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Abstract

In a reversible system, we consider a homoclinic orbit being bi-asymptotic to a
saddle-focus equilibrium. As was proved by Devaney, there exists a one-parameter
family of periodic orbits accumulating onto this homoclinic orbit.

In the present paper, we show that for any » > 2 there exist infinitely many n-
homoclinic orbits in a neighborhood of the primary homoclinic orbit . Each of them
is accompanied by one or more families of periodic orbits. Moreover, we indicate
how these families of periodic orbits correspond to branches of subharmonic periodic
orbits.

1 Introduction

Homoclinic orbits are well-known to have a great influence on the dynamics in
a neighborhood. In systems with a parameter, homoclinic orbits are typically
destroyed under small perturbations. However, in many cases one can find pe-
riodic orbits, n-homoclinic orbits or shift dynamics at parameter values that
are close to the value where the primary homoclinic orbit exists. The situa-
tion is different in reversible or Hamiltonian systems, since homoclinic orbits
generically persist under small perturbations that respect the reversible or
Hamiltonian structure. It is then often possible to find many other homoclinic
or periodic orbits not only for slightly different, but for the same parame-
ter value as the primary homoclinic orbit. Devaney [Dev77] has shown that
homoclinic orbits are accompanied by a one-parameter-family of periodic or-
bits. For periodic orbits in reversible systems, Vanderbauwhede [Van90] found
branches of subharmonic periodic orbits at the same parameter value if one
Floquet multiplier of a periodic orbit equals a root of unity. The main focus in
this paper is on homoclinic and periodic orbits that make several revolutions
inside a tubular neighborhood of the primary homoclinic orbit.

Our viewpoint is a geometrical one: We describe the image of certain sets
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under a Poincaré-map and their intersections. This enables us to find many
homoclinic and periodic orbits. Moreover, we can identify some families of pe-
riodic orbits accompanying the homoclinic orbits as branches of subharmonic
periodic orbits.

The work presented in this paper is an extension of [Har93] and is closely
related to a paper of Champneys [Cha94]. Although in both papers similar
results are proved, the emphasis is different. While Champneys concentrates
mainly on 2- and 3-homoclinic solutions without generalizing to n-homoclinics,
we try to describe as completely as possible all reversible homoclinic and peri-
odic orbits in a neighborhood of the primary homoclinic. In contrast, Champ-
neys also presents an example and numerically locates some of the theoretically
predicted homoclinic orbits.

The paper is organized as follows. After some preliminaries in section 2, we
give the basic assumptions and results in section 3. A linearization result is
used in section 4 to simplify the Poincaré-map. The geometrical objects that
will prove useful later are introduced in section 5. Section 6 contains the proofs.
and the paper concludes with a short discussion.

2 Reversible dynamical systems

Consider an ordinary differential equation
&= fle) ver¥™ | felCh (k=2) (1)

Definition 1 Fquation (1) is called reversible, if there is a linear involution
R: R — B with R* = id and dim(Fix(R)) = m such that the reversibility
condition

f(Rx) = —Rf(x) Va € R*" (2)

holds.

One of the most useful properties of reversible systems is the fact that together
with x(t) also Rx(—1) is a solution of equation (1).
For the flow @, generated by (1) this fact can be expressed by the relation

o, =RP_, R. (3)
Definition 2 An orbit v is called reversible if R(v) = .

Since reversibility does not affect orbits that stay away from the plane Fiz(R),
we will focus our attention almost exclusively on reversible orbits.



The following classification of reversible orbits is taken from [VF92].

Proposition 3 [Vanderbauwhede & Fiedler] An orbit v of a reversible
dynamical system is reversible iff v N Fiz(R) # 0. Then exactly one of the
following three situations occurs:

(i) v C Fixz(R) and v is a reversible equilibrium.

(it) v € Fix(R),v N Fix(R) consists of a single point and ~ is not a closed
trajectory.

(iii) v N Fua(R) consists of precisely two points and v is a reversible periodic
orbit.

Reversible homoclinic orbits are contained in the second class and have a
unique symmetric point where they intersect the plane Fixz(R). Note that
the equilibrium to which a reversible homoclinic orbit converges has to be a
reversible equilibrium.

Reversibility also affects the linearization at a reversible equilibrium xq €
Fiz(R). By simple calculations one can verify the following two properties:

Proposition 4 The linearization A := D f(xo) satisfies:
(i) AR=—RA
(ii) A is an eigenvalue of A & —X is an eigenvalue of A.

