
Salar onservation laws with a degenerate soure: Travelingwaves, large-time behavior and zero relaxation limitHaitao Fan, Department of Mathematis, Georgetown University , Washington,DC 20057, U.S.A., email:fan�math.georgetown.eduJ�org H�arterih, Freie Universit�at Berlin, Arnimalleee 2-6, 14195 Berlin, Germany,email:haerter�math.fu-berlin.deAbstratWe study a salar hyperboli onservation law with a bistable soure termwhose zeroes are degenerate. It turns out that the struture of the set oftraveling waves as well as the long-time behavior is di�erent from the asewhere the zeroes are non-degenerate. In partiular, for x 2 S1, there existinitial data for whih the solution onverges pointwise to the unstable zero ofthe soure term.We also generalize reent results of Fan, Jin and Teng onerning the zeroreation time limit to the ase of soure terms with degenerate zeroes. Thisshows that in general the long time limit and the zero reation time limitannot be interhanged.1 IntrodutionIf a nonlinear soure term is added to a hyperboli onservation law both the shortand long time behaviour may hange drastially. In this paper, we demonstrate howthe nature of the soure term a�ets the behaviour. Motivated by nonlinearitiesthat our in equations desribing liquid-vapor phase transitions and in reativeow models, we study the equationut + f(u)x = g(u)� u 2 IR; �; � � 1; (1)with g(u) = ujuj��1(1� u2)j1� u2j��1;where the ux is onvex and the spae variable x is either onsidered on the wholereal line or on the irle S1. Many of our results do not depend on the parameter" so we will set " = 1 in hapters 2 through 4. Only in hapter 5 when the zeroreation time limit is onsidered, " will play a role.The soure term in above equation is of \bistable" type, i.e. there are two statesu = +1 and u = �1 whih are stable equilibria of the pure reation dynamisut = g(u). In between there is an unstable state u = 0 whih is weakly unstable if� > 1, i.e. the instability is not visible on the linear level.Before we give preise statements and proofs, let us omment on some related work.The ase � = � = 1 where all zeroes of the soure term are non-degenerate, hasbeen studied intensively by several authors. Most of the work also assumes a onvex1



ux so that generalized Charateristis an be used as a tool. Masia and Sinestrari[11℄ studied the perturbed Riemann problem for onvex ux when the initial dataoinides with that of the Riemann problem outside a ompat set. If both asymp-toti states are zeroes of g, then the solution for large time an be desribed by asequene of shoks and possibly disontinuous traveling waves.A related situation has been studied by Masia [8℄. He onsiders a soure term withonly two zeroes g(0) = g(1) = 0 and g(u) > 0 between 0 and 1 but with a possiblynon-onvex ux. The existene of traveling waves between 0 and 1 and the solutionof a orresponding Riemann problem with states u� = 0 and u+ = 1 is studied. Inontrast to the situation treated below, the soure term has a de�nite sign and allthe tehnial diÆulties ome from the non-onvexity of the ux f .Another line of researh deals with x 2 S1 when the ux is onvex and g hassimple zeroes. Lyberopoulos [7℄, Fan and Hale [2℄ and Sinestrari [12℄ ould proveindependently that all solutions onverge either to a spatially homogenous state orto a rotating wave. As Sinestrari showed, the soure term typially dominates thelarge-time behaviour and almost all solutions onverge pointwise to one of the stableequilibria of the pure reation dynamis. Fan and Hale [3℄ proved that there exists aglobal attrator for the semiow whih is generated in BV \ Lp for 1 � p <1 andthat this attrator onsists of the steady states, in�nitely many rotating waves andheterolini orbits between these objets. A geometri desription of the heteroliniorbits has been given by H�arterih [5℄.In the ase where the soure term has simple zeroes the rotating waves represent thesolutions for whih the e�et of the reation term and the onvetion balane eahother. As we will see, the situation in the ase of a more degenerate soure term isdi�erent: Firstly, there are no rotating waves in the degenerate ase. Furthermore,instead of onverging to rotating waves, there are solutions whih deay pointwise tozero although 0 is unstable for the reation dynamis. However it seems a diÆultissue to predit the ultimate fate of a given initial ondition.The relaxation limit has been studied in a similar situation by Fan, Jin and Teng[4℄. They onsidered a bistable soure term with three simple zeroes �1 and 0. Theinitial ondition u0 was supposed to have a hange of sign at x = 0. There aretwo di�erent possibilities: If u0(x) � x < 0 for x 6= 0 then the solution onverges to+1 for x < t and to �1 for x > t where  omes from the Rankine-Hugoniotshok ondition. If however u0(x) � x > 0 for x 6= 0 then the limiting solution hasa \non-shok" disontinuity as it onverges to �1 for x < t and to +1 for x > twith  = f 0(0).From these results, we see that the behavior large time limit and relaxation limit ofthe solution an be quite di�erent.1.1 The main resultsThe existene and uniqueness theory for salar onservation laws with soure termsdi�ers only slightly from the theory without soure term. In partiular, there are2



no smooth solutions even for smooth initial data. However the Cauhy problemut + f(u)x = g(u); u(0; �) = u0(�) (2)has a (loal) solution for u0 2 BV (IR) \ L1lo(IR) if one onsiders as a solution allweak solutions whih satisfy the Kruzhkov entropy ondition, see [6℄. This solutionis also unique and a omparison priniple holds:Proposition 1.1 (Kruzhkov) Consider solutions u and v of the Cauhy problem(2) with initial data u0 and v0. If u0 and v0 are ordered, i.e.u0(x) � v0(x) for almost all x 2 IRthen the same inequality holds for later times:u(t; x) � v(t; x) for almost all x 2 IR:Although existene, uniqueness and the omparison priniple hold in broader gen-erality, we will take g(u) = 1" �ujuj��1(1� u2)j1� u2j��1�with �, � � 1. Our proofs for for the part u(x; t) � 0 is almost the same as thatfor the u(x; t) � 0 part. In fat, a hange of variable u 7! �u in (1) an onvert theproofs for one part to the other. For this reason, and for simpliity of presentation,we use the simpli�ed notation g(u) = u�(1� u2)�:We onsider the Cauhy problemut + f(u)x = g(u)" ; u(0; �) = u0(�) (3)and assume the following on f :(F1) f is C2,(F2) f is stritly onvex, i.e. f 00 > 0,(F3) f(0) = f 0(0) = 0.Note that (F3) is no real restrition sine we an �rst add a onstant to ahievef(0) = 0. If f 0(0) 6= 0 then we onsider the equation in a moving oordinate system,i.e. we replae x by ~x = x� f 0(0)t suh that ~u de�ned by ~u(~x; t) := u(x; t) satis�es~ut + (f 0(~u)� f 0(0))~u~x = g(~u)" :3



