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lini
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e termsJ�org H�arteri
hUniversity of Maryland, College Park, MD 20742 , U.S.A.In 
ontrast to hyperboli
 
onservation laws, systems of hyperboli
 balan
e lawsut + f(u)x = g(u); u 2 IRN ; x 2 IR (1)
an possess nontrivial 
ontinuous traveling wave solutions of the form u(x; t) = U(�) where� = x � st and s is the wave speed. These traveling waves satisfy the ordinary di�erentialequation �sU 0 + �uf(U)U 0 = g(U) (2)where the prime denotes di�erentiation with respe
t to �.Although there are typi
ally many dis
ontinuous traveling wave solutions, too, this paper dealsex
lusively with 
ontinuous traveling waves.De�nition 0.1 A traveling wave U is said to be a hetero
lini
 wave if both lim�!�1 U(�)and lim�!+1U(�) exist.From (2) one 
an easily 
on
lude that the sour
e term g has to vanish at both asymptoti
 statesof a hetero
lini
 wave U . We will say that the hetero
lini
 wave 
onne
ts the asymptoti
 stateat �1 to the asymptoti
 state at +1.For the 
ase of a s
alar equation with a stri
tly 
onvex 
ux f , Mas
ia [Mas97℄ found sometraveling wave solutions whi
h exist only at isolated values of the wave speed. They are ofspe
ial interest sin
e one 
an show that similar waves exist for the vis
ous equation and thatthey are stable. In the present paper we will show that in the p-system with a nonlinear sour
eterm similar waves 
an exists for a whole range of wave speeds. Furthermore, we dis
uss twovis
ous regularizations of this hyperboli
 system and show that both of them possess hetero
lini
traveling waves that 
orrespond to the hetero
lini
 traveling waves of the hyperboli
 system.1 S
alar balan
e lawsThe 
ase N = 1 has been studied most. The next lemma is a slight generalization Mas
iasresult for a s
alar balan
e law and allows f to be non-
onvex.Lemma 1.1 Assume that u1 < u2 < u3 are three 
onse
utive zeroes of g with g0(u1) < 0,g0(u2) > 0 and g0(u3) < 0. Let furthermore s0 := f 0(u2). Iff 00(u2) > 0 and ( f 0(u)� s0 < 0 for u1 � u < u2f 0(u)� s0 > 0 for u2 < u � u3then there exists a 
ontinuous stri
tly monotone hetero
lini
 traveling wave U0 with wave speeds0 
onne
ting u1 to u3. 1



Proof: This follows from the fa
t that the traveling wave equationU 0 = g(U)f 0(U)� s0has a removable singularity at U = u2. 1Remark 1.2 There might be many dis
ontinuous, nonmonotone hetero
lini
 waves from u1 tou3.Together with (1) one often studies the vis
ous balan
e lawut + f(u)x = "uxx + g(u); (3)where " > 0 is a small parameter. A 
lassi
al result by Kruzhkov states that for �nite timeintervals the solutions of (3) with the same initial 
ondition 
onverge to the unique entropysolution of (1) almost everywhere as " tends to zero. Dealing with traveling waves we ask aslightly di�erent question: Can we �nd solutions for (3) that are traveling waves with a pro�lewhi
h is 
lose to the pro�le of the traveling wave found in lemma 1.1 ? Thus, we 
on
entrate onidenti
al qualitative properties (namely, that the solution does not 
hange its shape) and in�nitetime intervals, but do not require the same initial data for " > 0 and " = 0. Moreover we will�nd that the wave speeds di�er slightly, and, although the pro�les themselves will be L1-
lose,the waves will move apart from ea
h other. Nevertheless, sin
e hyperboli
 
onservation lawsare often simpli�ed models for vis
ous equations it is useful to establish existen
e of travelingwaves for the vis
ous equations, too, and to des
ribe the in
uen
e of the vis
osity on the wavespeed. In [H�ar99℄ the following result was proved:Proposition 1.3 Assume that f 2 C3 is 
onvex and g 2 C2. Then for any " suÆ
iently small,there exists a unique wave speed s = s(") with js(") � s0j = O(") and a unique hetero
lini
traveling wave U" of (3) su
h thatkU" � U0kL1(IR) �! 0 as "! 0:We give an outline of the proof, sin
e this will guide us later to prove the existen
e in thevis
ous p-system with sour
e.First the vis
ous traveling wave equation is written as a �rst order system"U 0 = V + f(U)� sUV 0 = �g(U)and standard singular perturbation theory states that the 
urve V + f(U) � sU = 0 is aslow manifold for " = 0. By normal hyperboli
ity, a pie
e of it with u1 < U < u2 � d will2



