
Cascades of reversible homoclinic orbits to a saddle-focusequilibriumJ�org H�arterichFreie Universit�at Berlin, Arnimallee 2-6, D-14195 BerlinAbstractIn a reversible system, we consider a homoclinic orbit being bi-asymptotic to asaddle-focus equilibrium. As was proved by Devaney, there exists a one-parameterfamily of periodic orbits accumulating onto this homoclinic orbit.In the present paper, we show that for any n � 2 there exist in�nitely many n-homoclinic orbits in a neighborhood of the primary homoclinic orbit . Each of themis accompanied by one or more families of periodic orbits. Moreover, we indicatehow these families of periodic orbits correspond to branches of subharmonic periodicorbits.1 IntroductionHomoclinic orbits are well-known to have a great in
uence on the dynamics ina neighborhood. In systems with a parameter, homoclinic orbits are typicallydestroyed under small perturbations. However, in many cases one can �nd pe-riodic orbits, n-homoclinic orbits or shift dynamics at parameter values thatare close to the value where the primary homoclinic orbit exists. The situa-tion is di�erent in reversible or Hamiltonian systems, since homoclinic orbitsgenerically persist under small perturbations that respect the reversible orHamiltonian structure. It is then often possible to �nd many other homoclinicor periodic orbits not only for slightly di�erent, but for the same parame-ter value as the primary homoclinic orbit. Devaney [Dev77] has shown thathomoclinic orbits are accompanied by a one-parameter-family of periodic or-bits. For periodic orbits in reversible systems, Vanderbauwhede [Van90] foundbranches of subharmonic periodic orbits at the same parameter value if oneFloquet multiplier of a periodic orbit equals a root of unity. The main focus inthis paper is on homoclinic and periodic orbits that make several revolutionsinside a tubular neighborhood of the primary homoclinic orbit.Our viewpoint is a geometrical one: We describe the image of certain setsPreprint submitted to Elsevier Science 1 July 1997



under a Poincar�e-map and their intersections. This enables us to �nd manyhomoclinic and periodic orbits. Moreover, we can identify some families of pe-riodic orbits accompanying the homoclinic orbits as branches of subharmonicperiodic orbits.The work presented in this paper is an extension of [H�ar93] and is closelyrelated to a paper of Champneys [Cha94]. Although in both papers similarresults are proved, the emphasis is di�erent. While Champneys concentratesmainly on 2- and 3-homoclinic solutions without generalizing to n-homoclinics,we try to describe as completely as possible all reversible homoclinic and peri-odic orbits in a neighborhood of the primary homoclinic. In contrast, Champ-neys also presents an example and numerically locates some of the theoreticallypredicted homoclinic orbits.The paper is organized as follows. After some preliminaries in section 2, wegive the basic assumptions and results in section 3. A linearization result isused in section 4 to simplify the Poincar�e-map. The geometrical objects thatwill prove useful later are introduced in section 5. Section 6 contains the proofs.and the paper concludes with a short discussion.2 Reversible dynamical systemsConsider an ordinary di�erential equation_x = f(x) ; x 2 R2m ; f 2 Ck (k � 2): (1)De�nition 1 Equation (1) is called reversible, if there is a linear involutionR : R2m ! R2m with R2 = id and dim(Fix(R)) = m such that the reversibilityconditionf(Rx) = �Rf(x) 8x 2 R2m (2)holds.One of the most useful properties of reversible systems is the fact that togetherwith x(t) also Rx(�t) is a solution of equation (1).For the 
ow �t generated by (1) this fact can be expressed by the relation�t = R��tR: (3)De�nition 2 An orbit 
 is called reversible if R(
) = 
.Since reversibility does not a�ect orbits that stay away from the plane Fix(R),we will focus our attention almost exclusively on reversible orbits.2