Remark 1.2 The speial hoie of the soure term was made to failitate somealulations and make the presentation easier. Similar results hold for more generalsoure terms g(u). Instead of assuming � � 2 in theorems 1.2 and 1.3 below onethen requires that R 0�1 f 0(U(�)) d� does not exist where U(�) solves the terminalvalue problem dUdt = g(U); U(0) = 1:This is equivalent to the onditionf 0=g =2 L1((�1; 1); IR)whih also appears as a ondition in [10℄ in the ase of a non-onvex ux f wheregeneralized harateristis annot be used.For onveniene, we will always assume that the solution is ontinuous from the leftat any point, i.e. u(x; t) = u(x�; t):By the omparison priniple, any solution to bounded initial data will exist globallyin time and hene we restrit our attention initial data in L1lo(IR) \ BVlo(IR).It seems that the behavior for 1 � � < 2 is very similar to the ase � = 1 whihhas been studied previously [2, 3, 9, 5℄ In fat, many of the proofs arry over to thease 1 � � < 2 without modi�ation. Therefore, we fous mainly on � � 2 wherethe behavior is quite di�erent.The following result on the existene of entropy traveling waves is proved below:Theorem 1.1 (Traveling waves) Fix " = 1 and � � 2. Then the followingholds:(i) A ontinuous entropy traveling wave from �1 to 0 exists i�  � f 0(0). Aontinuous entropy traveling wave from 0 to �1 exists i�  � f 0(�1).Similarly, ontinuous entropy traveling wave from 0 to +1 exist for  � f 0(0)and from +1 to 0 for  � f 0(1).(ii) There is a unique wave speed RH = f(1)�f(�1)2 determined by the Rankine-Hugoniot ondition for whih a travelingshok wave from +1 to �1 exists.(iii) If RH <  < f(0) then there is a disontinuous traveling wave from 0 to �1.Similarly, disontinuous traveling waves from +1 to 0 exist for wave speeds with f(�1) <  < RH .(iv) There exist no other bounded traveling waves.Our next theorem onerns the long-time behavior of solutions to the Cauhy prob-lem with periodi initial data for � � 2. Sine the periodiity ispreserved it isequivalent to onsider x 2 S1 � IR= ZZ . In thease � = � = 1 of a soure term with4



simple zeroes it is known that any solutioneither onverges in L1(S1) to +1 or �1or that it onverges in L1(S1) to a disontinuous rotating wave solution. In the ase� � 2 these rotating waves do not exist due to theorem 1.1(iv). Instead we have:Theorem 1.2 (Convergene) Fix " = 1 and let � � 2. Then for any initial datau0 2 BV (S1) there exists a number ! = !(u0) 2 f�1; 0;+1g suh that the solutionu(x; t) of the Cauhy problem (3) satis�esku(x; t)� !(u0)kL1 ! 0 as t!1:It is not suprising that a solution of (2) an possiblely onverges to one of the stableequilibria u = �1. A trivial solution of (2) that onverges to 0 is u � 0. Thereare many non-trivial solutions of (2) whih onverge to 0. For example, if f(u) issymetri about u = 0 and the initial data u0(x) is anti-symmetri about x = 0,then the solution of (2) will onverge to u = 0 as t ! 1. The following theoremindiates that most solutions onverge to one of the stable zeroes �1:Theorem 1.3 (Instability) Fix " = 1 and onsider again the Cauhy problem (3)with x 2 S1 and � � 2. Let u0 2 BV (S1) be an initial ondition suh that theorresponding solution u(x; t) onverges to zero as t ! 1. Then for any Æ > 0,there exists some v0 2 BV (S1), with ku0 � v0k � Æ suh that the solution of (3)with initial data v0 will onverge to +1. Similarly, there exists an initial ondition~v0 lose to u0 suh that the solution onverges to �1.It is interesting to ompare the long-time behavior t!1 with the relaxation limit"! 0. To this end, we onsider initial data on IR with simple, isolated zeroes:u0(x) 2 BC1(IR) has zeros aj where j 2 J � ZZ (4)with u00(aj) 6= 0 and � := infj1;j22J ;j1 6=j2 jaj1 � aj2j > 0:Under this assumption it an be proved that (in ontrast to theorem 1.2) only thestable states +1 and �1 our in the limiting solution.Theorem 1.4 (Relaxation) Let the initial value u0(x) satisfy (4), and u" be theadmissible solution of (3). Then the limitu(x; t) := lim"!0u"(x; t)exists for almost all (x; t) 2 IR � IR+. The funtion u(x; t) is pieewise onstantwith the onstants being �1. Constant piees of u(x; t) are separated by Lipshitzontinuous urves x = zj(t) de�ned on [0; Tj), j 2 J . Moreover, the following holdfor these urves x = zj(t), j 2 J :(i) zj(0) = aj. 5



(ii) If limx!aj� sign(u0(x)) = 1, then zj(t) = aj + f(1)�f(�1)2 t.(iii) If limx!aj� sign(u0(x)) = �1, then zj(t) = aj + f 0(0)t.(iv) Curves x = zj(t) do not interset eah other exept at t = Tj, the end points oftheir domain of de�nition.(v) At t = Tj <1, the urve x = zj(t) must interset with another urve x = zj0(t).The rest of the paper is organized as follows. In hapter 2 we study elementarysolutions suh as entropy traveling waves and solutions of the Riemann problemand prove theorem 1.1. Chapter 3,4 and 5 ontain the the proofs of theorems 1.2,1.3 and 1.4, respetively.Aknowledgements: The �rst author is partially supported by NSF Grant DMS-9705732. The seond author was supported by Deutshe Forshungsgemeinshaftunder grant HA 3008/1-1 during his stay at the University of Maryland, CollegePark.2 Elementary Solutions2.1 Generalized harateristisSine generalized harateristis are our main tool in this paper, we reall some oftheir properties in short.De�nition 2.1 Given a solution u of the Cauhy problem (3), a Lipshitz-ontinuousurve � = �(t) with t 2 [a; b℄ is alled a generalized harateristi if for almostall t 2 [a; b℄ the di�erential inequalityd�dt 2 [f 0(u(�(t)+; t); u(�(t)�; t)℄holds.A harateristi is alled genuine if u(��) = u(�+) along the whole harateristi.Dafermos [1℄ has shown that generalized harateristis are either genuine hara-teristis or shok urves, more preisely:Proposition 2.2 (Dafermos) From any point (�x; �t) with �t > 0 there is a uniqueforward harateristi. This forward harateristi satis�esd�dt = 8>>><>>>: f 0(u(�(t); t) if u(�(t)�; t) = u(�(t)+; t)f(u(�(t)�; t))� f(u(�(t)+; t))u(�(t)�; t)� u(�(t)+; t) if u(�(t)�; t) > u(�(t)+; t)with initial value �(�t) = �x. 6



