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Abstract

We study a scalar hyperbolic conservation law with a bistable source term
whose zeroes are degenerate. It turns out that the structure of the set of
traveling waves as well as the long-time behavior is different from the case
where the zeroes are non-degenerate. In particular, for z € S, there exist
initial data for which the solution converges pointwise to the unstable zero of
the source term.

We also generalize recent results of Fan, Jin and Teng concerning the zero
reaction time limit to the case of source terms with degenerate zeroes. This
shows that in general the long time limit and the zero reaction time limit
cannot be interchanged.

1 Introduction

If a nonlinear source term is added to a hyperbolic conservation law both the short
and long time behaviour may change drastically. In this paper, we demonstrate how
the nature of the source term affects the behaviour. Motivated by nonlinearities
that occur in equations describing liquid-vapor phase transitions and in reactive
flow models, we study the equation

ut+f(u);r:@ u € IR, a,>1, (1)

with
g(u) = ulul*7'(1 —uw?)[1 —u?|",

where the flux is convex and the space variable z is either considered on the whole
real line or on the circle S'. Many of our results do not depend on the parameter
¢ so we will set ¢ = 1 in chapters 2 through 4. Only in chapter 5 when the zero
reaction time limit is considered, ¢ will play a role.

The source term in above equation is of “bistable” type, i.e. there are two states
v = +1 and u = —1 which are stable equilibria of the pure reaction dynamics
u; = g(u). In between there is an unstable state u = 0 which is weakly unstable if
a > 1, i.e. the instability is not visible on the linear level.

Before we give precise statements and proofs, let us comment on some related work.
The case a = § = 1 where all zeroes of the source term are non-degenerate, has
been studied intensively by several authors. Most of the work also assumes a convex



flux so that generalized Characteristics can be used as a tool. Mascia and Sinestrari
[11] studied the perturbed Riemann problem for convex flux when the initial data
coincides with that of the Riemann problem outside a compact set. If both asymp-
totic states are zeroes of g, then the solution for large time can be described by a
sequence of shocks and possibly discontinuous traveling waves.

A related situation has been studied by Mascia [8]. He considers a source term with
only two zeroes ¢(0) = g(1) = 0 and g(u) > 0 between 0 and 1 but with a possibly
non-convex flux. The existence of traveling waves between 0 and 1 and the solution
of a corresponding Riemann problem with states u_ = 0 and uy =1 is studied. In
contrast to the situation treated below, the source term has a definite sign and all
the technical difficulties come from the non-convexity of the flux f.

Another line of research deals with z € S' when the flux is convex and g has
simple zeroes. Lyberopoulos [7], Fan and Hale [2] and Sinestrari [12] could prove
independently that all solutions converge either to a spatially homogenous state or
to a rotating wave. As Sinestrari showed, the source term typically dominates the
large-time behaviour and almost all solutions converge pointwise to one of the stable
equilibria of the pure reaction dynamics. Fan and Hale [3] proved that there exists a
global attractor for the semiflow which is generated in BV N LP for 1 < p < oo and
that this attractor consists of the steady states, infinitely many rotating waves and
heteroclinic orbits between these objects. A geometric description of the heteroclinic
orbits has been given by Hérterich [5].

In the case where the source term has simple zeroes the rotating waves represent the
solutions for which the effect of the reaction term and the convection balance each
other. As we will see, the situation in the case of a more degenerate source term is
different: Firstly, there are no rotating waves in the degenerate case. Furthermore,
instead of converging to rotating waves, there are solutions which decay pointwise to
zero although 0 is unstable for the reaction dynamics. However it seems a difficult
issue to predict the ultimate fate of a given initial condition.

The relaxation limit has been studied in a similar situation by Fan, Jin and Teng
[4]. They considered a bistable source term with three simple zeroes +1 and 0. The
initial condition u, was supposed to have a change of sign at x = 0. There are
two different possibilities: If ug(x) - 2 < 0 for x # 0 then the solution converges to
+1 for z < vt and to —1 for = > ¢ where v comes from the Rankine-Hugoniot
shock condition. If however wug(z) - & > 0 for  # 0 then the limiting solution has
a “non-shock” discontinuity as it converges to —1 for x < vt and to +1 for x > ¢
with v = f'(0).

From these results, we see that the behavior large time limit and relaxation limit of
the solution can be quite different.

1.1 The main results

The existence and uniqueness theory for scalar conservation laws with source terms
differs only slightly from the theory without source term. In particular, there are



no smooth solutions even for smooth initial data. However the Cauchy problem

u+ f(uw)e = g(u),  w(0,-) = uo(:) (2)

has a (local) solution for ug € BV (IR) N L},.(IR) if one considers as a solution all

loc
weak solutions which satisfy the Kruzhkov entropy condition, see [6]. This solution

is also unique and a comparison principle holds:

Proposition 1.1 (Kruzhkov) Consider solutions u and v of the Cauchy problem
(2) with initial data ug and ve. If ug and vy are ordered, i.e.

up(x) < wo(x) for almost allx € IR
then the same inequality holds for later times:
u(t,z) < wv(t,x) for almost all v € IR.

Although existence, uniqueness and the comparison principle hold in broader gen-
erality, we will take

o) = = (uful™ (1= w1 =27

with o, § > 1. Our proofs for for the part u(z,t) < 0 is almost the same as that
for the u(z,t) > 0 part. In fact, a change of variable u — —u in (1) can convert the
proofs for one part to the other. For this reason, and for simplicity of presentation,
we use the simplified notation

g(u) = u®(1 — u?)”.

We consider the Cauchy problem

wet Sy =2 (0, = () ®)
and assume the following on f:

(F1) fis C?,

(F2) f is strictly convex, i.e. f" >0,

(F3) f(0) = f'(0) =0.

Note that (F3) is no real restriction since we can first add a constant to achieve
f(0) = 0. If f'(0) # 0 then we consider the equation in a moving coordinate system,
i.e. we replace x by £ =z — f'(0)t such that @ defined by @(Z,t) := u(z,t) satisfies

i+ (f'(@) — f'(0))i; = 82,



Remark 1.2 The special choice of the source term was made to facilitate some
calculations and make the presentation easier. Similar results hold for more general
source terms g(u). Instead of assuming o > 2 in theorems 1.2 and 1.3 below one
then requires that [°_ f'(U(7)) dr does not exist where U(T) solves the terminal
value problem

% = g(U), U(0)=1.

This is equivalent to the condition

f'lg ¢ L'((-1,1), IR)

which also appears as a condition in [10] in the case of a non-conver flux f where
generalized characteristics cannot be used.

For convenience, we will always assume that the solution is continuous from the left
at any point, i.e.
u(z,t) = u(z—,1).

By the comparison principle, any solution to bounded initial data will exist globally
in time and hence we restrict our attention initial data in L}, .(IR) N BV,.(IR).

