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Abstract

We deal with the large-time behaviour of scalar hyperbolic conservation
laws with source terms

ut + f(u)x = g(u),

which are often called hyperbolic balance laws. Fan and Hale have proved
existence of a global attractor A0 for this equation with x ∈ S1. A0 consists
of spatially homogenous equilibria, a large number of rotating waves and of
heteroclinic orbits between these objects. In this paper, we solve the connec-
tion problem and show which equilibria and rotating waves are connected by
a heteroclinic orbit. Apart from existence results, our approach via gener-
alized characteristics gives also geometric information about the heteroclinic
solutions, e.g. about the shock curves and their strength.

1 Introduction

Global attractors have been proved to exist for many different p.d.e.’s. However, only
in some cases more than bare existence, regularity and estimates for the Hausdorff
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dimension are known. One of the exceptions is the class of scalar hyperbolic balance
laws

ut + f(u)x = g(u), u ∈ IR, x ∈ S1 ∼= IR/ ZZ (1)

with a convex flux f . We will consider this equation together with the initial con-
dition

u(x, t0) = u0(x) ∈ BV (S1) (2)

As for conservation laws there are no global classical solutions of (1), even for smooth
initial data. On the other hand, weak solutions are not unique. For this reason, an
entropy condition is imposed that selects one of the possible weak solutions.

Definition 1.1 We call u ∈ L∞([t0,∞) × IR+) a solution of (1),(2) if it satisfies
the equation in a weak sense, if u(·, t) ∈ BV (IR) for every t > t0 and if for t > t0
the one-sided limits u(x+, t), u(x−, t) satisfy the entropy condition

u(x+, t) ≤ u(x−, t).

We will also assume that the solutions are continuous from the left with respect to
x. On the functions f and g we impose the following conditions:

f ∈ C2, f ′ is strictly increasing (F)

u · g(u) < 0 for all |u| large (dissipativeness) (D)

g ∈ C1, g possesses only simple zeroes u1, u2, . . . u2n+1 (G)

Krushkov [7] has proved the following important existence result:

Proposition 1.2 ([7]) Assume (F),(D) and (G). Then (1),(2) has a unique solu-
tion.

Hence, (1) defines a flow on BV (S1) which we denote with Φt(u0). Fan and Hale [4]
proved the existence of a global attractor for (1) in Lp(S1)∩BV (S1) with 1 ≤ p < ∞:

Proposition 1.3 ([4], Theorem 3.6) Assume again (F),(D) and (G). Then the
set

A0 := {u0 ∈ BV (IR) : Φt(u0) is defined and bounded for all t ∈ IR}

is the global attractor of (1) in Lp(S1), i.e. it is invariant and attracts bounded sets
in Lp(S1).
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In other words, the global attractor consists exactly of all global bounded solutions.
By a global solution we mean a solution U(x, t) of (1) such that for −∞ < t0 ≤
t1 < ∞, U(x, t1) is the solution at time t = t1 corresponding to the initial condition
U(x, t0) at t = t0.
The aim of this article is to give a closer description of the set A0 and the dynamics on
it. For a single trajectory several authors have shown a type of Poincaré-Bendixson
theorem:

Proposition 1.4 ([3, 10, 13]) As t → ∞, any solution tends either to a homoge-
nous steady state u ≡ ui or to a rotating wave, i.e. a solution of the form

u(x, t) = Ψ(x − st)

where the velocity s can only take one of the values f ′(u2i), 1 ≤ i ≤ n. For any
globally defined bounded solution the same holds as t → −∞.

Hence the global attractor A0 consists of homogenous steady states, rotating waves
and heteroclinic orbits between these objects. Here we call a global solution h(x, t) a
heteroclinic orbit that connects the state Ψ−∞(x, t) to the (not necessarily different)
state Ψ+∞(x, t) if h tends to Ψ±∞ as the time t tends to ±∞.
The large-time behaviour is thus quite different from the situation of hyperbolic
conservation laws when the source term g is not present. In that case any solution
decays to a spatially homogenous state [8, 9].
There are exactly 2n + 1 homogenous steady states u ≡ ui. Note that exactly
n + 1 of them with i odd are asymptotically stable. This follows easily from the
monotonicity property stated below in proposition 2.2. We will call them the stable
steady states compared to the unstable ones u ≡ u2i.
In contrast, there are infinitely many (in fact, uncountably many) rotating waves
oscillating around each of the values u2i. Sinestrari proved in [12] that for any
possible wave speed f ′(u2i) and any closed set Z ⊆ S1 there exists a unique rotating
wave solution u(x, t) = uZ(x − f ′(u2i)t) with the property that

{ξ ∈ S1; uZ(ξ) = u2i} = Z,

and all rotating wave solutions of (1) are of this form. We will describe these rotating
waves in more detail below.
Note that we will sometimes consider the homogenous states u ≡ u2i as a rotating
wave with Z = S1. An important question is now, which steady states or rotating
waves are connected to which ones by a heteroclinic orbit and how this connecting
orbit looks like. Fan and Hale could show the following partial results:
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Proposition 1.5 ([4], Theorem 3.7)

(i) If a heteroclinic orbit connects two rotating waves then they have the same
velocity s.

(ii) If a heteroclinic orbit connects a rotating wave with speed f ′(u2i) to a steady
state u ≡ uj then |2i − j| = 1.