The following classi�cation of reversible orbits is taken from [VF92].Proposition 3 [Vanderbauwhede & Fiedler] An orbit 
 of a reversibledynamical system is reversible i� 
 \ Fix(R) 6= ;. Then exactly one of thefollowing three situations occurs:(i) 
 � Fix(R) and 
 is a reversible equilibrium.(ii) 
 6� Fix(R); 
 \ Fix(R) consists of a single point and 
 is not a closedtrajectory.(iii) 
 \ Fix(R) consists of precisely two points and 
 is a reversible periodicorbit.Reversible homoclinic orbits are contained in the second class and have aunique symmetric point where they intersect the plane Fix(R). Note thatthe equilibrium to which a reversible homoclinic orbit converges has to be areversible equilibrium.Reversibility also a�ects the linearization at a reversible equilibrium x0 2Fix(R). By simple calculations one can verify the following two properties:Proposition 4 The linearization A := Df(x0) satis�es:(i) AR = �RA(ii) � is an eigenvalue of A, �� is an eigenvalue of A.Hence, if one of the eigenvalues is a complex number �+!i with �; ! 6= 0, thenautomatically the quadruple ���!i is contained in the spectrum of A. In R4,an equilibrium with such a quadruple of eigenvalues is called a saddle-focusequilibrium.3 The Setting and main resultsIn the rest of the paper we restrict ourselves to equations in R4. We considertherefore the di�erential equation (1) with m = 2 and make the following �veassumptions:(A1) the reversibility condition f(Rx) = �Rf(x) holds(A2) f(0) = 0, i.e. the origin is a reversible equilibrium(A3) the spectrum of the Jacobian Df(0) consist of the four complex eigenvalues��� i! (�; ! > 0)(A4) there exists a reversible homoclinic orbit 
 satisfyinglimt!�1 
(t) = 0 (4)3



(A5) 
 is nondegenerate, i.e. the tangent spaces of the stable and unstable man-ifold satisfydim(T
(t)W s(0) \ T
(t)W u(0)) = 1:Sometimes it is useful to replace assumption (A5) by the weaker assumptionthat 
 is a elementary homoclinic orbit:(A5') Let q := 
\Fix(R). Then the stable manifoldW s(0) and the plane Fix(R)do intersect each other transversally in q. Moreover, 
 does not belong to aone-parameter-family of homoclinic orbits.The restriction to R4 is not too strict. A reduction from a higher-dimensionalproblem to this four-dimensional situation can in many cases be achieved by acenter-manifold reduction near the homoclinic orbit 
, see [San95]. (A3) statesa resonance between eigenvalues which prevents an application of Shil'nikovsresults [Shi67] on saddle-focus homoclinic orbits. Assumption (A5) and (A5')both imply that the homoclinic orbit 
 is structurally stable (in the class ofreversible dynamical systems).Our main interest will be in orbits that make several excursions along thehomoclinic orbit 
.De�nition 5 An orbit is called k-homoclinic, if it is entirely contained ina tubular neighborhood of the homoclinic orbit 
 and if it hits a transversesection to 
 exactly k times.Analogously, an orbit is called k-periodic if it is contained in a tubular neigh-borhood of 
 and if it hits a transverse section to 
 exactly k times beforeclosing up at the (k + 1)-th time.We do not assume k to be minimal, a k-periodic orbit therefore also is nk-periodic for any n 2 N.We have the following main theorem.Theorem 6 Assume (A1)-(A5). Then for any n � 2 there exist in�nitelymany n-homoclinic orbits in a tubular neighborhood of 
. Moreover, to each n-homoclinic orbit there is a one-parameter family of reversible n-periodic orbitsaccumulating onto the n-homoclinic orbit.If (A5) is replaced by (A5') the following weaker version holds:Theorem 7 Assume (A1)-(A4) and (A5'). Then there exist in�nitely many2-homoclinic and 3-homoclinic orbits in a tubular neighborhood of 
. Eitherall of them are degenerate or there is a nondegenerate homoclinic orbit forwhich theorem 6 applies. 4



4 The Poincar�e-mapThe proof of theorem 6 uses a Poincar�e-map along the homoclinic orbit 
. ThisPoincar�e-map is divided into a local part (near 0) and a global di�eomorphismalong 
.4.1 The local partFor the local part a C1-linearization of the 
ow near the origin will proveuseful.Lemma 8 [linearization, Belitskii(1973)] If the eigenvalues ofDf(0) sat-isfy assumption (A3), the 
ow can be C1-linearized locally near 0.Proof. The proof is based on a theorem of Belitskii [Bel73] for di�eomor-phisms. He shows that for any di�eomorphism �1 2 C2(Rn) with �1(0) = 0there is a neighborhood U of 0 and a C1-di�eomorphism h0 : U ! U, suchthat �1 is locally conjugate to its linear part, i.e.h0 � �1 � h�10 = D�1(0) (5)in U, if for all eigenvalues �i; �j; �k of D�1(0) the conditionj�ij 6= j�j j � j�kj (8 j�jj � 1 � j�kj) (6)holds.The linearization of the time-1-map �1 of (1) at 0 has eigenvalues e���i!,and it is easily seen that for � 6= 0 the condition (6) holds. Using a standardargument (see e. g. [Har82]) one can construct a linearization for the 
ow �tfrom the linearization of the time-1-map �1.2Without restriction, we assume now that the reversibility condition (A1) holdsfor the matrixR = 0BBBBBBBB@ 0 0 1 00 0 0 11 0 0 00 1 0 01CCCCCCCCA 5



