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Università “La Sapienza”
Dipartimento di Matematica

P.le Aldo Moro, 2
00185 Roma, Italy

November 5, 2002

Abstract. This paper deals with the singular limit forL"u := ut � F (u; "ux)x � "�1g(u) = 0:
where the function F is assumed to be smooth and uniformly elliptic, andg is a “bistable” nonlinearity. Denoting with um the unstable zero of g, for
any smooth initial datum u0 for which u0 �um has a finite number of sim-
ple zeroes, we show the existence of solutions and describe the structure of

the limiting function u0 = lim"!0+ u", where u" is the solution of a corre-
sponding Cauchy problem.

The analysis is based on the construction of travelling waves connecting

the stable zeros of g and on the use of a comparison principle.
1 Introduction

In this paper we deal with the study of the singular limit for the
scalar one-dimensional equationL"u := ut � F (u; "ux)x � "�1g(u) = 0; (1)

where u = u(x; t) 2 IR, (x; t) 2 IR � (0;1) and " > 0 is a posi-
tive parameter. We assume on F = F (u; p) the uniform ellipticity
condition, that is

(H1) F 2 C2; Fp(u; p) � � > 0 for all u; p.
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An interesting case is F (u; p) = � p � f(u), in which we get the
so-called reaction-diffusion-convection equationL"u := ut � " � uxx + f(u)x � "�1g(u) = 0: (2)

Let u" be the unique solution of the Cauchy problem for (1), given
by the initial condition u(x; 0) = u0(x); (3)

then the problem is to determine the existence and the structure
of the limiting functionu0 = lim"!0+ u" a.e. in �T = IR� [0; T ℄; (4)

for any T > 0. Throughout the paper, we assume that the reaction
function g belongs to C1(IR) and satisfies
(H2) g possesses exactly three zeroes u` < um < ur with g0(u`) <0; g0(um) > 0; g0(ur) < 0.
Theorem 1.1 Assume (H1)–(H2). Let u" be the solution of the Cauchy
problem ut = F (u; "ux)x � "�1g(u)u(x; 0) = u0(x) )

(5)

for some initial data u0 satisfying
(H3) u0 2 C2(IR; IR) with ku0kC2 �M0,
(H4) fx 2 IR ; u0(x) = umg is a finite set fx1; x2; : : : ; xNg withm := min1�i�N ju00(xi)j > 0 and lim infx!�1 ju0(x)� umj > 0:
Then u0(x; t) := lim"!0u"(x; t) exists for a.e. (x; t). More precisely,u0(x; t) is a piecewise constant function taking only the values u` andur. There exist �, + 2 IR such that regions where u0 is constant are
separated by straight lines x = xi + t where  = � if u00(xi) < 0, = + if u00(xi) > 0 and 0 � t � Ti. Here Ti is either +1 or finite.
The singular perturbation problem (1) comes into view when

performing a hyperbolic rescaling (x; t) ! (x="; t=") in the equa-
tion ut = F (u; ux)x + g(u):
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The singular limit " ! 0 gives a representation of the large–time
behavior of the solution. Since also the space variable x is rescaled
the limiting function u0 encodes the behavior of the solution of the
original problem observed from far distance also. For this reason,
this kind of approach is not able to catch the inner structure of
the transition from one stable state to the other, and only gives
sharp jumps and sharp cancellation, when two different transi-
tions interact. The most interesting fact is that the structure of u0
is determined, apart from the initial datum u0, only by the speeds
of propagation of the travelling waves that describes the connec-
tions between the stable states u`; ur. This situation is already
present in the simpler case of reaction–diffusion equationut = "uxx + "�1 g(u); (6)

for which a wide literature is available (see [1] and references
therein). The main difference in the case we consider, is that prob-
lem (1) is no longer isotropic, while (6) is. This means that two
kind of transitions from one stable state to the other are present,
depending on which one is attained at the left and which one at
the right. Anisotropy is much more evident thinking of the mul-
tidimensional case: while for (6) radially symmetric initial data
give raise to radially symmetric solutions, for (1) this is not true
anymore. Nevertheless, there is still a very strong analogy be-
tween the reaction–diffusion case and (1), that is the existence and
the stability of travelling waves, which encodes all of the proper-
ties of the transitions.
It has to be stressed that the same kind of phenomenon is present

for the hyperbolic reaction–convection equation:ut + f(u)x = "�1 g(u): (7)

