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tWe study a s
alar hyperboli
 
onservation law with a bistable sour
e termwhose zeroes are degenerate. It turns out that the stru
ture of the set oftraveling waves as well as the long-time behavior is di�erent from the 
asewhere the zeroes are non-degenerate. In parti
ular, for x 2 S1, there existinitial data for whi
h the solution 
onverges pointwise to the unstable zero ofthe sour
e term.We also generalize re
ent results of Fan, Jin and Teng 
on
erning the zerorea
tion time limit to the 
ase of sour
e terms with degenerate zeroes. Thisshows that in general the long time limit and the zero rea
tion time limit
annot be inter
hanged.1 Introdu
tionIf a nonlinear sour
e term is added to a hyperboli
 
onservation law both the shortand long time behaviour may 
hange drasti
ally. In this paper, we demonstrate howthe nature of the sour
e term a�e
ts the behaviour. Motivated by nonlinearitiesthat o

ur in equations des
ribing liquid-vapor phase transitions and in rea
tive
ow models, we study the equationut + f(u)x = g(u)� u 2 IR; �; � � 1; (1)with g(u) = ujuj��1(1� u2)j1� u2j��1;where the 
ux is 
onvex and the spa
e variable x is either 
onsidered on the wholereal line or on the 
ir
le S1. Many of our results do not depend on the parameter" so we will set " = 1 in 
hapters 2 through 4. Only in 
hapter 5 when the zerorea
tion time limit is 
onsidered, " will play a role.The sour
e term in above equation is of \bistable" type, i.e. there are two statesu = +1 and u = �1 whi
h are stable equilibria of the pure rea
tion dynami
sut = g(u). In between there is an unstable state u = 0 whi
h is weakly unstable if� > 1, i.e. the instability is not visible on the linear level.Before we give pre
ise statements and proofs, let us 
omment on some related work.The 
ase � = � = 1 where all zeroes of the sour
e term are non-degenerate, hasbeen studied intensively by several authors. Most of the work also assumes a 
onvex1




ux so that generalized Chara
teristi
s 
an be used as a tool. Mas
ia and Sinestrari[11℄ studied the perturbed Riemann problem for 
onvex 
ux when the initial data
oin
ides with that of the Riemann problem outside a 
ompa
t set. If both asymp-toti
 states are zeroes of g, then the solution for large time 
an be des
ribed by asequen
e of sho
ks and possibly dis
ontinuous traveling waves.A related situation has been studied by Mas
ia [8℄. He 
onsiders a sour
e term withonly two zeroes g(0) = g(1) = 0 and g(u) > 0 between 0 and 1 but with a possiblynon-
onvex 
ux. The existen
e of traveling waves between 0 and 1 and the solutionof a 
orresponding Riemann problem with states u� = 0 and u+ = 1 is studied. In
ontrast to the situation treated below, the sour
e term has a de�nite sign and allthe te
hni
al diÆ
ulties 
ome from the non-
onvexity of the 
ux f .Another line of resear
h deals with x 2 S1 when the 
ux is 
onvex and g hassimple zeroes. Lyberopoulos [7℄, Fan and Hale [2℄ and Sinestrari [12℄ 
ould proveindependently that all solutions 
onverge either to a spatially homogenous state orto a rotating wave. As Sinestrari showed, the sour
e term typi
ally dominates thelarge-time behaviour and almost all solutions 
onverge pointwise to one of the stableequilibria of the pure rea
tion dynami
s. Fan and Hale [3℄ proved that there exists aglobal attra
tor for the semi
ow whi
h is generated in BV \ Lp for 1 � p <1 andthat this attra
tor 
onsists of the steady states, in�nitely many rotating waves andhetero
lini
 orbits between these obje
ts. A geometri
 des
ription of the hetero
lini
orbits has been given by H�arteri
h [5℄.In the 
ase where the sour
e term has simple zeroes the rotating waves represent thesolutions for whi
h the e�e
t of the rea
tion term and the 
onve
tion balan
e ea
hother. As we will see, the situation in the 
ase of a more degenerate sour
e term isdi�erent: Firstly, there are no rotating waves in the degenerate 
ase. Furthermore,instead of 
onverging to rotating waves, there are solutions whi
h de
ay pointwise tozero although 0 is unstable for the rea
tion dynami
s. However it seems a diÆ
ultissue to predi
t the ultimate fate of a given initial 
ondition.The relaxation limit has been studied in a similar situation by Fan, Jin and Teng[4℄. They 
onsidered a bistable sour
e term with three simple zeroes �1 and 0. Theinitial 
ondition u0 was supposed to have a 
hange of sign at x = 0. There aretwo di�erent possibilities: If u0(x) � x < 0 for x 6= 0 then the solution 
onverges to+1 for x < 
t and to �1 for x > 
t where 
 
omes from the Rankine-Hugoniotsho
k 
ondition. If however u0(x) � x > 0 for x 6= 0 then the limiting solution hasa \non-sho
k" dis
ontinuity as it 
onverges to �1 for x < 
t and to +1 for x > 
twith 
 = f 0(0).From these results, we see that the behavior large time limit and relaxation limit ofthe solution 
an be quite di�erent.1.1 The main resultsThe existen
e and uniqueness theory for s
alar 
onservation laws with sour
e termsdi�ers only slightly from the theory without sour
e term. In parti
ular, there are2



no smooth solutions even for smooth initial data. However the Cau
hy problemut + f(u)x = g(u); u(0; �) = u0(�) (2)has a (lo
al) solution for u0 2 BV (IR) \ L1lo
(IR) if one 
onsiders as a solution allweak solutions whi
h satisfy the Kruzhkov entropy 
ondition, see [6℄. This solutionis also unique and a 
omparison prin
iple holds:Proposition 1.1 (Kruzhkov) Consider solutions u and v of the Cau
hy problem(2) with initial data u0 and v0. If u0 and v0 are ordered, i.e.u0(x) � v0(x) for almost all x 2 IRthen the same inequality holds for later times:u(t; x) � v(t; x) for almost all x 2 IR:Although existen
e, uniqueness and the 
omparison prin
iple hold in broader gen-erality, we will take g(u) = 1" �ujuj��1(1� u2)j1� u2j��1�with �, � � 1. Our proofs for for the part u(x; t) � 0 is almost the same as thatfor the u(x; t) � 0 part. In fa
t, a 
hange of variable u 7! �u in (1) 
an 
onvert theproofs for one part to the other. For this reason, and for simpli
ity of presentation,we use the simpli�ed notation g(u) = u�(1� u2)�:We 
onsider the Cau
hy problemut + f(u)x = g(u)" ; u(0; �) = u0(�) (3)and assume the following on f :(F1) f is C2,(F2) f is stri
tly 
onvex, i.e. f 00 > 0,(F3) f(0) = f 0(0) = 0.Note that (F3) is no real restri
tion sin
e we 
an �rst add a 
onstant to a
hievef(0) = 0. If f 0(0) 6= 0 then we 
onsider the equation in a moving 
oordinate system,i.e. we repla
e x by ~x = x� f 0(0)t su
h that ~u de�ned by ~u(~x; t) := u(x; t) satis�es~ut + (f 0(~u)� f 0(0))~u~x = g(~u)" :3