For genuine harateristis, this implies that �(t) and U(t) := u(�(t); t) satisfy theharateristi equation U 0(t) = 1"U�(1� U2)�� 0(t) = f 0(U(t)) 9>>>=>>>; (5)De�nition 2.3 Given a solution u of the Cauhy problem (3), a bakward har-ateristi is a solution of the harateristi equation (5) with terminal ondition�(T ) = �end;U(T ) = Uend 2 [u(�(T )+; T ); u(�(T )�; T )℄:All bakward harateristis are on�ned between themaximal and minimal bak-ward harateristis. These extremal bakward harateristis are the bakwardharateristi urves with U(T ) = u(�(T )�; T ) and U(T ) = u(�(T )+; T ).The following properties make generalized harateristis an important tool:Proposition 2.4 (Dafermos)(i) Genuine harateristis an interset only at their endpoints.(ii) The maximal and minimal bakward harateristi are de�ned on [0; T ℄ andare genuine harateristis.Note that this implies the following: If we an onstrut a solution of the Cauhyproblem by �lling a region S1�[0; T ℄ in (x; t)-spae ompletely with non-intersetingharateristis suh that all maximal bakward harateristis extend to t = 0, thenthis must atually be the solution of the Cauhy problem up to time T .2.2 The Riemann problemWe �x " = 1 and ollet some basi properties of solutions to the Riemann problem.Given two states u�, u+ 2 [�1; 1℄, we study solutions of (3) with initial onditionu0(x) = ( u� for x < 0u+ for x > 0As in the onservation law ase we distinguish the two ases u� > u+ and u� < u+.In the �rst situation, there will be a shok urve emanating from x = 0. This shokis not a straight line but a urve x = �s(t) sine the left and right states u�(t) andu+(t) evolve aording to the reation dynamisdu�dt = u��(1� u2�)�: (6)7



From the Rankine-Hugoniot ondition we onlude that the shok loation �s is thesolution of the initial value problem�0s(t) = f(u+(t))� f(u�(t))u+(t)� u�(t)with initial ondition �s(0) = 0. Sine all solutions of (6) onverge to �1, 0 or +1,the shok speed onverges to f 0(�1), (f(1) � f(�1))=2 or f 0(1) depending on thesigns of u� and u+.In the ase u� < u+ the solution of the Riemann problem is similar to a rarefationwave of a onservation law without soure term. The solution is most easily obtainedby solving the harateristi equations (5) with " = 1U 0(t) = U�(1� U2)�� 0(t) = f 0(U(t)) ) (7)for U(t) = u(t; �(t)) with initial valuesU(0) = u�; �(0) 2 (�1; 0℄U(0) 2 [u�; u+℄; �(0) = 0 andU(0) = u+; �(0) 2 [0;+1):By ontinuous dependene on initial data, the union of all these harateristis �llsthe whole (x; t)-plane. As no two of those harateristis interset, the solutionalong these harateristis provides the orret solution to the Riemann problem.The pro�le of these rarefation waves at a �xed time t > 0 looks di�erent fromthe pro�le when no soure term is present. In partiular, for any given Æ < 1, themeasure of the set where ju(x; t)j � Æ grows sublinearly with t, if � � 1 and if theleft and right state have a di�erent sign.Independent of the signs of u� and u+ we have the following monotoniity result:Lemma 2.5 Let u be the solution of the Riemann problem with u� < u+. Then forany �xed time t � 0 the pro�le u(x; t) is monotone in x.Proof: Note �rst that u(x; t) � U�(t) for x � ��(t) where (U�; ��) solve theharateristi equation (7) with U�(0) = u� and ��(0) = 0. Similarly, u(x; t) �U+(t) for x � �+(t) with (U+; �+) being the solution of (7) with U+(0) = u+ and�+(0) = 0. The harateristi urves �� are the minimal and maximal forwardharateristis emanating from the point x = t = 0. Therefore, if the pro�le at sometime T > 0 is not monotone, we an �nd ��(T ) � x1 < x2 � �+(T ) withu(x1; T ) > u(x2; T ):We onsider the minimal bakward harateristis �1(t) emanating from (x1; T ) and�2(t) emanating from (x2; T ) together with the orresponding funtions U1(t) :=8



u(�1(t); t) and U2(t) := u(�2(t); t). Sine minimal bakward harateristis are gen-uine by proposition 2.4 both (U1; �1) and (U2; �2) satisfy the harateristi equation(7). Therefore U1(t) > U2(t) for all 0 � t � Tand hene by onvexity of f we onlude that �2(t)� �1(t) is a dereasing funtionof t. In partiular �2(0) > �1(0) whih ontradits the fat that for the Riemannproblem all bakward harateristis starting with �(T ) 2 [��(T ); �+(T )℄ must have�(0) = 0. From this ontradition it follows that u(x; T ) is an inreasing funtion ofx. 1Next we show that in the ase where the left and right state have di�erent sign, theregion where the solution of the Riemann problem is lose to 0 is smaller than inthe ase when g(u) � 0.Moreover, the growth rate of suh a region depends on thesize of �. For 1 < � < 2 the behavior is as in the previously studied ase � = 1, butfor � � 2the rates are di�erent.Lemma 2.6 Fix " = 1 and assume u� < 0 < u+ and � > 1. Then for any given0 < Æ < min(�u�; u+) there exists a onstant M = M(�; Æ) > 0 independent of u�and a time t� suh thatju(x; t)j � Æ for t � t� and 8><>: jxj �M if 1 < � < 2jxj �M log(1 + Æt) if � = 2jxj �Mt��2��1 if � > 2:In partiular limt!1 measfx ; ju(x; t)j � Ægt = 0for all � � 1 and any Æ 2 [0; 1).Proof: We restrit our onsiderations to x � 0 orresponding to harateristiurves with U(0) � 0. The situation for x < 0 an be handled similarly by hangingsigns appropriately.It is our goal to provide lower and upper estimates for the solution U of the hara-teristi equation (7) and the orresponding harateristi urve �.Let U(t;U0) be the solution to the initial value problemU 0(t) = U�(1� U2)�� 0(t) = f 0(U(t))U(0) = U0; �(0) = 0:Given some time T > 0, we will �rst �nd estimates for the initial ondition U0 suhthat U(T ;U0) = Æ. 9



As long as 0 � u � Æ 0 � u�(1� Æ2)� � u�(1� u2)� � u�holds. By elementary integration, we �nd thatU1��0 � U(t;U0)1�� � (�� 1)t � (1� Æ2)�� �U1��0 � U(t;U0)1��� ; (8)whih implies that in order to have U(T ;U0) = Æ, the initial value U0 has to satisfythe estimate�Æ1�� + T (�� 1)� 11�� � U0 � �Æ1�� + T (�� 1)(1� Æ2)�� 11�� : (9)The harateristi urve �(t;U0) satis�es�(t;U0) = Z t0 f 0(U(�)) d�= Z U(t;U0)U0 f 0(v)v�(1� v2)� dv� Z U(t;U0)U0 Cfv��1(1� v2)� dvfor some onstant Cf > 0. Sine U(T ;U0) = Æ we have�(T ;U0) � Z ÆU0 Cfv��1(1� Æ2)� dv:Now we have to distinguish three ases: For 1 < � < 2 the integration yields�(T ;U0) � Cf(2� �)(1� Æ2)� �Æ2�� � U2��0 �� Cf(2� �)(1� Æ2)� �Æ2�� � (Æ1�� + (�� 1)T ) 2��1���using (9). Sine 2��1�� < 0 the right hand side onverges to some limit as T ! +1and therefore �(T ;U0) < M for some onstant M . However, U0 was hosen in a waythat U(T ;U0) = Æ. Hene by the monotoniity proved in the previous lemma weknow that u(x; T ) > Æ for x > M > �(T ). Choosing t� = 0 proves the lemma for1 < � < 2.For � = 2 the same reasoning yields�(T ;U0) � Cf(1� Æ2)� log(1 + ÆT )and again we may hoose t� = 0. 10