In fact, for any global solution u(x, t) we have the inclusions

u2i−1 ≤ u(x, t) ≤ u2i+1

for some i and almost every (x, t). This implies that we can seperately look for
heteroclinic orbits from or to rotating waves with given wave speed f ′(u2i). The
global attractor is then obtained by gluing the parts associated with the wave speeds
f ′(u2i) and f ′(u2i+2) at the homogenous equilibrium u ≡ u2i+1. For this reason,
we will from now on assume that g possesses exactly three zeroes u1, u2 and u3.
Moreover, we will also assume f ′(u2) = 0 since this situation can always be achieved
if x is replaced by x−f ′(u2)t. Hence, all rotating waves have zero wave speed and are
therefore equilibrium solutions of the new equation. Nevertheless, we will still call
them rotating waves to distinguish them from the spatially homogenous equilibrium
solutions. An important role is played by the set

Z(u(·, t)) := {x ∈ S1; u(x, t) = u2} (3)

This set is a kind of Lyapunov functional :

Proposition 1.6 ([13]) For any solution u and t1 > t2

Z(u(·, t1)) ⊆ Z(u(·, t2)).

This implies:

Proposition 1.7 ([4]) If a heteroclinic orbit connects the rotating waves Ψ−∞ and
Ψ+∞, then

Z(Ψ+∞) ⊆ Z(Ψ−∞). (4)

In this paper we want to show that (4) is not only necessary but also sufficient. We
split this statement into three different cases that will be treated seperately.

Theorem A For any rotating wave Ψ−∞ there exist heteroclinic orbits which con-
nect Ψ−∞ to the homogenous states u ≡ u1 and u ≡ u3.

4



          

Theorem B For any rotating wave Ψ+∞ there exist (many) heteroclinic orbits that
connect the spatially homogenous solution u ≡ u2 to Ψ+∞.

Theorem C Suppose that for two rotating waves Ψ−∞ and Ψ+∞ condition (4)
holds. Then there is a heteroclinic solution that approaches Ψ±∞ as the time t
tends to ±∞.

After introducing some tools in the next chapter, these three statements will be
proved in chapter 3. A concrete example with a model equation and some illustra-
tions is given in chapter 4 before we conclude with a short discussion.

2 Preliminaries

2.1 Strong monotonicity

Already Kruzhkov in the early seventies noticed that the semiflow associated with
(1) preserves the order of solutions.

Proposition 2.1 ([7]) If u, v are solutions of (1), (2) with initial data u0, v0 and
if

u0(x) ≤ v0(x) a.e.

then u(x, t) ≤ v(x, t) a.e. for all t > t0.

In fact, a stronger version holds in our case.

Lemma 2.2 If
u0(x) ≤ v0(x) ∀x ∈ S1

then u(x, t) ≤ v(x, t) for all t > t0 and all x ∈ S1.

Proof: By the entropy condition and the left-continuity of u, one can conclude
that

R(u(·, t)) := {u(x, t); x ∈ S1}

is an interval.
Assume now that u(x0, t0) < v(x0, t0) for some (x0, t0). Then there exists δ > 0 such
that u(x0, t0) + δ /∈ R(u(·, t0)). Again by the left-continuity of u the set where u is
strictly less than v has positive measure in contradiction to Kruzhkovs monotonicity
statement.

2
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2.2 Generalized characteristics

A main tool for our construction of connecting orbits are generalized and backward
characteristics, which were introduced by Dafermos [2].

Definition 2.3 A Lipschitz continuous curve x = ζ(t) defined on some interval
[t1, t2] is called a generalized characteristic if for almost all t ∈ [t1, t2] the differential
inclusion

ζ ′(t) ∈ [f ′(u(ζ(t)−, t)), f ′(u(ζ(t)+, t))]

holds. It is called genuine if

u(ζ(t)−, t) = u(ζ(t)+, t) for almost all t ∈ [t1, t2].

Generalized characteristics can be used to derive properties of the solution once
existence has been proved.

Proposition 2.4 For any (x, t) where u satisfies the entropy condition (in partic-
ular, for t > t0), there is a unique forward characteristic.

However, at least equally important are the backward characteristics. Dafermos
showed the following proposition which states that the value of u along a backward
characteristic satisfies an ordinary differential equation with an appropriate terminal
condition.

Proposition 2.5 For (x0, t0) ∈ S1× IR let (v±(·; x0, t0), ζ±(·; x0, t0)) be the solutions
of the characteristic equation

v′(t; x0, t0) = g(v(t; x0, t0))
ζ ′(t; x0, t0) = f ′(v(t; x0, t0))

}

(5)

subject to the terminal condition

v±(t0; x0, t0) = u(x0±, t0) , ζ±(t0; x0, t0) = x0.

Then
u(ζ±(t; x0, t0), t) = v±(t; x0, t0) ∀t ≤ t0.

and u(·, t) is continuous at ζ±(t; x0, t0). In particular, if u(x0−, t0) = u(x0+, t0),
there is a unique backward characteristic emanating from the point (x0, t0).
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The curves x = ζ−(t; x0, t0) and x = ζ+(t; x0, t0) are called the minimal and maximal
backward characteristic emanating from (x0, t0). So the preceding lemma tells that
the minimal and maximal backward characteristics are genuine.
We will supress the dependence on x0 and t0 in some places where it should cause
no confusion.

Proposition 2.6 Genuine characteristics can intersect each other only at their end-
points.

In particular, given a global solution u, two genuine backward characteristics ζ1(t; x1, t1)
and ζ2(t; x2, t2) can intersect only if t1 = t2 and if x1 = x2 since otherwise there would
be no unique forward characteristic emanating from the point of intersection.

Lemma 2.7 Assume that the point (x0, t0) lies on a shock curve. Then

x0 /∈ Z(u(t, ·)) ∀t > t0.

Proof: Assume that there is some t1 > t0 such that x0 ∈ Z(u(t1, ·)). By the
definition of Z and left continuity of u we have u(x0, t1) = u2 and hence the minimal
backward characteristic is a straight line ζ−(t; x0, t1) ≡ x0. However this a genuine
characteristic which implies that u is continuous along this line. This contradicts
our assumption that at t = t0 there is a shock at x = x0.

