
Visous and relaxation approximations to heterolini traveling wavesof onservation laws with soure termsJ�org H�arterihUniversity of Maryland, College Park, MD 20742 , U.S.A.In ontrast to hyperboli onservation laws, systems of hyperboli balane lawsut + f(u)x = g(u); u 2 IRN ; x 2 IR (1)an possess nontrivial ontinuous traveling wave solutions of the form u(x; t) = U(�) where� = x � st and s is the wave speed. These traveling waves satisfy the ordinary di�erentialequation �sU 0 + �uf(U)U 0 = g(U) (2)where the prime denotes di�erentiation with respet to �.Although there are typially many disontinuous traveling wave solutions, too, this paper dealsexlusively with ontinuous traveling waves.De�nition 0.1 A traveling wave U is said to be a heterolini wave if both lim�!�1 U(�)and lim�!+1U(�) exist.From (2) one an easily onlude that the soure term g has to vanish at both asymptoti statesof a heterolini wave U . We will say that the heterolini wave onnets the asymptoti stateat �1 to the asymptoti state at +1.For the ase of a salar equation with a stritly onvex ux f , Masia [Mas97℄ found sometraveling wave solutions whih exist only at isolated values of the wave speed. They are ofspeial interest sine one an show that similar waves exist for the visous equation and thatthey are stable. In the present paper we will show that in the p-system with a nonlinear soureterm similar waves an exists for a whole range of wave speeds. Furthermore, we disuss twovisous regularizations of this hyperboli system and show that both of them possess heterolinitraveling waves that orrespond to the heterolini traveling waves of the hyperboli system.1 Salar balane lawsThe ase N = 1 has been studied most. The next lemma is a slight generalization Masiasresult for a salar balane law and allows f to be non-onvex.Lemma 1.1 Assume that u1 < u2 < u3 are three onseutive zeroes of g with g0(u1) < 0,g0(u2) > 0 and g0(u3) < 0. Let furthermore s0 := f 0(u2). Iff 00(u2) > 0 and ( f 0(u)� s0 < 0 for u1 � u < u2f 0(u)� s0 > 0 for u2 < u � u3then there exists a ontinuous stritly monotone heterolini traveling wave U0 with wave speeds0 onneting u1 to u3. 1



Proof: This follows from the fat that the traveling wave equationU 0 = g(U)f 0(U)� s0has a removable singularity at U = u2. 1Remark 1.2 There might be many disontinuous, nonmonotone heterolini waves from u1 tou3.Together with (1) one often studies the visous balane lawut + f(u)x = "uxx + g(u); (3)where " > 0 is a small parameter. A lassial result by Kruzhkov states that for �nite timeintervals the solutions of (3) with the same initial ondition onverge to the unique entropysolution of (1) almost everywhere as " tends to zero. Dealing with traveling waves we ask aslightly di�erent question: Can we �nd solutions for (3) that are traveling waves with a pro�lewhih is lose to the pro�le of the traveling wave found in lemma 1.1 ? Thus, we onentrate onidential qualitative properties (namely, that the solution does not hange its shape) and in�nitetime intervals, but do not require the same initial data for " > 0 and " = 0. Moreover we will�nd that the wave speeds di�er slightly, and, although the pro�les themselves will be L1-lose,the waves will move apart from eah other. Nevertheless, sine hyperboli onservation lawsare often simpli�ed models for visous equations it is useful to establish existene of travelingwaves for the visous equations, too, and to desribe the inuene of the visosity on the wavespeed. In [H�ar99℄ the following result was proved:Proposition 1.3 Assume that f 2 C3 is onvex and g 2 C2. Then for any " suÆiently small,there exists a unique wave speed s = s(") with js(") � s0j = O(") and a unique heterolinitraveling wave U" of (3) suh thatkU" � U0kL1(IR) �! 0 as "! 0:We give an outline of the proof, sine this will guide us later to prove the existene in thevisous p-system with soure.First the visous traveling wave equation is written as a �rst order system"U 0 = V + f(U)� sUV 0 = �g(U)and standard singular perturbation theory states that the urve V + f(U) � sU = 0 is aslow manifold for " = 0. By normal hyperboliity, a piee of it with u1 < U < u2 � d will2