survive as an invariant manifold. Sin
e this manifold 
ontains the saddle equilibrium (u1; v1),it must be the unstable manifold of (u1; v1). Similarly, another part of the slow manifold withu2 + d < U < u3 persists and is in fa
t the stable manifold of (u3; v3). A hetero
lini
 waveexists i� the two manifolds interse
t and (sin
e the are both one-dimensional) 
oin
ide near u2.Sin
e at the point (u2; v2) normal hyperboli
ity of the slow manifold fails, the analysis alongthe lines of [Fen79℄ is not possible but using the method of rotated ve
tor �elds [Duf53, Per93℄it is possible to show that for " small, there is a unique value s(") su
h that a hetero
lini
 orbitfrom u1 to u3 exists. A basi
 phase-plane analysis or a version of the blow-up method of Krupa& Szmolyan [KS99℄ shows that js(")� s0j = O(").For the L1-
onvergen
e of the pro�les it is most 
onvenient to show that the stable manifold of(u3; v3) lies in a narrow stripP+ = f(U; V ) ; u1 � U � u2 � Æp"; �����V + f(U)� sU � " g(U)f 0(U)� s0 ����� � k"3=2 g(U)U � u2gif js� s0j = O("). Sin
e U" lies in this strip we haveU 0" = 1"(V" + f(U")� sU") = g(U")f 0(U")� s0 +O("1=2)as long as u1 � U" � u2 � Æp". An analogous estimate holds for u2 + Æp" � u" � u3. Toprove the statement one now has to 
ombine a Gronwall-type argument for � in some boundedintervals with exponential de
ay estimates for � ! �1. The details are 
ontained in [H�ar99℄.11.1 Relaxation approximationIn this se
tion, we will dis
uss the relaxation systemut + wx = g(u)wt + a2ux = 1"(f(u)� w) (4)that is asso
iated with the hyperboli
 balan
e law (1). The only assumption about the variablea is the sub
hara
teristi
 
ondition a > f 0(u) 8u 2 [u1; u3℄:In parti
ular, this implies that a2 � s20 > 0. We will prove the following theoremTheorem 1.1 For any " suÆ
iently small, there exists a hetero
lini
 traveling wave (u"; v") of(4) with wave speed s = s(") su
h thatku" � u0kL1(IR) �! 0 as "! 0:The wave speed s(") is O(")-
lose to s0. 3



Proof: The sub
hara
teristi
 
ondition allows to write the traveling wave equation in the form(a2 � s2)U 0 = sg(U) + f(U)� V"(a2 � s2)V 0 = a2g(U) + s(f(U)� V )" :It is however more 
onvenient to dis
uss the traveling wave equation in the following equivalentform with time res
aled by a fa
tor (a2 � s2):"U 0 = ~V + f(U)� sU + "sg(U)~V 0 = �(a2 � s2)g(U):Only slight modi�
ations are ne
essary to deal with this system. Firstly, it turns out that themethod of rotated ve
tor �elds does not work any more. However the existen
e of a hetero
lini

an be established by a shooting argument using the following lemma:Lemma 1.4 There exists � > 0 and "1 > 0 su
h that for all 0 < " � "1 and s = s0 � �" theunstable manifold W u(u1) of u1 interse
ts the line U = u2 below the stable manifold W s(u3) ofu3 while for s = s0 + �" the unstable manifold W u(u1) interse
ts U = u2 above W s(u3).Proof : We treat the 
ase s = s0 � �" only sin
e the proof for s = s0 + �" is 
ompletelyanalogous. Cal
ulating the eigenvalues of the linearization at U = u2 one �nds that thisequilibrium has a pair of 
omplex eigenvalues if s = s0 � �" and " is small. Therefore notraje
tory 
an approa
h this equilibrium in forward or ba
kward time without interse
ting theline U = u2. Sin
e the ve
tor �eld is verti
al along the line ~V + f(U) � sU + "sg(U) bothW u(u1) and W s(u3) must interse
t the line U = u2. To 
he
k that the �rst interse
tion ofW u(u1) a
tually lies below that of W s(u3) one 
an look at the ve
tor �eld along the line~V = 
(U) := �f(U) + sU � "sg(U)� "(a2 � s2)g(U)f 0(U)� s0 :The slope of this 
urve isd
(U)dU = �f 0(U) + s� "sg0(U)� "(a2 � s2)(f 0(U)� s0)g0(U)� f 00(U)g(U)(f 0(U)� s0)2while the slope of the ve
tor �eld along 
(U) is~V 0U 0 = �f 0(U) + s0:Sin
e limU!u2 (f 0(U)� s0)g0(U)� f 00(U)g(U)(f 0(U)� s0)2 = f 00(u2)g00(u2)� f 000(u2)g0(u2)2f 00(u2)24



