) = 0.Lemma 2.3. The adjoint operator T � is given byT � : L2(R ; Y ) �! L2(R ; Y ); ( ; b) 7�! ��d d� + d d� ;�dbd� �A�0(�)b+  (�; 0�)�  (�; 0+)�
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with D(T �) = f( ; b) 2 L2(R ; Y ); (�� � ��) 2 L2(R � (j; j + 1); C n) 8j with �m � j < m;b 2 H1(R ; C n);  (�; j�)�  (�; j+) = A�j (�)b(�) 8� and 0 < jjj � mg(see Remark 2.1 for the notation). Furthermore, T �( ; b) = 0 if, and only if, L�b = 0.Proof. The domain D(T �) of the adjoint operator T � is given byD(T �) = f( ; b) 2 L2(R ; Y ); 9( �; b�) 2 L2(R ; Y ) : hT (�; a); ( ; b)i = h(�; a); ( �; b�)i 8(�; a) 2 D(T )g;in whih ase T �( ; b) := ( �; b�). Thus, we onsider the equation1Z�1

mZ�m �d�d� � d�d�� �  d� d� + 1Z�1
0�dad� �A0(�)a�Xj 6=0Aj(�)�(�; j)1A � b d� (2.5)

= 1Z�1
mZ�m � �  � d� d� + 1Z�1 a � b� d�:

Upon setting a = 0, so that �(�; 0) = 0, we obtain1Z�1
mZ�m �d�d� � d�d�� �  d� d� � 1Z�1 Xj 6=0Aj(�)�(�; j) � b d� = 1Z�1

mZ�m � �  � d� d�: (2.6)
If we restrit to test funtions � with �(�; j) = 0 for all integers j, we see that  � = (�� � ��) inL2(R � (j; j +1); C n) for all j with �m � j < m. Note that this de�nes  � uniquely in L2(R � [�m;m℄; C n).Using the notation introdued in Remark 2.1 and onsidering arbitrary test funtions � with �(�; 0) = 0, weobtain 1Z�1

mZ�m �d�d� � d�d�� �  d� d� = 1Z�1
mZ�m � �  � d� d� + mZ�m Xj 6=0 �(�; j) � ( (�; j�)�  (�; j+)) d�;