and that the linear 
ow in a small neighborhood U of 0 is generated by thedi�erential equation_x = 0BBBBBBBB@� �! 0 0! � 0 00 0 �� !0 0 �! ��1CCCCCCCCAx :For the construction of the Poincar�e-map near the homoclinic orbit 
 it isconvenient to choose polar coordinates in U. To this end, setx1 = %u cos'u ; x2 = %u sin'u;x3 = %s cos's ; x4 = %s sin's;with indices u, s indicating the unstable and stable directions, respectively.The local stable and unstable manifolds are thenW sloc(0) = f %u = 0 g ; W uloc(0) = f %s = 0 gand the plane Fix(R) is given asFix(R) = f %s = %u ; 's = 'ug:In the new coordinates, the di�erential equation reads_%u = �%u ; _'u = !_%s = ��%s ; _'s = �!: (7)The explicit solution of this equation is%u(t) = %u(0) � e�t ; 'u(t) = 'u(0) + !t%s(t) = %s(0) � e��t ; 's(t) = 's(0)� !t: (8)In view of our subsequent analysis, we divide the local part of the Poincar�e-map in two mappings that are related by reversibility. To this end, we de�netransverse sections �u, �0 and �s as�u := f %u = r; %s � r g; �s := R(�u) and �0 := f %u = %s � rg:6
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Figure 1: The Poincar�e-map along 
Here r > 0 is chosen su�ciently small such that trajectories from �s to �u lieentirely in U where the vector �eld is linear, compare �gure 1. The sections�s and �u are solid tori with W sloc(0)\�s and W uloc(0)\�u being their centrecircles, see �gure 2. The section �0 in between is R-invariant. Denote withqs := �s \ 
 and qu := �u \ 
 the points where the homoclinic orbit 
 crossesthe sections �s and �u. The (linear) 
ow now de�nes a local Poincar�e-map�sloc : �s nW sloc(0)! �0 n f0gthat can be written down explicitly. Reversibility also yields another 
ow-induced local Poincar�e-map�uloc = R � (�sloc)�1 �R : �0 n f0g ! �s nW sloc(0)Putting these twomappings together, we receive the local Poincar�e-map �loc :=�uloc ��sloc: We will describe �loc in the form�loc : (%inu ; 'inu ; 'ins )! ('outu ; %outs ; 'outs ): (9)The time tf a trajectory spends between �s n W sloc(0) and �u satis�es theequation%u(tf ) = r 7
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Figure 2: The transverse sections �s and �uwhich yieldstf = ��1 log r%inu : (10)Substituting this into (8) gives%outs = %inu'outs = 'ins � !� log r%inu'outu = 'inu + !� log r%inu (11)as an expression for the local Poincar�e map �loc. Similar equations can bederived for the maps �sloc and �uloc.4.2 The global mapIn a similar way, we can make use of the reversibility in the construction ofthe global Poincar�e-map by taking a R-invariant cross-section � containingthe point q := 
 \ Fix(R). A local di�eomorphism �s between � and �s is8



induced by the 
ow along 
. This di�eomorphism �s maps a neighborhood ofq in � onto a neighborhood of qs in �s. Analogously, �u : �u ! � is inducedby the 
ow along 
. By reversibility �u = R � (�s)�1 � R and the mapping� : �! � with� = �u ��loc ��s (12)is a Poincar�e-map following the homoclinic orbit 
 once. Note that this mapis a reversible map, i.e. R � � � R = ��1. For later use, we also de�ne twoPoincar�e-maps that follow only one half of 
 as�s1=2 := �sloc ��s and �u1=2 := �u ��uloc:Those Poincar�e-maps enable us to �nd all reversible periodic orbits near 
.Since orbits lying in a tubular neighborhood of 
 can intersect Fix(R) onlyin � or in �0, there are three di�erent possibilities how the two symmetricpoints of a reversible periodic orbit can lie in � or in �0. These three casesare distinguished in the following lemma.Lemma 9(i) If x 2 Fix(R) \ �n(Fix(R)), then x 2 � is a �xed point of �2n. Theassociated trajectory of (1) through x is reversible and 2n�periodic.(ii) If x 2 Fix(R) \ (�s1=2 � �n�1 � �u1=2)(Fix(R)), then x 2 �0 is a �xedpoint of �2n. The associated trajectory of (1) through x is reversible and2n�periodic.(iii) If x 2 Fix(R) \ (�n ��u1=2)(Fix(R)), then x 2 � is a �xed point of �2n+1.The associated trajectory of (1) through x is reversible and (2n+1)-periodic.Proof. We will only show (i), since (ii) and (iii) can be proved analogously.In case (i) x = �n(y) for some y 2 Fix(R) \ �.Hence ��n(y)=R�n(Ry) = R�n(y) = Rx = x) �2n(x)=xand x lies on a 2n-periodic orbit.2In a similar way reversibility provides us with a tool to detect reversible ho-moclinic orbits which pass through a tubular neighborhood of 
 several timesbefore eventually entering a small neighborhood of the equilibrium.9