It seems that the behavior for 1 < a < 2 is very similar to the case & = 1 which
has been studied previously [2, 3, 9, 5] In fact, many of the proofs carry over to the
case 1 < a < 2 without modification. Therefore, we focus mainly on « > 2 where
the behavior is quite different.

The following result on the existence of entropy traveling waves is proved below:

Theorem 1.1 (Traveling waves) Fiz ¢ = 1 and o > 2. Then the following
holds:

(i) A continuous entropy traveling wave from —1 to 0 exists iff ¢ > f'(0). A
continuous entropy traveling wave from 0 to —1 exists iff ¢ < f'(—1).

Similarly, continuous entropy traveling wave from 0 to +1 exist for ¢ < f'(0)
and from +1 to 0 for ¢ > f'(1).

(i) There is a unique wave speed cry = w determined by the Rankine-

Hugoniot condition for which a travelingshock wave from +1 to —1 exists.

(11i) If cry < ¢ < f(0) then there is a discontinuous traveling wave from 0 to —1.
Similarly, discontinuous traveling waves from +1 to 0 exist for wave speeds ¢
with f(—1) < ¢ < crp-

(iv) There exist no other bounded traveling waves.

Our next theorem concerns the long-time behavior of solutions to the Cauchy prob-
lem with periodic initial data for o > 2. Since the periodicity ispreserved it is
equivalent to consider z € S' ~ IR/ Z. In thecase a = 3 = 1 of a source term with
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simple zeroes it is known that any solutioneither converges in L>(S') to +1 or —1
or that it converges in L'(S") to a discontinuous rotating wave solution. In the case
« > 2 these rotating waves do not exist due to theorem 1.1(iv). Instead we have:

Theorem 1.2 (Convergence) Fize =1 and let a > 2. Then for any initial data
ug € BV (S') there exists a number w = w(ug) € {—1,0,+1} such that the solution
u(x,t) of the Cauchy problem (3) satisfies

llu(z,t) — w(ug)||pe = 0 as t— oc.

It is not suprising that a solution of (2) can possiblely converges to one of the stable
equilibria u = £1. A trivial solution of (2) that converges to 0 is u = 0. There
are many non-trivial solutions of (2) which converge to 0. For example, if f(u) is
symetric about u = 0 and the initial data ug(x) is anti-symmetric about z = 0,
then the solution of (2) will converge to u = 0 as ¢ — oo. The following theorem
indicates that most solutions converge to one of the stable zeroes +1:

Theorem 1.3 (Instability) Fize =1 and consider again the Cauchy problem (3)
with x € S' and o > 2. Let ug € BV(S') be an initial condition such that the
corresponding solution u(x,t) converges to zero as t — oo. Then for any 6 > 0,
there exists some vy € BV (SY), with |ug — vo|| < & such that the solution of (3)
with initial data vy will converge to +1. Similarly, there exists an initial condition
Uy close to ug such that the solution converges to —1.

It is interesting to compare the long-time behavior ¢ — oc with the relaxation limit
e — 0. To this end, we consider initial data on IR with simple, isolated zeroes:

uo(r) € BC'(IR) has zeros a; where j € J C Z (4)

with

ug(a;) #0 and p:= jl,jQGi.I}fjl;éjQ laj, —aj,| > 0.

Under this assumption it can be proved that (in contrast to theorem 1.2) only the
stable states +1 and —1 occur in the limiting solution.

Theorem 1.4 (Relaxation) Let the initial value ug(x) satisfy (4), and u. be the
admissible solution of (3). Then the limit

u(z,t) := ll_I;% ue(x,t)

exists for almost all (z,t) € IR x IR*Y. The function u(x,t) is piecewise constant
with the constants being £1. Constant pieces of u(x,t) are separated by Lipschitz
continuous curves x = z;(t) defined on [0,T;), j € J. Moreover, the following hold
for these curves x = z;(t), j € J:

(i) 2(0) = a;.



(i) If lim, ., sign(ug(z)) = 1, then z;(t) = a; + Wt.

(i) If lim,_q,— sign(ug(x)) = —1, then z;(t) = a; + f'(0)t.

(iv) Curves x = z;(t) do not intersect each other except at t = Tj, the end points of
their domain of definition.

(v) Att =T; < oo, the curve x = zj(t) must intersect with another curve x = z; (t).
The rest of the paper is organized as follows. In chapter 2 we study elementary
solutions such as entropy traveling waves and solutions of the Riemann problem

and prove theorem 1.1. Chapter 3,4 and 5 contain the the proofs of theorems 1.2,
1.3 and 1.4, respectively.

Acknowledgements: The first author is partially supported by NSF Grant DMS-
9705732. The second author was supported by Deutsche Forschungsgemeinschaft
under grant HA 3008/1-1 during his stay at the University of Maryland, College
Park.

2 Elementary Solutions

2.1 Generalized characteristics

Since generalized characteristics are our main tool in this paper, we recall some of
their properties in short.

Definition 2.1 Given a solution u of the Cauchy problem (3), a Lipschitz-continuous
curve ¢ = ((t) with t € [a,b] is called a generalized characteristic if for almost
all t € [a,b] the differential inequality

«

> € [ (u(C )+ 1), u(C ()= 1)

holds.
A characteristic is called genuine if u(¢—) = u({+) along the whole characteristic.

Dafermos [1] has shown that generalized characteristics are either genuine charac-
teristics or shock curves, more precisely:

Proposition 2.2 (Dafermos) From any point (Z,t) with t > 0 there is a unique
forward characteristic. This forward characteristic satisfies

" f'(u(C(t), 1) if u(C(t)—1) = u(C(t)+,1)
dt | fulCt)-1) — flulC(t)+.1))
t)—,t

if u(C(t)=,1) > u(C(t)+,1)



For genuine characteristics, this implies that ((¢) and U(t) := u({(t),t) satisfy the
characteristic equation

U = lue(—12)p
© (5)
¢'(t) = f(U®)

Definition 2.3 Given a solution u of the Cauchy problem (3), a backward char-
acteristic is a solution of the characteristic equation (5) with terminal condition

C(T) = Cenda
U(T) = Uea € [u(¢(T)+,T), u(C(T)=,T)].

All backward characteristics are confined between the maximal and minimal back-
ward characteristics. These extremal backward characteristics are the backward

characteristic curves with U(T) = w({(T)—,T) and U(T) = u({(T)+,T).
The following properties make generalized characteristics an important tool:
Proposition 2.4 (Dafermos)

(i) Genuine characteristics can intersect only at their endpoints.

(1) The mazimal and minimal backward characteristic are defined on [0,T] and
are genuine characteristics.