and onlude that (2.6) is met for all � with �(�; 0) = 0 provided (�; j�)�  (�; j+) = A�j (�)b(�)in L2(R ; C n) for all j 6= 0. We return to (2.5) whih, based on the results established above, redues toZ m�m �(�; 0) � ( (�; 0�)�  (�; 0+)) d� + Z 1�1�dad� �A0(�)a� � b d� = Z 1�1 a � b� d�and therefore to Z 1�1 dad� � b d� = Z 1�1 a � (b� +A�0(�)b�  (�; 0�) +  (�; 0+)) d�for all a 2 H1(R ; C n), sine �(�; 0) = a for every (�; a) 2 D(T ). This shows that b 2 H1(R ; C n) andb� = �dbd� �A�0b+  (�; 0�)�  (�; 0+):Lastly, the proof that the null spaes of T � and L� are isomorphi is quite analogous to the proof ofLemma 2.2. The following argument is the key. Suppose that ( ; b) 2 D(T �) with T �( ; b) = 0. Using that
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(�� � ��) = 0 and that  (�; j�) =  (�; j+) + A�j (�)b(�) for j > 0 with  (�;m�) = A�m(�)b(�), it followsindutively that  (�; j�) = mXk=jA�k(� � k + j)b(� � k + j)for j > 0. Hene,  (�; 0+) =  (� � 1; 1�) = mXj=0A�j (� � j)b(� � j):Similarly, we obtain  (�; 0�) =  (� + 1;�1+) = � �mXj=0A�j (� � j)b(� � j)and therefore dbd� = �A�0(�)b+  (�; 0�)�  (�; 0+) = �A�0(�)b� mXj=�mA�j (� � j)b(� � j):
We omit the remaining details.As a onsequene, T is Fredholm whenever L is.Lemma 2.4. If L is Fredholm with index i, then T is Fredholm with the same index i.Proof. On aount of Lemma 2.2 and Lemma 2.3, we have dimN(L) = dimN(T ) and dimN(L�) =dimN(T �). To show that the range of T is losed, assume that T (�n; �n) ! ( ; �) is a onvergent se-quene in R(T ). De�ne vn(�) := �n(�)(0) = �n(�) whih gives a sequene (vn)n2N in H1(R ; C n). Thesequene (Lvn) onverges in L2(R ; C n) to �. Sine R(L) is losed, we know that Lvn ! Lv1 for somev1 2 H1(R ; C n). Lemma 2.2 implies that ( ; �) = T (�1; �1) for �1(�) := v1j[��m;�+m℄ and �1 := v1.Thus, R(T ) is losed, and we onlude that R(T �) is also losed [Kato, Theorem IV.5.13℄. In addition, wethen have odimR(L) = odimR(T ) sineodimR(L) = dimN(L�) = dimN(T �) = odimR(T )by the arguments at the beginning of the proof.
3 The onstant-oeÆient operator A0For given matries Aj with jjj � m, onsider the onstant-oeÆient operatorA0 : Y �! Y; ��a� 7�! � d�d�A0a+P1�jjj�mAj�(j)� (3.1)whih is densely de�ned with domain D(A0) = Y 1 (see (2.3)). The harateristi equation assoiated withA0 is det�(�) = 0 where �(�) := mXj=�mAjej� � � id :We are interested in proving the existene of exponential dihotomies for the equationdVd� = A0V;
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sine this equation with onstant oeÆients serves as a referene equation for the more general ase that weonsider in Setion 4 below. To prove the existene of exponential dihotomies for equations with onstantoeÆients, we �rst show that A0 has only point spetrum and provide estimates for its resolvent. Afterwards,we establish in Setion 3.2 the ompleteness of eigenfuntions and proeed then in Setion 3.3 with theonstrution of exponential dihotomies in a fashion similar to Rustihini [Rus℄ who proved the existene ofdihotomies for slightly di�erent operators in C0([�m;m℄; C n).
3.1 Spetrum, and resolvent estimatesWe begin by establishing that the spetrum of A0 onsists entirely of eigenvalues.Lemma 3.1. The operator A0 has only point spetrum. Moreover, � 2 C is in the spetrum of A0 if, andonly if, det�(�) = 0. If � is an eigenvalue, the orresponding eigenfuntion is of the form (�; a) with a 2 C nand �(�) = ae��.Proof. To determine the spetrum and the resolvent of A0 we have to disuss the equation(A0 � �)��a� = � b�where  2 L2([�m;m℄; C n) and b 2 C n . This equation is equivalent tod�d� � �� =  (A0 � �)a+ X1�jjj�mAj�(j) = b:
Solving the �rst equation by the variations-of-onstants formula shows that�(�) = e���(0) + Z �0 e(���)� (�) d�:Substituting this expression for � into the seond equation and exploiting that �(0) = a, we get�(�)a = b�Xj 6=0Aj Z j0 e(j��)� (�) d�:
Therefore, for any � with det�(�) 6= 0, i.e., for any � that is not in the point spetrum of A0, the resolventof A0 is given by

�(�) = e���(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A� Z �0 e(���)� (�) d� (3.2)
a = �(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A :

For later use, we derive estimates for the resolvent of A0. Rustihini [Rus℄ proved similar estimates for linearoperators assoiated with onstant-oeÆient equations onsidered in C0([�m;m℄; C n).
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Lemma 3.2. Fix a onstant � > 0. There is then a onstant M > 0 suh that, for any � with det�(�) 6= 0and jRe�j > �, we have k(A0 � �)�1kL(Y ) �M �emjRe�jjRe�j + k�(�)�1ke2mjRe�jjRe�j � :Proof. We have shown that the equation(A0 � �)��a� = � b� 2 Yhas the solution

�(�) = e���(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A+ Z �0 e(���)� (�) d�
a = �(�)�10�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A

whenever det�(�) 6= 0 with �(�) =Pmj=�mAjej� � � id. Note that����Z y0 e2(y��) Re� d�����1=2 � ejyRe�jp2jRe�j :Using this inequality in ombination with H�older's inequality, we �nd that
jaj � k�(�)�1k0�jbj+Xj 6=0 kAjk ejj Re�jp2jRe�j k kL21A

� k�(�)�1k jbj+M1 emjRe�jp2jRe�j k kL2!
� k�(�)�1k 1 +M1 emjRe�jp2jRe�j!� b�Ywhere M1 := 2m max�m�j�m kAjk:The same estimate appears when we bound the L2-norm of �:

k�kL2 � ke��kL2k�(�)�1k 1 +M1 emjRe�jp2jRe�j!� b�Y +  ej�Re�jp2jRe�jL2 k kL2
� emjRe�jp2jRe�j k�(�)�1k 1 +M1 emjRe�jp2jRe�j!� b�Y + emjRe�jjRe�j k kL2 :