To this end, de�ne W sq := (�s)�1(W sloc(0) \ �s) as the component of W s(0) \� passing through q. Similarly, W uq := �u(W uloc(0) \ �u) = R(W sq ) is thecomponent of W u(0) in � containing the point q.Hence, each orbit starting in W sq tends directly to 0, i.e. it does not leave theneighborhood U of 0 again once it has entered U.We have to distinguish two cases: Homoclinic orbits that follow 
 an oddnumber of times have their symmetric point in �, while 2n-homoclinic orbitsintersect Fix(R) in �0.Lemma 10(i) If x 2 W sq \ �n(Fix(R)) then the associated orbit is a reversible (2n + 1)-homoclinic orbit.(ii) If x 2 W sq \ (�n � �u1=2)(Fix(R)) then the associated orbit is a reversible(2n+ 2)-homoclinic orbit.Proof. The proof consists of simple counting arguments:(i) We have ��n(x) 2 Fix(R), hence ��2n(x) 2 W uq , the whole orbit thereforefollows the orbit 
 exactly 2n times from � back to � and another two \half"times from � to 0.(ii) Here the orbit through x follows 
 exactly n + 1=2 times until it hitsW sq and settles down at 0 after another half revolution. Completing the orbitbackward by reversibility yields a (2n + 2)-homoclinic orbit.25 Spirals & ScrollsTo describe the e�ect of the Poincar�e-map � on Fix(R) we introduce thenotion of spirals and scrolls.De�nition 11 A C1-curve � on a two-dimensional manifoldM is called (log-arithmic) spiral on M, if there is a � 6= 0, a neighborhood W � R2 of 0 and alocal di�eomorphism 	 :M� V ! W , such that the image 	(� \ V ) is thepart of a logarithmic spiral S� lying in W . This reference spiral S� is given inplanar polar coordinates by the parametrizationr(� ) = e��'(� )= �; � 2 R 10



Figure 3: A logarithmic spiral and a logarithmic scroll	�1(0) is called the base point of the spiral.An imbedded two-dimensional manifold N � R3 is called (logarithmic) scroll,if there is a reference spiral S� as above, neighborhoods V0 � R3, W0 � R2 of 0and a di�eomorphism 	0 : V0 ! [ 0; 1 ] �W0 such that the image 	0(N \ V0)is [ 0; 1 ] � (S� \W0) .The pre-image 	�10 ([ 0; 1 ]� f0g) is called the basis of the scroll.Remark 12(i) The terms spiral & scroll are related to the 0- resp. 1-spirals introducedby Devaney in [Dev77].(ii) A C1-di�eomorphism 	̂ : N ! N̂ maps a spiral on a manifold N into aspiral on the manifold N̂ .(iii) If � : R3 ! R3 is a C1-di�eomorphism, then the image of a scroll under� is a scroll again.Since spirals and scrolls will appear as images of certain sets under iteratesof the Poincar�e-map it will prove useful to know how their intersection withcurves and planes looks like. In particular, curves intersecting the basis of ascroll always intersect the scroll itself in in�nitely many points.Lemma 13(i) A C1-curve � on a manifold M passing through the base point p of a spiralS on M, intersects this spiral in in�nitely many points, that accumulateonto p.(ii) A C1-curve � in R3, intersecting the basis of a logarithmic scroll in p in sucha way that � and the basis are not tangential at p intersects the scroll inin�nitely many points p1; p2; p3; ::: accumulating onto p. Furthermore, thereis an i0, such that for all i � i0 the intersection of � and the scroll istransverse. 11