For � > 2 the estimate is�(T ;U0) � Cf(�� 2)(1� Æ2)� �U2��0 � Æ2���� Cf(�� 2)(1� Æ2)� �(Æ1�� + (�� 1)T )��2��1 � Æ2���= O(T ��2��1 ):By hoosing t� and M large enough, this proves the estimate for � > 2. 12.3 Traveling wavesIn this hapter we lassify all possible traveling wave solutions. Sine we deal withpossibly disontinuous entropy solutions of our equation, we have to adopt the notionof traveling waves to this ase.De�nition 2.7 An entropy traveling wave solution of the hyperboli balane lawis a pieewise C1 solution of the form u(x; t) = u(x� t) that satis�es the ordinarydi�erential equation (f 0(u)�)u0 = u�(1�u2)� at all points where u is di�erentiable.Moreover, at any point � where u is disontinuous the Rankine-Hugoniot onditionf(u(�+))� f(u(��)) = (u(�+)� u(��))and the entropy ondition u(�+) � u(��)for the one-sided limits u(��) and u(�+) hold.It turns out that the ase 1 � � < 2 is very similar to the situation for � = 1 andan be treated as in [9℄ while the ase � � 2 behaves quite di�erently. We thereforeonentrate on the latter ase.Lemma 2.8 For � � 2, any entropy traveling wave an have at most one point ofdisontinuity.Proof: By the mean value theorem,  = f 0(u) for some u between u(�+) andu(��). The entropy ondition then yields u(��) > u > u(�+). Therefore a trav-eling wave solution would have to pass ontinuously through u between any twoshoks. This is impossible sine we haveu0 = u�(1� u2)�f 0(u)�  = 0at u = u as the right hand side has a removable singularity at u = u and isLipshitz-ontinuous. It follows from the basi existene and uniqueness theorem11



for ordinary di�erential equations that any solution u that satis�es u(�) = 0 forsome � vanishes identially. Consequently, there are no traveling waves with morethan one shok. 1Lemma 2.9 For � � 2 all bounded entropy traveling waves are heterolini travelingwaves, i.e. they onverge to some steady state for � ! �1 and to some steady statefor � ! +1.Proof: Sine there an be at most one point of disontinuity, the solution is asolution of the one-dimensional traveling wave o.d.e.u0 = u�(1� u2)�f 0(u)�  (10)for � suÆiently large. Therefore it an be bounded only if it onverges to someequilibrium for � ! +1. The same argument applies for � suÆiently negative. 1It is a simple matter to haraterize the ontinuous traveling waves that onnet thestates �1 and 0 so we state the result without proof.Proposition 2.10 (Continuous traveling waves) Let � � 2.(i) A ontinuous entropy traveling wave from �1 to 0 exists i�  � f 0(0). Aontinuous entropy traveling wave from 0 to �1 exists i�  � f 0(�1).Similarly, ontinuous entropy traveling wave from 0 to +1 exist for  � f 0(0)and from +1 to 0 for  � f 0(1).(ii) There exist no ontinuous traveling waves onneting �1 to +1 or vie versa.The existene of disontinuous entropy traveling waves depends again on the wavespeed. By ondition (F2) and (F3) of f , given any  and u, there is a unique statewhih we all h(u; ) suh that u and h(u; ) satisfy the Rankine-Hugoniot onditionf(u)� u = f(h(u; ))� h(u; )with shok speed .Lemma 2.11 (Disontinuous traveling waves) The following three types of dis-ontinuous traveling waves are possible for � � 2:(i) If h(-1,)=1, i.e.  = RH then there exists a traveling shok wave of the formu(�) = ( +1 for � � 0�1 for � > 012



(ii) If f 0(�1) <  � 0 and h(�1; ) < 1 then there is an entropy traveling wavethat onverges to 0 as � ! �1 is monotone for � � 0 and satis�es u(�) � 1for � > 0.(iii) If 0 �  < f 0(1) and h(1; ) > �1 then there is an entropy traveling wave thatonverges to 0 as � ! +1 is monotone for � > 0 and satis�es u(�) � �1 for� � 0.Proof: Without restrition we suppose that the heterolini entropy traveling wavespossess exatly one disontinuity at � = 0. This implies that  2 [f 0(�1); f 0(1)℄beause if  > f 0(1) then u(0�) > (f 0)�1() > 1 by onvexity of f and heneu(�) > (f 0)�1() for all � < 0. This however ontradits the fat that u(�) mustonverge to an equilibrium as � ! �1. The same argument shows that it isimpossible to have  < f 0(�1).For the traveling wave equation (10) and  2 [f 0(�1); f 0(1)℄ the equilibrium u = 1 isalways stable while u = �1 is unstable. Therefore a onnetion from +1 to �1 anonly exist if +1 and �1 satisfy the Rankine-Hugoniot ondition. This is ase (i).For f 0(�1) <  < f 0(0) = 0 the equilibria u = �1 and u = 0 are both unstable forthe traveling wave equation (10). A solution is therefore only possible if the pointh(�1; ) is between (f 0)�1() and 1. This is exatly the situation (ii). The samearguments apply if 0 = f 0(0) �  < f 0(1) and lead to ase (iii). 1From the previous lemmas we now obtain theProof of theorem 1.1:(i) is the ontent of lemma 2.10,(ii) and (iii) are proved in lemma 2.11,(iv) follows immediately from the previous results together with lemma 2.9. 1Remark 2.12 We emphasize again that this situation is in ontrast to the ase1 � � < 2 where an abundane of disontinuous traveling waves an be found.3 Convergene ResultsIn this setion we proof that for � � 2 all solutions of the Cauhy problem (3) withx 2 S1 �= IR=IN onverge pointwise to one of the zeroes of the soure term. Again,the ase 1 < � < 2 is very similar to the ase � = 1 and will not be onsidered here.To deide whether a partiular solution onverges to +1, �1 or 0, the followingde�nition will prove useful.De�nition 3.1 Given the solution u(t; x) of the Cauhy problem we de�ne therange of the solution asR(u(�; t)) := fu(x�; t) ; x 2 S1g [ fu(x+; t) ; x 2 S1g:13



