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In contrast to hyperbolic conservation laws, systems of hyperbolic balance laws
w4 f(u)e =g(u), uweRY, zcR (1)

can possess nontrivial continuous traveling wave solutions of the form u(z,t) = U(§) where
¢ = x — st and s is the wave speed. These traveling waves satisfy the ordinary differential
equation

—sU"+ 0.f(U)U" = g(U) (2)
where the prime denotes differentiation with respect to &.
Although there are typically many discontinuous traveling wave solutions, too, this paper deals
exclusively with continuous traveling waves.

Definition 0.1 A traveling wave U is said to be a heteroclinic wave if both lime_,_, U(§)
and limg_, o U(&) exist.

From (2) one can easily conclude that the source term ¢ has to vanish at both asymptotic states
of a heteroclinic wave U. We will say that the heteroclinic wave connects the asymptotic state
at —oo to the asymptotic state at 4o0.

For the case of a scalar equation with a strictly convex flux f, Mascia [Mas97] found some
traveling wave solutions which exist only at isolated values of the wave speed. They are of
special interest since one can show that similar waves exist for the viscous equation and that
they are stable. In the present paper we will show that in the p-system with a nonlinear source
term similar waves can exists for a whole range of wave speeds. Furthermore, we discuss two
viscous regularizations of this hyperbolic system and show that both of them possess heteroclinic
traveling waves that correspond to the heteroclinic traveling waves of the hyperbolic system.

1 Scalar balance laws

The case N = 1 has been studied most. The next lemma is a slight generalization Mascias
result for a scalar balance law and allows f to be non-convex.

Lemma 1.1 Assume that u; < uy < ug are three consecutive zeroes of g with ¢'(uy) < 0,
g'(ug) > 0 and ¢'(u3) < 0. Let furthermore so := f'(ug). If

fl(u) —so <0 for uy <u<ug
fl(u) —so>0  for uy<u<us

f"(ug) >0 and {

then there exists a continuous strictly monotone heteroclinic traveling wave Uy with wave speed
Sg connecting uy to us.



Proof: This follows from the fact that the traveling wave equation

g(U)

S T

has a removable singularity at U = us.

Remark 1.2 There might be many discontinuous, nonmonotone heteroclinic waves from uy to
us.

Together with (1) one often studies the viscous balance law

w + f(U)r = EUsa + g(u), (3)

where ¢ > 0 is a small parameter. A classical result by Kruzhkov states that for finite time
intervals the solutions of (3) with the same initial condition converge to the unique entropy
solution of (1) almost everywhere as e tends to zero. Dealing with traveling waves we ask a
slightly different question: Can we find solutions for (3) that are traveling waves with a profile
which is close to the profile of the traveling wave found in lemma 1.1 7 Thus, we concentrate on
identical qualitative properties (namely, that the solution does not change its shape) and infinite
time intervals, but do not require the same initial data for £ > 0 and £ = 0. Moreover we will
find that the wave speeds differ slightly, and, although the profiles themselves will be L!-close,
the waves will move apart from each other. Nevertheless, since hyperbolic conservation laws
are often simplified models for viscous equations it is useful to establish existence of traveling
waves for the viscous equations, too, and to describe the influence of the viscosity on the wave
speed. In [H&r99] the following result was proved:

Proposition 1.3 Assume that f € C? is conver and g € C?. Then for any ¢ sufficiently small,
there exists a unique wave speed s = s(g) with |s(e) — so| = O(e) and a unique heteroclinic
traveling wave U, of (3) such that

|Us = Usl| 1Ry —> 0 as € = 0.