Even if the regularity of the solutions to (7) is very different (no
smoothing effects, shock formation, entropy solution. . . ), a pic-
ture similar to the one we show in the present paper has been
found in [5, 9]. Moreover, the result in [9] is based on the construc-
tion of (entropy) travelling waves describing transitions from sta-
ble states and by using a comparison principle, in the same spirit
as we do here, but in a different framework. Since the class (1)
contains also reaction–diffusion–convection equations of the form
(2), an interesting link between (6) and (7) is established by The-
orem 1.1. Recently, in [4] a multi-dimensional version of (2) was
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studied for the case of a symmetric flux function f and an odd
source term g. In this situation the front motion is dominated by
the mean curvature. In general, however, the velocity of a front in
(1) would depend on the normal direction and therefore lead to
anisotropic front motion.

To prove Theorem 1.1 we have to consider two steps of the
dynamics. First, due to the stiff source term the solution will
approach a step function where almost constant pieces are sep-
arated by steep layers. Then these layers move and may collide.
The movement of the layers is determined mainly by travelling
wave solutions connecting the corresponding asymptotic states.
For this reason, we provide an existence and uniqueness result
for travelling waves of the quasilinear equation (1). The existence
Theorem 2.4 states that, fixing some stable asymptotic states of
the wave, there is a exactly one wave speed and one profile con-
necting them. This is due to the fact that the travellingwave corre-
sponds to a saddle–saddle connection, as in the reaction–diffusion
case. These travelling waves are then used to construct sub- and
supersolutions with one or several moving layers and applying
comparison principle for (1) as stated in [12].
Let us briefly comment on the general existence and unique-

ness for solutions of (1). Classical assumptions that are sufficient
to guarantee unique solutions for quasilinear equations on IRn are,
for instance, given in the classical book [8]. There it is shown that
under a uniform ellipticity condition and assuming some regu-
larity on the coefficients (which is satisfied in our case if F 2 C2)
for any sufficiently regular, bounded initial condition there will
be a unique bounded solution of the Cauchy problem which lies
locally in some Sobolev spaceHs with s > 2.
The paper is organized in the following way: In chapter 2 we

establish the existence of travelling waves, chapter 3 deals with
the formation of steep layers near points where u"0 changes its sign
and in Chapter 4 we construct sub- and supersolution with mov-
ing layers to prove the main result.
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2 Existence of Traveling Waves

Looking for solution of the form u(x; t) = U(x � t="), we get the
ordinary differential equationFp(U; U 0)U 00 + (+ Fu(U; U 0))U 0 + g(U) = 0; (8)

or, in the phase plane,U 0 = VV 0 = h(U; V ) := �(+ Fu(U; V ))V + g(U)Fp(U; V ) : (9)

Note that this system is a rotated vector field (mod V = 0) with
respect to the parameter , in the sense introduced by Duff [2], see
also [10, 11]:

Definition 2.1 A planar vector fieldU 0 = P (U; V; )V 0 = Q(U; V; )
depending on some scalar parameter  is called a rotated vector field
(mod G = 0) if the equilibrium points remain the same for all values of
the parameter  and the determinant��������� P (U; V; ) Q(U; V; )�P (U; V; )� �Q(U; V; )� ��������� < 0
for all U , V for which G(U; V ) 6= 0, where G is some analytic function.
Lemma 2.2 The travelling wave vector field (9) is a rotated vector field
(mod V = 0) with respect to the wave speed .
Proof: This follows by direct computation:��������� V �(+ Fu(U; V ))V + g(U)Fp(U; V )0 � VFp(U; V ) ��������� = � V 2Fp(U; V ) < 0
whenever V 6= 0.
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Given any trajectory of (9) at a fixed parameter value 0, this
implies that for  > 0 the vector field will cross this trajectory
from one side to the other while for  < 0 the crossing will be in
the opposite direction.
Rotated vector fields possess the property that the invariant

manifolds of all saddle equilibria “rotate” in the same direction
as the parameter is varied. More precisely:

Proposition 2.3 ([11], Theorem 5) Let S be a separatrix of a saddle
equilibrium of a rotated vector field. Assume that S intersects a curveL which for all value of the parameter  is transverse to the vector field.
Then the intersection point varies monotically with  along the curve L.
This can be used to prove the existence of a unique parameter

value (in our case, unique wave speed) for which a heteroclinic
connection between two saddle equilibria exists. The singular
points are given byU 2 fu`; um; urg; V = 0; (10)

and the linearized system at (u�; 0) isU 0 = V; V 0 = � g0(u�)Fp(u�; 0)(U � u�)� + Fu(u�; 0)Fp(u�; 0) V: (11)