Hence, if one of the eigenvalues is a complex number a+wt with a,w # 0, then
automatically the quadruple £a 4w is contained in the spectrum of A. In B*,
an equilibrium with such a quadruple of eigenvalues is called a saddle-focus
equiltbrium.

3 The Setting and main results

In the rest of the paper we restrict ourselves to equations in B*. We consider
therefore the differential equation (1) with m = 2 and make the following five
assumptions:

(A1) the reversibility condition f(Rx) = —Rf(x) holds

(A2) f(0) =0, i.e. the origin is a reversible equilibrium

(A3) the spectrum of the Jacobian D f(0) consist of the four complex eigenvalues
tativ (a,w>0)

(A4) there exists a reversible homoclinic orbit + satisfying

lim ~(t) =0 (4)

t—Foo



(A5) ~ is nondegenerate, i.e. the tangent spaces of the stable and unstable man-
ifold satisfy

dim(Tw(t)Ws(O) N Tw(t)Wu(O)) =1.

Sometimes it is useful to replace assumption (A5) by the weaker assumption
that « is a elementary homoclinic orbit:

(A5’) Let ¢ := yN Fix(R). Then the stable manifold W*(0) and the plane Fiz(R)
do intersect each other transversally in ¢. Moreover, v does not belong to a
one-parameter-family of homoclinic orbits.

The restriction to B* is not too strict. A reduction from a higher-dimensional
problem to this four-dimensional situation can in many cases be achieved by a
center-manifold reduction near the homoclinic orbit v, see [San95]. (A3) states
a resonance between eigenvalues which prevents an application of Shil’'nikovs
results [Shi67] on saddle-focus homoclinic orbits. Assumption (A5) and (A5’)
both imply that the homoclinic orbit ~ is structurally stable (in the class of
reversible dynamical systems).

Our main interest will be in orbits that make several excursions along the
homoclinic orbit ~.

Definition 5 An orbit is called k-homoclinic, if it is entirely contained in
a tubular neighborhood of the homoclinic orbit ~ and if it hits a transverse
section to ~ exactly k times.

Analogously, an orbit is called k-periodic if it is contained in a tubular neigh-
borhood of v and if it hits a transverse section to v exactly k times before
closing up at the (k+1)-th time.

We do not assume k to be minimal, a k-periodic orbit therefore also is nk-
periodic for any n € N.

We have the following main theorem.

Theorem 6 Assume (A1)-(A5). Then for any n > 2 there exist infinitely
many n-homoclinic orbits in a tubular neighborhood of ~v. Moreover, to each n-
homoclinic orbit there is a one-parameter family of reversible n-periodic orbits
accumulating onto the n-homoclinic orbit.

If (A5) is replaced by (A5’) the following weaker version holds:

Theorem 7 Assume (A1)-(A4) and (A5’). Then there exist infinitely many
2-homoclinic and 3-homoclinic orbits in a tubular neighborhood of ~. Fither
all of them are degenerate or there is a nondegenerate homoclinic orbit for
which theorem 6 applies.



4 The Poincaré-map

The proof of theorem 6 uses a Poincaré-map along the homoclinic orbit . This
Poincaré-map is divided into a local part (near 0) and a global diffeomorphism
along ~.

4.1 The local part

For the local part a C'-linearization of the flow near the origin will prove
useful.

Lemma 8 [linearization, Belitskii(1973)] If the eigenvalues of D f(0) sat-
isfy assumption (A3), the flow can be C'-linearized locally near 0.

Proof. The proof is based on a theorem of Belitskii [Bel73] for diffeomor-
phisms. He shows that for any diffeomorphism ®, € C*(R") with ®{(0) =0
there is a neighborhood U of 0 and a C'-diffeomorphism hy : U — U, such

that ®, is locally conjugate to its linear part, i.e.

hoo ®y 0 hy' = D®,(0) (5)

in U, if for all eigenvalues A;, A;, Ap of D®1(0) the condition

Al # (A1) (VA S 1<) (6)

holds.

The linearization of the time-1-map ®; of (1) at 0 has eigenvalues e*o*
and it is easily seen that for o # 0 the condition (6) holds. Using a standard
argument (see e. g. [Har82]) one can construct a linearization for the flow &
from the linearization of the time-1-map ®;.

a

Without restriction, we assume now that the reversibility condition (A1) holds
for the matrix

0010
0001
1000
0100



and that the linear flow in a small neighborhood U of 0 is generated by the

differential equation

a—w 0 0

) w o 0 0

T = x
0 0 —a w
0 0 —w—«

For the construction of the Poincaré-map near the homoclinic orbit ~ it is

convenient to choose polar coordinates in U. To this end, set

L1 = OuCOS Py ) To = Oy SIN Py,

T3 = PsCOS Pg R T4 = Qs SIN Py,

with indices u, s indicating the unstable and stable directions, respectively.