Remark 1.2 The spe
ial 
hoi
e of the sour
e term was made to fa
ilitate some
al
ulations and make the presentation easier. Similar results hold for more generalsour
e terms g(u). Instead of assuming � � 2 in theorems 1.2 and 1.3 below onethen requires that R 0�1 f 0(U(�)) d� does not exist where U(�) solves the terminalvalue problem dUdt = g(U); U(0) = 1:This is equivalent to the 
onditionf 0=g =2 L1((�1; 1); IR)whi
h also appears as a 
ondition in [10℄ in the 
ase of a non-
onvex 
ux f wheregeneralized 
hara
teristi
s 
annot be used.For 
onvenien
e, we will always assume that the solution is 
ontinuous from the leftat any point, i.e. u(x; t) = u(x�; t):By the 
omparison prin
iple, any solution to bounded initial data will exist globallyin time and hen
e we restri
t our attention initial data in L1lo
(IR) \ BVlo
(IR).It seems that the behavior for 1 � � < 2 is very similar to the 
ase � = 1 whi
hhas been studied previously [2, 3, 9, 5℄ In fa
t, many of the proofs 
arry over to the
ase 1 � � < 2 without modi�
ation. Therefore, we fo
us mainly on � � 2 wherethe behavior is quite di�erent.The following result on the existen
e of entropy traveling waves is proved below:Theorem 1.1 (Traveling waves) Fix " = 1 and � � 2. Then the followingholds:(i) A 
ontinuous entropy traveling wave from �1 to 0 exists i� 
 � f 0(0). A
ontinuous entropy traveling wave from 0 to �1 exists i� 
 � f 0(�1).Similarly, 
ontinuous entropy traveling wave from 0 to +1 exist for 
 � f 0(0)and from +1 to 0 for 
 � f 0(1).(ii) There is a unique wave speed 
RH = f(1)�f(�1)2 determined by the Rankine-Hugoniot 
ondition for whi
h a travelingsho
k wave from +1 to �1 exists.(iii) If 
RH < 
 < f(0) then there is a dis
ontinuous traveling wave from 0 to �1.Similarly, dis
ontinuous traveling waves from +1 to 0 exist for wave speeds 
with f(�1) < 
 < 
RH .(iv) There exist no other bounded traveling waves.Our next theorem 
on
erns the long-time behavior of solutions to the Cau
hy prob-lem with periodi
 initial data for � � 2. Sin
e the periodi
ity ispreserved it isequivalent to 
onsider x 2 S1 � IR= ZZ . In the
ase � = � = 1 of a sour
e term with4



simple zeroes it is known that any solutioneither 
onverges in L1(S1) to +1 or �1or that it 
onverges in L1(S1) to a dis
ontinuous rotating wave solution. In the 
ase� � 2 these rotating waves do not exist due to theorem 1.1(iv). Instead we have:Theorem 1.2 (Convergen
e) Fix " = 1 and let � � 2. Then for any initial datau0 2 BV (S1) there exists a number ! = !(u0) 2 f�1; 0;+1g su
h that the solutionu(x; t) of the Cau
hy problem (3) satis�esku(x; t)� !(u0)kL1 ! 0 as t!1:It is not suprising that a solution of (2) 
an possiblely 
onverges to one of the stableequilibria u = �1. A trivial solution of (2) that 
onverges to 0 is u � 0. Thereare many non-trivial solutions of (2) whi
h 
onverge to 0. For example, if f(u) issymetri
 about u = 0 and the initial data u0(x) is anti-symmetri
 about x = 0,then the solution of (2) will 
onverge to u = 0 as t ! 1. The following theoremindi
ates that most solutions 
onverge to one of the stable zeroes �1:Theorem 1.3 (Instability) Fix " = 1 and 
onsider again the Cau
hy problem (3)with x 2 S1 and � � 2. Let u0 2 BV (S1) be an initial 
ondition su
h that the
orresponding solution u(x; t) 
onverges to zero as t ! 1. Then for any Æ > 0,there exists some v0 2 BV (S1), with ku0 � v0k � Æ su
h that the solution of (3)with initial data v0 will 
onverge to +1. Similarly, there exists an initial 
ondition~v0 
lose to u0 su
h that the solution 
onverges to �1.It is interesting to 
ompare the long-time behavior t!1 with the relaxation limit"! 0. To this end, we 
onsider initial data on IR with simple, isolated zeroes:u0(x) 2 BC1(IR) has zeros aj where j 2 J � ZZ (4)with u00(aj) 6= 0 and � := infj1;j22J ;j1 6=j2 jaj1 � aj2j > 0:Under this assumption it 
an be proved that (in 
ontrast to theorem 1.2) only thestable states +1 and �1 o

ur in the limiting solution.Theorem 1.4 (Relaxation) Let the initial value u0(x) satisfy (4), and u" be theadmissible solution of (3). Then the limitu(x; t) := lim"!0u"(x; t)exists for almost all (x; t) 2 IR � IR+. The fun
tion u(x; t) is pie
ewise 
onstantwith the 
onstants being �1. Constant pie
es of u(x; t) are separated by Lips
hitz
ontinuous 
urves x = zj(t) de�ned on [0; Tj), j 2 J . Moreover, the following holdfor these 
urves x = zj(t), j 2 J :(i) zj(0) = aj. 5



(ii) If limx!aj� sign(u0(x)) = 1, then zj(t) = aj + f(1)�f(�1)2 t.(iii) If limx!aj� sign(u0(x)) = �1, then zj(t) = aj + f 0(0)t.(iv) Curves x = zj(t) do not interse
t ea
h other ex
ept at t = Tj, the end points oftheir domain of de�nition.(v) At t = Tj <1, the 
urve x = zj(t) must interse
t with another 
urve x = zj0(t).The rest of the paper is organized as follows. In 
hapter 2 we study elementarysolutions su
h as entropy traveling waves and solutions of the Riemann problemand prove theorem 1.1. Chapter 3,4 and 5 
ontain the the proofs of theorems 1.2,1.3 and 1.4, respe
tively.A
knowledgements: The �rst author is partially supported by NSF Grant DMS-9705732. The se
ond author was supported by Deuts
he Fors
hungsgemeins
haftunder grant HA 3008/1-1 during his stay at the University of Maryland, CollegePark.2 Elementary Solutions2.1 Generalized 
hara
teristi
sSin
e generalized 
hara
teristi
s are our main tool in this paper, we re
all some oftheir properties in short.De�nition 2.1 Given a solution u of the Cau
hy problem (3), a Lips
hitz-
ontinuous
urve � = �(t) with t 2 [a; b℄ is 
alled a generalized 
hara
teristi
 if for almostall t 2 [a; b℄ the di�erential inequalityd�dt 2 [f 0(u(�(t)+; t); u(�(t)�; t)℄holds.A 
hara
teristi
 is 
alled genuine if u(��) = u(�+) along the whole 
hara
teristi
.Dafermos [1℄ has shown that generalized 
hara
teristi
s are either genuine 
hara
-teristi
s or sho
k 
urves, more pre
isely:Proposition 2.2 (Dafermos) From any point (�x; �t) with �t > 0 there is a uniqueforward 
hara
teristi
. This forward 
hara
teristi
 satis�esd�dt = 8>>><>>>: f 0(u(�(t); t) if u(�(t)�; t) = u(�(t)+; t)f(u(�(t)�; t))� f(u(�(t)+; t))u(�(t)�; t)� u(�(t)+; t) if u(�(t)�; t) > u(�(t)+; t)with initial value �(�t) = �x. 6