The eigenvalue equation isFp(u�; 0)�2 + (+ Fu(u�; 0))�+ g0(u�) = 0; (12)

and the eigenvalues��() = �(+ Fu(u�; 0))�q(+ Fu(u�; 0))2 � 4Fp(u�; 0)g0(u�)2Fp(u�; 0) ;
(13)

Hence the two stable zeros u` and ur are always saddles. The
corresponding eigenvectors aree� =  1��!:
Asymptotically, we have�+() = � g0(u�)+ Fu(u�; 0) +O(�2) for ! +1
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��() = �+ Fu(u�; 0)Fp(u�; 0) +O(1) for ! +1�+() = �+ Fu(u�; 0)Fp(u�; 0) +O(1) for ! �1��() = � g0(u�)+ Fu(u�; 0) +O(�2) for ! �1:
We denote with W ù() the unstable manifold of (u`; 0) and withW sr () the stable manifold of (ur; 0).
Theorem 2.4 There exists a unique wave speed + such that for  =+ there is a heteroclinic orbit of (9) connecting (u`; 0) to (ur; 0). The
corresponding travelling wave profile U+ is monotone increasing.
Similarly, there is a unique wave speed � for which a travelling wave

with monotone decreasing profile U� connecting (ur; 0) to (u`; 0) exists.
Proof: Both statements can be proved in the same way, so we
only show that there is a travelling wave from (u`; 0) to (ur; 0). In
this case we have to show that W ù(+) \ W sr (+) 6= ; for some
wave speed +. To this end we choose some constant k > 0 and
evaluate the vector field along the line V = k(U � u`). The slope
of the vector field isV 0U 0 = F�1p (U; V ) �� Fu(U; V )� g(U)k(U � u`)! :
Since both Fp and Fu are bounded in the compact trianglef(U; V ); u` � U � ur; 0 � V � k(U � u`)g
it is possible to achieve that V 0U 0 > k
along the line V = k(U�u`) for  = where� is sufficiently large.
In other words, trajectories cross that line from below. Since the
tangent vector e+ of the unstable manifold W ù() has the slope��(u`) we see that for  sufficiently large W ù lies above the lineV = k(U � u`). A similar calculation shows that the stable mani-
foldW sr of (ur; 0) lies below the line V = �k(U�ur). The situation
is depicted in figure 1a. For wave speeds larger than some num-
ber  the same argumentation shows that W ù lies below the line
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Figure 1: (a) The phase portrait for � large (b) the phase portrait for large V = k(U � u`) if  is sufficiently large whileW sr lies above the lineV = �k(U � ur), see figure 1b. Increasing , if necessary, we may
assume that that V 0 < 0 along the line V = k(ur � u`) for  = .
Similarly, we may assume that V 0 > 0 along the line V = k(ur�u`
for  = .
Typically, one would like to measure somehow the distance be-

tween W ù and W sr for values  2 [; ℄ to show that there is some
intersection of the two manifolds. However, there is no obvious
choice of some line which is transverse to the vector field for all and which would allow to define the distance as the distance of
the intersections ofW ù andW sr with this line. For instance, with-
out additional assumptions on F the unstable manifold W ù may
not intersect the line U = um for � sufficiently large.
The most difficult part will therefore consist of the proof that

for some  both W ù() and W sr () do intersect some vertical lineU =const.
To this end, we choose Æ such thatW sr () intersects the vertical

line LÆ := f(U; V ); U = ur � Æ; V > 0g. Since we have a rotated
vector field and any vertical line is transverse to the vector field
for V 6= 0 and all , by proposition 2.3 the intersection of W sr ()
with LÆ varies monotonically with . We define �r() to be the V
coordinate of this intersection. Then�r() is monotone increasing
and positive for  2 [; ℄.
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To show that W ù() intersects LÆ for some value  2 [; ℄ we
proceed in three steps.
For (U; V ) 2 Q := [u`; ur℄� [Vmin; Vmin + 1℄ the slope of trajecto-

ries�����V 0U 0 ����� = supQ jFu(U; V )j+maxfjj; jjginfQ jFp(U; V )j + supQ jg(U)jinfQ jFp(U; V )jVmin
is bounded. This implies that we can find � > 0 small such that
every trajectory that passes through the point (um � �; Vmin) for
some  2 [; ℄ will intersect the line L+ := fU = um + �g.
Observe first thatW ù() intersects the line L� := fU = um��g.