The local stable and unstable manifolds are then

Wie(0) ={eu=0} ,  Wi(0)={o =0}

and the plane Fixz(R) is given as

Fiz(R) ={ 0s = 0u, s = Pu}-
In the new coordinates, the differential equation reads

Ou = QQy ) Py = W

0s = —Qps ) Ps = —w.

The explicit solution of this equation is

(8)

In view of our subsequent analysis, we divide the local part of the Poincaré-
map in two mappings that are related by reversibility. To this end, we define

transverse sections X%, X% and ¥ as

Zuiz{gu:rv ngr}v ZS;:R(Z“)andZO::{gu:gs<r}.



A 0u; Pu Fix(R)

Figure 1: The Poincaré-map along ~

Here r > 0 is chosen sufficiently small such that trajectories from ¥° to X" lie
entirely in U where the vector field is linear, compare figure 1. The sections
Y% and X" are solid tori with W _(0) N X% and W2_(0) N X" being their centre
circles, see figure 2. The section X° in between is R-invariant. Denote with
¢*:= XN~y and ¢ := X" N~ the points where the homoclinic orbit v crosses
the sections ¥* and X". The (linear) flow now defines a local Poincaré-map

e + 57\ Wie(0) — X%\ {0}

that can be written down explicitly. Reversibility also yields another flow-
induced local Poincaré-map

be=Ro ()™ o R: 0\ {0} — ¥\ Wi,(0)

loc

Putting these two mappings together, we receive the local Poincare-map Il :=
Lo oIl .. We will describe Ij,. in the form

loc

out out out

e = (01, I, 0IM) — (010, 02, p2™). (9)

The time ?; a trajectory spends between ¥°\ W _(0) and X" satisfies the
equation

oulty) =71
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Figure 2: The transverse sections >° and X"

which yields

t;=a 'log % (10)
Gu
Substituting this into (8) gives
o = o
Pt = it — 2log - (11)

out

P = Pl + 2log

as an expression for the local Poincaré map Ilj,.. Similar equations can be
derived for the maps IIj . and I}

loc®

4.2 The global map

In a similar way, we can make use of the reversibility in the construction of
the global Poincaré-map by taking a R-invariant cross-section ¥ containing
the point ¢ := v N Fuz(R). A local diffeomorphism II® between ¥ and X* is



induced by the flow along ~. This diffeomorphism II®* maps a neighborhood of
g in ¥ onto a neighborhood of ¢® in ¥*. Analogously, II" : ¥* — X is induced
by the flow along «. By reversibility [I* = R o (II*)~* o R and the mapping
II:Y — ¥ with

IT =11"0o I, o IT° (12)

is a Poincaré-map following the homoclinic orbit 4 once. Note that this map
is a reversible map, i.e. Ro Il o R = II7!. For later use, we also define two
Poincaré-maps that follow only one half of v as

Hi/2 =11} oll® and Hlll/2 = 11" o [TV

loc loc*

Those Poincaré-maps enable us to find all reversible periodic orbits near ~.
Since orbits lying in a tubular neighborhood of v can intersect Fiz(R) only
in ¥ or in X% there are three different possibilities how the two symmetric
points of a reversible periodic orbit can lie in ¥ or in Y°. These three cases
are distinguished in the following lemma.

Lemma 9

(i) If x € Fiz(R) N II"(Fix(R)), then * € ¥ is a fized point of I**. The
associated trajectory of (1) through x is reversible and 2n—periodic.

(it) If v € Fiz(R)N (Hi/2 oIl™1o Hlll/z)(Fix(R)), then x € X° is a fived
point of TI**. The associated trajectory of (1) through x is reversible and
2n—periodic.

(i) If v € Fiz(R) N (1" o IIY,) (Fix(R)), then x € X is a fived point of TI#7+1,
The associated trajectory of (1) through x is reversible and (2n+1)-periodic.

Proof. We will only show (i), since (ii) and (iii) can be proved analogously.
In case (i) @ = [I"(y) for some y € Fiaz(R)N L.
Hence

™ (y)=R1I"(Ry) = RII"(y) = Rz = x
= HQ”(:I;)::I;

and z lies on a 2n-periodic orbit.