For genuine 
hara
teristi
s, this implies that �(t) and U(t) := u(�(t); t) satisfy the
hara
teristi
 equation U 0(t) = 1"U�(1� U2)�� 0(t) = f 0(U(t)) 9>>>=>>>; (5)De�nition 2.3 Given a solution u of the Cau
hy problem (3), a ba
kward 
har-a
teristi
 is a solution of the 
hara
teristi
 equation (5) with terminal 
ondition�(T ) = �end;U(T ) = Uend 2 [u(�(T )+; T ); u(�(T )�; T )℄:All ba
kward 
hara
teristi
s are 
on�ned between themaximal and minimal ba
k-ward 
hara
teristi
s. These extremal ba
kward 
hara
teristi
s are the ba
kward
hara
teristi
 
urves with U(T ) = u(�(T )�; T ) and U(T ) = u(�(T )+; T ).The following properties make generalized 
hara
teristi
s an important tool:Proposition 2.4 (Dafermos)(i) Genuine 
hara
teristi
s 
an interse
t only at their endpoints.(ii) The maximal and minimal ba
kward 
hara
teristi
 are de�ned on [0; T ℄ andare genuine 
hara
teristi
s.Note that this implies the following: If we 
an 
onstru
t a solution of the Cau
hyproblem by �lling a region S1�[0; T ℄ in (x; t)-spa
e 
ompletely with non-interse
ting
hara
teristi
s su
h that all maximal ba
kward 
hara
teristi
s extend to t = 0, thenthis must a
tually be the solution of the Cau
hy problem up to time T .2.2 The Riemann problemWe �x " = 1 and 
olle
t some basi
 properties of solutions to the Riemann problem.Given two states u�, u+ 2 [�1; 1℄, we study solutions of (3) with initial 
onditionu0(x) = ( u� for x < 0u+ for x > 0As in the 
onservation law 
ase we distinguish the two 
ases u� > u+ and u� < u+.In the �rst situation, there will be a sho
k 
urve emanating from x = 0. This sho
kis not a straight line but a 
urve x = �s(t) sin
e the left and right states u�(t) andu+(t) evolve a

ording to the rea
tion dynami
sdu�dt = u��(1� u2�)�: (6)7



From the Rankine-Hugoniot 
ondition we 
on
lude that the sho
k lo
ation �s is thesolution of the initial value problem�0s(t) = f(u+(t))� f(u�(t))u+(t)� u�(t)with initial 
ondition �s(0) = 0. Sin
e all solutions of (6) 
onverge to �1, 0 or +1,the sho
k speed 
onverges to f 0(�1), (f(1) � f(�1))=2 or f 0(1) depending on thesigns of u� and u+.In the 
ase u� < u+ the solution of the Riemann problem is similar to a rarefa
tionwave of a 
onservation law without sour
e term. The solution is most easily obtainedby solving the 
hara
teristi
 equations (5) with " = 1U 0(t) = U�(1� U2)�� 0(t) = f 0(U(t)) ) (7)for U(t) = u(t; �(t)) with initial valuesU(0) = u�; �(0) 2 (�1; 0℄U(0) 2 [u�; u+℄; �(0) = 0 andU(0) = u+; �(0) 2 [0;+1):By 
ontinuous dependen
e on initial data, the union of all these 
hara
teristi
s �llsthe whole (x; t)-plane. As no two of those 
hara
teristi
s interse
t, the solutionalong these 
hara
teristi
s provides the 
orre
t solution to the Riemann problem.The pro�le of these rarefa
tion waves at a �xed time t > 0 looks di�erent fromthe pro�le when no sour
e term is present. In parti
ular, for any given Æ < 1, themeasure of the set where ju(x; t)j � Æ grows sublinearly with t, if � � 1 and if theleft and right state have a di�erent sign.Independent of the signs of u� and u+ we have the following monotoni
ity result:Lemma 2.5 Let u be the solution of the Riemann problem with u� < u+. Then forany �xed time t � 0 the pro�le u(x; t) is monotone in x.Proof: Note �rst that u(x; t) � U�(t) for x � ��(t) where (U�; ��) solve the
hara
teristi
 equation (7) with U�(0) = u� and ��(0) = 0. Similarly, u(x; t) �U+(t) for x � �+(t) with (U+; �+) being the solution of (7) with U+(0) = u+ and�+(0) = 0. The 
hara
teristi
 
urves �� are the minimal and maximal forward
hara
teristi
s emanating from the point x = t = 0. Therefore, if the pro�le at sometime T > 0 is not monotone, we 
an �nd ��(T ) � x1 < x2 � �+(T ) withu(x1; T ) > u(x2; T ):We 
onsider the minimal ba
kward 
hara
teristi
s �1(t) emanating from (x1; T ) and�2(t) emanating from (x2; T ) together with the 
orresponding fun
tions U1(t) :=8



u(�1(t); t) and U2(t) := u(�2(t); t). Sin
e minimal ba
kward 
hara
teristi
s are gen-uine by proposition 2.4 both (U1; �1) and (U2; �2) satisfy the 
hara
teristi
 equation(7). Therefore U1(t) > U2(t) for all 0 � t � Tand hen
e by 
onvexity of f we 
on
lude that �2(t)� �1(t) is a de
reasing fun
tionof t. In parti
ular �2(0) > �1(0) whi
h 
ontradi
ts the fa
t that for the Riemannproblem all ba
kward 
hara
teristi
s starting with �(T ) 2 [��(T ); �+(T )℄ must have�(0) = 0. From this 
ontradi
tion it follows that u(x; T ) is an in
reasing fun
tion ofx. 1Next we show that in the 
ase where the left and right state have di�erent sign, theregion where the solution of the Riemann problem is 
lose to 0 is smaller than inthe 
ase when g(u) � 0.Moreover, the growth rate of su
h a region depends on thesize of �. For 1 < � < 2 the behavior is as in the previously studied 
ase � = 1, butfor � � 2the rates are di�erent.Lemma 2.6 Fix " = 1 and assume u� < 0 < u+ and � > 1. Then for any given0 < Æ < min(�u�; u+) there exists a 
onstant M = M(�; Æ) > 0 independent of u�and a time t� su
h thatju(x; t)j � Æ for t � t� and 8><>: jxj �M if 1 < � < 2jxj �M log(1 + Æt) if � = 2jxj �Mt��2��1 if � > 2:In parti
ular limt!1 measfx ; ju(x; t)j � Ægt = 0for all � � 1 and any Æ 2 [0; 1).Proof: We restri
t our 
onsiderations to x � 0 
orresponding to 
hara
teristi

urves with U(0) � 0. The situation for x < 0 
an be handled similarly by 
hangingsigns appropriately.It is our goal to provide lower and upper estimates for the solution U of the 
hara
-teristi
 equation (7) and the 
orresponding 
hara
teristi
 
urve �.Let U(t;U0) be the solution to the initial value problemU 0(t) = U�(1� U2)�� 0(t) = f 0(U(t))U(0) = U0; �(0) = 0:Given some time T > 0, we will �rst �nd estimates for the initial 
ondition U0 su
hthat U(T ;U0) = Æ. 9



As long as 0 � u � Æ 0 � u�(1� Æ2)� � u�(1� u2)� � u�holds. By elementary integration, we �nd thatU1��0 � U(t;U0)1�� � (�� 1)t � (1� Æ2)�� �U1��0 � U(t;U0)1��� ; (8)whi
h implies that in order to have U(T ;U0) = Æ, the initial value U0 has to satisfythe estimate�Æ1�� + T (�� 1)� 11�� � U0 � �Æ1�� + T (�� 1)(1� Æ2)�� 11�� : (9)The 
hara
teristi
 
urve �(t;U0) satis�es�(t;U0) = Z t0 f 0(U(�)) d�= Z U(t;U0)U0 f 0(v)v�(1� v2)� dv� Z U(t;U0)U0 Cfv��1(1� v2)� dvfor some 
onstant Cf > 0. Sin
e U(T ;U0) = Æ we have�(T ;U0) � Z ÆU0 Cfv��1(1� Æ2)� dv:Now we have to distinguish three 
ases: For 1 < � < 2 the integration yields�(T ;U0) � Cf(2� �)(1� Æ2)� �Æ2�� � U2��0 �� Cf(2� �)(1� Æ2)� �Æ2�� � (Æ1�� + (�� 1)T ) 2��1���using (9). Sin
e 2��1�� < 0 the right hand side 
onverges to some limit as T ! +1and therefore �(T ;U0) < M for some 
onstant M . However, U0 was 
hosen in a waythat U(T ;U0) = Æ. Hen
e by the monotoni
ity proved in the previous lemma weknow that u(x; T ) > Æ for x > M > �(T ). Choosing t� = 0 proves the lemma for1 < � < 2.For � = 2 the same reasoning yields�(T ;U0) � Cf(1� Æ2)� log(1 + ÆT )and again we may 
hoose t� = 0. 10