(ii') A C1-curve � in R3, that is tangential to the basis of a logarithmic scroll inp but does not coincide with the basis in a neighborhood of p, intersects thescroll in in�nitely many points p1; p2; p3; ::: accumulating onto p.(iii) If a plane E intersects the basis of a logarithmic scroll R transversally in p,then E \ R locally (i.e. near p) is a spiral in E with base point p.Proof. (i) There is a di�eomorphism	 mapping a neighborhood V of p onMinto R2 such that the image 	(�\V ) is a C1-curve in R2 through 0. This curveintersects the spiral S� = 	(S\V ) in in�nitely many points accumulating onto0. The pre-image of those points on M are exactly the points of intersectionbetween � and S.(ii) and (ii') are proved similarly to (i) by transformation to a \standard scroll"[0; 1]� S�.(iii) Let 	0; V0;W0 and the logarithmic spiral S� be chosen as in de�nition 11,such that 	0(R\V0) = [0; 1]� (S�\W0) and letW0 be su�ciently small suchthat the C1-manifold 	0(E) \ ([0; 1]�W0) which is transversal to [0; 1]� f0gcan be written as a graph over f0g �W0.The projection � : 	0(E) \ ([ 0; 1 ] � W0) ! W0 is then a di�eomorphism.Therefore, � � 	0 is also a di�eomorphism mapping R \ E locally onto thespiral S� and p to the base point of that spiral.Thus, R\ E itself is a spiral in E with base point p.2The main connection between the geometrical concept of spirals & scrolls andreversible homoclinic orbits is given by the following lemma. Essentially it saysthat a part of any surface which intersects the curve W sq transversally in �will be mapped to a logarithmic scroll by the Poincar�e-map �.Lemma 14 Let F be a two-dimensional C1-manifold in �, intersecting W sqtransversally in p. Then for any closed interval I � W uloc(0) \ �u there is asubset FI of F , such that (�loc � �s)(FI) is a logarithmic scroll in �u withbasis I.The point p lies on the boundary of FI (see �gure 4).Proof. Since �s is a local di�eomorphism mapping a neighborhood of p in� to �s it su�ces to show: If a two-dimensional C1-manifold M = �s(F) in�s intersects W sloc(0) transversally in a point m = �s(p) then there exists asubset MI of M that is mapped to a logarithmic scroll with basis I by �loc.To prove this claim, we �rst restrict the %u-coordinate in �s to %u � ~r withappropriately chosen 0 < ~r � r. Thereby, we get a neighborhood M0 of m inM, such that M0 can be written as the graph of a C1-function g:M0 = f ('s; 'u; %u) 2 �s ; 's = g(%u cos('u); %u sin('u)) ; %u � ~r g (13)12



� �s �u�s �locFix(R) FFI q p qs IW sq
W uq �s(F)�s(FI)�s(p) �loc ��s(FI)W sloc W ulocFigure 4: The e�ect of the local Poincar�e-map on a surfaceDe�ne then MI � M0 to be those points of M0 that are mapped by �loconto points with 'u-coordinate in I. Hence, by (11)MI = f ('s; 'u; %u) 2 M0 ; 'u + !� log r%�1u 2 I g (14)Thus the image of MI is�loc(MI) = f( 'u; 's; %s) 2 �u ; 'u 2 I ; %s � ~r and 's = ~g('u; %s)gwhere~g('u; %s) := g(%s cos('u � !� log r%�1s ); %s sin('u � !� log r%�1s ))� !� log r%�1s :One can now �nd �% > 0 such that ~g('u; �) as well as @~g@%s ('u; �) are strictlydecreasing on (0; �% ] for every 'u 2 I. This is possible because g is bounded ina neighborhood of %s = 0 together with its derivatives. Using this boundednessand applying the chain rule, one arrives at@~g@%s ('u; %s) = !�%s +O(1) as %s ! 0 (15)uniformly in 'u 2 I. Therefore, ~g('u; �) decreases from in�nity on (0; �% ] forall 'u 2 I.Recall that a scroll was de�ned as the di�eomorphic image of a referencescroll. We are now able to construct a di�eomorphism 	 : Z ! ~Z between13