Both lines L� and L+ are transverse to the vector field for all  2[; ℄. By proposition 2.3 the point of intersection between W ù()
and L� moves upwards as  decreases until it reaches the point(um � �; Vmin) at 1 2 (; ). By our choice of � this implies thatW ù(1) also intersects L+. If we now increase  again the point of
intersection betweenW ù(1) and L+moves down until at  = 2 2(1; ) we have W ù(2) \ L+ = W sr () \ L+;
see figure 2.
Then we decrease  again. SinceW sr () is transverse to the vec-

tor field (9) for all  6=  the point of intersection between W ù()
andW sr ()moves to the right until for  = 3 2 (; 2).
In particular, we have found a wave speed 3 such that bothW ù(3) intersects the line LÆ.
In a last step we decrease  such that the point of intersection

betweenW ù() and LÆ moves up and reaches the pointW sr ()\LÆ
at  = 4.
For  2 [3; 4℄ we let �`() be the V -coordinate of the inter-

section between W ù and LÆ. Then �` is a continuous, monotone
decreasing function with�`(3) = �r();�`(4) = �r():
Since  < 4 < 3 <  it follows now from the intermediate value
theorem that there exists some + for which �`(+) = �r(+) and
henceW ù(+) \W sr (+) 6= ;.
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Uniqueness of the wave speed + follows from the fact that (9)
is a rotated vector field. Both the unstable manifold of (u`; 0) and
the stable manifold of (ur; 0) rotate clockwise as  is decreased.
This implies that the connection splits under a small change of
the wave speed becauseW ù() andW sr ()move in opposite direc-
tions. The corresponding profile U+ is monotone increasing as it
lies completely in the half plane fV > 0g.
Lemma 2.5 Theorem 2.4 continues to hold if g(u) is replaced by g(u)+� with j�j sufficiently small, i.e. there is a unique wave speed �+ and a
unique monotone increasing profile U�+ connecting two saddle equilibriau�̀ and u�r close to u` and ur. Similarly, there is a unique monotone
decreasing profile U�� from ur to u`. The corresponding wave speeds
satisfy j�� � �j = O(�) (14)

Proof: For j�j sufficiently small, g(u) + � still possesses three ze-
roes u�̀ < u�m < u�r with g0(u�̀) < 0, g0(u�m) > 0 and g0(u�r ) < 0.
Thus, from the proof of theorem 2.4 we know that there is a

unique wave speed �+ and a unique profile U�+.
To prove (14) we employ a standard Melnikov calculation, see

[6]. To this end we note that if we measure the distance �(; �)
between W ù(; �) and W sr (; �) along a vertical section then the
derivative of � with respect to the parameters  and � is given by
the Melnikov integrals��� (0+; 0) = Z +1�1  (s)T  0V+(s)=Fp(U+(s); U 0+(s)) ! ds����(+; 0) = Z +1�1  (s)T  01=Fp(U+(s); U 0+(s)) ! ds
Note that  is the (suitably scaled) unique bounded solution of the
adjoint variational equation and U+(s) is the unperturbed hetero-
clinic for � = 0. Since (U 0+; V 0+)T solves the linearized equation,  
is always perpendicular to (U 0+; V 0+)T . For the monotone increas-
ing profile U+ we know that U 0+ is positive which implies that the
second component of  is also positive. This in turn implies that
both of the Melnikov integrals are negative and by the implicit
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function theorem d�+d� (0) = � ��� (+; 0)����(+; 0) < 0
is finite.
Similarly, for the monotone decreasing profile U�� with wave

speed �� we have V� < 0. The second component of  is negative,
too, so d��d� (0) = � ��� (�; 0)����(�; 0) > 0:
This concludes the proof.