For � > 2 the estimate is�(T ;U0) � Cf(�� 2)(1� Æ2)� �U2��0 � Æ2���� Cf(�� 2)(1� Æ2)� �(Æ1�� + (�� 1)T )��2��1 � Æ2���= O(T ��2��1 ):By 
hoosing t� and M large enough, this proves the estimate for � > 2. 12.3 Traveling wavesIn this 
hapter we 
lassify all possible traveling wave solutions. Sin
e we deal withpossibly dis
ontinuous entropy solutions of our equation, we have to adopt the notionof traveling waves to this 
ase.De�nition 2.7 An entropy traveling wave solution of the hyperboli
 balan
e lawis a pie
ewise C1 solution of the form u(x; t) = u(x� 
t) that satis�es the ordinarydi�erential equation (f 0(u)�
)u0 = u�(1�u2)� at all points where u is di�erentiable.Moreover, at any point � where u is dis
ontinuous the Rankine-Hugoniot 
onditionf(u(�+))� f(u(��)) = 
(u(�+)� u(��))and the entropy 
ondition u(�+) � u(��)for the one-sided limits u(��) and u(�+) hold.It turns out that the 
ase 1 � � < 2 is very similar to the situation for � = 1 and
an be treated as in [9℄ while the 
ase � � 2 behaves quite di�erently. We therefore
on
entrate on the latter 
ase.Lemma 2.8 For � � 2, any entropy traveling wave 
an have at most one point ofdis
ontinuity.Proof: By the mean value theorem, 
 = f 0(u
) for some u
 between u(�+) andu(��). The entropy 
ondition then yields u(��) > u
 > u(�+). Therefore a trav-eling wave solution would have to pass 
ontinuously through u
 between any twosho
ks. This is impossible sin
e we haveu0 = u�(1� u2)�f 0(u)� 
 = 0at u = u
 as the right hand side has a removable singularity at u = u
 and isLips
hitz-
ontinuous. It follows from the basi
 existen
e and uniqueness theorem11



for ordinary di�erential equations that any solution u that satis�es u(�) = 0 forsome � vanishes identi
ally. Consequently, there are no traveling waves with morethan one sho
k. 1Lemma 2.9 For � � 2 all bounded entropy traveling waves are hetero
lini
 travelingwaves, i.e. they 
onverge to some steady state for � ! �1 and to some steady statefor � ! +1.Proof: Sin
e there 
an be at most one point of dis
ontinuity, the solution is asolution of the one-dimensional traveling wave o.d.e.u0 = u�(1� u2)�f 0(u)� 
 (10)for � suÆ
iently large. Therefore it 
an be bounded only if it 
onverges to someequilibrium for � ! +1. The same argument applies for � suÆ
iently negative. 1It is a simple matter to 
hara
terize the 
ontinuous traveling waves that 
onne
t thestates �1 and 0 so we state the result without proof.Proposition 2.10 (Continuous traveling waves) Let � � 2.(i) A 
ontinuous entropy traveling wave from �1 to 0 exists i� 
 � f 0(0). A
ontinuous entropy traveling wave from 0 to �1 exists i� 
 � f 0(�1).Similarly, 
ontinuous entropy traveling wave from 0 to +1 exist for 
 � f 0(0)and from +1 to 0 for 
 � f 0(1).(ii) There exist no 
ontinuous traveling waves 
onne
ting �1 to +1 or vi
e versa.The existen
e of dis
ontinuous entropy traveling waves depends again on the wavespeed. By 
ondition (F2) and (F3) of f , given any 
 and u, there is a unique statewhi
h we 
all h(u; 
) su
h that u and h(u; 
) satisfy the Rankine-Hugoniot 
onditionf(u)� 
u = f(h(u; 
))� 
h(u; 
)with sho
k speed 
.Lemma 2.11 (Dis
ontinuous traveling waves) The following three types of dis-
ontinuous traveling waves are possible for � � 2:(i) If h(-1,
)=1, i.e. 
 = 
RH then there exists a traveling sho
k wave of the formu(�) = ( +1 for � � 0�1 for � > 012



(ii) If f 0(�1) < 
 � 0 and h(�1; 
) < 1 then there is an entropy traveling wavethat 
onverges to 0 as � ! �1 is monotone for � � 0 and satis�es u(�) � 1for � > 0.(iii) If 0 � 
 < f 0(1) and h(1; 
) > �1 then there is an entropy traveling wave that
onverges to 0 as � ! +1 is monotone for � > 0 and satis�es u(�) � �1 for� � 0.Proof: Without restri
tion we suppose that the hetero
lini
 entropy traveling wavespossess exa
tly one dis
ontinuity at � = 0. This implies that 
 2 [f 0(�1); f 0(1)℄be
ause if 
 > f 0(1) then u(0�) > (f 0)�1(
) > 1 by 
onvexity of f and hen
eu(�) > (f 0)�1(
) for all � < 0. This however 
ontradi
ts the fa
t that u(�) must
onverge to an equilibrium as � ! �1. The same argument shows that it isimpossible to have 
 < f 0(�1).For the traveling wave equation (10) and 
 2 [f 0(�1); f 0(1)℄ the equilibrium u = 1 isalways stable while u = �1 is unstable. Therefore a 
onne
tion from +1 to �1 
anonly exist if +1 and �1 satisfy the Rankine-Hugoniot 
ondition. This is 
ase (i).For f 0(�1) < 
 < f 0(0) = 0 the equilibria u = �1 and u = 0 are both unstable forthe traveling wave equation (10). A solution is therefore only possible if the pointh(�1; 
) is between (f 0)�1(
) and 1. This is exa
tly the situation (ii). The samearguments apply if 0 = f 0(0) � 
 < f 0(1) and lead to 
ase (iii). 1From the previous lemmas we now obtain theProof of theorem 1.1:(i) is the 
ontent of lemma 2.10,(ii) and (iii) are proved in lemma 2.11,(iv) follows immediately from the previous results together with lemma 2.9. 1Remark 2.12 We emphasize again that this situation is in 
ontrast to the 
ase1 � � < 2 where an abundan
e of dis
ontinuous traveling waves 
an be found.3 Convergen
e ResultsIn this se
tion we proof that for � � 2 all solutions of the Cau
hy problem (3) withx 2 S1 �= IR=IN 
onverge pointwise to one of the zeroes of the sour
e term. Again,the 
ase 1 < � < 2 is very similar to the 
ase � = 1 and will not be 
onsidered here.To de
ide whether a parti
ular solution 
onverges to +1, �1 or 0, the followingde�nition will prove useful.De�nition 3.1 Given the solution u(t; x) of the Cau
hy problem we de�ne therange of the solution asR(u(�; t)) := fu(x�; t) ; x 2 S1g [ fu(x+; t) ; x 2 S1g:13



In [2℄ it was proved that for t > 0 the range has to be 
onne
ted, sin
e u 
an onlyjump downward at dis
ontinuities by the entropy 
ondition.Proposition 3.2 ([2℄) For x 2 S1 and any t > 0, R(u(�; t)) is a 
losed interval.The important property that distinguishes the 
ase of � � 2 from the previously
onsidered 
ase � = 1 is stated next.Lemma 3.3 Let u be a solution of (3) with � � 2 and assume that for some timeT > 0 we have 0 2 R(u(�; T )). Then there exists some fun
tion � = �(T ) withlimT!+1 �(T ) = 0 su
h thatR(u(�; T )) � [��(T ); �(T )℄:Proof: As 0 2 R(u(�; T )) there exists some x0 2 S1 su
h that u(x0�; T ) = 0 oru(x0+; T ) = 0. In either 
ase, �0 = f(x; t) ; x = x0; 0 � t � Tg is an extremal ba
k-ward 
hara
teristi
 and therefore must be a genuine 
hara
teristi
. In parti
ular,u(x0�; t) = 0 for all 0 � t < T:We will now show that if u(x1; T ) > �(T ) for some � = �(T ) and some x1 2 S1 thenthe minimal ba
kward 
hara
teristi
 �1(�; x1; T ) satis�es�1(T ; x1; T )� �1(0; x1; T ) > 1: (11)Sin
e x is on the 
ir
le S1 � IR=IN, �1 must interse
t the genuine ba
kward 
har-a
teristi
 �0 at some positive time. This however 
ontradi
ts proposition 2.4 andtherefore proves that u(x; T ) < �(T ) for all x. A similar argument shows thatu(x; T ) > ��(T ) for all x.To show (11) we distinguish two 
ases:(i) � = 2:In this 
ase, we set �(T ) := 1=(CT ) with a 
onstant C that will be determinedlater and assume that u(x1; T ) > �(T ) for some x1 2 S1. Let (U1; �1) bethe solution of the (ba
kward) 
hara
teristi
 equation (7) with terminal valuesU1(T ) = u(x1; T ) and �1(T ) = x1. By 
omparison with the equationU 0 = U�we �nd that U1(t) � (CT + (T � t))�1and hen
e �1(T )� �1(0) = Z T0 f 0(U1(t)) dt14