Note that this implies the following: If we can construct a solution of the Cauchy
problem by filling a region S! x [0, T] in (z, t)-space completely with non-intersecting
characteristics such that all maximal backward characteristics extend to ¢ = 0, then
this must actually be the solution of the Cauchy problem up to time 7.

2.2 The Riemann problem

We fix ¢ = 1 and collect some basic properties of solutions to the Riemann problem.
Given two states u_, uy € [—1,1], we study solutions of (3) with initial condition

o ) = u_ for z <0
O uy for >0

As in the conservation law case we distinguish the two cases u_ > u; and u_ < uy.
In the first situation, there will be a shock curve emanating from x = 0. This shock
is not a straight line but a curve x = &(t) since the left and right states u_(¢) and
u (t) evolve according to the reaction dynamics

—= =uf(l—ui)’. (6)



From the Rankine-Hugoniot condition we conclude that the shock location &; is the
solution of the initial value problem

flug (1) = flu_(t)
s (t) = u(t)

with initial condition &(0) = 0. Since all solutions of (6) converge to —1, 0 or +1,
the shock speed converges to f'(—1), (f(1) — f(=1))/2 or f'(1) depending on the
signs of u_ and u,.

In the case u_ < uy the solution of the Riemann problem is similar to a rarefaction
wave of a conservation law without source term. The solution is most easily obtained
by solving the characteristic equations (5) with e =1

&t) =

Uty = U*(1-U?? } )

¢t) = @)
for U(t) = u(t,((t)) with initial values

U(0) = u_, ¢(0) € (—oc, 0]
U(O) € [U,, U+]7 C(O) =0 and
U(O) = U4, C(O) € [0: —|—OO)

By continuous dependence on initial data, the union of all these characteristics fills
the whole (z,t)-plane. As no two of those characteristics intersect, the solution
along these characteristics provides the correct solution to the Riemann problem.
The profile of these rarefaction waves at a fixed time ¢ > 0 looks different from
the profile when no source term is present. In particular, for any given 6 < 1, the
measure of the set where |u(z,t)| < § grows sublinearly with ¢, if @ > 1 and if the
left and right state have a different sign.

Independent of the signs of u_ and u, we have the following monotonicity result:

Lemma 2.5 Let u be the solution of the Riemann problem with u_ < u,. Then for
any fized time t > 0 the profile u(z,t) is monotone in x.

Proof: Note first that u(x,t) = U_(t) for x < (_(t) where (U_,(_) solve the
characteristic equation (7) with U_(0) = u_ and (_(0) = 0. Similarly, u(z,t) =
U, (t) for x > ¢, (t) with (Uy, ;) being the solution of (7) with U, (0) = uy and
(+(0) = 0. The characteristic curves (4 are the minimal and maximal forward
characteristics emanating from the point x = ¢t = 0. Therefore, if the profile at some
time 7' > 0 is not monotone, we can find (_(T') < zy < x3 < (4 (T) with

u(zy, T) > u(xe, T).

We consider the minimal backward characteristics (;(¢) emanating from (x;,7") and
(2(t) emanating from (zo,T) together with the corresponding functions Ui (t) :=
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u(Ci(t),t) and Us(t) := u(Ca(t),t). Since minimal backward characteristics are gen-
uine by proposition 2.4 both (Uy, (1) and (Us, (») satisfy the characteristic equation
(7). Therefore

Ui(t) > Uy(t) forall 0<t<T

and hence by convexity of f we conclude that (5(t) — (;(t) is a decreasing function
of ¢. In particular (»(0) > (;(0) which contradicts the fact that for the Riemann
problem all backward characteristics starting with (T") € [(_(T), ¢, (T)] must have
¢(0) = 0. From this contradiction it follows that u(x,T') is an increasing function of
.

X

Next we show that in the case where the left and right state have different sign, the
region where the solution of the Riemann problem is close to 0 is smaller than in
the case when g(u) = 0.Moreover, the growth rate of such a region depends on the
size of a. For 1 < av < 2 the behavior is as in the previously studied case a = 1, but
for o« > 2the rates are different.

Lemma 2.6 Fiz e =1 and assume u_ < 0 < uy and a > 1. Then for any given
0 <6 <min(—u_,uy) there exists a constant M = M (a,0) > 0 independent of u
and a time t, such that

x| > M if l<a<?2
lu(z,t)] > 6 for t >t, and { |x] > Mlog(l+dt) if a=2
a—2
x| > MteT1 if a>2.

In particular
: <
lim meas{z ; |u(x,t)| <} _
t—o0 t

for alla > 1 and any 6 € [0,1).

0

Proof: We restrict our considerations to x > 0 corresponding to characteristic
curves with U(0) > 0. The situation for z < 0 can be handled similarly by changing
signs appropriately.

It is our goal to provide lower and upper estimates for the solution U of the charac-
teristic equation (7) and the corresponding characteristic curve (.

Let U(t; Uy) be the solution to the initial value problem

Uty = U1 -U?°
() = f(U®)
U(0) = Uy, ¢(0) =0.

Given some time T > 0, we will first find estimates for the initial condition Uj such
that U(T;Uy) = .



Aslongas 0 <u <9
0 <u®(l—0%)°% <u(l —u?)f <u®
holds. By elementary integration, we find that
Uy = U 0) ™ < (o= )0 < (1= 87 (U = U0 ™) (9

which implies that in order to have U(T;Uy) = ¢, the initial value Uy has to satisfy
the estimate

(0" +T(a—1))™" <Uy < (8" + T(a—1)(1 = 6%%) . (9)
The characteristic curve ((t; Uy) satisfies
! /
Uy = [ ) dr
U(t;Uo) !
_ / filo)

Uo (1 — v?)8
U(tiUO) Cf
< ————d
= /U vat(1 —2)8 ©*

for some constant C'y > 0. Since U(T; Uy) = § we have

J C
T:Up) < / S S
C( 0) = Ju, Ua71(1 _ 62),5 v
Now we have to distinguish three cases: For 1 < a < 2 the integration yields

Cy
(2 —a)(1—62)

¢ 2-a 1-a 2-a
(2 - a)({ — §2)8 (5 — (04 (a— 1)T)17a)

C(T; Up) = (0 —u)

using (9). Since 2=2 < 0 the right hand side converges to some limit as 7 — o0

and therefore ((T'; Uy) < M for some constant M. However, Uy was chosen in a way
that U(T;Uy) = 6. Hence by the monotonicity proved in the previous lemma we
know that u(z,T) > ¢ for x > M > ((T). Choosing ¢, = 0 proves the lemma for
l<a<?2.

For ae = 2 the same reasoning yields

C
C(T;Uo) < m log(1 +67T)

and again we may choose t, = 0.
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For v > 2 the estimate is

c o
(T:Uy) < (Q_Q)({_(SQW (U -5
c o L
g (6 o )
= O(T+).

By choosing t, and M large enough, this proves the estimate for a > 2.