survive as an invariant manifold. Sine this manifold ontains the saddle equilibrium (u1; v1),it must be the unstable manifold of (u1; v1). Similarly, another part of the slow manifold withu2 + d < U < u3 persists and is in fat the stable manifold of (u3; v3). A heterolini waveexists i� the two manifolds interset and (sine the are both one-dimensional) oinide near u2.Sine at the point (u2; v2) normal hyperboliity of the slow manifold fails, the analysis alongthe lines of [Fen79℄ is not possible but using the method of rotated vetor �elds [Duf53, Per93℄it is possible to show that for " small, there is a unique value s(") suh that a heterolini orbitfrom u1 to u3 exists. A basi phase-plane analysis or a version of the blow-up method of Krupa& Szmolyan [KS99℄ shows that js(")� s0j = O(").For the L1-onvergene of the pro�les it is most onvenient to show that the stable manifold of(u3; v3) lies in a narrow stripP+ = f(U; V ) ; u1 � U � u2 � Æp"; �����V + f(U)� sU � " g(U)f 0(U)� s0 ����� � k"3=2 g(U)U � u2gif js� s0j = O("). Sine U" lies in this strip we haveU 0" = 1"(V" + f(U")� sU") = g(U")f 0(U")� s0 +O("1=2)as long as u1 � U" � u2 � Æp". An analogous estimate holds for u2 + Æp" � u" � u3. Toprove the statement one now has to ombine a Gronwall-type argument for � in some boundedintervals with exponential deay estimates for � ! �1. The details are ontained in [H�ar99℄.11.1 Relaxation approximationIn this setion, we will disuss the relaxation systemut + wx = g(u)wt + a2ux = 1"(f(u)� w) (4)that is assoiated with the hyperboli balane law (1). The only assumption about the variablea is the subharateristi ondition a > f 0(u) 8u 2 [u1; u3℄:In partiular, this implies that a2 � s20 > 0. We will prove the following theoremTheorem 1.1 For any " suÆiently small, there exists a heterolini traveling wave (u"; v") of(4) with wave speed s = s(") suh thatku" � u0kL1(IR) �! 0 as "! 0:The wave speed s(") is O(")-lose to s0. 3



Proof: The subharateristi ondition allows to write the traveling wave equation in the form(a2 � s2)U 0 = sg(U) + f(U)� V"(a2 � s2)V 0 = a2g(U) + s(f(U)� V )" :It is however more onvenient to disuss the traveling wave equation in the following equivalentform with time resaled by a fator (a2 � s2):"U 0 = ~V + f(U)� sU + "sg(U)~V 0 = �(a2 � s2)g(U):Only slight modi�ations are neessary to deal with this system. Firstly, it turns out that themethod of rotated vetor �elds does not work any more. However the existene of a heterolinian be established by a shooting argument using the following lemma:Lemma 1.4 There exists � > 0 and "1 > 0 suh that for all 0 < " � "1 and s = s0 � �" theunstable manifold W u(u1) of u1 intersets the line U = u2 below the stable manifold W s(u3) ofu3 while for s = s0 + �" the unstable manifold W u(u1) intersets U = u2 above W s(u3).Proof : We treat the ase s = s0 � �" only sine the proof for s = s0 + �" is ompletelyanalogous. Calulating the eigenvalues of the linearization at U = u2 one �nds that thisequilibrium has a pair of omplex eigenvalues if s = s0 � �" and " is small. Therefore notrajetory an approah this equilibrium in forward or bakward time without interseting theline U = u2. Sine the vetor �eld is vertial along the line ~V + f(U) � sU + "sg(U) bothW u(u1) and W s(u3) must interset the line U = u2. To hek that the �rst intersetion ofW u(u1) atually lies below that of W s(u3) one an look at the vetor �eld along the line~V = (U) := �f(U) + sU � "sg(U)� "(a2 � s2)g(U)f 0(U)� s0 :The slope of this urve isd(U)dU = �f 0(U) + s� "sg0(U)� "(a2 � s2)(f 0(U)� s0)g0(U)� f 00(U)g(U)(f 0(U)� s0)2while the slope of the vetor �eld along (U) is~V 0U 0 = �f 0(U) + s0:Sine limU!u2 (f 0(U)� s0)g0(U)� f 00(U)g(U)(f 0(U)� s0)2 = f 00(u2)g00(u2)� f 000(u2)g0(u2)2f 00(u2)24