For jRe�j > �, this implies the desired inequality.Using results of Bellman and Cooke [BC℄, Rustihini demonstrated the following statement on the loationof zeros of �(�).Lemma 3.3 ([Rus, Lemma 3.2℄). Assume that det(A�mAm) 6= 0, then the following is true.
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(i) For any � > 0, there exists a onstant M(�) suh that j Im�j � M(�) for any zero � of �(�) withjRe�j � �. In partiular, if there are no zeros of �(�) on the imaginary axis, then there is a stripf�; jRe�j � �g that ontains no eigenvalues of A0.(ii) There exists a positive onstant ~� suh that all zeros of � are ontained in the union W+ [W� whereW� := �� 2 C ; jRe�j > �; jRe(�� 1m log �)j � ~�� :(iii) There exists a onstant C > 0 suh thatk�(�)�1k � Ce�mjRe�jalong the urves jRe(�� 1m log�)j = ~�, i.e., along urves where j�je�mjRe�j is onstant.

3.2 CompletenessAn important property, whih is not at all obvious for non-selfadjoint operators suh as A0, is ompleteness,i.e., the property that the losure of the linear spae spanned by the generalized eigenfuntions of A0 is theentire underlying funtion spae Y . We demonstrate that A0 is omplete provided that the matries A�mand Am are not singular.Theorem 3. Consider the operator A0 de�ned in (3.1). Assume that A0 has no spetrum on the imaginaryaxis and that det(A�mAm) 6= 0. Let Eu be the losure in Y of the sum of generalized eigenspaes to alleigenvalues with positive real part. Similarly, let Es be the losure of the sum of the generalized eigenspaeorresponding to eigenvalues with negative real part. We then have Eu � Es = Y .Remark 3.1. An analogous statement holds if the spetrum has a enter part, i.e., in the situation thatthere are eigenvalues on the imaginary axis.Our proof of Theorem 3 is based on a haraterization of ompleteness given by Verduyn Lunel in [VL℄ (seeLemma 3.8 below). We begin by realling some fats from omplex analysis.De�nition 3.1. LetX be a omplex Banah spae. An entire funtion F : C ! X is said to be of exponentialtype E(F ) if lim supr!1 1r log max0���2� kF (rei�)k =: E(F ) <1exists.In the following proposition, we summarize some properties of entire funtions of exponential type.Lemma 3.4. Let F1; F2 : C ! C be entire funtions of exponential type whih are polynomially bounded inthe losed right half-plane Re� � 0. We then have E(F1F2) = E(F1) + E(F2). If the quotient F1=F2 is anentire funtion, then E(F1=F2) = E(F1)� E(F2).Note that the same holds for entire funtions whih are bounded in the left half-plane. This symmetry willallow us later to relax some onditions. The following lemma will prove useful below.
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Lemma 3.5. If F : C ! C is an entire funtion of exponential type that satis�eslim supr!1 1r log jF (�ir)j = 0 and jF (�)j �M for � 2 R ;then F is onstant.
Proof. The assertion is a onsequene of [Boas, Thm. 6.2.4℄, whih is a theorem by DuÆn and Shae�er[DS℄, applied separately to F (�) and F (��) with � restrited to the upper half-plane in onjuntion withLiouville's Theorem.
Using the identity �(�)�1 = 1det�(�) of�(�);where of�(�) is the matrix of ofators, we an rewrite the solution of the equation(A0 � �)��a� = � b�given in (3.2) as

�(�) = e��det�(�) of�(�)0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A+ Z �0 e(���)� (�) d� (3.3)
a = of�(�)det�(�) 0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A :