2.3 Traveling waves

In this chapter we classify all possible traveling wave solutions. Since we deal with
possibly discontinuous entropy solutions of our equation, we have to adopt the notion
of traveling waves to this case.

Definition 2.7 An entropy traveling wave solution of the hyperbolic balance law
is a piecewise C" solution of the form u(x,t) = u(x — ct) that satisfies the ordinary
differential equation (f'(u)—c)u' = u®(1—u?)? at all points where u is differentiable.
Moreover, at any point & where u is discontinuous the Rankine-Hugoniot condition

f(u(€+)) = fu(€=)) = clu(é+) —u(E-))
and the entropy condition
u(§+) <u(é-)
for the one-sided limits u(§—) and u(&+) hold.

It turns out that the case 1 < a < 2 is very similar to the situation for « = 1 and
can be treated as in [9] while the case av > 2 behaves quite differently. We therefore
concentrate on the latter case.

Lemma 2.8 For a > 2, any entropy traveling wave can have at most one point of
discontinuity.

Proof: By the mean value theorem, ¢ = f’(u.) for some u, between u({+) and
u(§—). The entropy condition then yields u({—) > u. > u(é+). Therefore a trav-
eling wave solution would have to pass continuously through wu,. between any two
shocks. This is impossible since we have

1 Ua(l B UQ)ﬁ
) -

at u = wu, as the right hand side has a removable singularity at u = wu. and is
Lipschitz-continuous. It follows from the basic existence and uniqueness theorem

=0
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for ordinary differential equations that any solution u that satisfies u(§) = 0 for
some ¢ vanishes identically. Consequently, there are no traveling waves with more
than one shock.

X

Lemma 2.9 Fora > 2 all bounded entropy traveling waves are heteroclinic traveling
waves, i.e. they converge to some steady state for & — —oc and to some steady state
for & = +o0.

Proof: Since there can be at most one point of discontinuity, the solution is a
solution of the one-dimensional traveling wave o.d.e.

r ua(l B u2)6
- fu) e

for ¢ sufficiently large. Therefore it can be bounded only if it converges to some
equilibrium for & — +o0c. The same argument applies for £ sufficiently negative.

X
It is a simple matter to characterize the continuous traveling waves that connect the
states £1 and 0 so we state the result without proof.

(10)

Proposition 2.10 (Continuous traveling waves) Let a > 2.

(i) A continuous entropy traveling wave from —1 to 0 exists iff ¢ > f'(0). A
continuous entropy traveling wave from 0 to —1 exists iff ¢ < f'(—1).

Similarly, continuous entropy traveling wave from 0 to +1 exist for ¢ < f'(0)
and from +1 to 0 for ¢ > f'(1).

(i1) There exist no continuous traveling waves connecting —1 to +1 or vice versa.

The existence of discontinuous entropy traveling waves depends again on the wave
speed. By condition (F2) and (F3) of f, given any ¢ and u, there is a unique state
which we call h(u, ¢) such that u and h(u, ¢) satisfy the Rankine-Hugoniot condition

f(u) = cu= f(h(u,c)) = ch(u,c)
with shock speed c.

Lemma 2.11 (Discontinuous traveling waves) The following three types of dis-
continuous traveling waves are possible for o > 2:

(i) If h(-1,c)=1, i.e. ¢ = cpy then there exists a traveling shock wave of the form

41 forE <0
u(f)—{ —1 for&>0

12



(ii) If f'(—=1) < ¢ <0 and h(—1,¢) < 1 then there is an entropy traveling wave
that converges to 0 as & — —oo is monotone for & < 0 and satisfies u(§) = 1

for &> 0.

(i1i) If 0 < ¢ < f'(1) and h(1,c) > —1 then there is an entropy traveling wave that
converges to 0 as £ — +00 is monotone for & > 0 and satisfies u(§) = —1 for
£ <0.

Proof: Without restriction we suppose that the heteroclinic entropy traveling waves
possess exactly one discontinuity at & = 0. This implies that ¢ € [f'(—1), f'(1)]
because if ¢ > f'(1) then u(0—) > (f)7'(c) > 1 by convexity of f and hence
u(€) > (f)7"(c) for all £ < 0. This however contradicts the fact that u(£) must
converge to an equilibrium as £ — —oo. The same argument shows that it is
impossible to have ¢ < f'(—1).

For the traveling wave equation (10) and ¢ € [f'(—1), f'(1)] the equilibrium u = 1 is
always stable while u = —1 is unstable. Therefore a connection from +1 to —1 can
only exist if +1 and —1 satisfy the Rankine-Hugoniot condition. This is case (i).
For f'(—1) < ¢ < f'(0) = 0 the equilibria u = —1 and u = 0 are both unstable for
the traveling wave equation (10). A solution is therefore only possible if the point
h(—1,¢) is between (f')"'(c) and 1. This is exactly the situation (ii). The same
arguments apply if 0 = f'(0) < ¢ < f'(1) and lead to case (iii).

X
From the previous lemmas we now obtain the
Proof of theorem 1.1:
(i) is the content of lemma 2.10,
(ii) and (iii) are proved in lemma 2.11,
(iv) follows immediately from the previous results together with lemma 2.9.
X

Remark 2.12 We emphasize again that this situation is in contrast to the case
1 < a < 2 where an abundance of discontinuous traveling waves can be found.

3 Convergence Results

In this section we proof that for & > 2 all solutions of the Cauchy problem (3) with
r € S' 2 IR/IN converge pointwise to one of the zeroes of the source term. Again,
the case 1 < ao < 2 is very similar to the case & = 1 and will not be considered here.
To decide whether a particular solution converges to +1, —1 or 0, the following
definition will prove useful.

Definition 3.1 Given the solution u(t,x) of the Cauchy problem we define the
range of the solution as

R(u(+, 1)) == {u(z—,t); z € S"YU{u(z+,t); z € S'}.
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In [2] it was proved that for ¢ > 0 the range has to be connected, since u can only
jump downward at discontinuities by the entropy condition.

Proposition 3.2 ([2]) Forxz € S' and any t > 0, R(u(-,1)) is a closed interval.

The important property that distinguishes the case of a > 2 from the previously
considered case a = 1 is stated next.

Lemma 3.3 Let u be a solution of (3) with o > 2 and assume that for some time
T > 0 we have 0 € R(u(-,T)). Then there exists some function n = n(T) with
limy 1o n(T) = 0 such that

R(u(-T)) € [=n(T),n(T)].

Proof: As 0 € R(u(-,T)) there exists some zq € S such that u(zq—,T) = 0 or
u(xo+,T) = 0. In either case, (, = {(z,t) ; * = 20,0 <t < T} is an extremal back-
ward characteristic and therefore must be a genuine characteristic. In particular,

u(ro—,t) =0 forall 0 <t <T.