O
In a similar way reversibility provides us with a tool to detect reversible ho-
moclinic orbits which pass through a tubular neighborhood of ~ several times
before eventually entering a small neighborhood of the equilibrium.



To this end, define W7 := (II*)~' (W};.(0) N £°) as the component of W*(0) N
¥ passing through ¢. Similarly, W' = II"(Wg.(0) N %) = R(W?) is the
component of W*(0) in ¥ containing the point ¢.

Hence, each orbit starting in W, tends directly to 0, i.e. it does not leave the
neighborhood U of 0 again once it has entered U.

We have to distinguish two cases: Homoclinic orbits that follow 4 an odd
number of times have their symmetric point in ¥, while 2n-homoclinic orbits
intersect Fliz(R) in X°.

Lemma 10

(i) If v € qu N II"(Fix(R)) then the associated orbit is a reversible (2n 4 1)-
homoclinic orbit.

(it) If v € W7 0 (1" o 11} ) (Fiz(R)) then the associated orbil is a reversible
(2n + 2)-homoclinic orbit.

Proof. The proof consists of simple counting arguments:

(i) We have II""(z) € Fiz(R), hence I7*"(x) € W, the whole orbit therefore
follows the orbit v exactly 2n times from ¥ back to ¥ and another two “halt”
times from ¥ to 0.

(ii) Here the orbit through = follows + exactly n 4+ 1/2 times until it hits
W7 and settles down at 0 after another half revolution. Completing the orbit
backward by reversibility yields a (2n 4 2)-homoclinic orbit.

a

5 Spirals & Scrolls

To describe the effect of the Poincaré-map Il on Fixz(R) we introduce the
notion of spirals and scrolls.

Definition 11 A C'-curve & on a two-dimensional manifold M is called (log-
arithmic) spiral on M, if there is a 3 # 0, a neighborhood W C B? of 0 and a
local diffeomorphism W : M DV — W | such that the image W(k NV is the
part of a logarithmic spiral Sg lying in W. This reference spiral Sg is given in
planar polar coordinates by the parametrization

10



Figure 3: A logarithmic spiral and a logarithmic scroll

U=1(0) is called the base point of the spiral.

An imbedded two-dimensional manifold N' C R® is called (logarithmic) scroll,
if there is a reference spiral Sg as above, neighborhoods Vo C R?, Wy C R? of 0
and a diffeomorphism Vo : Vo — [0,1] x Wy such that the image Wo(N N Vo)
S [0,1] X (SgﬂWo) .

The pre-image W5 ([0,1] x {0}) is called the basis of the scroll.

Remark 12

(i) The terms spiral & scroll are related to the 0- resp. 1-spirals introduced
by Devaney in [Dev77].
(ii) A C'-diffeomorphism U:N =N maps a spiral on a manifold N into a
spiral on the manifold N
(iii) If ® : & — B is a C'-diffeomorphism, then the image of a scroll under
b is a scroll again.

Since spirals and scrolls will appear as images of certain sets under iterates
of the Poincaré-map it will prove useful to know how their intersection with
curves and planes looks like. In particular, curves intersecting the basis of a
scroll always intersect the scroll itself in infinitely many points.

Lemma 13

(i) A Cl-curve £ on a manifold M passing through the base point p of a spiral
S on M, intersects this spiral in infinitely many points, that accumulate
onto p.

(ii) A Cl-curve k in R?, intersecting the basis of a logarithmic scroll in p in such
a way that k and the basis are not tangential at p intersects the scroll in
infinitely many points py, p2, ps, ... accumulating onto p. Furthermore, there
is an 19, such that for all 1 > 1y the intersection of k and the scroll is
transverse.

11



(ii’) A Ct-curve £ in R®, that is tangential to the basis of a logarithmic scroll in
p but does not coincide with the basis in a neighborhood of p, intersects the
seroll in infinitely many points py, p2, p3, ... accumulating onto p.

(tii) If a plane € intersects the basis of a logarithmic scroll R transversally in p,
then EN'R locally (i.e. near p) is a spiral in € with base point p.

Proof. (i) There is a diffeomorphism ¥ mapping a neighborhood V of p on M
into ®? such that the image U(kNV) is a C''-curve in ®R? through 0. This curve
intersects the spiral Sz = U(SNV) in infinitely many points accumulating onto
0. The pre-image of those points on M are exactly the points of intersection
between k and S.