It is not hard to see that some of the funtions involved in the above expression are entire funtions ofexponential type.
Lemma 3.6. The exponential type of det�(�) is mn if, and only if, detA�m 6= 0 or detAm 6= 0. In thisase the exponential type of eah entry of the ofator matrix of�(�) is m(n� 1).Moreover, if detA�m 6= 0, then e�mn� det�(�) is of exponential type 2mn and bounded in the right half-plane, while the entries of e�m(n�1)� of�(�) are bounded in the right half-plane and have exponential type2m(n� 1).Similarly, if detAm 6= 0, then emn� det�(�) is of exponential type 2mn and bounded in the left half-plane,while the entries of em(n�1)� of�(�) are bounded in the left half-plane and have exponential type 2m(n�1).
Proof. The term det�(�) is a linear ombination of terms of the form �qej� where 0 � q � n and�mn � j � mn. This implies that the exponential type of det�(�) annot be greater than mn. TheoeÆient of emn� is detAm, while the oeÆient of e�mn� is detA�m. If at least one of those oeÆients isnonzero, then the de�nition of exponential type with � restrited to the real line shows that E(det�) = mn.On the other hand, the exponential type is stritly less than mn if both detA�m and detAm vanish. Similararguments apply to the entries of of�(�). Note that, if detA�m 6= 0, then eah sub-determinant of A�mdoes not vanish either. The remaining estimates an be obtained by ompletely analogous arguments.
In view of Lemma 3.5 it is also important to ontrol the behavior of the resolvent along the imaginary axis.
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Lemma 3.7. We have the following asymptoti behavior on the imaginary axis:limr!1 det�(�ir)rn = 1limr!1 (of�(�ir))kkrn�1 = 1 for k = 1; 2; : : : ; nlimr!1 (of�(�ir))klrn�2 = (�1)k+l for k 6= l:Proof. These relations are simple onsequenes of the fat that along the imaginary axis the polynomialterms dominate the exponential terms.We use the following haraterization of non-ompleteness.Lemma 3.8 ([VL, Lemma 3.2℄). If B : X ! X is an unbounded operator with meromorphi resolvent,then the system of eigenfuntions and generalized eigenfuntions is not omplete if, and only if, there existsa y� 2 X� with y� 6= 0 suh that the funtion� 7�! hy�; (B � �)�1xiis entire for every �xed x 2 X.We will show that no suh y� exists in our situation. The expliit form of the resolvent (A0 � �)�1 showsthat it is indeed a meromorphi funtion so that Lemma 3.8 applies to A0.Proof of Theorem 3. Assume that the system of eigenvetors and generalized eigenvetors of A0 isnot omplete. Applying Lemma 3.8 and the Riesz representation theorem to (3.3), we see that there are(�; a) 2 Y suh that, for every �xed ( ; b) 2 Y , the funtion���a�; (A0 � �)�1� b��= a � 1det�(�) of�(�)0�b�Xj 6=0Aj Z j0 e(j��)� (�) d�1A