The travelling wave solutions are stable with respect to small
perturbations. More precisely, if we consider some initial condi-
tion which is sufficiently close to the travelling wave profile U ,
then the solution of (5) will tend to a translate of the travelling
wave.
We indicate the proof of this statement which is basically a con-

sequence of the work of Sattinger [13]. By the change of coordi-
nates � := x�twe go to a comoving frame inwhich the travelling
wave is a stationary solution. The linearization of (1) around this
stationary solution isvt = "Fp v�� + �Fu + FpuU 0 + FppU 00 + �v�+"�1�FuuU 0 + FpuU 00 + g0(U)�v=: A(�; ")v:
Here Fu = Fu(U; U 0), Fp = Fp(U; U 0), etc. are evaluated at the pro-
file U and A(�; ") is considered as an unbounded linear operator
acting on L2(IR; IR).
To study the spectral properties of the linearized operator we

perform another change of coordinates which makes the coeffi-
cient of the principal part of A(�; ") constant. Using � = �(�)withd�d� = 1qFp(U(�); U 0(�))
we get for w(t; �) = v(t; �) the identityw� d2�d�2 + w��Fp(U(�); U 0(�)) = v��:
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In particular, w thus solves the equationwt = w�� + �Fu + FpuU 0 + FppU 00 + �w�+"�1�FuuU 0 + FpuU 00 + g0(U)�w=: ~A(�; ")w:
The operator ~A(�; ") fits in the framework discussed in [13] and
[7]. In particular, to determine the essential spectrum it suffices to
study the limiting (constant–coefficient) operators. Note that~Arv := lim�!1 ~A(�; ")w = w�� + �Fu(Ur; 0) + �w� + "�1g0(Ur)w

and~A`w := lim�!�1A(�; ")w = w�� + �Fu(U`; 0) + �w� + "�1g0(U`)w:
The essential spectrum of ~A(�; ") is then contained in a domain
bounded by two parabolas which intersect the real axis in 1"g0(u`)
and 1"g0(ur) and which are are open to the left. In particular, the
essential spectrum of ~A(�; ") is strictly contained in the left half
plane.
The remaining part of the spectrum is composed by isolated

eigenvalues of finite multiplicity. It can be shown that 0 is the
unique eigenvalue in the unstable half plane f� 2 IC : Re � �0g; moreover, 0 is simple. Indeed, let us consider the eigenvalue
problem ~Aw + �w = w�� + a(�)w� + b(�)w + �w = 0;
where a(�) = Fu(U; U 0) + Fpu(U; U 0)U 0 + Fpp(U; U 0)U 00 + b(�) = "�1�Fuu(U; U 0)U 0 + Fpu(U; U 0)U 00 + g0(U)�
Then, the new variable z = w�(�) where �(�) := exp �12 R a(s) ds�
satisfies the selfadjoint equation (note that w decays sufficiently
fast to guarantee that z is in L2(IR; IR))z�� + ��� + a�� + b� z + �z = 0:
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Hence all the eigenvalues are real. Moreover, multiplying by z
and integratingZIRhz2� + ��� + a�� + b� z2i d� + � ZIR z2 d� = 0:
Since U 0 is solution of the original eigenvalue problemwith � = 0,
there exists a function  , never vanishing, such that �� + ��� + a�� + b�  = 0;
hence, after an integration by parts,�� ZIR z2 d� = ZIRhz2� �  �� z2 i d� = ZIR  2 " dd�  z !#2 d� � 0
Immediately from this relation one can conclude that � � 0 and� = 0 implies z = C for some C, thus 0 is simple.
Since the linearized operator has 0 as a simple isolated eigen-

value while the rest of the spectrum is bounded away from the
closed right half plane, this suffices to show orbital asymptotic
stability of the travelling wave.

3 Relaxation Limit

3.1 Layer Formation

Let us denote with U = U(t ; �) the unique solution ofUt = g(U); U(0 ; �) = �: (15)

Then it is immediate to see that U("�1t ; �) solves "Ut = g(U).
Lemma 3.1 Assume that u0 2 C2(IR) satisfies (H3) and (H4).
Then for any k 2 IN there exist �0, "0(k) such that for 0 < " < "0
(i) u"(x; t) 2 [u` � "k; ur + "k℄
for all x 2 IR and t � k�0" ln j"j.
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(ii) infx2
"+ u"(x; t") � ur � C"j ln "j (16)

and supx2
"� u"(x; t") � u` + C"j ln "j: (17)