We give an outline of the proof, since this will guide us later to prove the existence in the
viscous p-system with source.
First the viscous traveling wave equation is written as a first order system

U = V+fU)-sU
Vo= —g(U)

and standard singular perturbation theory states that the curve V + f(U) — sU = 0 is a
slow manifold for ¢ = 0. By normal hyperbolicity, a piece of it with uy < U < uy — d will



survive as an invariant manifold. Since this manifold contains the saddle equilibrium (uq, v1),
it must be the unstable manifold of (uy,v;). Similarly, another part of the slow manifold with
us + d < U < ug persists and is in fact the stable manifold of (us,v3). A heteroclinic wave
exists iff the two manifolds intersect and (since the are both one-dimensional) coincide near us.
Since at the point (ug,v;) normal hyperbolicity of the slow manifold fails, the analysis along
the lines of [Fen79] is not possible but using the method of rotated vector fields [Duf53, Per93]
it is possible to show that for £ small, there is a unique value s(¢) such that a heteroclinic orbit
from wuy to usz exists. A basic phase-plane analysis or a version of the blow-up method of Krupa
& Szmolyan [KS99] shows that |s(g) — sq| = O(e).

For the L'-convergence of the profiles it is most convenient to show that the stable manifold of
(us,v3) lies in a narrow strip

U U
Py ={U,V); wm U <up =6V, wf(U)—”*% Sk&g”fy(_;}

if |s — 59| = O(e). Since U, lies in this strip we have

q(Uz)
f’(Us) — S0
as long as u; < U, < uy — §y/e. An analogous estimate holds for us + dv/e < u. < uz. To
prove the statement one now has to combine a Gronwall-type argument for £ in some bounded

intervals with exponential decay estimates for £ — 4+00. The details are contained in [Har99].
X

U = %(Ve + (U = sUL) = + O

1.1 Relaxation approximation
In this section, we will discuss the relaxation system
u+w, = g(u)
wik = ~(f(u) - w)

(4)

that is associated with the hyperbolic balance law (1). The only assumption about the variable
a is the subcharacteristic condition

a> f'(u) Yu € [uy, us).
In particular, this implies that a®> — s2 > 0. We will prove the following theorem

Theorem 1.1 For any ¢ sufficiently small, there exists a heteroclinic traveling wave (u.,v.) of
(4) with wave speed s = s(e) such that

||ue — u0||L1(|R) — 0 as € = 0.

The wave speed s(g) is O(e)-close to sq.



Proof: The subcharacteristic condition allows to write the traveling wave equation in the form

(a®> = s )V' = a?g(U) +

It is however more convenient to discuss the traveling wave equation in the following equivalent
form with time rescaled by a factor (a? — s?):

U = V+ f(U) - sU +esg(U)
V= (- ()

Only slight modifications are necessary to deal with this system. Firstly, it turns out that the
method of rotated vector fields does not work any more. However the existence of a heteroclinic
can be established by a shooting argument using the following lemma:

Lemma 1.4 There exists 0 > 0 and €1 > 0 such that for all 0 < ¢ < &1 and s = sg — o the
unstable manifold W*(u,) of uy intersects the line U = uy below the stable manifold W*(u3) of
ug while for s = sy + oe the unstable manifold W"(uy) intersects U = uy above W*(us3).

Proof : We treat the case s = sq — o only since the proof for s = sy + o¢ is completely
analogous. Calculating the eigenvalues of the linearization at U = wus one finds that this
equilibrium has a pair of complex eigenvalues if s = sy = 0¢ and ¢ is small. Therefore no
trajectory can approach this equilibrium in forward or backward time without intersecting the
line U = uy. Since the vector field is vertical along the line V + f(U) — sU + esg(U) both
W"(uy) and W*(u3) must intersect the line U = uy. To check that the first intersection of
W"(uy) actually lies below that of W#(u3) one can look at the vector field along the line

(a* — s*)g(U)
V=~U):=—-fU)+sU —esg(U) — e—777——"=.
’Y( ) f( ) g( ) f’(U)—SU
The slope of this curve is
d(U)
dUu

(0® = s*)(f'(U) = s0)g'(U) = ["(U)g(U)

= —f'(U)+s—esg'(U)—¢ (f/(U) — s0)?