2

Due to the convexity of f for any x, y ∈ S1 there is a uniquely determined value
φ(x − y) such that the solution of the characteristic equation (5) with terminal
condition

v(t0) = φ(x − aj)

ζ(t0) = x

satisfies
lim

t→−∞
ζ(t) = y. (6)

Geometrically, φ(x − y) is the value one has to prescribe at x in order that the
backward characteristic converges to y.
Note that φ depends only on the difference x − y and is implicitly given via the
relation

∫ φ(ξ)

u2

f ′(v)

g(v)
dv = ξ. (7)
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Hence φ is continuous and monotone increasing with φ(0) = u2 and

limξ→−∞ φ(ξ) = u1,
limξ→+∞ φ(ξ) = u3.

Lemma 2.8 Let (v, ζ) be a solution of the characteristic equation (5) with

v(t0) = φ(ζ(t0) − y) for some t0.

Then
v(t) = φ(ζ(t) − y) for all t.

In particular if ζ is a genuine characteristic for a solution u of the hyperbolic balance
law, then

u(ζ(t), t) = φ(ζ(t) − y).

Proof:

ζ(t) − ζ(t0) =
∫ t

t0
f ′(v(s))ds

=
∫ v(t)

v(t0)

f ′(ν)

g(ν)
dν

=
∫ v(t)

u2

f ′(ν)

g(ν)
dν −

∫ v(t0)

u2

f ′(ν)

g(ν)
dν

=
∫ v(t)

u2

f ′(ν)

g(ν)
dν −

∫ φ(ζ(t0)−y)

u2

f ′(ν)

g(ν)
dν

⇒ ζ(t) − y =
∫ v(t)

u2

f ′(ν)

g(ν)
dν

⇒ v(t) = φ(ζ(t) − y)

where we have used (7) in the last two lines together with the positivity of the in-
tegrand.

2

Remark: Geometrically speaking, (v(t), ζ(t)) is the unstable manifold of the sta-
tionary solution (u2, y) of (5).
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3 The Proofs

3.1 Heteroclinic orbits connecting rotating waves to spa-
tially homogenous states

This section contains the proof of theorem A. We are going to construct a global
solution U of (1) that, as t → −∞, approaches a rotating wave Ψ−∞ with some
prescribed Z−∞ := Z(Ψ−∞(x)) while for t → +∞ it tends to the homogenous
state u ≡ u3. Constructing a heteroclinic orbit from Ψ−∞ to u ≡ u1 is completely
analogous.
Since Z−∞ is a closed set, we can write S1 \ Z−∞ as a (finite or countable) union of
open intervals:

S1 \ Z−∞ = ∪j∈J (aj, bj).

Assume now that there is a shock at some position x ∈ (aj, bj) with the additional
property that the minimal backward characteristic converges to aj while the maximal
characteristic converges to bj. This is a reasonable assumption since along backward
characteristics the value v converges to u2 for t → −∞, so the characteristic itself
should converge to some point of Z−∞. By (6), the left and right states at such a
shock have to be φ(x− aj) and φ(x− bj). The Rankine-Hugoniot condition requires
then that the shock propagates with velocity

s(x; aj, bj) =
f(φ(x − aj)) − f(φ(x − bj))

φ(x − aj) − φ(x − bj)
. (8)

We first show the following

Lemma 3.1 The vector field given on (aj, bj) by the ordinary differential equation

ẋ = s(x; aj, bj) (9)

has a unique unstable fixed point x̄j ∈ (aj, bj).

Proof: By convexity of f and monotonicity og φ, the function s is strictly increasing
in x. Moreover, at x = aj and x = bj we have

φ(bj − aj) > u2 = φ(0) > φ(aj − bj)

⇒ s(aj; aj, bj) < 0 and s(bj; aj, bj) > 0

Hence s possesses exactly one zero on (aj, bj).
2
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Lemma 3.2 The rotating wave Ψ−∞ satisfies

Ψ−∞(x) :=











φ(x − aj), aj < x ≤ x̄j

φ(x − bj), x̄j < x < bj

u2, x ∈ Z−∞

Proof: All shocks of Ψ−∞ have to be stationary. Moreover, since the mini-
mal and maximal backward characteristics emanating from a shock at x = x̄j

have to converge to some element of Z−∞ the left and right state at the shock
are Ψ−∞(x̄j, t) ≡ φ(x − aj) and Ψ−∞(x̄j+, t) ≡ φ(x − bj). The lemma is then a
consequence of lemma 2.8.

2

Now we are able to construct the heteroclinic orbit from Ψ−∞ to u ≡ u3. For any
j ∈ J we choose x̃j(0) ∈ (x̄j, bj) arbitrary. The x̃j(0) will be the shock positions at
t = 0. We continue these shocks backward in time. In order to satisfy the Rankine-
Hugoniot condition, let x̃(t), t ≤ 0, be the backward solution of (9) with terminal
condition x̃j(0) at t = 0. By lemma 3.1

lim
t→−∞

x̃j(t) = x̄j.

For t = 0 we set

U(x, 0) :=











φ(x − aj), aj < x ≤ x̃(0)
φ(x − bj), x̃(0) < x < bj

u2, x ∈ Z−∞

(10)

For t > 0 let U to be the solution of (1) with initial condition U(x, 0) from (10).
For t < 0 it will be proved that U is already determined by its values on the line
t = 0 and the one-sided limits along the shock curve γj := {(x, t); x = x̃j(t), t ≤ 0}.
The key observation is formulated in the next lemma.

Lemma 3.3 For any j ∈ J the set (aj, bj) × (−∞, 0] \ γj is the union of genuine
backward characteristics.

Proof: Since φ is continuous, by proposition 2.5 there is a unique genuine back-
ward characteristic emanating from each of the points (x, 0) with aj < x < bj and
x 6= x̃j(0). In addition, from each point on the shock curve γj there is a minimal and
a maximal backward characteristic which are both genuine. These backward char-
acteristics solve the same ordinary differential equation with a terminal conditions
that depend continuously on the end point. Hence, there are no gaps between these
characteristic curves. More precisely, the region {(x, t) − aj < x < x̃j(0), t < 0}
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is filled with genuine backward characteristics. In fact, these characteristics are all
translates of each other since the terminal condition does only depend on x but not
on t. Similarly, the region {(x, t); x̃j(0) < x < bj, t < 0} is filled with backward
characteristics.