the cylinders Z := f ('u; 's; %s) 2 �u ; 'u 2 I; %s � �% g and~Z := f ('u; 's; %s) ; 'u 2 I; %s � exp(�! ~g('u; %s)) g:	 only a�ects the %s-coordinate, i.e. 	('u; 's; %s) := ('u; 's; ~%s) where~%s := 8><>: exp(�! ~g('u; %s)) for %s 6= 00 for %s = 0	 is one-to-one due to the monotonicity established for %s 2 (0; �% ]. To showdi�erentiability of 	 and 	�1 one �rst has to check that����� @~g@%s ����� and ����� @~g@%s ������1are bounded. This can be done easily using the explicit expression for 	.Di�erentiation with respect to the angles 's and 'u causes no trouble since@~g@'u = O(%2s )as%s ! 0:	 maps �loc(MI) \ Z ontof ('u; 's; %s) 2 ~Z ; 'u 2 I; %s = e�'s �=! gand a a�ne mapping of ~Z stretching the interval I onto [ 0; 1] transforms itinto the reference scroll [ 0; 1]� S�=!.This proves that �loc(MI) is a logarithmic scroll.2An analogous result holds for the local Poincar�e-map �uloc:Lemma 15 For any closed interval I � W uloc(0) \ �u there is a subset ofFix(R)\�0, such that �uloc maps this set onto a logarithmic scroll in �u withbasis I.We omit the proof of this lemma since it is along the same lines as the proofof the preceding lemma. 14



6 In�nitely many homoclinic and periodic orbitsThe proof of theorem 6 is divided into several parts. After recovering a clas-sical result on 1-periodic orbits we treat the cases of n-homoclinic solutionsseperately for n odd and n even.6.1 A family of 1-periodic orbitsThis section contains the result that every reversible homoclinic orbit is sur-rounded by a family of reversible periodic orbits (see [Dev77], corollary 3.3).Theorem 16 [1-per, Devaney(1977)] Assume (A1)-(A4) and (A5'). Thenthere exists a logarithmic spiral S in Fix(R) with base point q = 
 \ Fix(R)such that the associated trajectories of (1) are reversible 1-periodic orbits. Theperiod tends to in�nity if the point q is approached along the spiral.Proof. We show the existence of a spiral in Fix(R) with base point q con-sisting of points in Fix(R) \ �u1=2(Fix(R)). According to lemma 9(iii) theassociated orbits are then 1-periodic.Due to assumption (A5'), Fix(R) and W s(0) intersect transversally in �.To use lemma 15 choose an interval I � W uloc(0) \ �u containing the point quin its interior. Then according to lemma 15 a subset of Fix(R)\�0 is mappedto a logarithmic scroll in �u by �uloc.On the other hand �u maps a neighborhood of qu in �u di�eomorphically to aneighborhood of q in �. The part of the scroll lying in the domain of �u thenis mapped into a logarithmic scroll R in � by �u. The basis of this scroll is aneighborhood of q in W uq (see �gure 5).Therefore a subset of Fix(R)\�0 (having 0 on its boundary) is mapped ontoa logarithmic scroll R by the Poincar�e-map �u1=2. Following lemma 13(iii) theintersection of R and Fix(R) locally is a spiral S and the associated orbitsare 1-periodic due to lemma 9.2This recovers the well-known fact that in reversible systems elementary ho-moclinic orbits appear as the \limit" of periodic orbits with period tending toin�nity. Moreover, the locus of these periodic orbits in Fix(R) is described.15
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RFix(R) W sq
W uqFigure 5: The intersection of R with Fix(R) in �6.2 (2n+1)-homoclinic and (2n+1)-periodic orbitsThe method developped in the previous section allows us to show the existenceof n-homoclinic and n-periodic orbits for all n > 1. The way we proceed is asfollows: A small part of the plane Fix(R) is mapped by an iterate �n of thePoincar�e-map or by �n � �u1=2 onto a surface that intersects the manifold W sqtransversally. Then a part of this surface will become a logarithmic scroll afterone excursion along 
. This logarithmic scroll intersects Fix(R) in a spiral(with the intersection points belonging to periodic orbits) and it has on theother hand a non-empty intersection with W sq (with intersections belongingto homoclinic orbits). In �gure 5 those points of intersection associated with3-homoclinic orbits are shown. For the proof we essentially apply our lemmata9 and 10 which stated that, starting in Fix(R), it su�ces to construct \semi"-periodic and homoclinic solutions that become \full" periodic and homoclinicsolutions by reversibility (see �gure 6).Theorem 17 [(2n+1)-hom] Let q0 2 Fix(R) and U be a neighborhood of q0in Fix(R) such that �n(U) and the curve W sq intersect transversally in �n(q0).Then :(i) There exists a logarithmic spiral in U with base point q0 such that theassociated orbits are reversible and (2n + 2)�periodic.(ii) There exists a sequence of points p1; p2; ::: in U such that the associatedorbits are reversible (2n+ 3)-homoclinic orbits.Proof. Note that according to lemma 10 the orbit of (1) through q0 is a(2n + 1)-homoclinic orbit. Our goal is to show that �n+1 maps some piece of16
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Figure 6: A \semi" 3-homoclinic orbit and a \full" 3-homoclinic orbitU into a scroll over some part of W uq . By lemma 9 every intersection between�n+1(Fix(R)) and Fix(R) belongs to a (2n + 2)-periodic trajectory. Analo-gously, using lemma 10 intersection points of �n+1(Fix(R)) with W sq belongto (2n+ 3)-homoclinic orbits.To �nd such intersection points, we �rst choose an interval I � W uloc(0) \ �uthat is contained in the domain of �u. Since �n(U) is a two-dimensional C1-manifold intersecting the curve W sq = (�s)�1(W sloc(0) \ �s) transversally, bylemma14 there is a subset UI of U , such that the image of UI under �loc��s��nis a logarithmic scoll in �u with basis I. The part of the scroll lying in thedomain of �u is mapped by �u into a scroll RI in � with basis �u(I) � W uq .The plane Fix(R) and the basis of the scroll RI intersect transversally in q.By lemma 13(iii) their intersection RI \ Fix(R) is locally a spiral in Fix(R)with base point q. This spiral is contained in Fix(R) \�n+1(Fix(R)). Hencethe associated orbits are (2n + 2)-periodic (; (i)).According to lemma 13(ii) the intersection RI \ W sq consists of a sequencep1; p2; :::! q of points lying in �n+1(Fix(R))\W sq . Thus, these points lie on(2n + 3)-homoclinic orbits and (ii) is proved.By lemma 13(ii) it is clear, that there is an i0, such that for i � i0 the inter-section of �n+1(U) and W sq in pi will be transversal.2Theorem 16 and theorem 17 together imply immediately:Corollary 18 ((2n+1)-hom) Assume (A1)-(A5). Then for each n � 1there exist (countably) in�nitely many reversible (2n + 1)-homoclinic orbitsand each of this homoclinic orbits is accompanied by a one-parameter-family17