We will now show that if u(zy, T) > n(T) for some = n(T) and some z; € S* then
the minimal backward characteristic (;(-;zy,T) satisfies

Cl(T;l‘laT) — C1(0$1,T) > 1. (]_1)

Since x is on the circle S' ~ IR/IN, ¢; must intersect the genuine backward char-
acteristic (y at some positive time. This however contradicts proposition 2.4 and
therefore proves that u(z,T) < n(T) for all x. A similar argument shows that
u(z,T) > —n(T) for all x.

To show (11) we distinguish two cases:

(i) a=2:

In this case, we set n(T) := 1/(CT) with a constant C' that will be determined
later and assume that u(z,,T) > n(T) for some z; € S'. Let (U, (i) be
the solution of the (backward) characteristic equation (7) with terminal values
U(T) = u(x1,T) and (;(T) = x;. By comparison with the equation

UI:Ua

we find that
Ui(t) > (CT + (T —t)) !

and hence
GT) -G = [ P da
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> 70) [ i) d
n dt
= J10) o CT+(T—-1)

C+1
= f"(0)log [———
f7(0) 0g( . )
> 1
if C < (exp(1/f"(0)) — 1)~ which proves (11). Completely analogous argu-

ments show that u(zy,T) < —n(T) leads to (1(T) — (;1(0) < —1. Noting that
n(T) — 0 as T — oo completes the proof for the case n = 2.

a > 2

In this case we choose 7 differently and let (7T") be the solution at time 7" of
the initial value problem

U't) = U“(I—UQ)B

U = (f"(0)1)"!
Again we assume that u(xy,T) > n(T) for some z; € S' and denote with
(U1, (1) the solution of the (backward) characteristic equation. Since U; solves

the same differential equation as U we get that U,(t) > U(t) > U(0) =
(f"(0)T)~! for 0 <t < T. Using the convexity of f, this implies that

cm-c) = [ Fwi)d
> 0) [ U di

> 1
which contradicts proposition 2.4. Again, the assumption u(z,t) < —n(T)
leads to the same contradiction.

It remains to show that 7 converges to zero as T'— +o00. This follows imme-
diately by comparison with the initial value problem

0'(t) = 0%, T(0) = Tf,l,(o)

which can be solved explicitly and which yields

1

0(T) < U(T) = ((f"(OT) " = (a = NT) 7 .

It is easy to check that the right hand side converges to 0 as T' — +oc.
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Now we can prove theorem 1.2 on the convergence of solutions as ¢t — 4o00.

Proposition 3.4 For any initial data uy with ue(z) € [—1,1] for all x € S* there
exists a number w = w(ug) € {—1,0,+1} such that

|u(z,t) — w(uo)llze — 0
ast — o0.

Proof: We distinguish two cases:

1) 0 ¢ R(u(-,T)) for some time T > 0. Then either R(u(-,T)) € (0,40c) or
R(u(-,T)) € (—o0,0). For definiteness, we assume the first possibility. Since the
range is a closed interval, we can find x > 0 such that u(z,T) > k for all z € S'.
Applying the comparison principle to the solution u and the solution of the Cauchy
problem with u = k at time ¢t = T we can then conclude that u(z,t) — 1 as
t — +oc for a.e. x € S'. Similarly, if R(u(-,T)) € (—oc,0) we have u(z,t) — —1
for ¢ — +o0.

2) 0 € R(u(-,t)) for all times ¢ > 0. We prove that in this case the solution converges
to zero pointwise. This is just a consequence of the previous lemma, since for any
d > 0 we can find some T > 0 such that n(t) < 6 for all ¢ > T. Lemma 3.3 then
implies that

u(z,t)] = |u(z_,t)] <n(t) < forall x € St and t > T.

and hence
lu(-, )| = — 0 as t = +o0.

3.1 An example

We illustrate by a simple example that convergence to the middle zero actually
occurs. To this end, we choose f(u) = u? and consider the initial condition

(z) = +1 for O<x§%
YT =9 _1 for %<x§1.

By symmetry, if (U(t),((t)) solves the characteristic equation, so does (—U(t),1 —
¢(t)). These two characteristics meet at = 3 and by the Rankine-Hugoniot condi-
tion, a standing shock is formed at x = % For 0 < ¢t < 1 the forward characteristics
with value U(t) = +1 meet at the shock, but for ¢ > 1 the L*-norm of the solution
decreases. Since all characteristics are symmetric with respect to x = % the solution
can neither converge to +1 nor to —1 and so it must tend to 0.
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4 Instability under perturbations

As we have seen in the previous chapter, any solution tends to one of the zeroes of
the source term as ¢ tends to infinity. However, most of the solutions will tend to
the stable zeroes u = +1 and u = —1 of the source term, while convergence to the
weakly unstable zero u = 0 is very exceptional. In this chapter we study the basins
of attraction for the three zeroes of the source term and prove theorem 1.3.

Definition 4.1 Let B_y, By and By C L'(S,IR) be the sets of those initial con-
ditions for which the solution of the Cauchy problem (8) converges to —1, 0 and 1
pointwise as t — +oo.

We will show that for any ug € By we can find an arbitrarily small perturbation v
such that ug 4+ vg € B;. To construct a suitable perturbation, we first need some
additional notation:

Definition 4.2 For ug € L'(S') N BV (S') and § > 0 we set

ud(x) := SUP|g—y|<s Uo(Yy) + 0.

The function u$ has the following properties:
Lemma 4.3
(i) ud > ug
(i) |Ju) — uol|r1(s1y < 0(1 + 3TV (ug)) where TV is the total variation of uo.

(iii) For almost all § > 0 the functions ug and ul have no common point of discon-
tinuity, i.e.
wo(z—) # ug(r+) = ud(r—) = up(z+).

Proof: (i) follows immediately from the definition of uy.
(ii) Consider the partition 0 = z; < x5 < ... < xy = 1 of S with z;;; — z; < 6.
Note that by definition of u3 for any x € [z, 7;41]

0<ud(z)—up(z) < sup up(y)+6— inf ug(y)
y€E[z—8,2+4] yE[z—a,z+4]

and hence
/_”1 () — uo(x)| de < 0TV (uo, 25 — 6, xis1 + 0]) + 6(is1 — )
< (S TV(U(), [IEZ'_1, IEH_Q]) + 6(1‘24—1 — l‘z)

where T'V (ug, [a,b]) is the total variation of ug on the interval [a,b]. Summation
over ¢ then yields the desired inequality.
(iii) Note first that if uj is discontinuous at some zy € S', then uq is discontinuous
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at zg— 0 or at 1o+ 9 because if ug was continuous both at g — 9§ and zy+§ then the
supremum of ug over [z — §, z + d] also had to be continuous at zy. As ug is in BV,
it possesses at most countably many discontinuities, and the set of all differences
between two of these discontinuities is countable, too. This implies that only for
countably many ¢ the function wug is discontinuous simultanously at some xq and
o — 0. Similarly, there are only countably many ¢ such that wuq is discontinuous at
some o and xq + d. For all other values of ¢ there is no point where both functions
ug and uf are discontinuous.