2

Therefore we can define U via the solution of (5) along these backward characteris-
tics. In fact, by proposition 2.8 we get for t < 0

U(x, t) :=











φ(x − aj), aj < x ≤ x̃(t)
φ(x − bj), x̃(t) < x < bj

u2, x ∈ Z−∞

which implies immediately convergence of U to Ψ−∞ in Lp, 1 ≤ p < ∞ as t → −∞
because the x̃j converge to x̄j.
Vice versa, if we denote with V the solution of the hyperbolic balance law (1)
with initial condition V (x, t−) = U(x, t−) for some arbitrary but fixed t− < 0 then
solving (1) by the method of characteristics it is immediately clear that at any time
t− < t ≤ 0 the equality V (x, t) = U(x, t) holds. For t > 0 nothing has to be proved
since for t positive U is a solution by construction.
The only thing that remains to be shown for theorem A is the fact that U converges
to u3 as the time t tends to +∞. We will first consider another solution W whose
behaviour is easier to analyze than that of U . The advantage of W over U is the
fact that there is only one moving shock while all other shocks remain stationary.
It will turn out that the moving shock “devours” all other shocks in finite time.

Lemma 3.4 Let W be the solution of (1) with initial condition W (x, 0) given by

W (x, 0) :=

{

Ψ−∞(x), x /∈ (a1, b1)
U(x, 0), x ∈ (a1, b1)

(11)

where the interval (a1, b1) is chosen with maximal length:

b1 − a1 ≥ bj − aj ∀j ∈ J .

Then there exists some time T > 0 and δ > 0 such that for all x ∈ S1 we have

u2 + δ < W (x, T ) < u3.

Proof: By lemma 2.8 we find that along any forward characteristic ζ(t) either
W (ζ(t), t) = φ(ζ(t) − aj) or W (ζ(t), t) = φ(ζ(t) − bj) or W (ζ(t), t) = u2 as long as
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the characteristic does not hit a shock curve. Note that the choice of W prevents
forward characteristics from crossing each other. So we can follow the forward
characteristics up to a collision with a shock curve and find thereby the left and
right states at the shock.
We consider the (unique) genuine forward characteristic ζ(t) emanating from t =
0, x = x̃1(0). Note that uniqueness is guaranteed by the fact that W (x, 0) satisfies
the entropy condition.
This generalized characteristic ζ(t) is a shock curve. As long as a1 ∈ Z(W (t, ·)),
i.e. as long as no shock enters the interval (a1, b1) from the left, the left state along
ζ is W (ζ(t)−, t) = φ(ζ(t)− a1). This is again a consequence of lemma 2.8 since the
minimal backward characteristic ζ−(ζ(t), t) hits the line t = 0 somewhere between
a1 and x̃(0) where W (x, 0) takes the value φ(x − a1).
The right state however depends in a more involved way on the location ζ(t): For
ζ(t) ∈ (aj, x̄j] the right state is

W (ζ(t)+, t) = φ(ζ(t) − aj)

since in this case a characteristic hits the shock which for t → −∞ tends to aj.
Hence the resulting shock speed is

s =
f(φ(ζ(t) − a1)) − f(φ(ζ(t) − aj))

φ(ζ(t) − a1) − φ(ζ(t) − aj)
.

We want to show that this shock speed is bounded from below by some constant
s0 > 0. Since both φ(ζ(t)− a1) and φ(ζ(t)− aj) are bigger than u2, by convexity of
f we have the lower bound

s > s0 := f ′(φ(ζ(t) − a1)) > 0.

Similarly, for ζ(t) ∈ (x̄j, bj) we have as the right state at the shock

W (t, ζ(t)+) = φ(ζ(t) − bj)

with a resulting shock speed

s =
f(φ(ζ(t) − a1)) − f(φ(ζ(t) − bj))

φ(ζ(t) − a1) − φ(ζ(t) − bj)

≥
f(φ(ζ(0) − a1)) − f(φ(x̄j − bj))

φ(ζ(0) − a1) − φ(x̄j − bj)

≥
f(φ(ζ(0) − a1)) − f(φ(x̄1 − b1))

φ(ζ(0) − a1) − φ(x̄1 − b1)
> 0
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again by convexity of f .
Finally, for ζ(t) ∈ Z(W (t, ·)) the right state is simply

W (t, ζ(t)+) = u2

and the shock speed is

s =
f(φ(ζ(t) − a1))

φ(ζ(t) − a1) − u2

≥
f(φ(b1 − a1))

φ(b1 − a1) − u2

> 0.

In all possible cases we have therefore a j-independent, positive lower bound on
the shock speed s. This implies that after some finite time T0 the shock curve
ζ(t) reaches the position a1 + 1. For t > T0 by lemma 2.7 the set Z(W (t, ·)) is
empty. Since the range R(W (·, t) is an interval, we must either have W (x, t) < u2

or W (x, t) > u2 for all x ∈ S1 and t > T0. It is easy to see that the latter must
happen since the left state W (t, ζ(t)−) = φ(ζ(t) − a1) > u2.
Fix T > T0, then there exists some δ > 0 such that W (x, T ) > u2 + δ. Otherwise
there would exist some x0 ∈ S1 with W (x0+, T ) = u2 because the range of W (·, t0)
is an interval. In that case W would take the value u2 along the maximal backward
characteristic which contradicts Z(W (t, ·)) = ∅ for T0 < t < T . This completes the
proof of the lemma.

2

Lemma 3.5 U(x, t) converges to u3 in L∞ as t → ∞.