+ Z m�m �(�) � 1det�(�) of�(�)0�e��b�Xj 6=0Aj Z j0 e(�+j��)� (�) d�1A d�
+ Z m�m �(�) � �Z �0 e(���)� (�) d�� d�is entire. In partiular, this is true for  = 0 for whih the above expression redues to���a�; (A0 � �)�1�0b�� = a � 1det�(�) of�(�)b+ Z m�m �(�) � 1det�(�) of�(�)e��b d�:If the right-hand side de�nes an entire funtion for all b 2 C n , then eah omponent Fk(�) ofF (�) := a � of�(�)det�(�) + Z m�m �(�) � of�(�)det�(�)e�� d�is an entire funtion. We prove that this implies that � = 0 whih leads to a ontradition.We �rst show that eah Fk(�) satis�es the assumptions of Lemma 3.5 with  = 0. Note that, sine detA�m 6=0, by Lemma 3.6 both the numerator and the denominator of e�mn�Fk(�) are entire funtions of exponential
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type 2mn whih are bounded in the right half-plane. Assuming that Fk is itself entire, we an onludefrom Lemma 3.4 that Fk is of exponential type 0. Regarding the behavior of Fk along the imaginary axis,Lemma 3.7 shows that Fk(ir) onverges to 0 for r ! �1. This implies diretly the weaker statementlim supr!1 1r log jFk(�ir)j � 0whih is used in Lemma 3.5. The last hypothesis that needs to be heked is the boundedness on the realaxis. Sine by assumption F is an entire funtion, we only need to be onerned about the behavior for�! �1. Sine detA�m 6= 0 and detAm 6= 0, we onlude thatj det�(�)j � Cemnj�jfor some onstant C and j�j suÆiently large. On the other hand, of�(�) is of exponential type m(n� 1),whene we an estimate����Z m�m �(�) � of�(�)e��b d����� � ����Z m�m �(�)em(n�1)j�jemj�jb d�����whih implies that Fk(�) is uniformly bounded for large j�j.Hene, Lemma 3.5 implies that eah Fk is onstant. Using the behavior along the imaginary axis, we onludeimmediately that this onstant is zero so thatFk(�) det�(�) = a � of�(�) + Z m�m �(�) � of�(�)e�� d� = 0:This implies that �a = Z m�m �(�)e�� d� = Z 2m0 �(� �m)em�e�� d�is a onstant independent of �. In other words, if we extend � to R by setting �(�) = 0 for j�j > m,then the onstant funtion �a would be the Laplae transform of the funtion �(� � m)em� whih is inL2 and has ompat support. However, as the Laplae of a funtion with ompat support, �a would haveto be integrable along eah line Re� = onst. This would imply a = 0, and by inverse Laplae transform� = 0. Therefore, by Lemma 3.8, the operator A0 has a omplete system of eigenvetors and generalizedeigenvetors.
3.3 Exponential dihotomiesWe are now in a position to establish the existene of exponential dihotomies for the equationdVd� = A0V (3.4)with onstant oeÆients. We assume that A0 is hyperboli, i.e., that �(�) 6= 0 for all � 2 iR . Reall fromLemma 3.3 that the distane from the spetrum of A0 to the imaginary axis is stritly positive. Let Es andEu be the losure in Y of the generalized eigenspaes assoiated with all eigenvalues of A0 that have negativeand positive real part, respetively.Proposition 3.1. Assume that det(A�mAm) 6= 0, and hoose � > 0 suh that � is smaller than the distanefrom the spetrum of A0 to the imaginary axis. There exists then a strongly ontinuous semigroup �s(�) :Es ! Es de�ned for � � 0 and a onstant K suh that �s(0) = id andk�s(�)kL(Y ) � Ke���:
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For any V0 2 Es \ Y 1, the funtion V (�) = �s(�)V0 is di�erentiable for � > 0 and satis�es (3.4) withV (0) = V0. Analogous statements hold for �u(�) : Eu ! Eu de�ned for � � 0.
Note that, for V0 2 Es, the funtion V (�) = �s(�)V0 is a mild solution of (3.4), i.e., it satis�es the integralequation V (�) = V0 + Z �0 A0V (�) d�for all � � 0.
Proof. It suÆes to prove the statement for �s(�). We begin by onstruting semigroups on the subspaeEs whih is de�ned as the sum of all generalized eigenspaes of eigenvalues � of A0 with Re� < 0.We onstrut the semigroup �s via an integral representation. We begin by hoosing urves �1 and �2 in Cby �1 := �� 2 C ; Re��+ 1m log �� = ~�; Im� < 0;Re� � ����2 := �� 2 C ; Re��+ 1m log �� = ~�; Im� > 0;Re� � ���where ~� has been de�ned in Lemma 3.3. Note that �1 and �2 an be parametrized by � = x+ iy(x) wherey0(x) = O(e�mx) as x ! �1 (see [Rus, p. 140℄). Lastly, the urve �3 joins �1 and �2 along the lineRe� = ��. By Lemma 3.3, the urve � := �1[�2[�3 lies to the right of the negative part of the spetrum.For V0 2 Es and �0 > 2m, we have 12�i Z�1 e��0(A0 � �)�1V0 d�Y � 12� Z�1 e�0 Re�k(A0 � �)�1k d� kV0kY� 12� Z�1 e�0 Re�M �emjRe�jjRe�j + Ce�mjRe�j e2mjRe�jjRe�j � d� kV0kY� 12� Z 0�1 e�0xe�mxM 1 + Cjxj e�mx dx kV0kY= K(�0)kV0kYwhere we used the above parametrization of �1 to evaluate the line integral. Note that the last integralonverges for �0 > 2m. Sine the same alulation applies to the integral along �2, we an de�ne an operator�s(�) on Es for � � �0 > 2m by �s(�)V0 := 12�i Z� e��(A0 � �)�1V0 d�: (3.5)In partiular, for � � �0 > 2m, we havek�s(�)V0kY �  12�i Z� e��(A0 � �)�1V0 d� � e���K(�0)e��0kV0kY (3.6)for some K(�0) � 1, whih gives exponential deay for � � �0 > 2m. Note that, for V0 2 Es\Y 1, the funtionV (�) = �s(�)V0 satis�es (3.4) for � > 2m with V (0) = V0 (see [Pazy℄).Next, we de�ne a �ltration of Es by �nite-dimensional generalized eigenspaes Esj � Y 1 with j 2 N (see[Rus℄). For any V0 2 Esj , we an readily solve (3.4) on R+ and get a solution V (�) that is di�erentiable
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with values in Y . On the interval [�0;1), the solution V (�) oinides with �s(�)V0 as de�ned in (3.5). Inpartiular, with V0 = (�; �(0)) and V (�) = (v�; v(�)), the funtion v(�) is a solution of