(ii) and (ii") are proved similarly to (i) by transformation to a “standard scroll”
[0, 1] X Sﬁ.

(iii) Let Wq, Vo, Wy and the logarithmic spiral S be chosen as in definition 11,
such that Uo(RN V) = [0,1] x (SgNWy) and let Wy be sufficiently small such
that the C''-manifold Wy(&) N ([0, 1] x Wy) which is transversal to [0, 1] x {0}
can be written as a graph over {0} x Wj.

The projection 7 : Wo(E) N ([0,1] x Wy) — Wy is then a diffeomorphism.
Therefore, 7 0 Wy is also a diffeomorphism mapping R N &€ locally onto the
spiral Sz and p to the base point of that spiral.

Thus, R N & itself is a spiral in & with base point p.

a

The main connection between the geometrical concept of spirals & scrolls and
reversible homoclinic orbits is given by the following lemma. Essentially it says
that a part of any surface which intersects the curve W transversally in ¥
will be mapped to a logarithmic scroll by the Poincaré-map II.

Lemma 14 Let F be a two-dimensional Ct-manifold in X, intersecting W,
transversally in p. Then for any closed interval I C W2 (0) N X" there is a
subset F1 of F, such that (Ilie o II3)(Fr) is a logarithmic seroll in X" with
basis I.

The point p lies on the boundary of Fi (see figure 4).

Proof. Since II® is a local diffeomorphism mapping a neighborhood of p in
¥ to X* it suffices to show: If a two-dimensional C''-manifold M = II*(F) in
¥® intersects W (0) transversally in a point m = II*(p) then there exists a
subset M7 of M that is mapped to a logarithmic scroll with basis I by Il..
To prove this claim, we first restrict the p,-coordinate in ¥* to g, < 7 with
appropriately chosen 0 < 7 < r. Thereby, we get a neighborhood Mg of m in
M., such that Mg can be written as the graph of a C'-function ¢:

Mo = { (s, Pu, 0u) € X% @5 = g(0ucos(pu), ousin(py)) , ou <7} (13)

12



Figure 4: The effect of the local Poincaré-map on a surface
Define then M; C M to be those points of Mg that are mapped by Il
onto points with ¢,-coordinate in I. Hence, by (11)

w
MI = { (995799117 Qu) € MO ; Put Elogré);l € ]} (14)

Thus the image of M is

HIOC(MI) - {( Puy Pss Qs) S xt ; Pu S 1 s Os S 7 and Ps = f](g‘ouv Qs)}

where

. w _ ) w _ w _
9(pus 0s) := glos cos(ipu — —log e 1), o5 sin(pu — —logro; H) - —logro; '

One can now find g > 0 such that §(¢u,-) as well as aa—i(cpu, -) are strictly
decreasing on (0, o] for every ¢, € I. This is possible because ¢ is bounded in
a neighborhood of g, = 0 together with its derivatives. Using this boundedness
and applying the chain rule, one arrives at

99

w
a—gs(%n Qs) =

Q' 0g

+O(1) as ps — 0 (15)

uniformly in ¢, € I. Therefore, §(¢y, ) decreases from infinity on (0, 0] for
all ¢, € I.

Recall that a scroll was defined as the diffeomorphic image of a reference
scroll. We are now able to construct a diffeomorphism ¥ : Z — Z between

13



the cylinders 7 := { (¢Yu, ps, 0s) € X" 5 @u € [, 0 < 0 } and

a
Z = { (Pus¥s,05) 5 pu € 1,05 < eXp(;g(%, 05)) }.

U only affects the gs-coordinate, i.e. W@y, ©s, 0s) := (@u, Ps, 0s) Where

exp(%f](@uv Qs)) for o, # 0
0 for o, =0

U is one-to-one due to the monotonicity established for g € (0, p]. To show
differentiability of U and W~! one first has to check that

-1

Jg
005

Jg
005

and ‘

are bounded. This can be done easily using the explicit expression for W.
Differentiation with respect to the angles ¢, and ¢, causes no trouble since

99

= O(gz)asgs — 0.
0y

U maps (M) N Z onto

{(Souvg‘os;é)s) - Z, ©Yu c ]7952 e—tpsa/W}

and a affine mapping of Z stretching the interval I onto [0,1] transforms it
into the reference scroll [0, 1] x S/,
This proves that Ij,.(Mj) is a logarithmic scroll.

a
An analogous result holds for the local Poincare-map Il :

Lemma 15 For any closed interval I C WE.(0) N X" there is a subset of
Fiz(R)NXP, such that 11} . maps this set onto a logarithmic scroll in X* with
basis I.