where 
"+ := x 2 IR : jx� xij � "j ln "j; u0(x) > um
"� := x 2 IR : jx� xij � "j ln "j; u0(x) < umt" := C�1 " ln j ln "j:
Proof. (i) Without restriction we may assume that M0 > ur. By
(H2), it is possible to find a constant � > 0 such thatg(u) > ��(u� ur)
holds for ur � u � M0. So, ifU(t) = ur + e��t(M0 � ur)
denotes the solution of the initial value problemU 0 = ��(U � ur); U(0) = M0:
then w(x; t) = U("�1t) is a supersolution. In particular, this im-
plies that u"(x; k�0"j ln "j) � U(k�0j ln "j)= ur + e��k�0j ln "j(M0 � ur)= ur + "��k�0(M0 � ur):
Choosing �0 large and "0 small enough will make this expression
smaller than "k for all 0 < " � "0.
The construction of a spatially homogenous subsolution which

proves that u"(x; k�0"j ln "j) � u` � "k
is completely analogous.
(ii) Let U� = U�(t ; �) be the solution of (15) with g replaced byg� = g + � for some � 2 IR and setw�(x; t) = U�("�1t ; u0(x)� "Mt): (18)
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Since "wt = g(U�) + �� "MU�� ;wx = u00 U�� ;wxx = (u00)2 U��� + u000 U�� ; (19)

there holdsL"w� = �" � "Fp (u00)2 U����["Fp u000 + Fuu00 +M ℄U�� (20)

where Fp and Fu are calculated at (w�; "u00U�� ).
In order to prove that L"w� is positive (negative) for � positive

(negative) and " small enough, it is necessary to estimate U�� andU��� . The functions U�� and U��� satisfy, respectively,( vt = g0(U�)vv(0) = 1 and

( zt = g0(U�)z + g00(U�)v2z(0) = 0 (21)

so that U�� � t" ; �� = exp�1" Z t0 g0(U�(s")) ds� (22)

andU��� � t" ; �� = 1" Z t0 exp�1" Z t�s0 g0(U�(r")) dr� g00(U�(s")) [U�� �s"�℄2 ds:
(23)

Hence 0 � U�� (t="; �) � eCt="jU���(t="; �)j � CeCt=" (24)

for some constant C > 0 depending on sup jg0j; sup jg00j, but inde-
pendent of " and �.
(Note also that, for g(�) + � 6= 0, by the change of variableu = U�(s; �), we get U�� = g(U�) g�1(�) and U��� = hg0(U�)� g0(�)i�g(U�)g�2(�); if g(�) + � = 0, then U�� = exp(g0(�)t) and U��� =g00(�) t exp(g0(�)t)).
Let us choose � = �� := �C"j ln "j.
With this choice, from (24) we get for 0 � t � t" = C�1 " ln j ln "jL"w�� � ��" + CeCt=" + (C �M)U��� �Cj ln "j+ Cj ln "j+ (C �M)U�� :
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Hence, for M sufficiently large L"w�� � 0 and w�� is a subsolu-
tion. Similarly, for " small w�+ is a supersolution of the problem
for all t 2 [0; t"℄.
Since there holds w��(x; t") � u"(x; t") � w�+(x; t") we haveU��(t"=" ; u0(x)�M"2 ln j ln "j) � u"(x; t")� U�+(ln j ln "j ; u0(x)�M"2 ln j ln "j):

where �� = �C"j ln "j.
We now indicate that if u0(x) > "j ln "j thenjU��(ln j ln "j ; u0(x)�M"2 ln j ln "j)� u�r j � " (25)

for " sufficiently small. This in turn implies thatjU��(ln j ln "j ; u0(x)�M"2 ln j ln "j)� urj� jU��(ln j ln "j ; u0(x)�M"2 ln j ln "j)� u�r j+ ju�r � urj� "+ C"j ln "j � ~C"j ln "j:
Inequality (25) is a consequence of some linear estimates: By, (H2),
there is a constant � > 0 such thatg(u) � �(u� um) for um � u � 12(um + ur)g(u) � �(u� um) for

12(um + ur) � u � ur:
We know from (H4) that there is some constant  > 0 such thatu0(x) > um + "j ln "j if jx � xij > "j ln "j and u0(x) > um. For "
sufficiently small we then have u0(x) � "Mt" > um + 2"j ln "j. A
straightforward comparison argument now proves our claim.
Dealing similarly with the other cases in the same way, we get

the conclusion.