v0(�) = mXj=�mAjv(� + j) (3.7)
for � � 0 with vj[�m;m℄ = �. Hene, using (3.6), we obtain the L2-estimatekvkL2([m+�;3m+�℄) � K(2m+ �)k�kL2 (3.8)for any 0 < � < 1=2. Our goal is to estimate the solution v in L2([m;m+ �℄) in terms of the L2-norm of theinitial ondition �. Let C1 be a bound for the norms of the matries Aj . Using that v satis�es (3.7), we thenget the H1-estimate kvkH1([m+�;m+2�℄) � mC1(1 +K(2m+ �))k�kL2 ;and �nally jv(m+ �)j � C2(1 +K(2m+ �))k�kL2 (3.9)by Sobolev's embedding theorem for some C2 that may depend on �. Multiplying (3.7) by v(�), we obtainv0(�) � v(�) = A0v(�) � v(�) +Xj 6=0Ajv(� + j) � v(�)
and therefore 12 dd� jv(�)j2 � C1jv(�)j2 +Xj 6=0C1jv(� + j)j jv(�)j � C3jv(�)j2 +Xj 6=0C1jv(� + j)j2:
Integrating this inequality over [�;m+ �℄ with � 2 [m;m+ �℄ and � � 1=2, we obtain

jv(�)j2 � jv(m+ �)j2 + Z m+�� 0�C3jv(�)j2 +Xj 6=0C1jv(� + j)j21A d�
� jv(m+ �)j2 + Z m+�� 0�C3jv(�)j2 +Xj<0C1j�(� + j)j21A d� + C4k�k2L2
� C(�)k�k2 + Z m+�� C3jv(�)j2 d�where we used that v(�+j) = �(�+j) for j < 0 and exploited the estimates (3.8) and (3.9). Using Gronwall'sinequality, we get kvk2L2([m;m+�℄) � ~Ck�k2Y : (3.10)In summary, from (3.6) and (3.10), we �nally onlude thatkv�kL2([�m;m℄) � Kk�kY (3.11)for all � � 0, where v(�) is the solution of (3.7) with initial ondition � assoiated with a given V0 =(�; �(0)) 2 Esj . Note that the onstant K that appears in (3.11) does not depend on j (and not on V0). Inaddition, we have kv�kH1([�m;m℄) � CKe���k�kY (3.12)for � � m by using (3.7) and (3.6).
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Having established these uniform estimates on Esj , it remains to extend the semigroup �s(�) from Esj tothe losure Es, while maintaining the estimates (3.6). This an be done in a straightforward manner byapproximating initial onditions in Es by elements in Esj in the L2-sense and using ompatness propertiesimplied by the H1-estimate (3.12) on any given bounded interval in �. We omit the details as they are similar(and in fat easier) than those given in [Rus℄.
4 Fredholm properties of T imply the existene of dihotomies
In this setion, we prove that the non-autonomous equation (2.1) has an exponential dihotomy. The argu-ments are similar to those used in [SS℄ in the ase of modulated travelling waves. For this reason, we givean outline of the proof and provide details only where the arguments for forward-bakward delay equationsare di�erent. The main strategy is to ompare the non-autonomous operator with the onstant-oeÆientoperator for whih the existene of exponential dihotomies has been shown in the previous setion.After extending the operator T in Setion 4.1 to a larger funtion spae, we prove Theorem 1 in Setions 4.2and 4.3, and Theorem 2 in Setion 4.4.
4.1 The extension S of TWe onsider the operator T : L2(R ; Y ) �! L2(R ; Y ); V 7�! dVd� �AVwith domain D(T ) given in (2.4). The adjoint T � of T is also densely de�ned in L2(R ; Y ) with domain D(T �)given in Lemma 2.3. Alternatively, we an onsider T � as a bounded operator, denoted by T �, from D(T �)to L2(R ; Y ). Here, we onsider D(T �) as a Banah spae equipped with the graph norm. We denote by Sthe adjoint operator �T ��� of T �, so thatS : L2(R ; Y ) �! D(T �)�:Note that S restrited to D(T ) oinides with T . We remark that the notation (T �)ad instead of S is usedin [SS℄.By de�nition, the equation SU = G means that (T �W;U) = (W;G) for all W 2 D(T �). The brakets denotethe duality pairing of D(T �) and D(T �)�. In other words, SU = G is a shortut for� Z 1�1h��W +A(�)�W;UiY d� = Z 1�1hW;GiY d�; 8W 2 D(T �)where the salar produts h�; �iY are interpreted in the sense of distributions.
Lemma 4.1. Assume that T is Fredholm, then S is also Fredholm with the same index. Furthermore, N(S) =N(T ).
Proof. The statements are onsequenes of [Kato, Setion III x5.5 on p. 168℄ and [Kato, Setion IV x5.3 onp. 236℄.
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4.2 T is invertibleIt is onvenient to onsider �rst the ase that T is invertible before proeeding to the more general ase thatT is only Fredholm.Lemma 4.2 ([SS, Lemma 5.2℄). Assume that T is invertible. For any �0 2 R and any G0 2 Y , de�neG(�; �) := G0(�)Æ(� � �0) where Æ denotes the Æ-distribution. There is then a unique solution U 2 L2(R ; Y )of the equation SU = G:The restritions of U to (�1; �0℄ and [�0;+1) belong to C0((�1; �0℄; Y ) and C0([�0;+1); Y ), respetively.The limits U+(�0) := lim�&�0 U(�) and U�(�0) := lim�%�0 U(�) exist and satisfy the jump ondition U+(�0)�U�(�0) = G0. In addition, we have the estimatekUkL1(R;Y ) + kUkL2(R;Y ) � CjG0jYwhere the onstant C is independent of G0.Proof. Note that the equation SU = G is well-de�ned sine G 2 D(T )� by Lemma 2.1. Without loss ofgenerality, let �0 = 0.The proof is based on the omparison with an appropriate referene equation. Choose matries Arefj for0 � jjj � m suh that det(Aref�mArefm ) 6= 0 and suh that det�(�) 6= 0 for all � 2 iR where