� f 00(0) Z T0 U1(t) dt� f 00(0) Z T0 dtCT + (T � t)= f 00(0) log�C + 1C �> 1if C < (exp(1=f 00(0)) � 1)�1 whi
h proves (11). Completely analogous argu-ments show that u(x1; T ) < ��(T ) leads to �1(T )� �1(0) < �1. Noting that�(T )! 0 as T !1 
ompletes the proof for the 
ase n = 2.(ii) � > 2:In this 
ase we 
hoose � di�erently and let �(T ) be the solution at time T ofthe initial value problem U 0(t) = U�(1� U2)�;U(0) = (f 00(0)T )�1:Again we assume that u(x1; T ) > �(T ) for some x1 2 S1 and denote with(U1; �1) the solution of the (ba
kward) 
hara
teristi
 equation. Sin
e U1 solvesthe same di�erential equation as U we get that U1(t) > U(t) � U(0) =(f 00(0)T )�1 for 0 � t � T . Using the 
onvexity of f , this implies that�(T )� �(0) = Z T0 f 0(U1(t)) dt� f 00(0) Z T0 U1(t) dt> 1whi
h 
ontradi
ts proposition 2.4. Again, the assumption u(x1; t) < ��(T )leads to the same 
ontradi
tion.It remains to show that � 
onverges to zero as T ! +1. This follows imme-diately by 
omparison with the initial value problem�U 0(t) = �U�; �U(0) = 1Tf 00(0)whi
h 
an be solved expli
itly and whi
h yields�(T ) � �U(T ) = �(f 00(0)T )��1 � (�� 1)T� 11�� :It is easy to 
he
k that the right hand side 
onverges to 0 as T ! +1. 115



Now we 
an prove theorem 1.2 on the 
onvergen
e of solutions as t! +1.Proposition 3.4 For any initial data u0 with u0(x) 2 [�1; 1℄ for all x 2 S1 thereexists a number ! = !(u0) 2 f�1; 0;+1g su
h thatku(x; t)� !(u0)kL1 ! 0as t!1.Proof: We distinguish two 
ases:1) 0 =2 R(u(�; T )) for some time T > 0. Then either R(u(�; T )) 2 (0;+1) orR(u(�; T )) 2 (�1; 0). For de�niteness, we assume the �rst possibility. Sin
e therange is a 
losed interval, we 
an �nd � > 0 su
h that u(x; T ) � � for all x 2 S1.Applying the 
omparison prin
iple to the solution u and the solution of the Cau
hyproblem with u � � at time t = T we 
an then 
on
lude that u(x; t) ! 1 ast ! +1 for a.e. x 2 S1. Similarly, if R(u(�; T )) 2 (�1; 0) we have u(x; t) ! �1for t! +1.2) 0 2 R(u(�; t)) for all times t > 0. We prove that in this 
ase the solution 
onvergesto zero pointwise. This is just a 
onsequen
e of the previous lemma, sin
e for anyÆ > 0 we 
an �nd some T > 0 su
h that �(t) < Æ for all t � T . Lemma 3.3 thenimplies that ju(x; t)j = ju(x�; t)j � �(t) � Æ for all x 2 S1 and t � T:and hen
e ku(�; t)kL1 ! 0 as t! +1: 13.1 An exampleWe illustrate by a simple example that 
onvergen
e to the middle zero a
tuallyo

urs. To this end, we 
hoose f(u) = u2 and 
onsider the initial 
onditionu0(x) = ( +1 for 0 < x � 12�1 for 12 < x � 1:By symmetry, if (U(t); �(t)) solves the 
hara
teristi
 equation, so does (�U(t); 1 ��(t)). These two 
hara
teristi
s meet at x = 12 and by the Rankine-Hugoniot 
ondi-tion, a standing sho
k is formed at x = 12 . For 0 < t � 1 the forward 
hara
teristi
swith value U(t) = �1 meet at the sho
k, but for t > 1 the L1-norm of the solutionde
reases. Sin
e all 
hara
teristi
s are symmetri
 with respe
t to x = 12 the solution
an neither 
onverge to +1 nor to �1 and so it must tend to 0.16



4 Instability under perturbationsAs we have seen in the previous 
hapter, any solution tends to one of the zeroes ofthe sour
e term as t tends to in�nity. However, most of the solutions will tend tothe stable zeroes u = +1 and u = �1 of the sour
e term, while 
onvergen
e to theweakly unstable zero u = 0 is very ex
eptional. In this 
hapter we study the basinsof attra
tion for the three zeroes of the sour
e term and prove theorem 1.3.De�nition 4.1 Let B�1, B0 and B1 � L1(S1; IR) be the sets of those initial 
on-ditions for whi
h the solution of the Cau
hy problem (3) 
onverges to �1, 0 and 1pointwise as t! +1.We will show that for any u0 2 B0 we 
an �nd an arbitrarily small perturbation v0su
h that u0 + v0 2 B1. To 
onstru
t a suitable perturbation, we �rst need someadditional notation:De�nition 4.2 For u0 2 L1(S1) \BV (S1) and Æ > 0 we setuÆ0(x) := supjx�yj�Æ u0(y) + Æ:The fun
tion uÆ0 has the following properties:Lemma 4.3(i) uÆ0 > u0(ii) kuÆ0 � u0kL1(S1) � Æ(1 + 3TV (u0)) where TV is the total variation of u0.(iii) For almost all Æ > 0 the fun
tions u0 and uÆ0 have no 
ommon point of dis
on-tinuity, i.e. u0(x�) 6= u0(x+)) uÆ0(x�) = uÆ0(x+):Proof: (i) follows immediately from the de�nition of uÆ0.(ii) Consider the partition 0 = x1 < x2 < : : : < xN = 1 of S1 with xi+1 � xi < Æ.Note that by de�nition of uÆ0 for any x 2 [xi; xi+1℄0 � uÆ0(x)� u0(x) � supy2[x�Æ;x+Æ℄u0(y) + Æ � infy2[x�Æ;x+Æ℄u0(y)and hen
eZ xi+1xi juÆ0(x)� u0(x)j dx � ÆTV (u0; [xi � Æ; xi+1 + Æ℄) + Æ(xi+1 � xi)� Æ TV (u0; [xi�1; xi+2℄) + Æ(xi+1 � xi)where TV (u0; [a; b℄) is the total variation of u0 on the interval [a; b℄. Summationover i then yields the desired inequality.(iii) Note �rst that if uÆ0 is dis
ontinuous at some x0 2 S1, then u0 is dis
ontinuous17