Proof: Obviously, u3 > U(x, 0) ≥ W (x, 0) since φ(x − aj) > u2 > φ(x − bj) for
all x ∈ (aj, bj) by (7), and since the shock positions x̃j(0) of U(x, 0) have been
chosen to lie to the right of the stationary shock positions x̄j of Ψ−∞. The strong
monotonicity statement from proposition 2.2 implies u3 > U(x, t) ≥ W (x, t) ∀t > 0,
in particular u3 > U(x, T ) > u2 + δ. Using again monotonicity to compare U and
the solution W̄ with initial data W̄ (x, T ) = u2 + δ we get uniform convergence to
u3 since W̄ (x, t) remains spatially homogenous and solves the ordinary differential
equation d

dt
W̄ (x, t) = g(W̄ (x, t)) .

2

This completes the proof of theorem A.

3.2 Heteroclinic orbits connecting a homogenous state to a
rotating wave

In this section we will prove theorem B and show that there is an abundance of
orbits connecting the homogenous state u ≡ u2 to any given rotating wave Ψ+∞.
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Similar as above we define Z+∞ := Z(Ψ+∞) and decompose the complement of Z+∞

as an at most countable union of open intervals Z+∞ := ∪j∈J (aj, bj).
We present three different ways of constructing heteroclinic connections U , one
which keeps the number of shocks fixed for all t ∈ IR, another where for t → −∞
the number of shocks grows to infinity while their strength decreases and a third
method where each shock is generated by a centered compression wave.

First method:
In each interval (aj, bj) let x̄j := x̄j(aj, bj) as before be again the position of the
stationary shock from lemma 3.1. To keep the shock at this location for all t ∈ IR

we will choose the left and right states in such a way that they satisfy the Rankine-
Hugoniot condition for a stationary shock, i.e.

f(U(x̄j−, t)) = f(U(x̄j+, t)). (12)

To get convergence to a homogenous state for t → −∞ we require

lim
t→−∞

|U(x̄j−, t) − U(x̄j+, t)| = 0.

The two conditions together imply that both U(x̄j−, t) and U(x̄j+, t) must approach
u2 as t tends to −∞. For this reason we choose U(x̄j−, t) with the following to
properties:

(i) U(x̄j−, t) is continuous with respect to t

(ii) U(x̄j−, t) is monotone increasing with limt→−∞ U(x̄j−, t) = u2 and
limt→+∞ U(x̄j−, t) = φ(x̄j − aj).

Since f is convex, the state U(x̄j+, t) on the right side of the shock is uniquely
determined by the Rankine-Hugoniot condition (12) and depends continuously on
t. Our claim is now that a global solution is defined by the minimal and maximal
backward characteristics emanating from the shock curve x ≡ x̄j. This however
is not hard to see, as again the characteristic curves solve an ordinary differential
equation where the terminal condition depends continuously on the end point. Hence
there are no gaps between the backward characteristics. The properties (i) and (ii)
of U(x̄j−, t) ensure that the whole region {(x, t) − aj < x < bj, t < 0} is filled by
backwards characteristics.
It remains to prove the convergence part of theorem B. We start with t → −∞.
First we fix some ε > 0. Then there exists a time t1 < 0 such that

u2 −
ε

2
< U(x̄j+, t) ≤ u2 ≤ U(x̄j−, t) < u2 +

ε

2
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for all t < t1. Moreover there is a time ∆t such that the backward solution of the
characteristic equation

v̇ = g(v)

with any terminal condition v(0) ∈ [φ(x̄j − bj), φ(x̄j − aj)] satisfies

u2 −
ε

2
< v(t) < u2 +

ε

2
(13)

for all t < −∆t. By a proper choice of the U(x̄j−, t) we may also assume that the
previous inequalities hold uniformly for j ∈ J0 where J0 is a subset of J with

∑

j∈J0

(bj − aj) <
ε

2(u3 − u1)
.

We claim now that for t < t1 − ∆t and x /∈ ∪j∈J0
(aj, bj) we have

u2 −
ε

2
< U(x, t) < u2 +

ε

2
.

To see this consider the forward characteristic from a point (x0, t0) with t0 < t1−∆t.
Without restriction we assume x0 ∈ (aj, x̄j] with j /∈ J0 since for x0 ∈ Z+∞ we would
have u(x0, t0) = u2 and for x0 ∈ (x̄j, bj) one can argue analogously. The forward
characteristic will hit the shock curve x ≡ x̄j at some point (x̄j, t). Either we have
t < t1, then u2 ≤ u(x0, t0) < u(x̄j−, t) < u2 + ε

2
by monotonicity of solutions of the

characteristic equation, or we have t > t1. In this case t − t0 > ∆t and we are done
by (13).
Hence for t < t1 − ∆t

||U(x, t) − u2||Lp ≤ ||U(x, t) − u2||L∞(S1)

= ||U(x, t) − u2||L∞(∪j∈J0
(aj ,bj)) + ||U(x, t) − u2||L∞(S1\∪j∈J0

(aj ,bj))

≤
∑

j∈J0

(bj − aj) · max(u3 − u2, u2 − u1) +
ε

2

≤ ε.

Convergence for t → +∞ to the rotating wave Ψ+∞ follows immediately from the
paper of Sinestrari [12] who showed that u converges to a rotating wave with

Z = ∩t>0Z(u(·, t))

if the latter set is nonempty. Alternately, one can prove convergence similar as for
t → −∞ by direct use of the generalized characteristics.
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Second method:
We describe this method for a single interval (aj, bj). For t > 0 we fix one stationary
shock at x̄j with left state φ(x̄j − aj) and right state φ(x̄j − bj). At t = 0 we split
this shock into two shock curves x = y1/4(t) and x = y3/4(t) and prescribe the left
and right states of our desired solution U along these curves as

U(y1/4(t)−, t) = φ(y1/4(t) − aj), U(y1/4(t)+, t) = φ(y1/4(t) − x̄j)
U(y3/4(t)−, t) = φ(y3/4(t) − x̄j), U(y3/4(t)+, t) = φ(y3/4(t) − bj).