X
The importance of property (iii) is due to the following lemma:

Lemma 4.4 Assume that ug, vy € By and ug < vy. Then for any ng > 0 the set

{z € 8% [uo(z—), uo(z+)] N [vo(2—=), vo(x+)] N [=n0, mo] # B}
18 non-empty.

Proof: We consider the solutions v and v associated with the initial conditions ug
and vg.
For any solution w of (3) we define the spatial average

I(w(- 1)) = /S w(z, t) dz.

From the weak formulation of the hyperbolic balance law, one can derive the ordinary
differential equation

%](w) = /51 w*(1 — w?)? do

for I(w). In view of the previous section both I(u(-,¢)) and I(v(+,t)) must converge
to 0 as t — oc.

Let J be the maximal interval where the source term u®(1 — u2)? is monotone
increasing. From lemma 3.3 we know that there exists some time 7" > 0 such that
both R(u(-,T)) C J and R(v(-,T)) C J.

If I(v(-,T)) > I(u(-,T)) then I(v(-,t)) cannot converge to 0 because for all t > T
we have

L 1(.0) 2 Lr(u, )

and hence I(v(-,t)) — I(u(-,t)) > I(v(-,T)) — I(u(-,T)) > 0.

This implies that at time ¢ = T we must have I(v(-,T)) < I(u(-,T)). Since u < v
by Kruzhkov’s comparison principle, this implies that I(v(-, 7)) = I(u(-,T)) and
u(z,T) = v(x, T) for almost every x € S'.

Consider now the extremal backward characteristics (U, () evolving from some point
with ¢ = T. By proposition 2.4, the characteristic curve ¢ extends back to ¢t = 0

and is a genuine characteristic both for v and v. In particular, u({(t),t) = U(t) =
v(C(t),t) for all ¢ € (0,T]. This implies that u(¢(0)+,0) < U(0) < u(¢(0)—,0) and
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v(¢(0)+,0) < V(0) < u(¢(0)—,0). So, either ug(¢(0)—) = uo(C(0)+) or ug(¢(0)—) <
uo(C(0)+) with U(0) € [uo(¢(0)—), uo(C(0)+)]-
Choosing T possibly larger and using lemma 3.3, we can make sure that |U(0)] < ng
holds and hence both possibilities imply that

(=m0, 0] NV [ (C(0) =), uo (€ (0)+)] # 0.

Since the same holds for vy the lemma is proved.
X

We are now able to prove theorem 1.3.

Proof of theorem 1.3: Assume that ug € By. We will show that for § sufficiently
small ug and u$ cannot satisfy the assumptions of the previous lemma. From lemma
4.3 we know that uj > ug + 6 and u) — ug in L'(S') as 6 — 0. Therefore, uj € B,

for all § small.

Given 9, assume now that 7y < g and u) € By. The previous lemma states that

there must exist at least one xy with

[uo(20=), wo(wo+)] N [ug (@0 =), ug(x0+)] N [=n0, 1] # 0. (12)

However by lemma 4.3 we know that uy and u$ have no common point of disconti-

nuity. So, there are three possibilities:

1) If ug(zo—) = ug(wo+) and ud(zo—) = uf(xe+) then (12) is not possible as

ud — ug > § > 2nq.

2) Similarly, for ug(zo—) < ug(xo+) and u(xo—) = ud(zo+) (12) is not possible as

ud () > ug(wo+) + 6.

3) For ug(xo—) = ug(wo+) and ud(zo—) < ud(zo+) the same argument applies.

So, in all three possible cases, (12) cannot be satisfied and therefore our assumption

that u) € By has led to a contradiction. This shows that u) € B, for all small

0. To show that there are initial data near wug for which the solution converges to

—1 one has to perform a similar construction as for u to get a function which is

strictly smaller than uy, and has no common points of discontinuity with uy. The

construction of such a function is completely analogous to the construction of ug.
X

Sinestrari has proved in [13](theorem 4.7) that B_; and B; are open in L'(S").
Since his proof only requires convergence to a stable zero of the source term in L°°,
it applies immediately to our situation. As the previous lemma states that By is
nowhere dense we have the following corollary.

Corollary 4.5 The set of initial conditions uy for which the solution of the Cauchy
problem (3) converges to —1 or +1 is open and dense in L*(S').
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4.1 An example

To illustrate the convergence to 0 we study as an example the behaviour of solutions
of the Cauchy problem for which the initial condition is a step-function

u_ for 0<ax<n
Uy for n<ax<1

where u_ > 0 > u, for definiteness and 7 is treated as a parameter.

Lemma 4.6 There exists a unique value ng = no(u—,u) € (0, 1] such that u,, € By.
For ny <n <1 we have u, € By and for 0 < n < ny we have u, € B_;.

Proof: The u, are ordered:
T S 12 = Um S Ung-

Therefore if u,, € B; for some 7, we have automatically u, € B; for all n € [n, 1] by
the comparison principle. Similarly, if u,, € B_; for some 1, we have u, € B_; for all
n € [0,7m,]. Therefore we can find 1 := sup{n ; u, € B,} and 7 := inf{n ; u, € B_,}.
Since By and B_; are open in L' we know that u, € B, for n € [, 7]. To show that
n = 1 we just note that u,(0) and uz(0) obviously do not satisfy the condition of
lemma 12 if n <7 and hence cannot both belong to By.

X

5 Convergence in the zero reaction time limit

In this section, we shall consider the limit £ — 0 and prove theorem 1.4.

Recall that by (4) we require the initial condition ug to be differentiable with simple
zeroes which are at least a distance of p apart from each other.

This includes in particular the case that ug is periodic with simple zeroes and allows
therefore a comparison with the long-time limit results.

The following lemma on the structure of the solutions of (3) states that the number
of sign changes of the solution is non-increasing in time.

Lemma 5.1 ([4], Lemma 3.2.1) For fized € let u.(x,t) be the solution of (3) with
initial value ug(x) satisfying assumption (4). Then at each fized t > 0, there are
points z;(t), j € J' € J, such that changes of sign(u.(z,t)) occur and only occur
when x crosses one of the curves v = 25(t), t < t;.

Moreover, the 25(t) are curves defined on [0,T5), j € J' C J.

Proof: This lemma is similar to Lemma 3.2.1 in [4] and the remark thereafter. Al-
though the lemma in [4] is for the case where J is finite and the source term in (3)
is u(1 — u?) /e, corresponding to o = 8 = 1, the proof of it only used the properties
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that two extremal backward characteristics of (3) do not intersect and that along
extremal backward characteristics, the sign of u. does not change. Since these two
properties still hold for (3), the lemma holds for arbitrary «, 8 > 1.