exists one 
an always a
hieve that d
(U)dU > ~V 0U 0 by 
hoosing � large. This implies that traje
to-ries 
an 
ross 
 only from above. A standard 
al
ulation 
omparing the tangent ve
tor of 
 atU = u1 with the eigenve
tor 
orresponding to the negative eigenvalue shows that W u(u1) liesbelow 
 while a simlar 
al
ulation at U = u3 shows that W s(u3) lies above 
. Therefore theinterse
tion of W u(u1) with the line U = u2 lies below that of W s(u3) with U = u2. 1Proof of theorem 1.1: Sin
e the points of interse
tion between W u(u1) resp. W s(u3) andthe line U = u2 depend 
ontinuously on s there must exist a wave speed s(") 2 [s0��"; s0+�"℄su
h that a hetero
lini
 wave from u1 to u3 exists. Monotoni
ity follows from the fa
t that thetraje
tory lies above the 
urve V + f(U)� sU + "sg(U). 1Remark 1.5 To establish the L1-
loseness of the traveling wave pro�les one has to do somemore work and lo
ate the hetero
lini
 wave in the Li�enard plane a

urately.2 The p-system with sour
eIn this part of the paper we prove that for a simple system 
ontinuous hetero
lini
 travelingwaves 
an o

ur over a whole range of wave speeds and that they persist when a small physi
alvis
osity is present.2.1 Entropy traveling waves for the hyperboli
 equationWe 
onsider the p-system of isentropi
 gas dynami
s with a general sour
e term g:ut + vx = 0vt � p(u)x = g(u; v): (5)We assume that p 2 C3 with p0(u) < 0 and the sour
e term g 2 C2 is a Morse fun
tion forwhi
h 0 is a regular value. For de�niteness, we also assume p00(u) > 0.Looking for traveling waves (U(x � st); V (x � st)) of the hyperboli
 equation (5) leads to thestudy of the system of ordinary di�erential equations(�s2 � p0(U))U 0 = g(U; V )(�s2 � p0(U))V 0 = sg(U; V )where the prime denotes di�erentiation with respe
t to � = x � st. Note that traje
tories ofthis ve
tor �eld are restri
ted to lines where V � sU is 
onstant and therefore all solutions 
anbe found by looking at the one-parameter family of problems that arises by setting V � sU =:C 2 IR. 5



Proposition 2.1 Fix the wave speed s0. Assume that there exists u1 < u2 < u3 and v1, v2, v3su
h that:(i) p0(u2) = �s20,(ii) g(ui; vi) = 0 for i = 1; 2; 3,(iii) v1 � s0u1 = v2 � s0u2 = v3 � s0u3 ,(iv) g(u; v2 + s0(u� u2))p0(u) > 0 for u 2 (u1; u3) n fu2g and(v) �ug(u2; v2) + s0�vg(u2; v2) < 0.Then there exists a 
ontinuous monotone hetero
lini
 wave from (u1; v1) to (u3; v3) with speeds0.Proof: The statement follows from the study of the one-dimensional ve
tor �eld on the invari-ant line V � v2 = s0(U � u2). 1Unlike in the s
alar 
ase, this hetero
lini
 wave is robust under small perturbations if 
ertainnon-degenera
y 
onditions hold.Proposition 2.2 Assume the following transversality 
onditions:(H) (�1)i (�ug(ui; vi) + s0�vg(ui; vi)) < 0 for i = 1; 2; 3 .Then for js�s0j small enough, there exists a unique hetero
lini
 wave with speed s that 
onne
tssome state (u1(s); v1(s)) near (u1; v1) to a state (u3(s); v3(s)) near (u3; v3).Proof: We have to solve the system of six equations�s2 � p0(u2) = 0g(ui; vi) = 0; i = 1; 2; 3;vi � sui � v2 + su2 = 0; i = 1; 3to satisfy assumptions (i)-(iii) from the previous lemma. By the impli
it fun
tion theorem we�nd a unique solution (u1(s); v1(s); u2(s); v2(s); u3(s); v3(s)) near the known solution (u1; v1; u2; v2; u3; v3; s0)if (H) is satis�ed sin
e the Ja
obian at the known solution is0BBBBBBBB� 0 �p00(u2) 0 0 0 0�ug(u1; v1) 0 0 �vg(u1; v1) 0 00 �ug(u2; v2) 0 0 �vg(u2; v2) 00 0 �ug(u3; v3) 0 0 �vg(u3; v3)�s s 0 1 �1 00 s �s 0 �1 1
1CCCCCCCCA :