In [2℄ it was proved that for t > 0 the range has to be onneted, sine u an onlyjump downward at disontinuities by the entropy ondition.Proposition 3.2 ([2℄) For x 2 S1 and any t > 0, R(u(�; t)) is a losed interval.The important property that distinguishes the ase of � � 2 from the previouslyonsidered ase � = 1 is stated next.Lemma 3.3 Let u be a solution of (3) with � � 2 and assume that for some timeT > 0 we have 0 2 R(u(�; T )). Then there exists some funtion � = �(T ) withlimT!+1 �(T ) = 0 suh thatR(u(�; T )) � [��(T ); �(T )℄:Proof: As 0 2 R(u(�; T )) there exists some x0 2 S1 suh that u(x0�; T ) = 0 oru(x0+; T ) = 0. In either ase, �0 = f(x; t) ; x = x0; 0 � t � Tg is an extremal bak-ward harateristi and therefore must be a genuine harateristi. In partiular,u(x0�; t) = 0 for all 0 � t < T:We will now show that if u(x1; T ) > �(T ) for some � = �(T ) and some x1 2 S1 thenthe minimal bakward harateristi �1(�; x1; T ) satis�es�1(T ; x1; T )� �1(0; x1; T ) > 1: (11)Sine x is on the irle S1 � IR=IN, �1 must interset the genuine bakward har-ateristi �0 at some positive time. This however ontradits proposition 2.4 andtherefore proves that u(x; T ) < �(T ) for all x. A similar argument shows thatu(x; T ) > ��(T ) for all x.To show (11) we distinguish two ases:(i) � = 2:In this ase, we set �(T ) := 1=(CT ) with a onstant C that will be determinedlater and assume that u(x1; T ) > �(T ) for some x1 2 S1. Let (U1; �1) bethe solution of the (bakward) harateristi equation (7) with terminal valuesU1(T ) = u(x1; T ) and �1(T ) = x1. By omparison with the equationU 0 = U�we �nd that U1(t) � (CT + (T � t))�1and hene �1(T )� �1(0) = Z T0 f 0(U1(t)) dt14



� f 00(0) Z T0 U1(t) dt� f 00(0) Z T0 dtCT + (T � t)= f 00(0) log�C + 1C �> 1if C < (exp(1=f 00(0)) � 1)�1 whih proves (11). Completely analogous argu-ments show that u(x1; T ) < ��(T ) leads to �1(T )� �1(0) < �1. Noting that�(T )! 0 as T !1 ompletes the proof for the ase n = 2.(ii) � > 2:In this ase we hoose � di�erently and let �(T ) be the solution at time T ofthe initial value problem U 0(t) = U�(1� U2)�;U(0) = (f 00(0)T )�1:Again we assume that u(x1; T ) > �(T ) for some x1 2 S1 and denote with(U1; �1) the solution of the (bakward) harateristi equation. Sine U1 solvesthe same di�erential equation as U we get that U1(t) > U(t) � U(0) =(f 00(0)T )�1 for 0 � t � T . Using the onvexity of f , this implies that�(T )� �(0) = Z T0 f 0(U1(t)) dt� f 00(0) Z T0 U1(t) dt> 1whih ontradits proposition 2.4. Again, the assumption u(x1; t) < ��(T )leads to the same ontradition.It remains to show that � onverges to zero as T ! +1. This follows imme-diately by omparison with the initial value problem�U 0(t) = �U�; �U(0) = 1Tf 00(0)whih an be solved expliitly and whih yields�(T ) � �U(T ) = �(f 00(0)T )��1 � (�� 1)T� 11�� :It is easy to hek that the right hand side onverges to 0 as T ! +1. 115



Now we an prove theorem 1.2 on the onvergene of solutions as t! +1.Proposition 3.4 For any initial data u0 with u0(x) 2 [�1; 1℄ for all x 2 S1 thereexists a number ! = !(u0) 2 f�1; 0;+1g suh thatku(x; t)� !(u0)kL1 ! 0as t!1.Proof: We distinguish two ases:1) 0 =2 R(u(�; T )) for some time T > 0. Then either R(u(�; T )) 2 (0;+1) orR(u(�; T )) 2 (�1; 0). For de�niteness, we assume the �rst possibility. Sine therange is a losed interval, we an �nd � > 0 suh that u(x; T ) � � for all x 2 S1.Applying the omparison priniple to the solution u and the solution of the Cauhyproblem with u � � at time t = T we an then onlude that u(x; t) ! 1 ast ! +1 for a.e. x 2 S1. Similarly, if R(u(�; T )) 2 (�1; 0) we have u(x; t) ! �1for t! +1.2) 0 2 R(u(�; t)) for all times t > 0. We prove that in this ase the solution onvergesto zero pointwise. This is just a onsequene of the previous lemma, sine for anyÆ > 0 we an �nd some T > 0 suh that �(t) < Æ for all t � T . Lemma 3.3 thenimplies that ju(x; t)j = ju(x�; t)j � �(t) � Æ for all x 2 S1 and t � T:and hene ku(�; t)kL1 ! 0 as t! +1: 13.1 An exampleWe illustrate by a simple example that onvergene to the middle zero atuallyours. To this end, we hoose f(u) = u2 and onsider the initial onditionu0(x) = ( +1 for 0 < x � 12�1 for 12 < x � 1:By symmetry, if (U(t); �(t)) solves the harateristi equation, so does (�U(t); 1 ��(t)). These two harateristis meet at x = 12 and by the Rankine-Hugoniot ondi-tion, a standing shok is formed at x = 12 . For 0 < t � 1 the forward harateristiswith value U(t) = �1 meet at the shok, but for t > 1 the L1-norm of the solutiondereases. Sine all harateristis are symmetri with respet to x = 12 the solutionan neither onverge to +1 nor to �1 and so it must tend to 0.16



4 Instability under perturbationsAs we have seen in the previous hapter, any solution tends to one of the zeroes ofthe soure term as t tends to in�nity. However, most of the solutions will tend tothe stable zeroes u = +1 and u = �1 of the soure term, while onvergene to theweakly unstable zero u = 0 is very exeptional. In this hapter we study the basinsof attration for the three zeroes of the soure term and prove theorem 1.3.De�nition 4.1 Let B�1, B0 and B1 � L1(S1; IR) be the sets of those initial on-ditions for whih the solution of the Cauhy problem (3) onverges to �1, 0 and 1pointwise as t! +1.We will show that for any u0 2 B0 we an �nd an arbitrarily small perturbation v0suh that u0 + v0 2 B1. To onstrut a suitable perturbation, we �rst need someadditional notation:De�nition 4.2 For u0 2 L1(S1) \BV (S1) and Æ > 0 we setuÆ0(x) := supjx�yj�Æ u0(y) + Æ:The funtion uÆ0 has the following properties:Lemma 4.3(i) uÆ0 > u0(ii) kuÆ0 � u0kL1(S1) � Æ(1 + 3TV (u0)) where TV is the total variation of u0.(iii) For almost all Æ > 0 the funtions u0 and uÆ0 have no ommon point of dison-tinuity, i.e. u0(x�) 6= u0(x+)) uÆ0(x�) = uÆ0(x+):Proof: (i) follows immediately from the de�nition of uÆ0.(ii) Consider the partition 0 = x1 < x2 < : : : < xN = 1 of S1 with xi+1 � xi < Æ.Note that by de�nition of uÆ0 for any x 2 [xi; xi+1℄0 � uÆ0(x)� u0(x) � supy2[x�Æ;x+Æ℄u0(y) + Æ � infy2[x�Æ;x+Æ℄u0(y)and heneZ xi+1xi juÆ0(x)� u0(x)j dx � ÆTV (u0; [xi � Æ; xi+1 + Æ℄) + Æ(xi+1 � xi)� Æ TV (u0; [xi�1; xi+2℄) + Æ(xi+1 � xi)where TV (u0; [a; b℄) is the total variation of u0 on the interval [a; b℄. Summationover i then yields the desired inequality.(iii) Note �rst that if uÆ0 is disontinuous at some x0 2 S1, then u0 is disontinuous17