while the slope of the vector field along (U) is

—_— = —f’(U) + So-

Since
) = s0)g/ (U) = )W) [ )9 () = 1" (s)o! (1)
U—us (fI(U) - 80)2 2f”(u2)2




exists one can always achieve that de(g) > % by choosing ¢ large. This implies that trajecto-

ries can cross v only from above. A standard calculation comparing the tangent vector of v at
U = u; with the eigenvector corresponding to the negative eigenvalue shows that W"(u;) lies
below 7 while a simlar calculation at U = ug shows that 1W*(u3) lies above 7. Therefore the
intersection of W*(u;) with the line U = uy lies below that of W*(u3) with U = us.

X
Proof of theorem 1.1: Since the points of intersection between W"(uy) resp. W#*(u3) and
the line U = uy depend continuously on s there must exist a wave speed s(¢) € [sg— o€, sg+0¢]
such that a heteroclinic wave from u; to uz exists. Monotonicity follows from the fact that the
trajectory lies above the curve V + f(U) — sU +esg(U).

X

Remark 1.5 To establish the L'-closeness of the traveling wave profiles one has to do some
more work and locate the heteroclinic wave in the Liénard plane accurately.

2 The p-system with source

In this part of the paper we prove that for a simple system continuous heteroclinic traveling
waves can occur over a whole range of wave speeds and that they persist when a small physical
viscosity is present.

2.1 Entropy traveling waves for the hyperbolic equation

We consider the p-system of isentropic gas dynamics with a general source term g:

w+v, = 0
v —plu), = g(u,v).

(5)

We assume that p € C® with p/(u) < 0 and the source term g € C? is a Morse function for
which 0 is a regular value. For definiteness, we also assume p"(u) > 0.

Looking for traveling waves (U(x — st),V(x — st)) of the hyperbolic equation (5) leads to the
study of the system of ordinary differential equations

(—s* —p(U)U" = g(UV)
(—s* =p'(U)V' = sg(U,V)

where the prime denotes differentiation with respect to & = x — st. Note that trajectories of
this vector field are restricted to lines where V' — sU is constant and therefore all solutions can
be found by looking at the one-parameter family of problems that arises by setting V — sU =:
C €IR.



Proposition 2.1 Fix the wave speed sg. Assume that there exists uq < us < uz and vy, va, U3
such that:

(i) p'(u2) = —sg,

(11) g(u;,v;) =0 fori=1,2,3,

(ZZZ) VU1 — SpU1 = VU — SgUg = Vs — Sgus ,

(1v) g(u, ve + so(u — u2))p'(u) > 0 for u € (uy,usz) \ {uz} and

(v) Oug(uz,va) + S00,g(usz, ve) < 0.

Then there exists a continuous monotone heteroclinic wave from (uy,vy) to (us,vs) with speed
SQ.

Proof: The statement follows from the study of the one-dimensional vector field on the invari-
ant line V — vy = so(U — uy).

X
Unlike in the scalar case, this heteroclinic wave is robust under small perturbations if certain
non-degeneracy conditions hold.

Proposition 2.2 Assume the following transversality conditions:

(H) (=1)" (Qug(ui, vi) + s00ug(ui, vi)) < 0 fori=1,2,3 .

Then for |s—sq| small enough, there exists a unique heteroclinic wave with speed s that connects
some state (u1(s),v1(s)) near (uy,vq) to a state (uz(s),vs(s)) near (uz,vs).

Proof: We have to solve the system of six equations

_82 _pl(Ug)
g(uiavi) = 0, 1=1,2,3,
Vi — Su; —vg+Ssuy = 0, 1=1,3

to satisfy assumptions (i)-(iii) from the previous lemma. By the implicit function theorem we
find a unique solution (u;(s), vi(s), ua(s), va(s), us(s), vs(s)) near the known solution (uy, vy, us, v9, us, vs,
if (H) is satisfied since the Jacobian at the known solution is

0 —p" (us) 0 0 0 0
Oug(ug,v1) 0 0 Opg(ui,v1) 0 0
0 Oug(ug,v3) 0 0 0yg(uz,v9) 0
0 0 Oug(ug, v3) 0 0 Oyg(us3, v3)
—s 0 1 -1 0
0 S -5 0 -1 1

Assumptions (iv) and (v) will then automatically hold and condition (H) for i = 2 makes sure
that there are no other points of intersection between the zero set of g and the line V —sU = 0
near (ug, v7).