Since for any k 2 IN there is some "0 = "0(k) such that t" >k�0"j ln "j holds for 0 < " < "0 we can combine part (i) and (ii) of
the previous lemma:

Corollary 3.2 At time t = t" we have ur�C"j ln "j � u"(x; t") � ur+"k if u0(x) < um and jx � xij > "j ln "j for all i. Analogously, we haveu`�"k � u"(x; t") � u`+C"j ln "j if u0(x) > um and jx�xij > "j ln "j.
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Remark 3.3 Chen [1] uses a slightly more complicated modifica-
tion of g to show that in the case F = p after a time of orderO("j ln "j) the solution outside some O(p"j ln "j)-neighborhood of
the zeroes of u0 is even "k-close to u` or ur. With minor modifica-
tions his proof applies to equation (2) as well. In our approach the
layer is localized more accurately in space although our estimates
on the closeness of the solution to the equilibrium state u` and ur
are less precise than Chen’s.

3.2 The Singular Limit "! 0
In order to construct sub- and supersolution it is useful to shift
the reaction function by a constant amount. To this aim, let us
introduce g�(s) := g(s) + �: (26)

For � is sufficiently small, g� has the same structure of zeros of g,
hence we setg�(s) = 0 () s 2 fu�� < u�0 < u�+g: (27)

Next, let (U�+(�); �+) denote a pair profile/speed satisfyingFp(U; U 0)U 00+(+Fu(U; U 0))U 0+g(U) = 0; U(�1) = u��; (28)
where (by definition) u�� < u�+ are the stable zeros of g�(�). Simi-
larly (U��(�); ��) denotes a solution of the same equation with re-
versed asymptotic states U�(�1) = u�+ and U�(+1) = u��. To fix
the profiles of the waves, we choose U�� so thatU��(0) = 0: (29)

It follows from the assumption (H2) on g that there exist constantsC; � > 0 (independent of � small) such thatjU��(�)� u��j � Ce��� 8 � > 0;jU��(�)� u��j � Ce+�� 8 � < 0; (30)

and j(U��)0(�)j � Ce��j�j 8 �; (31)
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Construction of super– and subsolutions with two layers

Let � = �(x; t; ") be a C2�function with values in [0; 1℄ and setW (x; t) = (1��)U��  x� ��t� a�" !+� U�+  x� �+t� a+" ! : (32)
for some a� < a+. Then (omitting for shortness the index �)L"W = (�t � "Fp�xx � Fu�x)(U+ � U�)� 2Fp�x(U 0+ � U 0�)+ �"h(Fp(U+; U 0+)� Fp)U 00+ + (Fu(U+; U 0+)� Fu)U 0++ (g(U+)� g(W ))i+ 1� �" h(Fp(U�; U 0�)� Fp)U 00�+ (Fu(U�; U 0�)� Fu)U 0� + (g(U�)� g(W ))i+ �" (33)

where Fp = Fp(W; "Wx), etc. Note thatU+ �W = (1� �)(U+ � U�)U� �W = ��(U+ � U�)U 0+ � "Wx = (1� �)(U 0+ � U 0�)� "�x(U+ � U�)U 0� � "Wx = ��(U 0+ � U 0�)� "�x(U+ � U�): (34)

Hence L"W = �" 8 (x; t) 2 Intf� = 0g [ Intf� = 1g: (35)

Thus, in the regions where � is constant it suffices to have � < 0
for a subsolution (� > 0 for a supersolution).
We will now be more specific in our choices: let �(t; x; ") :=�(x��(t)"j ln "j ) where � 2 C2(IR; [0; 1℄) satisfies
(i) �(�) � 0 for � � �1,
(ii) �(�) � 1 for � � 1 and
(iii) k�kC2 � 2
and j�0jC1 is bounded. Then, from smoothness of f and g, bound-
edness of U�; U 0�, and the properties of � we can deduce thatL"W � C" h� k�0kj ln "j(1 + k�0k) + k�00kj ln "j2�jU+ � U�j+jU+ � U�j+ jU 0+j+ jU 0�ji+ �"� C" �jU+ � U�j+ jU 0+j+ jU 0�j�+ �" (36)
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for some C > 0, depending on �; f; g but not on " and �.
Lemma 3.4 Let a+ > a� and set � = C"j ln "j,T" := 8>>><>>>: +1 if �� � �+;a+ � a��� � �+ �K"j ln "j if �� > �+: (37)

where K = 2 � 2� + 1� (�� � �+)�1 and � as in (30)–(31). Moreover, as
above let �(t; x; ") = �(x��(t)"j ln "j ) with�(t) = a+ + a�2 + + + �2 t (38)