at x0� Æ or at x0+ Æ beause if u0 was ontinuous both at x0� Æ and x0+ Æ then thesupremum of u0 over [x� Æ; x+ Æ℄ also had to be ontinuous at x0. As u0 is in BV,it possesses at most ountably many disontinuities, and the set of all di�erenesbetween two of these disontinuities is ountable, too. This implies that only forountably many Æ the funtion u0 is disontinuous simultanously at some x0 andx0 � Æ. Similarly, there are only ountably many Æ suh that u0 is disontinuous atsome x0 and x0 + Æ. For all other values of Æ there is no point where both funtionsu0 and uÆ0 are disontinuous. 1The importane of property (iii) is due to the following lemma:Lemma 4.4 Assume that u0; v0 2 B0 and u0 � v0. Then for any �0 > 0 the setfx 2 S1; [u0(x�); u0(x+)℄ \ [v0(x�); v0(x+)℄ \ [��0; �0℄ 6= ;gis non-empty.Proof: We onsider the solutions u and v assoiated with the initial onditions u0and v0.For any solution w of (3) we de�ne the spatial averageI(w(�; t)) := ZS1 w(x; t) dx:From the weak formulation of the hyperboli balane law, one an derive the ordinarydi�erential equation ddtI(w) = ZS1 w�(1� w2)� dxfor I(w). In view of the previous setion both I(u(�; t)) and I(v(�; t)) must onvergeto 0 as t!1.Let J be the maximal interval where the soure term u�(1 � u2)� is monotoneinreasing. From lemma 3.3 we know that there exists some time T > 0 suh thatboth R(u(�; T )) � J and R(v(�; T )) � J .If I(v(�; T )) > I(u(�; T )) then I(v(�; t)) annot onverge to 0 beause for all t > Twe have ddtI(v(�; t)) � ddtI(u(�; t))and hene I(v(�; t))� I(u(�; t)) � I(v(�; T ))� I(u(�; T )) > 0.This implies that at time t = T we must have I(v(�; T )) � I(u(�; T )). Sine u � vby Kruzhkov's omparison priniple, this implies that I(v(�; T )) = I(u(�; T )) andu(x; T ) = v(x; T ) for almost every x 2 S1.Consider now the extremal bakward harateristis (U; �) evolving from some pointwith t = T . By proposition 2.4, the harateristi urve � extends bak to t = 0and is a genuine harateristi both for u and v. In partiular, u(�(t); t) = U(t) =v(�(t); t) for all t 2 (0; T ℄. This implies that u(�(0)+; 0) � U(0) � u(�(0)�; 0) and18



v(�(0)+; 0) � V (0) � u(�(0)�; 0). So, either u0(�(0)�) = u0(�(0)+) or u0(�(0)�) <u0(�(0)+) with U(0) 2 [u0(�(0)�); u0(�(0)+)℄.Choosing T possibly larger and using lemma 3.3, we an make sure that jU(0)j � �0holds and hene both possibilities imply that[��0; �0℄ \ [u0(�(0)�); u0(�(0)+)℄ 6= ;:Sine the same holds for v0 the lemma is proved. 1We are now able to prove theorem 1.3.Proof of theorem 1.3: Assume that u0 2 B0. We will show that for Æ suÆientlysmall u0 and uÆ0 annot satisfy the assumptions of the previous lemma. From lemma4.3 we know that uÆ0 � u0 + Æ and uÆ0 ! u0 in L1(S1) as Æ ! 0. Therefore, uÆ0 2 B1for all Æ small.Given Æ, assume now that �0 < Æ3 and uÆ0 2 B0. The previous lemma states thatthere must exist at least one x0 with[u0(x0�); u0(x0+)℄ \ [uÆ0(x0�); uÆ0(x0+)℄ \ [��0; �0℄ 6= ;: (12)However by lemma 4.3 we know that u0 and uÆ0 have no ommon point of disonti-nuity. So, there are three possibilities:1) If u0(x0�) = u0(x0+) and uÆ0(x0�) = uÆ0(x0+) then (12) is not possible asuÆ0 � u0 � Æ > 2�0.2) Similarly, for u0(x0�) < u0(x0+) and uÆ0(x0�) = uÆ0(x0+) (12) is not possible asuÆ0(x0) � u0(x0+) + Æ.3) For u0(x0�) = u0(x0+) and uÆ0(x0�) < uÆ0(x0+) the same argument applies.So, in all three possible ases, (12) annot be satis�ed and therefore our assumptionthat uÆ0 2 B0 has led to a ontradition. This shows that uÆ0 2 B1 for all smallÆ. To show that there are initial data near u0 for whih the solution onverges to�1 one has to perform a similar onstrution as for uÆ0 to get a funtion whih isstritly smaller than u0 and has no ommon points of disontinuity with u0. Theonstrution of suh a funtion is ompletely analogous to the onstrution of uÆ0.1Sinestrari has proved in [13℄(theorem 4.7) that B�1 and B1 are open in L1(S1).Sine his proof only requires onvergene to a stable zero of the soure term in L1,it applies immediately to our situation. As the previous lemma states that B0 isnowhere dense we have the following orollary.Corollary 4.5 The set of initial onditions u0 for whih the solution of the Cauhyproblem (3) onverges to �1 or +1 is open and dense in L1(S1).19



4.1 An exampleTo illustrate the onvergene to 0 we study as an example the behaviour of solutionsof the Cauhy problem for whih the initial ondition is a step-funtionu�(x) = ( u� for 0 < x � �u+ for � < x � 1where u� > 0 > u+ for de�niteness and � is treated as a parameter.Lemma 4.6 There exists a unique value �0 = �0(u�; u+) 2 (0; 1℄ suh that u�0 2 B0.For �0 < � � 1 we have u� 2 B1 and for 0 < � < �0 we have u� 2 B�1.Proof: The u� are ordered: �1 � �2 ) u�1 � u�2 :Therefore if u�1 2 B1 for some �1 we have automatially u� 2 B1 for all � 2 [�1; 1℄ bythe omparison priniple. Similarly, if u�2 2 B�1 for some �2 we have u� 2 B�1 for all� 2 [0; �2℄. Therefore we an �nd � := supf� ; u� 2 B1g and �� := inff� ; u� 2 B�1g.Sine B1 and B�1 are open in L1 we know that u� 2 B0 for � 2 [�; ��℄. To show that� = �� we just note that u�(0) and u��(0) obviously do not satisfy the ondition oflemma 12 if � < �� and hene annot both belong to B0. 15 Convergene in the zero reation time limitIn this setion, we shall onsider the limit "! 0 and prove theorem 1.4.Reall that by (4) we require the initial ondition u0 to be di�erentiable with simplezeroes whih are at least a distane of � apart from eah other.This inludes in partiular the ase that u0 is periodi with simple zeroes and allowstherefore a omparison with the long-time limit results.The following lemma on the struture of the solutions of (3) states that the numberof sign hanges of the solution is non-inreasing in time.Lemma 5.1 ([4℄, Lemma 3.2.1) For �xed " let u"(x; t) be the solution of (3) withinitial value u0(x) satisfying assumption (4). Then at eah �xed t � 0, there arepoints z"j (t), j 2 J 0 � J , suh that hanges of sign(u"(x; t)) our and only ourwhen x rosses one of the urves x = z"j (t), t < tj.Moreover, the z"j (t) are urves de�ned on [0; T "j ), j 2 J 0 � J .Proof: This lemma is similar to Lemma 3.2.1 in [4℄ and the remark thereafter. Al-though the lemma in [4℄ is for the ase where J is �nite and the soure term in (3)is u(1� u2)=", orresponding to � = � = 1, the proof of it only used the properties20