X

The following lemma, proved in [4] for « = § = 1 still holds for (3) since the proof
in [4] did not use anything related to the source term.

Lemma 5.2 Let ug(z) satisfy the assumption (4). Then the curves 25(t), j € J
given in Lemma 5.1 are Lipschitzian with Lipschitz constant L < maxy,<guplue(z)| | f' ()]
independent of ¢.

Moreover, if the domain of definition of 25(t) is [0,T5] with T; < oo, then there is
another curve 25 (t) intersecting 25(t) at t = T; = T5,.

Since, by (4), the zeroes of ug are isolated, the uniform Lipschitz estimate shows
that the T; > & > 0 for all j independent of e.

We now consider the limit ¢ — 0.

Lemma 5.3 For any sequence {e,}5°, with €, — 0+ as n — oo, there is a subse-
quence, also denoted by {e,} for simplicity, such that the limit

U(Q?,t_) = snlgrUIJr Usn(xaf) (13)
exists for almost all (7,t) € IR x IR™".
The range of u(z+,t) is {—1,1}.
Furthermore, there are uniformly Lipschitzian curves z;(t) defined on [0,T3), j € J
such that for each fized t > 0, u(x,t) is constant for all x between two adjacent
curves zj(t).

Proof: Let 2 = 2;(t), j € J, be the curves provided by lemma 5.2. These curves
z;"(t) defined on [0, T;"] are Lipschitzian uniformly in &, > 0 and j. Thus, by the
Arzela-Ascoli theorem, there is a sequence {e,} such that

2 (t) = lim 257 (%) (14)
exists on [0,z; := lim, ,o T;"]. By the definition of 2;"(t), for each fixed ¢ > 0,
lim,, o sign(ue, (z,t)) is fixed for all x between two adjacent points among z;(t),
j € J. To simplify the notation throughout the rest of this proof, we just ignore
z;(t) if t is outside the domain of definition of z;(t).
Fix now some time ¢ > 0.
Any point 7 € IR \ U;z)(f) must fall between some adjacent curves z = 27(%)
and x = 2J(t) where j,j € J U {—00,+00} and we have set 2° () := —oco and
2050 (t) :=00. Let 22(f) < 2),(f) be two adjacent points at ¢t = £.
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We have already seen that the limit lim,_, sign(u., (Z,%)) is a constant for all
29(t) < T < 25 (t). For definiteness, we assume this constant is 1, i.e.

ue, (T,1) >0

for all 2{(f) < & < z§,(f) and n sufficiently large.

The case u,, (7,t) < 0 can be handled in the same way.

We consider the minimal backward characteristic ¢, (¢; Z,t) through the point (z,?)
which satisfies

dCEn _ ! T
AU, L _ (15)
dt 8nUE"(1 U=

(an(f)’Ugn(i)) = (fauen(f_af))' )

According to Proposition 2.4, the solution of (15) is defined on [0, ¢] and
Ue, (t) = ue, (&, (87, 8)—, t) = ue, (., (t; 7, 1)+, t)for almost allt € [0,7 ].

If u., (z,t) =1, then U, (t) = 1.
Hence the limit is u(Z,¢) = 1 if u., (Z,t) = 1 for all sufficiently large n.
If u., (Z,t) # 1 for infinitely many n, then only two possibilities exist: Either

liminfuo (¢, (0:2,2)) > 0
in which case it follows easily from (15) that lim,_, u., (Z,¢) =1 or
liminf (e, 0:7,7) = 0.
By extracting a subsequence of {£,}2 ;. still denoted by {e,}, we have
Jim uo (¢, (0;2,¢)) = 0.
Since ug(x) is continuous with isolated zeroes we can assume that
Ceu(0:2,1) = a (16)

with ug(a) = 0, possibly after extracting a further subsequence if necessary.
Since u,, (z—,t) > 0, it is necessary in view of (15) that a < Z. We claim that if for
some 0 < 6 < 1 and all n sufficiently large

0 <u, (7,t) <d§<1, (17)
then )
|i‘_a‘: O(l)gm, if O£>]_,Oé§é2 (18)
O(1) |lepIng,|, if a=2.
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To this end, we consider the system for the extremal backward characteristics (15)

to derive ~ o p
t U
i - - 19
En vo u®(1 — u?)p (19)

where Uy := ug(¢., (0; U, 1)).
We continue to estimate (19), using (17) as follows:

Since 0 < Uy < U we have
Uy =0(1) &i". (20)

From (15), we can also derive, for the case o # 2 that

PG (0:2.0) = /j%
= 0w [,
= 0(1) ¢, (% — @(1)>

1

= O(1)es™".
Similarly, for the case o = 2, we get by integration
T—(,(0;7,t) = O(1) e, Ing,).

From the last two equations, we have

1

17— (0:5,0)] = o) e, if (?z>1, a# 2
O)|epIng,|, if a=2.

Then the claim (18) follows easily.
Based on (18), we can see that if Z # a, then lim., _qu., (%,t) = 1 if Z is between
two adjacent points among z;(f), j € J with lim., _,osign(u.,(7,%)) = 1. Similarly
one shows lim,__,qu., (Z,t) = —1 for the case lim., o sign(u., (Z,t)) = —1. From the
above arguments, we see that the limit u(z,t) is a piecewise constant function with
constants being +1 which are separated by the Lipschitzian curves z;(t), j € J.
These curves intersect each other only at the end points of their domain of defini-
tion.

X

The next lemma completes the proof of theorem 1.4.
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Lemma 5.4 Let uqg satisfy the assumption (4) and u. be the solution of (3). Then
the limit

u(z. 1) = lim u.(z.) 1)

exists for almost all (7,t) € IR x IR™.

The value of u(z+,1t) is either 1, or —1.

Furthermore, there exist curves z?(t), j € J defined on [0,Tj), respectively, such
that:

(i) if u(2)(t)—=,t) > u(2](t)+,1), then x = 2)(t) satisfies the Rankine-Hugoniot
condition

A2 fu(R(t)—. 1) = fu(2(®)+,1)  f(1) — f(~1) )
0 t .

F R O T E Rt R
(i) if u(2)(t)—,t) < u(zj(t)+,1), then the curve 22(t) = a; + f'(0)t and hence the
speed of the discontinuity is f'(0).

Proof: By Lemma 5.3, we can choose a sequence {¢,} such that

(e 1) = Jim ue, (2.1) (23)

exists for almost all (z,7) € IR x IR* and u(z,t) = +1 or —1.