�(�) = mXj=�mArefj ej� � � id :
De�ne Aref : ��a� 7�! � d�d�Aref0 a+P1�jjj�mArefj �(j)�so that A0 is hyperboli. We write T as T = Tref + Bwhere Tref = dd� �Aref andB(�) = Aref �A(�) : ��a� 7�! � 0(Aref0 �A0(�))a+P1�jjj�m(Arefj �Aj(�))�(j)�:The strategy is to �rst seek a solution V 2 L2(R ; Y ) of the referene equation SrefV = G and afterwards aontinuous solution ~U that satis�es S ~U = �BV . The sum U := V + ~U then satis�esSU = S(V + ~U) = SrefV + BV + S ~U = Gas desired.We begin by solving the equation SrefV = � dd� �Aref�V = G:Aording to Proposition 3.1, the equation dVd� = ArefV (4.1)
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has exponential dihotomies. Let Pref and (id�Pref) be the orresponding projetions suh that (4.1) gener-ates exponentially deaying C0-semigroups on both R(Pref) and R(id�Pref). For any G0 2 Y 1, de�ne

V (�) := ( eArefPref�PrefG0 for � > 0�eAref(id�Pref)�(id�Pref)G0 for � < 0:By standard semigroup theory, the funtion V is di�erentiable for � 6= 0 and satis�es (4.1) for � 6= 0. Fur-thermore, the limits V 0+ := lim�&0 V (�) and V 0� := lim�%0 V (�) exist. For any test funtion � 2 C10 (R ; Y 1),we obtain� Z 1�1�V; d�d� +A�ref��Y d�= � Z 10 �eArefPref�PrefG0; d�d� +A�ref��Y d� + Z 0�1�eAref(id�Pref)�PrefG0; d�d� +A�ref��Y d�= 
eArefPref�PrefG0; ��Y ����=0 + DeAref(id�Pref)�PrefG0; �EY ����=0= V 0+ � V 0� = hG0; �(0)iY = Z 1�1hG0Æ(�); �iY d�using integration by parts and the fat that V satis�es (4.1) for � 6= 0. This shows that, for G0 2 Y 1, Vsatis�es SrefV = G. For G0 2 Y , we de�ne a solution V 2 L2(R ; Y ) of SrefV = G by approximating G0 bya sequene in Y 1 and using the strong ontinuity of the semigroup (see [SS, Setion 5.3.1℄ for details).In the next step, we solve S ~U = �BV (4.2)that involves the solution V of the referene equation. The right-hand side �BV of (4.2) is in L2(R ; Y ) sineits �rst omponent vanishes ompletely, while the seond omponent is ontinuous exept at � = 0 and deaysexponentially as � ! �1. Sine S restrited to D(T ) oinides with T , and sine both operators are invertibleby assumption and by Lemma 4.1, we an solve (4.2) and obtain a unique solution ~U = (~�; ~a) 2 D(T ). Usingthe fat that the �rst omponent of �BV vanishes, we see that ~�(�; �) = ~a(� + �) with ~a 2 H1(R ; C n). Inpartiular, ~U is ontinuous on R with values in Y andk ~UkH1(R;Y ) + k ~UkL2(R;Y 1) � CkV kL2(R;Y ):Lastly, as mentioned earlier, the sum U = ~U+V satis�es all the properties stated in the lemma. In partiular,it is ontinuous on R� and R+ , and the jump at � = 0 is exatly the jump of V at � = 0. Therefore,U+(0)� U�(0) = G0.The previous lemma allows us to de�ne a ontinuous, injetive map�(�0) : Y �! Y � Y; G0 7�! (U+(�0); U�(�0)):Using the anonial projetions Pi(�0) : Y � Y ! Y de�ned by Pi(�0)(U1; U2) = Ui for i = 1; 2, we have therelation G0 = P1(�0)�(�0)G0 � P2(�0)�(�0)G0for any G0 2 Y .Lemma 4.3 ([SS, Lemma 5.3℄). Suppose that T is invertible. The images R(Pi(�0)�(�0)) are then losedsubspaes, and we have R(P1(�0)�(�0))� R(P2(�0)�(�0)) = Y for eah �0 2 R .