of reversible (2n+ 1)-periodic orbits.The proof consists of a simple induction. It is only important to notice that thetransversality condition (A5) on the primary homoclinic orbit 
 ensures thatin�nitely many of the homoclinic orbits found in each step can be consideredas new primary homoclinic orbits.Remark 19 Theorem 17(ii) seems somewhat surprising at �rst as one wouldnot expect 4-periodic solutions accumulating to a 3-homoclinic orbit. Oneshould think of those 4-periodic solutions as (3+1)-periodic: Each of those or-bits follows alternately a 3-homoclinic orbit and the 1-homoclinic orbit 
. Thenotation (3+1)-periodic, (5+1)-periodic, etc. in �gure 7 is to be understood inthis sense.6.3 2n-homoclinic and 2n-periodic orbitsTo prove the existence of 2n-homoclinic orbits the second part of lemma 10will be applied. We proceed in two steps showing the existence of 2-homoclinicorbits �rst and proving the existence of the other homoclinic solutions by aninduction argument.Theorem 20 (2-hom) Assume (A1)-(A5).Then there is a sequence p1; p2; : : :! 0 in �0 such that the associated trajecto-ries are reversible 2-homoclinic orbits and for i � i0 the intersection of W s(0)and W u(0) in pi is transversal.Proof. The proof runs along the same lines as the proof of theorem 17. Asubset of Fix(R) \ �0 is mapped by �u1=2 to a logarithmic scroll in � over apart of W uq . The C1-curve W sq intersects this scroll in in�nitely many pointsq1; q2; :::. Again, there is an i0 such that for i � i0 the intersection of the scrollwith W sq in qi is transverse.The points pi := (�u1=2)�1(qi) possess the properties claimed in the theorem.2Remark 21 Again, replacing (A5) by (A5') yields in�nitely many 2-homoclinicorbits which may be degenerate.The preceding theorem enables us now to show inductively that there arealso homoclinic orbits following 
 an even number of times. This theorem18