Moreover there exist curves z;(t), j € J with z;(0) = a;, which are uniformly
Lipschitz and which do not intersect each other except at the end points ¢ = Tj.
These curves separate regions where u(x,t) = 1 from regions where u(z,t) = —1.
Hence, the set of points of discontinuity of u(z,t) is exactly the union of the curves
z;(t) with j € J.

There are two possibilities at x = z;(#):

Case L. u(z;(t)—,t) > u(z;(t)+, ).

Note that in this case u(z;(t)—,t) = 1 and u(z;(¢t)+,t) = —1.

Consider some point Z < z;(f) and close enough to z;(f) at t = ¢ < T;. Hence,
limy, o0 ue, (T—,1) = 1.

Let (., (t;z,t) be the minimal backward characteristic associated to wu., defined by
(15). At t = 0, we have either

(i) liminf, ., u., (¢, (0;Z,%),0) > 0 or

(ii) liminf, ,  u., (¢, (0;7,1),0) = 0.

For (i), we have that u., ((,(t;Z,t),t) = 1 as n — oo uniformly for ¢ > 6 > 0,
where § > 0 is any constant. This leads to the expression

lim ¢, (7,1)) =2+ f'(1)(t - 7). (24)

n— 00

Since uy is differentiable with isolated zeroes, one can assume for (ii) that

lim ¢, (0:2,8) =a <@

n— 00
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with ug(a) = 0.
In both cases (i) and (ii),
a:= lim an(o;a_jaf)) S T

n—o0

Subcase I(1): a < T in (25).
In this case we set

z1:=(T+a)/2and t; := — (T —x1 — f'(1))/f'(1) > 0.

The equation for ¢, (¢;7,t), (15), and |ug(z)| < 1 imply that

., (t;z,t)
< S

and hence (., (t1;7,1) > 1.

Figureb.1
As (., (0;Z,t) — a for €, — 0+, we conclude from (17) and (18) that

Uy = usn(CEn(tl;jaf);tl) > 1/2

for n sufficiently large.
Then system (15) implies that

E—tl _ /u du
En Juue (14 u)B(1 — u)p

i du
< za/ o

_ {Z“Mngg) it g=1
- B2—j1 ((1—111)5*1 - (1—u1)5*1) if 6>1.

Using the definition of ¢; from (26), we obtain the estimates

1 t—t T —
S 1 T—I

for g > 1

n

1—ua=0(1)exp (—t_t1> = O(1)exp <_x —x1> for p = 1.

(25)

(26)

(27)



We can prove the same estimate when u., (Z,t) < 0.
Independent of > 1 we have

1
—u, (T, 01 = (ue, (7-,1))*)" = 0 (28)
En
uniformly for Z < z;(¢) and close to z;(t).

Similarly one can prove that (28) also holds uniformly for Z > z;(¢) and close to
7 (1).

Applying this estimate to the the weak form of (3)

[ (Fuse = flwe, — Sz, (1= a2)%) dade = 0

for test functions with compact support confined near =z = z;(t), 0 < ¢ < T}, one
sees that the shock = = z;(t), 0 < t < T}, is a weak solution of u; + f(u), = 0.
Thus, the Rankine-Hugoniot condition

dzj _ flulz(D+, 1) = flulz(t)— 1) _ f(1) = f(=1)

dt u(z;(t)+,t) —u(zj(t)—,t) 2

holds if u(z;(t)+, 1) < u(z;(t)—,1).

Subcase I(2): a = 7 in (25).

By (24), this case occurs only if liminf, . uo(¢., (0;Z,%)) = 0 and hence a = a; for
some j € J.

We claim that this subcase cannot happen at all for small enough ¢, > 0.

Indeed, if a = T was true, we would have

otz t)=T=a (29)

from (25).
Given ¢ > 0 small, it follows again from (17) and (18) that 0 < 1 — u,, (x,t/2) < 0
for « € [aj_1 + 0, a; — 0] when &, > 0 is small enough.
To establish above claim, it suffices to prove that the forward characteristics &, (¢; Z—
§,t/2), t > t/2 intersect (., (t;Z,t) at some ¢ < ¢, which is impossible in view of
Lemma 3.1.7.
To this end, we observe that before = &, (t;7 — 0,t/2) intersects x = (. (t;T,1),
the estimate

Ue, (2, 1) >0for T —0 <z <ZT (30)

holds due to Z < z°7(f). This implies

dé., (t; T — 0,t/2)

>0
dt

and hence

£ (T —6,8/2) > T — 6.
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For any point x; € [(aj_1+a;)/2,&., (t1;—0,1/2)], we have ((0; z1,t,) < &—4J, since
maximal backward characteristics cannot cross the forward characteristics &, (¢; T —
§,t/2) from the left as t decreases. See Figure 5.2.

Figured.2

This is the case covered by Subcase I(1) or (i) before (23). Then our results for (i)
and Subcase I(1) yields

0<1—u, (&, (B —6,t/2)—,t) <§

when ¢, > 0 is sufficiently small. This infers that

dé., (t; & — 6,1/2)
pr > f(1=29)— f(0)

before © = &, (t;7 — §,1/2) meeting x = (., (t; ,t). Thus, the curve z = &, (t;7 —
§,t/2) and = = (., (t) must intersect at some ¢ < ¢. This proves our claim.

Case II. u(z;(t)—,t) < u(z;(t)+,1).

In this case, one has u(z;(t)—,t) = —1 = —u(z;(t)+, t).

We claim that in this case, z;(f) = a; for some j € J and all ¢ € [0,T;) under the
assumption f'(0) = 0.

To this end, we consider two points z; and z, sufficiently close to z;(t) and z; <
z;(t) < my. By definition of z;(t), sign(u.,(r1—,t)) = 1 = —sign(u., (v2—, 1)) for
large n.

From (15), the minimal backward characteristics through points (z1,¢) and (z2,1)

satisfy
dce, (t; 1, t dce, (t; xa,t
Can(/ 1 3<0< Cﬁn( 2 3
dt dt
Since the sign of u., is constant along extremal backward characteristics, one has

(31)

< C(t,l‘l,f) < Z](t) < C(t,l‘g,f) < Zs. (32)

Now, let zy — z;(t)— and xy — z;(t)+, estimates (31) and (32) imply that z;(¢) is
constant for ¢ € [0, ].

It follows immediately from the arbitrariness of ¢ € [0,7;) and 2;(0) = a; that
2;(t) = a; for all ¢ in its domain of definition.

From the above analysis, we see that the the limit function wu(z,t) is completely
determined by the curves z;(t), j € J.

Furthermore, these curves z;(t) are uniquely determined by the Rankine-Hugoniot
condition (30) with z;(0) = a; or is equal to a constant a; for some j € J. In
other words, no matter how the subsequence {¢,} are chosen, the limit functions
u(z,t) = limy, o u., (z—,t) are the same.

This proves the convergence of u, as ¢ — 0+.
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