at x0� Æ or at x0+ Æ be
ause if u0 was 
ontinuous both at x0� Æ and x0+ Æ then thesupremum of u0 over [x� Æ; x+ Æ℄ also had to be 
ontinuous at x0. As u0 is in BV,it possesses at most 
ountably many dis
ontinuities, and the set of all di�eren
esbetween two of these dis
ontinuities is 
ountable, too. This implies that only for
ountably many Æ the fun
tion u0 is dis
ontinuous simultanously at some x0 andx0 � Æ. Similarly, there are only 
ountably many Æ su
h that u0 is dis
ontinuous atsome x0 and x0 + Æ. For all other values of Æ there is no point where both fun
tionsu0 and uÆ0 are dis
ontinuous. 1The importan
e of property (iii) is due to the following lemma:Lemma 4.4 Assume that u0; v0 2 B0 and u0 � v0. Then for any �0 > 0 the setfx 2 S1; [u0(x�); u0(x+)℄ \ [v0(x�); v0(x+)℄ \ [��0; �0℄ 6= ;gis non-empty.Proof: We 
onsider the solutions u and v asso
iated with the initial 
onditions u0and v0.For any solution w of (3) we de�ne the spatial averageI(w(�; t)) := ZS1 w(x; t) dx:From the weak formulation of the hyperboli
 balan
e law, one 
an derive the ordinarydi�erential equation ddtI(w) = ZS1 w�(1� w2)� dxfor I(w). In view of the previous se
tion both I(u(�; t)) and I(v(�; t)) must 
onvergeto 0 as t!1.Let J be the maximal interval where the sour
e term u�(1 � u2)� is monotonein
reasing. From lemma 3.3 we know that there exists some time T > 0 su
h thatboth R(u(�; T )) � J and R(v(�; T )) � J .If I(v(�; T )) > I(u(�; T )) then I(v(�; t)) 
annot 
onverge to 0 be
ause for all t > Twe have ddtI(v(�; t)) � ddtI(u(�; t))and hen
e I(v(�; t))� I(u(�; t)) � I(v(�; T ))� I(u(�; T )) > 0.This implies that at time t = T we must have I(v(�; T )) � I(u(�; T )). Sin
e u � vby Kruzhkov's 
omparison prin
iple, this implies that I(v(�; T )) = I(u(�; T )) andu(x; T ) = v(x; T ) for almost every x 2 S1.Consider now the extremal ba
kward 
hara
teristi
s (U; �) evolving from some pointwith t = T . By proposition 2.4, the 
hara
teristi
 
urve � extends ba
k to t = 0and is a genuine 
hara
teristi
 both for u and v. In parti
ular, u(�(t); t) = U(t) =v(�(t); t) for all t 2 (0; T ℄. This implies that u(�(0)+; 0) � U(0) � u(�(0)�; 0) and18



v(�(0)+; 0) � V (0) � u(�(0)�; 0). So, either u0(�(0)�) = u0(�(0)+) or u0(�(0)�) <u0(�(0)+) with U(0) 2 [u0(�(0)�); u0(�(0)+)℄.Choosing T possibly larger and using lemma 3.3, we 
an make sure that jU(0)j � �0holds and hen
e both possibilities imply that[��0; �0℄ \ [u0(�(0)�); u0(�(0)+)℄ 6= ;:Sin
e the same holds for v0 the lemma is proved. 1We are now able to prove theorem 1.3.Proof of theorem 1.3: Assume that u0 2 B0. We will show that for Æ suÆ
ientlysmall u0 and uÆ0 
annot satisfy the assumptions of the previous lemma. From lemma4.3 we know that uÆ0 � u0 + Æ and uÆ0 ! u0 in L1(S1) as Æ ! 0. Therefore, uÆ0 2 B1for all Æ small.Given Æ, assume now that �0 < Æ3 and uÆ0 2 B0. The previous lemma states thatthere must exist at least one x0 with[u0(x0�); u0(x0+)℄ \ [uÆ0(x0�); uÆ0(x0+)℄ \ [��0; �0℄ 6= ;: (12)However by lemma 4.3 we know that u0 and uÆ0 have no 
ommon point of dis
onti-nuity. So, there are three possibilities:1) If u0(x0�) = u0(x0+) and uÆ0(x0�) = uÆ0(x0+) then (12) is not possible asuÆ0 � u0 � Æ > 2�0.2) Similarly, for u0(x0�) < u0(x0+) and uÆ0(x0�) = uÆ0(x0+) (12) is not possible asuÆ0(x0) � u0(x0+) + Æ.3) For u0(x0�) = u0(x0+) and uÆ0(x0�) < uÆ0(x0+) the same argument applies.So, in all three possible 
ases, (12) 
annot be satis�ed and therefore our assumptionthat uÆ0 2 B0 has led to a 
ontradi
tion. This shows that uÆ0 2 B1 for all smallÆ. To show that there are initial data near u0 for whi
h the solution 
onverges to�1 one has to perform a similar 
onstru
tion as for uÆ0 to get a fun
tion whi
h isstri
tly smaller than u0 and has no 
ommon points of dis
ontinuity with u0. The
onstru
tion of su
h a fun
tion is 
ompletely analogous to the 
onstru
tion of uÆ0.1Sinestrari has proved in [13℄(theorem 4.7) that B�1 and B1 are open in L1(S1).Sin
e his proof only requires 
onvergen
e to a stable zero of the sour
e term in L1,it applies immediately to our situation. As the previous lemma states that B0 isnowhere dense we have the following 
orollary.Corollary 4.5 The set of initial 
onditions u0 for whi
h the solution of the Cau
hyproblem (3) 
onverges to �1 or +1 is open and dense in L1(S1).19



4.1 An exampleTo illustrate the 
onvergen
e to 0 we study as an example the behaviour of solutionsof the Cau
hy problem for whi
h the initial 
ondition is a step-fun
tionu�(x) = ( u� for 0 < x � �u+ for � < x � 1where u� > 0 > u+ for de�niteness and � is treated as a parameter.Lemma 4.6 There exists a unique value �0 = �0(u�; u+) 2 (0; 1℄ su
h that u�0 2 B0.For �0 < � � 1 we have u� 2 B1 and for 0 < � < �0 we have u� 2 B�1.Proof: The u� are ordered: �1 � �2 ) u�1 � u�2 :Therefore if u�1 2 B1 for some �1 we have automati
ally u� 2 B1 for all � 2 [�1; 1℄ bythe 
omparison prin
iple. Similarly, if u�2 2 B�1 for some �2 we have u� 2 B�1 for all� 2 [0; �2℄. Therefore we 
an �nd � := supf� ; u� 2 B1g and �� := inff� ; u� 2 B�1g.Sin
e B1 and B�1 are open in L1 we know that u� 2 B0 for � 2 [�; ��℄. To show that� = �� we just note that u�(0) and u��(0) obviously do not satisfy the 
ondition oflemma 12 if � < �� and hen
e 
annot both belong to B0. 15 Convergen
e in the zero rea
tion time limitIn this se
tion, we shall 
onsider the limit "! 0 and prove theorem 1.4.Re
all that by (4) we require the initial 
ondition u0 to be di�erentiable with simplezeroes whi
h are at least a distan
e of � apart from ea
h other.This in
ludes in parti
ular the 
ase that u0 is periodi
 with simple zeroes and allowstherefore a 
omparison with the long-time limit results.The following lemma on the stru
ture of the solutions of (3) states that the numberof sign 
hanges of the solution is non-in
reasing in time.Lemma 5.1 ([4℄, Lemma 3.2.1) For �xed " let u"(x; t) be the solution of (3) withinitial value u0(x) satisfying assumption (4). Then at ea
h �xed t � 0, there arepoints z"j (t), j 2 J 0 � J , su
h that 
hanges of sign(u"(x; t)) o

ur and only o

urwhen x 
rosses one of the 
urves x = z"j (t), t < tj.Moreover, the z"j (t) are 
urves de�ned on [0; T "j ), j 2 J 0 � J .Proof: This lemma is similar to Lemma 3.2.1 in [4℄ and the remark thereafter. Al-though the lemma in [4℄ is for the 
ase where J is �nite and the sour
e term in (3)is u(1� u2)=", 
orresponding to � = � = 1, the proof of it only used the properties20