The reason for choosing rational indices is the fact that we want to construct a
countable number of shock curves via infinitely many bifurcations of shock curves.
Let x̂1/4 and x̂3/4 be the positions of the two shock curves y1/4 and y3/4 at t = −1.
At t = −1 we split each of the two shock curves again: y1/4 into y1/8 and y3/8 and
y3/4 into y5/8 and y7/8. The left and right states along these new shock curves will
be given below. We then follow these for shock curves backward to t = −2 where
each of them is split into two curves again. We continue this process inductively.
At t = −N there will be 2N shock curves y(2i−1)/2N+1 , 1 ≤ i ≤ 2N . We set

x̂(2i−1)/2N+1 := y(2i−1)/2N+1(−N).

Then, at t = −N , we split the shock curve y(2i−1)/2N+1 into the two curves y(4i−3)/2N+2

and y(4i−1)/2N+2 with the left and right states of U according to

U(yk/2N+2(t), t) := φ(yk/2N+2(t) − x̂(k−1)/2N+2),

U(yk/2N+2(t)+, t) := φ(yk/2N+2(t) − x̂(k+1)/2N+2)

for any odd number k, where x̂0 := aj, x̂ 1

2

:= x0(0, 1) and x̂1 := bj. The left and
right states along the shock curve yk/2N+2 imply that

x̂(k−1)/2N+2 ≤ yk/2N+2(t) ≤ x̂(k+1)/2N+2 .

For t > −N both inequalities are strict and in particular (for t = −N − 1)

x̂(k−1)/2N+2 < x̂k/2N+2 < x̂(k+1)/2N+2 ,

i.e. the x̂k/2N are in the same order as their indices. Note that the the half-lines
{(x, t); x = x̂(2i−1)/2N+1 , t ≤ −N} are genuine backward characteristic and hence

x̂(2i−1)/2N+1 ∈ Z(U(·, t)) ∀t ≤ −N.
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Figure 1: A schematic picture of the shock curves for a heteroclinic connection from
a homogenous state to a rotating wave, dotted lines correspond to shock curves,
bold lines to U(x, t) = u2

Lemma 3.6 The genuine minimal and maximal backward characteristics emanat-
ing from the union of all shock curves, determine a global solution U .

Proof: Given (x0, t0) ∈ (aj, bj)×IR not on one of the shock curves, we have to show
that it lies on one of the genuine backwards characteristics. Let t0 ∈ (−N,−(N +1))
and x0 ∈ [x̂i/2N+1 , x̂(i+1)/2N+1). In the same interval there is also the shock curve
y(2i+1)/2N+2 . Depending on whether x0 lies to the left or to the right of the shock
curve, we set

U(x0, t0) :=

{

φ(x0 − x̂i/2N+1) if x0 ≤ y(2i+1)/2N+2(t0)
φ(x0 − x̂(i+1)/2N+1) if x0 > y(2i+1)/2N+2(t0)

For definiteness, we assume that U(x0, t0) = φ(x0 − x̂i/2N+1). Consider the forward
characteristic ζ from (x0, t0). Along this characteristic, by lemma 2.8, the value of
U is φ(ζ(t)− x̂i/2N+1) up to some point where the characteristic meets a shock curve.
However, the left state at any of the shock curves ζ might hit, is always φ(·−x̂i/2N+1).
Then we can argue as in the proof of theorem A: The forward characteristic ζ is
in fact the minimal backward characteristic emanating from some point on a shock
curve and hence our definition of U(x0, t0) agrees with the value one gets along this
minimal backward characteristic.
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2

Lemma 3.7 The set

Z := {x̂i/2N ; N ∈ IN, 0 ≤ i ≤ 2N}

is dense in (aj, bj).

Proof: We only sketch the proof since it involves only arguments we have used
before. If the statement is not true then there exists some x0 ∈ (aj, bj) such that

x̂− := inf{x ∈ Z, x > x0} > x0

x̂+ := sup{x ∈ Z, x < x0} < x0.

We can then find a positive lower bound for the speeds of all shock curves near x̂+

and a negative upper bound for the speed of shock curves near x̂−. From this we
can conclude that there is some shock curve yi/2N which enters the interval (x̂−, x̂+)
after a finite time. This implies x̂i/2N ∈ (x̂−, x̂+), a contradiction.

2

Lemma 3.8 U is a heteroclinic solution connecting u ≡ u2 to Ψ+∞.

Proof: Convergence for t → +∞ is easy to establish since by lemma 2.8 for t > 0
we have U ≡ Ψ+∞.
For t → −∞, convergence is a consequence of the preceding lemma. Given ε > 0,
by continuity of φ, we find δ > 0 with

|x − x̂i/2N | < δ ⇒ |φ(x − x̂i/2N ) − u2| < ε.

There exists N0 ∈ IN such that

(x̂i/2N0+1 − x̂(i−1)/2N0+1) < δ ∀1 ≤ i ≤ 2N0 .

Obviously, this inequality holds also for all N ≥ N0.
For t > −N0, the solution U(x, t) takes only values φ(x− x̂i/2N ) with |x− x̂i/2N | < δ.
This proves uniform convergence of U to u ≡ u2.