exists one an always ahieve that d(U)dU > ~V 0U 0 by hoosing � large. This implies that trajeto-ries an ross  only from above. A standard alulation omparing the tangent vetor of  atU = u1 with the eigenvetor orresponding to the negative eigenvalue shows that W u(u1) liesbelow  while a simlar alulation at U = u3 shows that W s(u3) lies above . Therefore theintersetion of W u(u1) with the line U = u2 lies below that of W s(u3) with U = u2. 1Proof of theorem 1.1: Sine the points of intersetion between W u(u1) resp. W s(u3) andthe line U = u2 depend ontinuously on s there must exist a wave speed s(") 2 [s0��"; s0+�"℄suh that a heterolini wave from u1 to u3 exists. Monotoniity follows from the fat that thetrajetory lies above the urve V + f(U)� sU + "sg(U). 1Remark 1.5 To establish the L1-loseness of the traveling wave pro�les one has to do somemore work and loate the heterolini wave in the Li�enard plane aurately.2 The p-system with soureIn this part of the paper we prove that for a simple system ontinuous heterolini travelingwaves an our over a whole range of wave speeds and that they persist when a small physialvisosity is present.2.1 Entropy traveling waves for the hyperboli equationWe onsider the p-system of isentropi gas dynamis with a general soure term g:ut + vx = 0vt � p(u)x = g(u; v): (5)We assume that p 2 C3 with p0(u) < 0 and the soure term g 2 C2 is a Morse funtion forwhih 0 is a regular value. For de�niteness, we also assume p00(u) > 0.Looking for traveling waves (U(x � st); V (x � st)) of the hyperboli equation (5) leads to thestudy of the system of ordinary di�erential equations(�s2 � p0(U))U 0 = g(U; V )(�s2 � p0(U))V 0 = sg(U; V )where the prime denotes di�erentiation with respet to � = x � st. Note that trajetories ofthis vetor �eld are restrited to lines where V � sU is onstant and therefore all solutions anbe found by looking at the one-parameter family of problems that arises by setting V � sU =:C 2 IR. 5



Proposition 2.1 Fix the wave speed s0. Assume that there exists u1 < u2 < u3 and v1, v2, v3suh that:(i) p0(u2) = �s20,(ii) g(ui; vi) = 0 for i = 1; 2; 3,(iii) v1 � s0u1 = v2 � s0u2 = v3 � s0u3 ,(iv) g(u; v2 + s0(u� u2))p0(u) > 0 for u 2 (u1; u3) n fu2g and(v) �ug(u2; v2) + s0�vg(u2; v2) < 0.Then there exists a ontinuous monotone heterolini wave from (u1; v1) to (u3; v3) with speeds0.Proof: The statement follows from the study of the one-dimensional vetor �eld on the invari-ant line V � v2 = s0(U � u2). 1Unlike in the salar ase, this heterolini wave is robust under small perturbations if ertainnon-degeneray onditions hold.Proposition 2.2 Assume the following transversality onditions:(H) (�1)i (�ug(ui; vi) + s0�vg(ui; vi)) < 0 for i = 1; 2; 3 .Then for js�s0j small enough, there exists a unique heterolini wave with speed s that onnetssome state (u1(s); v1(s)) near (u1; v1) to a state (u3(s); v3(s)) near (u3; v3).Proof: We have to solve the system of six equations�s2 � p0(u2) = 0g(ui; vi) = 0; i = 1; 2; 3;vi � sui � v2 + su2 = 0; i = 1; 3to satisfy assumptions (i)-(iii) from the previous lemma. By the impliit funtion theorem we�nd a unique solution (u1(s); v1(s); u2(s); v2(s); u3(s); v3(s)) near the known solution (u1; v1; u2; v2; u3; v3; s0)if (H) is satis�ed sine the Jaobian at the known solution is0BBBBBBBB� 0 �p00(u2) 0 0 0 0�ug(u1; v1) 0 0 �vg(u1; v1) 0 00 �ug(u2; v2) 0 0 �vg(u2; v2) 00 0 �ug(u3; v3) 0 0 �vg(u3; v3)�s s 0 1 �1 00 s �s 0 �1 1
1CCCCCCCCA :

Assumptions (iv) and (v) will then automatially hold and ondition (H) for i = 2 makes surethat there are no other points of intersetion between the zero set of g and the line V � sU = 0near (u2; v2). 16