that two extremal bakward harateristis of (3) do not interset and that alongextremal bakward harateristis, the sign of u" does not hange. Sine these twoproperties still hold for (3), the lemma holds for arbitrary �, � � 1. 1The following lemma, proved in [4℄ for � = � = 1 still holds for (3) sine the proofin [4℄ did not use anything related to the soure term.Lemma 5.2 Let u0(x) satisfy the assumption (4). Then the urves z"j (t), j 2 Jgiven in Lemma 5.1 are Lipshitzian with Lipshitz onstant L � maxu�supju0(x)j jf 0(u)jindependent of ".Moreover, if the domain of de�nition of z"j (t) is [0; T "j ℄ with T "j < 1, then there isanother urve z"j0(t) interseting z"j (t) at t = T "j = T "j0.Sine, by (4), the zeroes of u0 are isolated, the uniform Lipshitz estimate showsthat the T "j > �2L > 0 for all j independent of ".We now onsider the limit "! 0.Lemma 5.3 For any sequene f"ng1n=1 with "n ! 0+ as n!1, there is a subse-quene, also denoted by f"ng for simpliity, suh that the limitu(�x; �t) = lim"n!0+u"n(�x; �t) (13)exists for almost all (�x; �t) 2 IR� IR+.The range of u(�x�; �t) is f�1; 1g.Furthermore, there are uniformly Lipshitzian urves zj(t) de�ned on [0; Tj), j 2 Jsuh that for eah �xed t > 0, u(x; t) is onstant for all x between two adjaenturves zj(t).Proof: Let x = z"j (t), j 2 J , be the urves provided by lemma 5.2. These urvesz"nj (t) de�ned on [0; T "nj ℄ are Lipshitzian uniformly in "n > 0 and j. Thus, by theArzela-Asoli theorem, there is a sequene f"ng suh thatz0j (t) := limn!1 z"nj (t) (14)exists on [0; zj := limn!1 T "nj ℄. By the de�nition of z"nj (t), for eah �xed t > 0,limn!1 sign(u"n(x; t)) is �xed for all x between two adjaent points among zj(t),j 2 J . To simplify the notation throughout the rest of this proof, we just ignorezj(t) if t is outside the domain of de�nition of zj(t).Fix now some time �t > 0.Any point �x 2 IR n [jz0j (�t) must fall between some adjaent urves x = z0j (�t)and x = z0j (�t) where j; j 2 J [ f�1;+1g and we have set z0�1(t) := �1 andz0+1(t) :=1. Let z0j (�t) < z0j0(�t) be two adjaent points at t = �t.21



We have already seen that the limit limn!1 sign(u"n(�x; �t)) is a onstant for allz0j (�t) < �x < z0j0(�t). For de�niteness, we assume this onstant is 1, i.e.u"n(�x; �t) > 0for all z0j (�t) < �x < z0j0(�t) and n suÆiently large.The ase u"n(�x; �t) < 0 an be handled in the same way.We onsider the minimal bakward harateristi �"n(t; �x; �t) through the point (�x; �t)whih satis�es d�"ndt = f 0(U"n(t));dU"ndt = 1"nU�"n(1� U2"n)�;(�"n(�t); U"n(�t)) = (�x; u"n(�x�; �t)):
9>>>>>>>>>=>>>>>>>>>; (15)Aording to Proposition 2.4, the solution of (15) is de�ned on [0; �t℄ andU"n(t) = u"n(�"n(t; �x; �t)�; t) = u"n(�"n(t; �x; �t)+; t)for almost allt 2 [0; �t ℄:If u"n(�x; �t) = 1, then U"n(t) � 1.Hene the limit is u(�x; �t) = 1 if u"n(�x; �t) = 1 for all suÆiently large n.If u"n(�x; �t) 6= 1 for in�nitely many n, then only two possibilities exist: Eitherlim infn!1 u0(�"n(0; �x; �t)) > 0in whih ase it follows easily from (15) that limn!1 u"n(�x; �t) = 1 orlim infn!1 u0(�"n(0; �x; �t)) = 0:By extrating a subsequene of f"ng1n=1, still denoted by f"ng, we havelimn!1u0(�"n(0; �x; �t)) = 0:Sine u0(x) is ontinuous with isolated zeroes we an assume that�"n(0; �x; �t)! a (16)with u0(a) = 0, possibly after extrating a further subsequene if neessary.Sine u"n(�x�; �t) > 0, it is neessary in view of (15) that a < �x. We laim that if forsome 0 < Æ < 1 and all n suÆiently large0 < u"n(�x; �t) � Æ < 1; (17)then j�x� aj = 8<: O(1) " 1��1n ; if � > 1; � 6= 2O(1) j"n ln "nj; if � = 2: (18)22



To this end, we onsider the system for the extremal bakward harateristis (15)to derive �t"n = Z �UU0 duu�(1� u2)� (19)where U0 := u0(�"n(0; �U; �t)).We ontinue to estimate (19), using (17) as follows:�t"n = O(1) Z �UU0 duu� = O(1) 1U��10 � 1�U��1! :Sine 0 < U0 < �U we have U0 = O(1) " 1��1n : (20)From (15), we an also derive, for the ase � 6= 2 that�x� �"n(0; �x; �t) = Z �UU0 "nf 0(u)duu�(1� u2)�= O(1) "n Z �UU0 duu��1(1� u2)�= O(1) "n  1U��20 �O(1)!= O(1) " 1��1n :Similarly, for the ase � = 2, we get by integration�x� �"n(0; �x; �t) = O(1)j"n ln "nj:From the last two equations, we havej�x� �"n(0; �x; �t)j = 8<: O(1) " 1��1n ; if � > 1; � 6= 2O(1)j "n ln "nj; if � = 2:Then the laim (18) follows easily.Based on (18), we an see that if �x 6= a, then lim"n!0 u"n(�x; �t) = 1 if �x is betweentwo adjaent points among zj(�t), j 2 J with lim"n!0 sign(u"n(�x; �t)) = 1. Similarlyone shows lim"n!0 u"n(�x; �t) = �1 for the ase lim"n!0 sign(u"n(�x; �t)) = �1. From theabove arguments, we see that the limit u(x; t) is a pieewise onstant funtion withonstants being �1 whih are separated by the Lipshitzian urves zj(t), j 2 J .These urves interset eah other only at the end points of their domain of de�ni-tion. 1The next lemma ompletes the proof of theorem 1.4.23