2
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Third method: Again we can restrict ourselves to one of the intervals (aj, bj).
For t ≥ 0 we choose as before a stationary shock at x̄j with left state φ(x̄j − aj)
and right state φ(x̄j − bj). At t = 0 we consider all backward characteristics that
emanate from the point (x̄j, 0). These are exactly the backward solutions of the
characteristic equation (5) with terminal condition v(0) ∈ (φ(x̄j − bj), φ(x̄j − aj)).
Together these solutions form a funnel of backward characteristic curves. In other
words, the shock at x̄j is generated by a centered compression wave. Together with
the backward characteristics from the shock curve these characteristics fill the whole
region (aj, bj)× IR and U can be defined by solving the characteristic equation along
the backward characteristics. Convergence for t → ±∞ is rather clear for this
method since for t > 0 we have U(x, t) ≡ Ψ+∞(x) while for t → −∞ we can use
convergence of U to u2 along every backward characteristic.

2

Remark: It is obvious that the three methods can be combined to yield more
heteroclinic orbits. The simplest possibility consists of choosing different methods
for some of the intervals (aj, bj) since these intervals do not influence each other.

3.3 Heteroclinic orbits between different rotating waves

We show first that without restriction only the case Z+∞ = {0} has to be discussed.
In that case S1 \Z+∞ consist of one interval (0, 1). In general, S1 \Z+∞ is the union
of several open intervals but then we find a global solution by setting u(x, t) = u2

for x ∈ Z+∞ and performing the same construction in each of the open intervals.
As so often before, we decompose S1 \ Z−∞ = ∪j∈J (aj, bj).
The main strategy to construct a global solution U is as in the proof of the previous
theorems: We describe the set of shock curves together with their left and right
states such that:

(i) they satisfy the Rankine-Hugoniot condition and

(ii) the minimal and maximal backward characteristics emanating from these shock
curves determine a global solution U .

Then we show that U converges to Ψ±∞ as t → ±∞.
For t ≥ 0 we want to have a single stationary shock at the position x ≡ x̄. As
before, we proceed backwards in time and split, at t = 0 this shock curve into two
curves y− and y+. At each point where one of these curves crosses a line x = x̄j for
some j ∈ J a new stationary shock curve bifurcates from there. More precisely, if
y−(tj) = x̄j or y+(tj) = x̄j for some time tj then we introduce a secondary shock
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curve {(x, t); x = x̄j, t ≤ tj} with left state φ(x̄j − aj) and right state φ(x̄j − bj).
By lemma 3.1 these shock curves satisfy the Rankine-Hugoniot condition.
For the primary shock curve y−(t), the left state will always be φ(y−(t)) while our
choice for the right state is

U(y−(t)+, t) :=











φ(y−(t) − aj) if y−(t) ∈
⋃

j∈J (aj, x̄j]
φ(y−(t) − bj) if y−(t) ∈

⋃

j∈J (x̄j, bj)
u2 if y−(t) ∈ Z−∞

similarly, we set U(y+(t)+, t) := φ(y+(t) − 1) and

U(y+(t)−, t) :=











φ(y+(t) − aj) if y+(t) ∈
⋃

j∈J (aj, x̄j]
φ(y+(t) − bj) if y+(t) ∈

⋃

j∈J (x̄j, bj)
u2 if y+(t) ∈ Z−∞

We then get y− and y+ by solving an ordinary differential equation with Lipschitz
right hand sides which is given by the Rankine-Hugoniot condition.

Lemma 3.9 The minimal and maximal backward characteristics emanating from
the union of all these shock curves with the line t = 0 determine a global solution U .

Proof: The proof is very similar to the proof of lemma 3.6, so we omit the details.
Again one can “guess” the solution U :

U(x, t) :=































φ(x) if x < y−(t)
φ(x − 1) if x > y+(t)
φ(x − aj) if x ∈ (y−(t), y+(t)) ∩ (

⋃

j∈J (aj, x̄j])
φ(x − bj) if x ∈ (y−(t), y+(t)) ∩ (

⋃

j∈J (x̄j, bj))
u2 if x ∈ (y−(t), y+(t)) ∩ Z−∞

Then one follows the forward characteristic up to a shock curve and verifies that
this forward characteristic is in fact a minimal or maximal backward characteristic.

2

Lemma 3.10

(i) y−∞ = limt→−∞ y−(t) = x̄j0 if 0 = aj0 for some j0 ∈ J . Otherwise y−∞ = 0.

(ii) Similarly, y+∞ = limt→−∞ y+(t) = x̄j1 if 1 = bj1 for some j1 ∈ J . Otherwise
y+∞ = 0.
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Proof: We sketch only part (i) since (ii) is completely analogous. y− is monotone
and bounded from below by 0. Therefore it must converge to some point y−∞ If
0 = aj0 and y− is already in the interval (aj0 , bj0) then convergence to x̄j0 follows
from lemma 3.1. On the other hand, as long as y− is strictly bigger than bj0 there
is a positive lower bound on ẏ− and hence, since we go backward in time, y− will
enter the interval (aj0 , bj0) after a finite time.
In the other case, since the shock speed ẏ at y−∞ has to be zero, we get immediately
a contradiction if y−∞ > 0.

2

Lemma 3.11 U is a heteroclinic orbit from Ψ−∞ to Ψ+∞

Proof: For t → +∞ nothing has to be proved since for t > 0 we have U(x, t) ≡
Ψ+∞(x).
For t → −∞, observe that U coincides with Ψ−∞ outside the intervals (y−∞, y−(t))
and (y+(t), y+∞) (with interval boundaries reversed if necessary). Since both U and
Ψ−∞ are bounded and the length of these intervals tends to zero for t → −∞ we
have convergence of U to Ψ−∞ in Lp for any 1 ≤ p < ∞.

2

Remark: There is a lot of freedom in this construction. The secondary shock
curves could as well bifurcate from points different from x̄j and would then for
t → −∞ converge to the position x̄j. What we have described is just the simplest
possibility.

4 An example

4.1 Stationary shocks

In this section we are going to study the simple polynomial example with f(u) = u2

and an asymmetric cubic source term g(u) = −u(u + 1)(u − 2). In this case it is
possible to derive an explicit formula (7) for φ which helps to illustrate the previous
results. Recall that φ satisfies

∫ φ(ξ)

0
−

2ν dν

ν(ν + 1)(ν − 2)
= ξ.