This shows that monotone heterolini waves whih pass through the zero set of g in general ex-ist for an open set of wave speeds. Under the non-degeneray ondition (H) they are ontainedin one-parameter families of heterolini waves parametrized by the veloity s.2.2 The e�et of physial visosityAs in [MM99℄, we assume that u > 0 and add a small visosity term to the seond equation toget ut + vx = 0vt � p(u)x = �"vxu �x + g(u; v):Sine the �rst equation desribes the onservation of mass, it remains unhanged. The travelingwave equation for this system is �sU 0 + V 0 = 0�sV 0 + p0(U)U 0 =  "V 0U !0 + g(U; V )Again, the �rst equation an be integrated and after setting C := V � sU for some onstant Cnear C0 := v2�s0u2 the seond equation an be written in Li�enard oordinates after a resalingof time as "U 0 = Z � sC � s2U � p(U)Z 0 = � sU g(U;C + sU) =: �G(U; s): ) (6)For " = 0, we will assume that the onditions of proposition 2.1 are satis�ed for some speeds0 and some (ui; vi), i = 1; 2; 3, together with the transversality ondition (H). By ondition(H2), for any s near s0 there exists u2(s) with p0(u2(s)) = �s2 and C(s) near C0 suh thatg(u2(s); C(s) + su2s)) = 0. Moreover, there exist unique equilibria Ei := (ui(s); zi(s)) near(ui; p(ui) + s20ui) of (6). We are looking for values of s near s0 and " > 0 suh that there is aheterolini orbit from E1 = (u1(s); z1(s)) to E3 = (u3(s; C); z3(s; C)) lose to the heterolinitraveling wave for the hyperboli equation desribed in proposition 2.1.Theorem 2.1 There exists "0 suh that for 0 < " � "0 there exists a s(") with js(")�s0j = O(")suh that the visous p-system (6) has a monotone ontinuous traveling wave onneting E1 toE3.Proof: The proof is similar to the one for the relaxation approximation of a salar balanelaws.The linearization of (6) at Ei has the eigenvalues�� = �(s2 + p0(ui))�q(s2 + p0(ui))2 � 4"�UG(ui; s)2" :7



Sine �UG(u2; s) > 0 and �UG(ui; s) � 0 for i = 1 and i = 3, this implies that for " small E1 andE3 are of saddle-type with a one-dimensional stable and one-dimensional unstable manifold.Moreover for s 2 [s0 � �"; s0 + �"℄ we have s2 + p0(u2) = s2 � s20 = O(") and hene for "suÆiently small the eigenvalues at E2 are omplex.Again one needs to �nd some wave speed suh that the one-dimensional unstable manifoldW u(E1) and the one-dimensional stable manifold W s(E3) interset eah other.This is done by a shooting argument: For s = s0 � �" the unstable manifold W u(E1) liesbetween the urves Z � s2U � p(U) = 0 and  = fZ � s2U � p(U) � " G(U;s)s20+p0(U) = 0g as longas u1 � U � u2 while W s(E3) lies above the urve  for u2 � U � u3. Therefore W u(E1)intersets the line U = u2 below W s(E3). Sine for s = s0+ �" the situation is vie versa theremust be a wave speed s(") for whih a heterolini onnetion exists. 1To model numerial visosity one would like to add a small visous perturbation to both equa-tions of the p-system. This leads to a singularly perturbed equation with two slow and onefast variable ontaining three parameters. Therefore the situation is far more ompliated andannot be treated in the framework of this artile.Referenes[Duf53℄ G. F. D. Du�. Limit yles and rotated vetor �elds. Ann. Math., 57:15{31, 1953.[Fen79℄ N. Fenihel. Geometri singular perturbation theory for ordinary di�erential equations.J.Di�.Eq., 31:53{98, 1979.[H�ar99℄ J. H�arterih. Visous pro�les for traveling waves of salar balane laws: The anardase. Preprint, 1999.[KS99℄ M. Krupa and P. Szmolyan. Extending geometri singular perturbation theory tononhyperboli points. Preprint, 1999.[Mas97℄ C. Masia. Travelling wave solutions for a balane law. Pro. Roy. So. Edinburgh,127 A:567{593, 1997.[MM99℄ A. Matsumura and M. Mei. Convergene to Travelling Fronts of Solutions of thep-System with Visosity in the Presene of a Boundary. Arh. Rat. Meh. Anal.,146:1{22, 1999.[Per93℄ L. M. Perko. Rotated vetor �elds. J. Di�. Eq., 103:127{145, 1993.
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