completes the proof of theorem 6.Theorem 22 [2n-hom & 2n-per] For each n � 1 there are in�nitely manyreversible 2n-homoclinic orbits and each of them is accompanied by a familyof reversible 2n-periodic orbits.The intersections of such a family of periodic orbits with �0 \ Fix(R) forma logarithmic spiral in Fix(R), with a base point that belongs to one of thehomoclinic orbits.Proof. Each of the 2-homoclinic orbits whose existence was obtained in theo-rem with i � i0 can be considered as a new 1-homoclinic orbit. Using theorem16 one gets (with respect to the primary homoclinic orbit 
) a family of re-versible 2-periodic trajectories.Corollary 18 yields then in�nitely many 2(2n + 1)-homoclinic and 2(2n + 1)-periodic orbits and theorem 20 shows the existence of in�nitely many 4-homoclinic orbits.One can proceed by induction and conclude from the existence of 2k-homoclinictrajectories that there exist 2k-periodic, 2k(2n + 1)-homoclinic, 2k(2n + 1)-periodic and 2k+1-homoclinic orbits.2Thereby we have proved theorem 6: From the existence of a single reversiblehomoclinic orbit we immediately get the existence of in�nitelymany n-homoclinicand n-periodic orbits for all n � 2.7 DiscussionWithout rigorous proof, we want to indicate �rst, how our branches of 3-periodic and (3+1)-periodic solutions are related to the branches of sub-harmonic periodic orbits found by Vanderbauwhede [Van90]. He shows thatbranches of n-periodic orbits bifurcate from the branch of 1-periodic solu-tions if a Floquet multiplier crosses a n-th root of unity along this branch.There is a distinction between the branching of 2n-periodic solutions and of(2n+1)-period solutions. While in the latter case there is one branch of bifur-cating solutions, in the former case there are two half-branches. For brevity,we restrict our considerations here to the case of 3- and 4-periodic solutionsto demonstrate the geometrical di�erence. There are two ways of getting re-versible 4-periodic solutions:a) as intersections of �2(Fix(R)) with Fix(R) in � orb) as intersections of (�s1=2 �� ��u1=2)(Fix(R)) with Fix(R) in �0.The solutions one gets in either case are not the same since the 4-periodic19



orbits of case a) have their symmetric points in � while the solutions fromcase b) have both symmetric points in �0.Case a) corresponds to the 4-periodic solutions accumulating onto 3-homoclinicorbits, while case b) covers those 4-periodic orbits that accumulate onto 4-homoclinic orbits. Nevertheless, one can check that su�ciently close to q or0 all branches of 4-periodic solutions cross the primary branch of 1-periodicsolutions. This can be shown by taking into account the domains of the dif-ferent Poincar�e-maps in the analysis of the previous section.Hence, the branch of 1-periodic solutions divides the branch of 4-periodic so-lutions in two half-branches that are mapped onto each other by �2 in casea) or by �s1=2 � � � �u1=2 in case b). Figure 7 indicates how these branches liein Fix(R).The situation is di�erent for 3-periodic solutions: Here the two possibilitiesa) intersection of (�s1=2 ��)(Fix(R)) with Fix(R) in � andb) intersection of (Pi ��u1=2)(Fix(R)) with Fix(R) in �0yield the same branch of 3-periodic solutions. These solutions have one sym-metric point in � and the other one in �0. The map �u1=2�� maps one branchonto the other.The theorems proved in section 6 show that there is an abundance of homo-clinic and periodic orbits intersecting the plane Fix(R) near 0 and near q.Figure 7 tries to give an impression of the way how those various homoclinicand periodic orbits lie in Fix(R). Due to self-similarity each of the spiralslooks approximately like the whole picture.Unfortunately, there are still only a few examples where the existence of a re-versible homoclinic orbit has been proved. In the work of Iooss and Kirchg�assner[IK92] on solitary water waves in a cylinder, a partial di�erential equation isreduced to a four-dimensional reversible system using normal form theory.Homoclinic orbits of this equation correspond to solitary waves in the originalproblem. Especially, the n-homoclinic orbits are solitary waves with n humps.The same fourth-order equation also arises in a model describing buckling ofan elastic strut, which was examined by Amick and Toland [AT92]. Champ-neys and Toland [CT93] proved the existence of a reversible homoclinic orbitand also its transversality. Numerical calculations performed on this equationby Bu�oni, Champneys and Toland [CT93,BCT94] do con�rm the results onn-homoclinic solutions and show that the homoclinic solutions can be contin-ued over a large parameter regime until they coalesce in pairs [BCT94]. Forboth cases, recent work of Sandstede [San,San96] adresses the important is-sue of stability of the n-pulse solutions with respect to the partial di�erentialequation.Peletier and Troy in [PT95]. have considered the extended Fisher-Kolmogorov(EFK) equation. This equation possesses a pair of non-reversible, but symmet-ric equilibria (with respect to R). The existence of heteroclinic orbits connect-ing these two equilibria is proved for certain values of a parameter. Our results20
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