X



This shows that monotone heteroclinic waves which pass through the zero set of ¢ in general ex-
ist for an open set of wave speeds. Under the non-degeneracy condition (H) they are contained
in one-parameter families of heteroclinic waves parametrized by the velocity s.

2.2 The effect of physical viscosity

As in [MM99], we assume that u > 0 and add a small viscosity term to the second equation to
get

u+v, = 0
EVy

w-pl = (2

Since the first equation describes the conservation of mass, it remains unchanged. The traveling
wave equation for this system is

)x + g(u,v).

—sU'+V' = 0
eV’
U

!/
—sV' +p(U)U" = ( ) +g(U,V)
Again, the first equation can be integrated and after setting C' := V — sU for some constant C'
near Cy := vy — Sgus the second equation can be written in Liénard coordinates after a rescaling
of time as
el = 7 —3sC—s*U—p(U) (6)
7' = —39(U,C+sU) = —G(U,s).

For ¢ = 0, we will assume that the conditions of proposition 2.1 are satisfied for some speed
sg and some (u;,v;), i = 1,2, 3, together with the transversality condition (H). By condition
(H2), for any s near sy there exists us(s) with p'(us(s)) = —s? and C(s) near Cy such that
g(ua(s),C(s) + suas)) = 0. Moreover, there exist unique equilibria E; := (u;(s), z;(s)) near
(ui, p(u;) + sgu;) of (6). We are looking for values of s near sy and ¢ > 0 such that there is a
heteroclinic orbit from F; = (uy(s), 21(s)) to B3 = (us(s, C), z3(s, C)) close to the heteroclinic
traveling wave for the hyperbolic equation described in proposition 2.1.

Theorem 2.1 There exists € such that for 0 < e < &g there exists a s(g) with |s(g)—so| = O(e)

such that the viscous p-system (6) has a monotone continuous traveling wave connecting Ey to
Es.

Proof: The proof is similar to the one for the relaxation approximation of a scalar balance
laws.
The linearization of (6) at E; has the eigenvalues

AL — —(s*+p'(u;)) + \/(52 + ' (u7))2 — 420y G (u;, 5)
o 2e :




Since Oy G(ug, s) > 0 and dyG(u;, s) < 0 fori = 1and i = 3, this implies that for £ small F; and
E5 are of saddle-type with a one-dimensional stable and one-dimensional unstable manifold.
Moreover for s € [sq — o€, 59 + 0] we have s + p'(uy) = s> — s3 = O(¢) and hence for ¢
sufficiently small the eigenvalues at E5 are complex.

Again one needs to find some wave speed such that the one-dimensional unstable manifold
W"(E;) and the one-dimensional stable manifold W#(Fj3) intersect each other.

This is done by a shooting argument: For s = sy — o¢ the unstable manifold W*(E}) lies
between the curves Z — s*U — p(U) = 0 and v = {Z — s*U — p(U) — ES(Q)GJEZ’(SL),) = 0} as long
as u; < U < uy while W#(FEj3) lies above the curve 7 for uy < U < uz. Therefore W¥(E)
intersects the line U = uy below W#*(Ej3). Since for s = sq + o¢ the situation is vice versa there

must be a wave speed s(¢) for which a heteroclinic connection exists.

X
To model numerical viscosity one would like to add a small viscous perturbation to both equa-
tions of the p-system. This leads to a singularly perturbed equation with two slow and one
fast variable containing three parameters. Therefore the situation is far more complicated and
cannot be treated in the framework of this article.
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