that two extremal ba
kward 
hara
teristi
s of (3) do not interse
t and that alongextremal ba
kward 
hara
teristi
s, the sign of u" does not 
hange. Sin
e these twoproperties still hold for (3), the lemma holds for arbitrary �, � � 1. 1The following lemma, proved in [4℄ for � = � = 1 still holds for (3) sin
e the proofin [4℄ did not use anything related to the sour
e term.Lemma 5.2 Let u0(x) satisfy the assumption (4). Then the 
urves z"j (t), j 2 Jgiven in Lemma 5.1 are Lips
hitzian with Lips
hitz 
onstant L � maxu�supju0(x)j jf 0(u)jindependent of ".Moreover, if the domain of de�nition of z"j (t) is [0; T "j ℄ with T "j < 1, then there isanother 
urve z"j0(t) interse
ting z"j (t) at t = T "j = T "j0.Sin
e, by (4), the zeroes of u0 are isolated, the uniform Lips
hitz estimate showsthat the T "j > �2L > 0 for all j independent of ".We now 
onsider the limit "! 0.Lemma 5.3 For any sequen
e f"ng1n=1 with "n ! 0+ as n!1, there is a subse-quen
e, also denoted by f"ng for simpli
ity, su
h that the limitu(�x; �t) = lim"n!0+u"n(�x; �t) (13)exists for almost all (�x; �t) 2 IR� IR+.The range of u(�x�; �t) is f�1; 1g.Furthermore, there are uniformly Lips
hitzian 
urves zj(t) de�ned on [0; Tj), j 2 Jsu
h that for ea
h �xed t > 0, u(x; t) is 
onstant for all x between two adja
ent
urves zj(t).Proof: Let x = z"j (t), j 2 J , be the 
urves provided by lemma 5.2. These 
urvesz"nj (t) de�ned on [0; T "nj ℄ are Lips
hitzian uniformly in "n > 0 and j. Thus, by theArzela-As
oli theorem, there is a sequen
e f"ng su
h thatz0j (t) := limn!1 z"nj (t) (14)exists on [0; zj := limn!1 T "nj ℄. By the de�nition of z"nj (t), for ea
h �xed t > 0,limn!1 sign(u"n(x; t)) is �xed for all x between two adja
ent points among zj(t),j 2 J . To simplify the notation throughout the rest of this proof, we just ignorezj(t) if t is outside the domain of de�nition of zj(t).Fix now some time �t > 0.Any point �x 2 IR n [jz0j (�t) must fall between some adja
ent 
urves x = z0j (�t)and x = z0j (�t) where j; j 2 J [ f�1;+1g and we have set z0�1(t) := �1 andz0+1(t) :=1. Let z0j (�t) < z0j0(�t) be two adja
ent points at t = �t.21



We have already seen that the limit limn!1 sign(u"n(�x; �t)) is a 
onstant for allz0j (�t) < �x < z0j0(�t). For de�niteness, we assume this 
onstant is 1, i.e.u"n(�x; �t) > 0for all z0j (�t) < �x < z0j0(�t) and n suÆ
iently large.The 
ase u"n(�x; �t) < 0 
an be handled in the same way.We 
onsider the minimal ba
kward 
hara
teristi
 �"n(t; �x; �t) through the point (�x; �t)whi
h satis�es d�"ndt = f 0(U"n(t));dU"ndt = 1"nU�"n(1� U2"n)�;(�"n(�t); U"n(�t)) = (�x; u"n(�x�; �t)):
9>>>>>>>>>=>>>>>>>>>; (15)A

ording to Proposition 2.4, the solution of (15) is de�ned on [0; �t℄ andU"n(t) = u"n(�"n(t; �x; �t)�; t) = u"n(�"n(t; �x; �t)+; t)for almost allt 2 [0; �t ℄:If u"n(�x; �t) = 1, then U"n(t) � 1.Hen
e the limit is u(�x; �t) = 1 if u"n(�x; �t) = 1 for all suÆ
iently large n.If u"n(�x; �t) 6= 1 for in�nitely many n, then only two possibilities exist: Eitherlim infn!1 u0(�"n(0; �x; �t)) > 0in whi
h 
ase it follows easily from (15) that limn!1 u"n(�x; �t) = 1 orlim infn!1 u0(�"n(0; �x; �t)) = 0:By extra
ting a subsequen
e of f"ng1n=1, still denoted by f"ng, we havelimn!1u0(�"n(0; �x; �t)) = 0:Sin
e u0(x) is 
ontinuous with isolated zeroes we 
an assume that�"n(0; �x; �t)! a (16)with u0(a) = 0, possibly after extra
ting a further subsequen
e if ne
essary.Sin
e u"n(�x�; �t) > 0, it is ne
essary in view of (15) that a < �x. We 
laim that if forsome 0 < Æ < 1 and all n suÆ
iently large0 < u"n(�x; �t) � Æ < 1; (17)then j�x� aj = 8<: O(1) " 1��1n ; if � > 1; � 6= 2O(1) j"n ln "nj; if � = 2: (18)22



To this end, we 
onsider the system for the extremal ba
kward 
hara
teristi
s (15)to derive �t"n = Z �UU0 duu�(1� u2)� (19)where U0 := u0(�"n(0; �U; �t)).We 
ontinue to estimate (19), using (17) as follows:�t"n = O(1) Z �UU0 duu� = O(1) 1U��10 � 1�U��1! :Sin
e 0 < U0 < �U we have U0 = O(1) " 1��1n : (20)From (15), we 
an also derive, for the 
ase � 6= 2 that�x� �"n(0; �x; �t) = Z �UU0 "nf 0(u)duu�(1� u2)�= O(1) "n Z �UU0 duu��1(1� u2)�= O(1) "n  1U��20 �O(1)!= O(1) " 1��1n :Similarly, for the 
ase � = 2, we get by integration�x� �"n(0; �x; �t) = O(1)j"n ln "nj:From the last two equations, we havej�x� �"n(0; �x; �t)j = 8<: O(1) " 1��1n ; if � > 1; � 6= 2O(1)j "n ln "nj; if � = 2:Then the 
laim (18) follows easily.Based on (18), we 
an see that if �x 6= a, then lim"n!0 u"n(�x; �t) = 1 if �x is betweentwo adja
ent points among zj(�t), j 2 J with lim"n!0 sign(u"n(�x; �t)) = 1. Similarlyone shows lim"n!0 u"n(�x; �t) = �1 for the 
ase lim"n!0 sign(u"n(�x; �t)) = �1. From theabove arguments, we see that the limit u(x; t) is a pie
ewise 
onstant fun
tion with
onstants being �1 whi
h are separated by the Lips
hitzian 
urves zj(t), j 2 J .These 
urves interse
t ea
h other only at the end points of their domain of de�ni-tion. 1The next lemma 
ompletes the proof of theorem 1.4.23