We omit the proof of this lemma since it is along the same lines as the proof
of the preceding lemma.

14



6 Infinitely many homoclinic and periodic orbits

The proof of theorem 6 is divided into several parts. After recovering a clas-
sical result on 1-periodic orbits we treat the cases of n-homoclinic solutions
seperately for n odd and n even.

6.1 A family of 1-periodic orbits

This section contains the result that every reversible homoclinic orbit is sur-
rounded by a family of reversible periodic orbits (see [Dev77], corollary 3.3).

Theorem 16 [1-per, Devaney(1977)] Assume (A1)-(A4) and (A5’). Then
there exists a logarithmic spiral S in Fixz(R) with base point ¢ = v N Fix(R)
such that the associated trajectories of (1) are reversible I-periodic orbits. The
period tends to infinity if the point q is approached along the spiral.

Proof. We show the existence of a spiral in Fiaz(R) with base point ¢ con-
sisting of points in Fiz(R) N I} ,(F12(R)). According to lemma 9(iii) the
associated orbits are then 1-periodic.

Due to assumption (A5’), Fix(R) and W*(0) intersect transversally in .
To use lemma 15 choose an interval I C W (0) N X" containing the point ¢"
in its interior. Then according to lemma 15 a subset of Fiz(R)N X is mapped
to a logarithmic scroll in X" by II} .

On the other hand II* maps a neighborhood of ¢" in X" diffeomorphically to a
neighborhood of ¢ in ¥. The part of the scroll lying in the domain of II" then
is mapped into a logarithmic scroll R in ¥ by II". The basis of this scroll is a
neighborhood of ¢ in W} (see figure 5).

Therefore a subset of Fiz(R)NX? (having 0 on its boundary) is mapped onto
a logarithmic scroll R by the Poincaré-map IIj,,. Following lemma 13(iii) the
intersection of R and Fix(R) locally is a spiral S and the associated orbits
are 1-periodic due to lemma 9.

a

This recovers the well-known fact that in reversible systems elementary ho-
moclinic orbits appear as the “limit” of periodic orbits with period tending to
infinity. Moreover, the locus of these periodic orbits in Fex(R) is described.

15



. Fiz(R)

Figure 5: The intersection of R with Fix(R) in ¥

6.2 (2n+1)-homoclinic and (2n+1)-periodic orbits

The method developped in the previous section allows us to show the existence
of n-homoclinic and n-periodic orbits for all n > 1. The way we proceed is as
follows: A small part of the plane Fiix(R) is mapped by an iterate 11" of the
Poincaré-map or by II" o 11}, onto a surface that intersects the manifold W7
transversally. Then a part of this surface will become a logarithmic scroll after
one excursion along 7. This logarithmic scroll intersects Fiz(R) in a spiral
(with the intersection points belonging to periodic orbits) and it has on the
other hand a non-empty intersection with W (with intersections belonging
to homoclinic orbits). In figure 5 those points of intersection associated with
3-homoclinic orbits are shown. For the proof we essentially apply our lemmata
9 and 10 which stated that, starting in Fiiz(R), it suffices to construct “semi”-
periodic and homoclinic solutions that become “full” periodic and homoclinic
solutions by reversibility (see figure 6).

Theorem 17 [(2n+1)-hom] Let o € Fix(R) and U be a neighborhood of qq
in Fix(R) such that II"(U) and the curve W, intersect transversally in 11" (qo).
Then :

(i) There exists a logarithmic spiral in U with base point qo such that the
associated orbits are reversible and (2n 4 2)—periodic.

(i) There exists a sequence of points py,ps,... in U such that the associated
orbits are reversible (2n + 3)-homoclinic orbits.

Proof. Note that according to lemma 10 the orbit of (1) through ¢o is a
(2n + 1)-homoclinic orbit. Our goal is to show that II"*' maps some piece of

16



A 0u, Pu le(R) A 0u; Pu FZJ}(R)

Os, Ps Os, Ps
Figure 6: A “semi” 3-homoclinic orbit and a “full” 3-homoclinic orbit

U into a scroll over some part of W'. By lemma 9 every intersection between
"t (Fiz(R)) and Fix(R) belongs to a (2n + 2)-periodic trajectory. Analo-
gously, using lemma 10 intersection points of II"*'(Fiz(R)) with W3 belong
to (2n + 3)-homoclinic orbits.