Then for " sufficiently smallW "(x; t) = (1� �)U��  x� ��t� a�" !+ � U�+  x� �+t� a+" !
is a supersolution for 0 � t � T".
For a� � a+, let � = �C"j ln "j and define T" as above with � in

place of � and < in place of >. Then, with the same choice of �, for "
sufficiently smallW "(x; t) = � U��  x� ��t� a�" !+ (1� �)U�+  x� �+t� a+" !
is a subsolution for 0 � t � T".
Remark 3.5 With above Lemma, we end up with sub- and super-
solutions representing (approximately) a pattern of the twowavesU�+ and U��. If the time of existence T" is finite, the pattern is inter-
acting (giving raise to cancellation of waves), if T" is infinite, the
pattern is noninteracting, since the waves are diverging.

Proof. We only deal with the supersolution case.
We need to estimate U+ � U� and U 0� in appropriate regions of

the half space ft > 0g. SetD" := f(x; t) : a�+��t+ 2� "j ln "j < x < a++�+t� 2� "j ln "jg: (39)
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Then, from (30)–(31), it follows thatjU+�U�j+ jU 0+j+ jU 0�j � C expn��" 2� "j ln "jo = C"2 in D" (40)
for some C > 0 independent of �, ", �.
Therefore, collecting (35), (36) and (40), we getL"W " � C" C"2 + �" (x; t) 2 D": (41)

Obviously, for � = C"j ln "j and " small enough, L" is positive inD". Outside of D", inequality L"W " � 0 holds due to (35). Hence,
the functionW " is a subsolution in (0; T")� IR.
In the limit " ! 0+, W " tends to a piecewise constant function

with constants states separated by straight lines emanating from
the points a� and with slopes �. More precisely, if a� < a+, thenlim"!0W "(x; t) = ( u` if a� + �t < x < a+ + +t;ur otherwise:
Similarly for the case a+ < a�.
Proof of Theorem 1.1

Since there are only two different wave speeds, there will be no
interaction of more than two fronts at the same point. Without
loss of generality, we can assume that � � +.
Thanks to Lemma 3.1, we know that at time t" = C�1 " ln j ln "j

sharp layers have been formed at the points x1; x2; : : : ; xN . Setx0 = �1 and xN+1 = +1. TheseN +2 values divide the real line
in N + 1 open intervals; for each of these intervals we will now
construct a sub- and a supersolutionWi.
(i) If u(x; t") < um at xi�1+xi2 , we choose a supersolution W "i

as in Lemma 3.4 with a� = xi�1 and a+ = xi. Note that in casexi�1 = �1 or xi = +1, the functionW "i possesses only one layer.
The subsolutionW "i is defined to be equal to u` � "k.
(ii) If u(x; t") > um at xi�1+xi2 , then we choose a subsolution W "i

with a+ = xi�1 and a� = xi. The supersolution W "i is defined to
be equal to ur + "k.
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Note that the supersolution are always defined for any timet > t", while some subsolutions (with xi�1 and xi both finite) are
defined locally in time.
By Lemma 3.1 and Corollary 3.2, the supersolutions W "i satis-

fies u(x; t") � W "i (x; t") for any x and the subsolutions W "i satis-
fies u(x; t") � W "i (x; t"). Applying comparison principle (see [12],
Chap.3, Sec.7), we deduceW "(x; t) � u"(x; t) � W "(x; t) 8 (x; t) t > t";
where W "(x; t) := maxfW "i (x; t) : W "i is defined at time tgW "(x; t) := minfW "i (x; t)g:
Fix (x; t) not belonging to any of the straight lines xi + �t, then it
is contained in (at least) one region either of the formf(x; t) : xi�1 + �t < x < xi + +tg;
or f(x; t) : xi�1 + +t < x < xi + �tg:
In the first case, the supersolution W "i converges to u` on the setfxi�1 + �t < x < xi + +tg. Since the subsolution W "i = u` � "k
tends to u`, we have pointwise convergence. In the second case,
the subsolution W "i is defined up to a finite time, always greater
than t, and it converges to ur. This, together with the supersolu-
tionW "i = ur + "k, gives the result.
Figure 3.2 shows the structure of the limiting solution.
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