Assumptions (iv) and (v) will then automati
ally hold and 
ondition (H) for i = 2 makes surethat there are no other points of interse
tion between the zero set of g and the line V � sU = 0near (u2; v2). 16



This shows that monotone hetero
lini
 waves whi
h pass through the zero set of g in general ex-ist for an open set of wave speeds. Under the non-degenera
y 
ondition (H) they are 
ontainedin one-parameter families of hetero
lini
 waves parametrized by the velo
ity s.2.2 The e�e
t of physi
al vis
osityAs in [MM99℄, we assume that u > 0 and add a small vis
osity term to the se
ond equation toget ut + vx = 0vt � p(u)x = �"vxu �x + g(u; v):Sin
e the �rst equation des
ribes the 
onservation of mass, it remains un
hanged. The travelingwave equation for this system is �sU 0 + V 0 = 0�sV 0 + p0(U)U 0 =  "V 0U !0 + g(U; V )Again, the �rst equation 
an be integrated and after setting C := V � sU for some 
onstant Cnear C0 := v2�s0u2 the se
ond equation 
an be written in Li�enard 
oordinates after a res
alingof time as "U 0 = Z � sC � s2U � p(U)Z 0 = � sU g(U;C + sU) =: �G(U; s): ) (6)For " = 0, we will assume that the 
onditions of proposition 2.1 are satis�ed for some speeds0 and some (ui; vi), i = 1; 2; 3, together with the transversality 
ondition (H). By 
ondition(H2), for any s near s0 there exists u2(s) with p0(u2(s)) = �s2 and C(s) near C0 su
h thatg(u2(s); C(s) + su2s)) = 0. Moreover, there exist unique equilibria Ei := (ui(s); zi(s)) near(ui; p(ui) + s20ui) of (6). We are looking for values of s near s0 and " > 0 su
h that there is ahetero
lini
 orbit from E1 = (u1(s); z1(s)) to E3 = (u3(s; C); z3(s; C)) 
lose to the hetero
lini
traveling wave for the hyperboli
 equation des
ribed in proposition 2.1.Theorem 2.1 There exists "0 su
h that for 0 < " � "0 there exists a s(") with js(")�s0j = O(")su
h that the vis
ous p-system (6) has a monotone 
ontinuous traveling wave 
onne
ting E1 toE3.Proof: The proof is similar to the one for the relaxation approximation of a s
alar balan
elaws.The linearization of (6) at Ei has the eigenvalues�� = �(s2 + p0(ui))�q(s2 + p0(ui))2 � 4"�UG(ui; s)2" :7



Sin
e �UG(u2; s) > 0 and �UG(ui; s) � 0 for i = 1 and i = 3, this implies that for " small E1 andE3 are of saddle-type with a one-dimensional stable and one-dimensional unstable manifold.Moreover for s 2 [s0 � �"; s0 + �"℄ we have s2 + p0(u2) = s2 � s20 = O(") and hen
e for "suÆ
iently small the eigenvalues at E2 are 
omplex.Again one needs to �nd some wave speed su
h that the one-dimensional unstable manifoldW u(E1) and the one-dimensional stable manifold W s(E3) interse
t ea
h other.This is done by a shooting argument: For s = s0 � �" the unstable manifold W u(E1) liesbetween the 
urves Z � s2U � p(U) = 0 and 
 = fZ � s2U � p(U) � " G(U;s)s20+p0(U) = 0g as longas u1 � U � u2 while W s(E3) lies above the 
urve 
 for u2 � U � u3. Therefore W u(E1)interse
ts the line U = u2 below W s(E3). Sin
e for s = s0+ �" the situation is vi
e versa theremust be a wave speed s(") for whi
h a hetero
lini
 
onne
tion exists. 1To model numeri
al vis
osity one would like to add a small vis
ous perturbation to both equa-tions of the p-system. This leads to a singularly perturbed equation with two slow and onefast variable 
ontaining three parameters. Therefore the situation is far more 
ompli
ated and
annot be treated in the framework of this arti
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