To find such intersection points, we first choose an interval I C W (0) N X"
that is contained in the domain of II*. Since II"(U) is a two-dimensional C'*-
manifold intersecting the curve W = (II°)~'(W}.(0) N ¥°) transversally, by
lemma 14 there is a subset U of U, such that the image of Uy under ITj,.olT*oII™
is a logarithmic scoll in ¥" with basis I. The part of the scroll lying in the
domain of II" is mapped by II" into a scroll Ry in X with basis II'(1) C W
The plane Fix(R) and the basis of the scroll R intersect transversally in g.
By lemma 13(iii) their intersection R; N Fix(R) is locally a spiral in Fiz(R)
with base point ¢. This spiral is contained in Fiz(R) NI (Fiz(R)). Hence
the associated orbits are (2n 4 2)-periodic (~ (i)).

According to lemma 13(ii) the intersection Ry N W7 consists of a sequence
P1sP2s ... — ¢ of points lying in II"+! (Fiz(R)) N W. Thus, these points lie on
(2n + 3)-homoclinic orbits and (ii) is proved.

By lemma 13(ii) it is clear, that there is an i, such that for ¢ > iy the inter-
section of II"*!(U) and W} in p; will be transversal.

a

Theorem 16 and theorem 17 together imply immediately:

Corollary 18 ((2n+1)-hom) Assume (A1)-(A5). Then for each n > 1
there exist (countably) infinitely many reversible (2n + 1)-homoclinic orbits
and each of this homoclinic orbits is accompanied by a one-parameter-family
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of reversible (2n + 1)-periodic orbits.

The proof consists of a simple induction. It is only important to notice that the
transversality condition (A5) on the primary homoclinic orbit 4 ensures that
infinitely many of the homoclinic orbits found in each step can be considered
as new primary homoclinic orbits.

Remark 19 Theorem 17(ii) seems somewhat surprising at first as one would
not expect j4-periodic solutions accumulating to a 3-homoclinic orbit. One
should think of those j-periodic solutions as (3+1)-periodic: Each of those or-
bits follows alternately a 3-homoclinic orbit and the 1-homoclinic orbit ~. The
notation (3+1)-periodic, (5+1)-periodic, ete. in figure 7 is to be understood in
this sense.

6.3 2n-homoclinic and 2n-periodic orbits

To prove the existence of 2n-homoclinic orbits the second part of lemma 10
will be applied. We proceed in two steps showing the existence of 2-homoclinic
orbits first and proving the existence of the other homoclinic solutions by an
induction argument.

Theorem 20 (2-hom) Assume (A1)-(A5).

Then there is a sequence py, pa, ... — 0 in X° such that the associated trajecto-
ries are reversible 2-homoclinic orbits and for i > ig the intersection of W*(0)
and W*(0) in p; is transversal.

Proof. The proof runs along the same lines as the proof of theorem 17. A
subset of Fiz(R) N XY is mapped by I}, to a logarithmic scroll in ¥ over a
part of W'. The C'-curve W, intersects this scroll in infinitely many points
41,92, ... Again, there is an 7g such that for 2 > ¢y the intersection of the scroll
with W in ¢; is transverse.

The points p; := ( 111/2)_1(%) possess the properties claimed in the theorem.

a

Remark 21 Again, replacing (A5) by (A5’) yields infinitely many 2-homoclinic
orbits which may be degenerate.

The preceding theorem enables us now to show inductively that there are
also homoclinic orbits following v an even number of times. This theorem
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completes the proof of theorem 6.

Theorem 22 [2n-hom & 2n-per] For each n > 1 there are infinitely many
reversible 2n-homoclinic orbits and each of them is accompanied by a family
of reversible 2n-periodic orbits.

The intersections of such a family of periodic orbits with ¥° N Fiz(R) form
a logarithmic spiral in Fiz(R), with a base point that belongs to one of the
homoclinic orbits.

Proof. Each of the 2-homoclinic orbits whose existence was obtained in theo-
rem with ¢ > ¢y can be considered as a new 1-homoclinic orbit. Using theorem
16 one gets (with respect to the primary homoclinic orbit v) a family of re-
versible 2-periodic trajectories.

Corollary 18 yields then infinitely many 2(2n + 1)-homoclinic and 2(2n + 1)-
periodic orbits and theorem 20 shows the existence of infinitely many 4-
homoclinic orbits.