Since
∫

−
dν

(ν + 1)(ν − 2)
=

1

3
ln

(

ν + 1

ν − 2

)
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Figure 2: A schematic picture of the heteroclinic connection between two different
rotating waves
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we arrive at
1 + φ(ξ)

2 − φ(ξ)
=

1

2
e3ξ/2

and after another rearrangement we get

φ(ξ) =
2e3ξ/2 − 2

e3ξ/2 + 2
. (14)

Given aj and bj we can now determine the location x̄j of the jump. As we have
demonstrated in lemma 3.1, the condition

f(φ(x̄j − aj)) = f(φ(x̄j − bj)) (15)

is satisfied for exactly one x̄j ∈ (aj, bj). In our simple case and since φ is a monotone
function, (15) amounts to the condition

φ(x̄j − aj) = −φ(x̄j − bj).

With (14), this yields

2 exp(3(x̄j − aj)/2) − 2

exp(3(x̄j − aj)/2) + 2
= −

2 exp(3(x̄j − bj)/2) − 2

exp(3(x̄j − bj)/2) + 2

⇐⇒ 4e−
3

2
(aj+bj)(e

3

2
x̄j)2 + 2(e−

3

2
a + e−

3

2
b)e

3

2
x̄j − 8 = 0.

We can solve this equation for ȳj := e
3

2
x̄j and, observing that ȳj > 0, we arrive at

ȳj =

√

(e−
3

2
aj + e−

3

2
bj)2 + 32e

3

2
(aj+bj) − e−

3

2
aj − e−

3

2
bj

4
.

Translating this back to x̄j gives

x̄j = aj +
2

3
ln

(
√

(1 + e
3

2
(bj−aj))2 + 32e

3

2
(bj−aj) − (1 + e

3

2
(bj−aj))

)

−
2

3
ln 4. (16)

4.2 A heteroclinic orbit connecting two rotating waves

To be even more specific we will now calculate the shock fronts for a heteroclinic
solution that connects a rotating wave Ψ−∞ with Z−∞ = {0, b1} to another rotating
wave Ψ+∞ with Z+∞ = {0}.
We have S1 \ Z−∞ = (a1, b1) ∪ (a2, b2) with a1 = 0, a2 = b1 and b2 = 1.
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By (16) we can calculate explicitly the locations x̄i of the stationary shocks in the
intervals (ai, bi) as well as the location x̄ of the stationary shock for the interval
(0, 1).
Like in section 3 the global solution possesses for t < 0 two shock curves y−(t) and
y+(t) which collide for t = 0 at x̄ to form a stationary shock there. To get an
expression for y− we need only solve the ordinary differential equation

ẏ−(t) =
f(φ(t)) − f(φ(t − b1))

φ(t) − φ(t − b1)

= φ(t) + φ(t − b1)

=
2e

3

2
t − 2

e
3

2
t + 2

+
2e

3

2
(t−b1) − 2

e
3

2
(t−b1) + 2

backward in time with the terminal condition y−(0) = x0.
The differential equation for y+ is

ẏ+(t) = φ(t − aj) + φ(t)

with the same terminal condition y+(0) = x0.
From lemma 2.8 we know that the solution has the following form:

U(x, t) =































φ(x; 0) for t < 0, x ≤ y−(t)
φ(x − b1) = φ(x − a2) for t < 0, y−(t) < x < y+(t)
φ(x; 1) for t < 0, y+(t) < x ≤ 1
φ(x; 0) for t ≥ 0, x ≤ x0

φ(x; 1) for t ≥ 0, x > x0

A schematic picture of this solution is given in figure 2.

5 Discussion

In this paper we have provided another step towards the geometric description of
the (infinite-dimensional) global attractors for scalar hyperbolic balance laws. We
have solved the connection problem by showing that Z+∞ ⊆ Z−∞ is a necessary
and sufficient condition for two rotating waves Ψ−∞ and Ψ+∞ to be connected by a
heteroclinic orbit.
We have not tried to find all heteroclinic orbits between two given limiting profiles
but we expect that the structure of all occuring heteroclinic orbits is similar to the

24



        

ones described in this paper. In particular the solutions constructed above share
the same feature that the profile does only change near shocks, while it remains
constant in regions where no shocks occur. In some sense, along the shock curves
there is a “phase transition” from φ(x − aj) to φ(x − bj).
Another important issue is the question of viscosity limits. The hyperbolic balance
law can be considered as the singular limit of parabolic equations

ut = εuxx − f(u)x + g(u)

when the “viscosity” ε tends to 0. Under the dissipativeness condition (D) on g
this equation possesses a global attractor Aε. Such a limit was studied by the
author in [6, 5] for x ∈ [0, 1] with Neumann boundary conditions. In this case the
dimension of the global attractors Aε remains bounded when the viscosity tends to
zero. However, there is no real limiting equation since the hyperbolic problem with
Neumann boundary conditions is not well posed.
On the other hand, for x ∈ S1 the results on the parabolic side are less detailed
than for x in the interval with separated boundary conditions. A Poincaré-Bendixson
theorem has been proved by Angenent and Fiedler [1] and recently by Matano and
Nakamura [11], but the connection problem is open in this case. In particular,
the important question remains whether the global attractor A0 of the hyperbolic
balance law can be obtained as the limit of global attractors Aε for ε ց 0.
Apart from these rather theoretical aspects, our paper could also be useful to find
some solutions to specific test equations by integration of some ordinary differen-
tial equations alone. For instance, our example from the preceding section with t
sufficiently negative provides a simple initial condition with two shocks whose be-
haviour we know exactly. Therefore, using this initial condition, numerical methods
can be easily compared to the correct analytical solution. Of course, more compli-
cated examples can be constructed in a similar way, including ones with centered
compression waves or multiple shock interactions.
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