Lemma 5.4 Let u0 satisfy the assumption (4) and u" be the solution of (3). Thenthe limit u(�x; �t) = lim"!0+u"(�x; �t) (21)exists for almost all (�x; �t) 2 IR� IR+.The value of u(�x�; �t) is either 1, or �1.Furthermore, there exist 
urves z0j (t), j 2 J de�ned on [0; Tj), respe
tively, su
hthat:(i) if u(z0j (t)�; t) > u(z0j (t)+; t), then x = z0j (t) satis�es the Rankine-Hugoniot
ondition dz0jdt = f(u(z0j (t)�; t))� f(u(z0j (t)+; t))u(z0j (t)�; t)� u(z0j (t)+; t) = f(1)� f(�1)2 : (22)(ii) if u(z0j (t)�; t) < u(z0j (t)+; t), then the 
urve z0j (t) = aj + f 0(0)t and hen
e thespeed of the dis
ontinuity is f 0(0).Proof: By Lemma 5.3, we 
an 
hoose a sequen
e f"ng su
h thatu(x; t) := limn!1u"n(x; t) (23)exists for almost all (x; t) 2 IR� IR+ and u(x; t) = +1 or �1.Moreover there exist 
urves zj(t), j 2 J with zj(0) = aj, whi
h are uniformlyLips
hitz and whi
h do not interse
t ea
h other ex
ept at the end points t = Tj.These 
urves separate regions where u(x; t) = 1 from regions where u(x; t) = �1.Hen
e, the set of points of dis
ontinuity of u(x; t) is exa
tly the union of the 
urveszj(t) with j 2 J .There are two possibilities at x = zj(t):Case I. u(zj(t)�; t) > u(zj(t)+; t).Note that in this 
ase u(zj(t)�; t) = 1 and u(zj(t)+; t) = �1.Consider some point �x < zj(�t) and 
lose enough to zj(�t) at t = �t < Tj. Hen
e,limn!1 u"n(�x�; �t) = 1.Let �"n(t; �x; �t) be the minimal ba
kward 
hara
teristi
 asso
iated to u"n de�ned by(15). At t = 0, we have either(i) lim infn!1 u"n(�"n(0; �x; �t); 0) > 0 or(ii) lim infn!1 u"n(�"n(0; �x; �t); 0) = 0.For (i), we have that u"n(�"n(t; �x; �t); t) ! 1 as n ! 1 uniformly for t > Æ > 0,where Æ > 0 is any 
onstant. This leads to the expressionlimn!1 �"n(t; �x; �t)) = �x+ f 0(1)(t� �t): (24)Sin
e u0 is di�erentiable with isolated zeroes, one 
an assume for (ii) thatlimn!1 �"n(0; �x; �t)) = a � �x24



with u0(a) = 0.In both 
ases (i) and (ii), a := limn!1 �"n(0; �x; �t)) � �x (25)Sub
ase I(1): a < �x in (25).In this 
ase we setx1 := (�x+ a)=2 and t1 := �(�x� x1 � f 0(1)�t)=f 0(1) > 0: (26)The equation for �"n(t; �x; �t), (15), and ju0(x)j < 1 imply thatd�"n(t; �x; �t)dt < f 0(1)and hen
e �"n(t1; �x; �t) > x1. Figure5:1As �"n(0; �x; �t)! a for "n ! 0+, we 
on
lude from (17) and (18) thatu1 := u"n(�"n(t1; �x; �t); t1) � 1=2for n suÆ
iently large.Then system (15) implies that�t� t1"n = Z �uu1 duu�(1 + u)�(1� u)�� 2� Z �uu1 du(1� u)�= 8<: 2� log �1�u11��u � if � = 12���1 � 1(1��u)��1 � 1(1�u1)��1 � if � > 1:Using the de�nition of t1 from (26), we obtain the estimates1(1� �u)��1 � O(1)�t� t1"n = O(1) �x� x1"n for � > 1and 1� �u = O(1) exp ��t� t1"n ! = O(1) exp�� �x� x1"n � for � = 1:This implies j1� �uj � 8><>: O(1) � "n�x�a� 1��1 for � > 1O(1) exp �� �x�x1"n � for � = 1 (27)25



We 
an prove the same estimate when u"n(�x; �t) < 0.Independent of � � 1 we have1"nu"n(�x�; �t)�(1� (u"n(�x�; �t))2)� ! 0 (28)uniformly for �x < zj(�t) and 
lose to zj(�t).Similarly one 
an prove that (28) also holds uniformly for �x > zj(t) and 
lose tozj(t).Applying this estimate to the the weak form of (3)Z Tj0 ZIR ��u�t � f(u)�x � 1"nu�"n(1� u2"n)��� dxdt = 0for test fun
tions with 
ompa
t support 
on�ned near x = zj(t), 0 < t < Tj, onesees that the sho
k x = zj(t), 0 < t < Tj, is a weak solution of ut + f(u)x = 0.Thus, the Rankine-Hugoniot 
onditiondzjdt = f(u(zj(t)+; t))� f(u(zj(t)�; t))u(zj(t)+; t)� u(zj(t)�; t) = f(1)� f(�1)2holds if u(zj(t)+; t) < u(zj(t)�; t).Sub
ase I(2): a = �x in (25).By (24), this 
ase o

urs only if lim infn!1 u0(�"n(0; �x; �t)) = 0 and hen
e a = aj forsome j 2 J .We 
laim that this sub
ase 
annot happen at all for small enough "n > 0.Indeed, if a = �x was true, we would have�"n(t; �x; �t) � �x = a (29)from (25).Given Æ > 0 small, it follows again from (17) and (18) that 0 � 1� u"n(x; �t=2) < Æfor x 2 [aj�1 + Æ; aj � Æ℄ when "n > 0 is small enough.To establish above 
laim, it suÆ
es to prove that the forward 
hara
teristi
s �"n(t; �x�Æ; �t=2), t > �t=2 interse
t �"n(t; �x; �t) at some t < �t, whi
h is impossible in view ofLemma 3.1.7.To this end, we observe that before x = �"n(t; �x � Æ; �t=2) interse
ts x = �"n(t; �x; �t),the estimate u"n(x; �t) > 0 for �x� Æ < x < �x (30)holds due to �x < z"n(�t). This impliesd�"n(t; �x� Æ; �t=2)dt > 0and hen
e �"n(t; �x� Æ; �t=2) > �x� Æ:26



For any point x1 2 [(aj�1+aj)=2; �"n(t1; �x�Æ; �t=2)℄, we have �(0; x1; t1) < �x�Æ; sin
emaximal ba
kward 
hara
teristi
s 
annot 
ross the forward 
hara
teristi
s �"n(t; �x�Æ; �t=2) from the left as t de
reases. See Figure 5.2.Figure5:2This is the 
ase 
overed by Sub
ase I(1) or (i) before (23). Then our results for (i)and Sub
ase I(1) yields0 � 1� u"n(�"n(t; �x� Æ; �t=2)�; t) < Æwhen "n > 0 is suÆ
iently small. This infers thatd�"n(t; �x� Æ; �t=2)dt � f(1� Æ)� f(0)before x = �"n(t; �x � Æ; �t=2) meeting x = �"n(t; �x; �t). Thus, the 
urve x = �"n(t; �x �Æ; �t=2) and x = �"n(t) must interse
t at some t < �t. This proves our 
laim.Case II. u(zj(t)�; t) < u(zj(t)+; t).In this 
ase, one has u(zj(t)�; t) = �1 = �u(zj(t)+; t).We 
laim that in this 
ase, zj(�t) � aj for some j 2 J and all �t 2 [0; Tj) under theassumption f 0(0) = 0.To this end, we 
onsider two points x1 and x2 suÆ
iently 
lose to zj(�t) and x1 <zj(�t) < x2. By de�nition of zj(t), sign(u"n(x1�; �t)) = 1 = �sign(u"n(x2�; �t)) forlarge n.From (15), the minimal ba
kward 
hara
teristi
s through points (x1; �t) and (x2; �t)satisfy d�"n(t; x1; �t)dt < 0 < d�"n(t; x2; �t)dt : (31)Sin
e the sign of u"n is 
onstant along extremal ba
kward 
hara
teristi
s, one hasx1 < �(t; x1; �t) < zj(t) < �(t; x2; �t) < x2: (32)Now, let x1 ! zj(t)� and x2 ! zj(�t)+, estimates (31) and (32) imply that zj(t) is
onstant for t 2 [0; �t℄.It follows immediately from the arbitrariness of �t 2 [0; Tj) and zj(0) = aj thatzj(t) � aj for all t in its domain of de�nition.From the above analysis, we see that the the limit fun
tion u(x; t) is 
ompletelydetermined by the 
urves zj(t), j 2 J .Furthermore, these 
urves zj(t) are uniquely determined by the Rankine-Hugoniot
ondition (30) with zj(0) = aj or is equal to a 
onstant aj for some j 2 J . Inother words, no matter how the subsequen
e f"ng are 
hosen, the limit fun
tionsu(x; t) = limn!1 u"n(x�; t) are the same.This proves the 
onvergen
e of u" as "! 0+. 127
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