One can proceed by induction and conclude from the existence of 25-homoclinic
trajectories that there exist 2*-periodic, 2¥(2n + 1)-homoclinic, 2%(2n + 1)-
periodic and 2**t'-homoclinic orbits.

a

Thereby we have proved theorem 6: From the existence of a single reversible
homoclinic orbit we immediately get the existence of infinitely many n-homoclinic
and n-periodic orbits for all n > 2.

7 Discussion

Without rigorous proof, we want to indicate first, how our branches of 3-
periodic and (341)-periodic solutions are related to the branches of sub-
harmonic periodic orbits found by Vanderbauwhede [Van90]. He shows that
branches of n-periodic orbits bifurcate from the branch of 1-periodic solu-
tions if a Floquet multiplier crosses a n-th root of unity along this branch.
There is a distinction between the branching of 2n-periodic solutions and of
(2n + 1)-period solutions. While in the latter case there is one branch of bifur-
cating solutions, in the former case there are two half-branches. For brevity,
we restrict our considerations here to the case of 3- and 4-periodic solutions
to demonstrate the geometrical difference. There are two ways of getting re-
versible 4-periodic solutions:

a) as intersections of II*( Fix(R)) with Fix(R) in ¥ or

b) as intersections of (I3 , o Il o TI} 5 )(Fix(R)) with Fiz(R) in 0,

The solutions one gets in either case are not the same since the 4-periodic
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orbits of case a) have their symmetric points in ¥ while the solutions from
case b) have both symmetric points in X°.

Case a) corresponds to the 4-periodic solutions accumulating onto 3-homoclinic
orbits, while case b) covers those 4-periodic orbits that accumulate onto 4-
homoclinic orbits. Nevertheless, one can check that sufficiently close to ¢ or
0 all branches of 4-periodic solutions cross the primary branch of 1-periodic
solutions. This can be shown by taking into account the domains of the dif-
ferent Poincaré-maps in the analysis of the previous section.

Hence, the branch of 1-periodic solutions divides the branch of 4-periodic so-
lutions in two half-branches that are mapped onto each other by II% in case
a) or by 115, o Il o I}, in case b). Figure 7 indicates how these branches lie
in Fiz(R).

The situation is different for 3-periodic solutions: Here the two possibilities
a) intersection of (115, o I)(Fiz(R)) with Fiz(R) in ¥ and

b) intersection of (Pi o IIY ,)(Fix(R)) with Fia(R) in 30

yield the same branch of 3-periodic solutions. These solutions have one sym-
metric point in ¥ and the other one in X°. The map I}/, o lI maps one branch
onto the other.

The theorems proved in section 6 show that there is an abundance of homo-
clinic and periodic orbits intersecting the plane Fixz(R) near 0 and near g.
Figure 7 tries to give an impression of the way how those various homoclinic
and periodic orbits lie in Fixz(R). Due to self-similarity each of the spirals
looks approximately like the whole picture.

Unfortunately, there are still only a few examples where the existence of a re-
versible homoclinic orbit has been proved. In the work of looss and Kirchgassner
[IK92] on solitary water waves in a cylinder, a partial differential equation is
reduced to a four-dimensional reversible system using normal form theory.
Homoclinic orbits of this equation correspond to solitary waves in the original
problem. Especially, the n-homoclinic orbits are solitary waves with n humps.
The same fourth-order equation also arises in a model describing buckling of
an elastic strut, which was examined by Amick and Toland [AT92]. Champ-
neys and Toland [CT93] proved the existence of a reversible homoclinic orbit
and also its transversality. Numerical calculations performed on this equation
by Buffoni, Champneys and Toland [CT93,BCT94] do confirm the results on
n-homoclinic solutions and show that the homoclinic solutions can be contin-
ued over a large parameter regime until they coalesce in pairs [BCT94]. For
both cases, recent work of Sandstede [San,San96] adresses the important is-
sue of stability of the n-pulse solutions with respect to the partial differential
equation.

Peletier and Troy in [PT95]. have considered the extended Fisher-Kolmogorov
(EFK) equation. This equation possesses a pair of non-reversible, but symmet-
ric equilibria (with respect to R). The existence of heteroclinic orbits connect-
ing these two equilibria is proved for certain values of a parameter. Our results
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5-hom with 5-per

3-hom with (3 + 1)-per

Figure 7: The location of homoclinic and periodic orbits in X

should easily carry over to their case, if only a transversality condition such
as (A5) holds. One should then be able to prove the existence of heteroclinic
and homoclinic orbits (kinks) and periodic orbits.
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