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We an then de�ne a family of projetions P (�) suh that R(P (�)) = R(P1(�)�(�)) and N(P (�)) =R(P2(�)�(�)). Note that, for any U+ 2 R(P (�0)), there exists a unique strong solution V s(�) of (2.2),de�ned for � > �0, with initial value V s(�0) = U+. Analogously, for any U� 2 N(P (�0)), there exists a uniquestrong solution V u(�) of (2.2), de�ned for � < �0, with initial value V u(�0) = U�. This projetions de�ne thedesired exponential dihotomies.
Lemma 4.4 ([SS, Lemma 5.5℄). The family P (�) of projetions together with the solutions V s and V ude�nes an exponential dihotomy on R .
4.3 T is FredholmAgain, we losely follow the proof given in [SS℄ for paraboli equations in ylinders. Sine most of the detailsare idential, save for notation, we omment only on those two parts of the proof where the arguments in[SS, Setion 5.3.2℄ need to be modi�ed. First, the proof given in [SS, Setion 5.3.2℄ uses the fat that thenull spaes of T and S oinide. We proved in Lemma 4.1 that this is always the ase. Seond, the followingweak uniqueness ondition (U1) has been used in [SS℄.
(U1) If V is in the null spae of T or the adjoint operator T � and V (�0) = 0 for some �0, then V vanishesidentially.
This assumption is, however, equivalent to Hypothesis 1 on aount of Lemma 2.2. Now that the abovetwo properties are established, the abstrat proof in [SS℄ applies to our situation and gives the existene ofexponential dihotomies. This ompletes the proof of Theorem 1 on the existene of exponential dihotomies.
4.4 Proof of Theorem 2It suÆes to show that the hypotheses of Theorem 2 imply the hypotheses of Theorem 1 whih we provedin the last setion. Proposition 2.1 whih is due to Mallet-Paret [MP℄ implies that L is Fredholm providedit is asymptotially hyperboli. We established in Lemma 2.4 that T is Fredholm whenever L is. It thereforeremains to demonstrate that Hypothesis 1 is a onsequene of the following Hypothesis 1 whih we assumedin Theorem 2.
Hypothesis 1. Assume that neither detAm(�) nor detA�m(�) vanish on any open interval.
To establish that Hypothesis 1 follows from Hypothesis 1, suppose that a 2 N(L) suh that a(�) vanishesidentially on the interval [�0 �m; �0 +m℄. We want to prove that this implies that a(�) = 0 for all � 2 Rand argue by ontradition. Note that, by Lemma 2.2, a is a lassial solution of (2.1). Thus, without lossof generality, we assume that �1 := inff� � �0; a(� +m) 6= 0gexists and is �nite. Sine a(� + j) = 0 for jjj � m and �0 � � � �1, we havea0(�) = mXj=�mAj(�)a(� + j) = Am(�)a(� +m)
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for all � 2 [�1; �1 + 1). By the de�nition of �1, there exists an open and non-empty interval J � (�1; �1 + 1)suh that a(� +m) 6= 0 for any � 2 J . Thus, we onlude thata0(�) = Am(�)a(� +m) 6= 0for some � 2 J , sine detAm(�) does not vanish identially on J by Hypothesis 1. This ontradits thede�nition of �1.
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