Lemma 5.4 Let u0 satisfy the assumption (4) and u" be the solution of (3). Thenthe limit u(�x; �t) = lim"!0+u"(�x; �t) (21)exists for almost all (�x; �t) 2 IR� IR+.The value of u(�x�; �t) is either 1, or �1.Furthermore, there exist urves z0j (t), j 2 J de�ned on [0; Tj), respetively, suhthat:(i) if u(z0j (t)�; t) > u(z0j (t)+; t), then x = z0j (t) satis�es the Rankine-Hugoniotondition dz0jdt = f(u(z0j (t)�; t))� f(u(z0j (t)+; t))u(z0j (t)�; t)� u(z0j (t)+; t) = f(1)� f(�1)2 : (22)(ii) if u(z0j (t)�; t) < u(z0j (t)+; t), then the urve z0j (t) = aj + f 0(0)t and hene thespeed of the disontinuity is f 0(0).Proof: By Lemma 5.3, we an hoose a sequene f"ng suh thatu(x; t) := limn!1u"n(x; t) (23)exists for almost all (x; t) 2 IR� IR+ and u(x; t) = +1 or �1.Moreover there exist urves zj(t), j 2 J with zj(0) = aj, whih are uniformlyLipshitz and whih do not interset eah other exept at the end points t = Tj.These urves separate regions where u(x; t) = 1 from regions where u(x; t) = �1.Hene, the set of points of disontinuity of u(x; t) is exatly the union of the urveszj(t) with j 2 J .There are two possibilities at x = zj(t):Case I. u(zj(t)�; t) > u(zj(t)+; t).Note that in this ase u(zj(t)�; t) = 1 and u(zj(t)+; t) = �1.Consider some point �x < zj(�t) and lose enough to zj(�t) at t = �t < Tj. Hene,limn!1 u"n(�x�; �t) = 1.Let �"n(t; �x; �t) be the minimal bakward harateristi assoiated to u"n de�ned by(15). At t = 0, we have either(i) lim infn!1 u"n(�"n(0; �x; �t); 0) > 0 or(ii) lim infn!1 u"n(�"n(0; �x; �t); 0) = 0.For (i), we have that u"n(�"n(t; �x; �t); t) ! 1 as n ! 1 uniformly for t > Æ > 0,where Æ > 0 is any onstant. This leads to the expressionlimn!1 �"n(t; �x; �t)) = �x+ f 0(1)(t� �t): (24)Sine u0 is di�erentiable with isolated zeroes, one an assume for (ii) thatlimn!1 �"n(0; �x; �t)) = a � �x24



with u0(a) = 0.In both ases (i) and (ii), a := limn!1 �"n(0; �x; �t)) � �x (25)Subase I(1): a < �x in (25).In this ase we setx1 := (�x+ a)=2 and t1 := �(�x� x1 � f 0(1)�t)=f 0(1) > 0: (26)The equation for �"n(t; �x; �t), (15), and ju0(x)j < 1 imply thatd�"n(t; �x; �t)dt < f 0(1)and hene �"n(t1; �x; �t) > x1. Figure5:1As �"n(0; �x; �t)! a for "n ! 0+, we onlude from (17) and (18) thatu1 := u"n(�"n(t1; �x; �t); t1) � 1=2for n suÆiently large.Then system (15) implies that�t� t1"n = Z �uu1 duu�(1 + u)�(1� u)�� 2� Z �uu1 du(1� u)�= 8<: 2� log �1�u11��u � if � = 12���1 � 1(1��u)��1 � 1(1�u1)��1 � if � > 1:Using the de�nition of t1 from (26), we obtain the estimates1(1� �u)��1 � O(1)�t� t1"n = O(1) �x� x1"n for � > 1and 1� �u = O(1) exp ��t� t1"n ! = O(1) exp�� �x� x1"n � for � = 1:This implies j1� �uj � 8><>: O(1) � "n�x�a� 1��1 for � > 1O(1) exp �� �x�x1"n � for � = 1 (27)25



We an prove the same estimate when u"n(�x; �t) < 0.Independent of � � 1 we have1"nu"n(�x�; �t)�(1� (u"n(�x�; �t))2)� ! 0 (28)uniformly for �x < zj(�t) and lose to zj(�t).Similarly one an prove that (28) also holds uniformly for �x > zj(t) and lose tozj(t).Applying this estimate to the the weak form of (3)Z Tj0 ZIR ��u�t � f(u)�x � 1"nu�"n(1� u2"n)��� dxdt = 0for test funtions with ompat support on�ned near x = zj(t), 0 < t < Tj, onesees that the shok x = zj(t), 0 < t < Tj, is a weak solution of ut + f(u)x = 0.Thus, the Rankine-Hugoniot onditiondzjdt = f(u(zj(t)+; t))� f(u(zj(t)�; t))u(zj(t)+; t)� u(zj(t)�; t) = f(1)� f(�1)2holds if u(zj(t)+; t) < u(zj(t)�; t).Subase I(2): a = �x in (25).By (24), this ase ours only if lim infn!1 u0(�"n(0; �x; �t)) = 0 and hene a = aj forsome j 2 J .We laim that this subase annot happen at all for small enough "n > 0.Indeed, if a = �x was true, we would have�"n(t; �x; �t) � �x = a (29)from (25).Given Æ > 0 small, it follows again from (17) and (18) that 0 � 1� u"n(x; �t=2) < Æfor x 2 [aj�1 + Æ; aj � Æ℄ when "n > 0 is small enough.To establish above laim, it suÆes to prove that the forward harateristis �"n(t; �x�Æ; �t=2), t > �t=2 interset �"n(t; �x; �t) at some t < �t, whih is impossible in view ofLemma 3.1.7.To this end, we observe that before x = �"n(t; �x � Æ; �t=2) intersets x = �"n(t; �x; �t),the estimate u"n(x; �t) > 0 for �x� Æ < x < �x (30)holds due to �x < z"n(�t). This impliesd�"n(t; �x� Æ; �t=2)dt > 0and hene �"n(t; �x� Æ; �t=2) > �x� Æ:26



For any point x1 2 [(aj�1+aj)=2; �"n(t1; �x�Æ; �t=2)℄, we have �(0; x1; t1) < �x�Æ; sinemaximal bakward harateristis annot ross the forward harateristis �"n(t; �x�Æ; �t=2) from the left as t dereases. See Figure 5.2.Figure5:2This is the ase overed by Subase I(1) or (i) before (23). Then our results for (i)and Subase I(1) yields0 � 1� u"n(�"n(t; �x� Æ; �t=2)�; t) < Æwhen "n > 0 is suÆiently small. This infers thatd�"n(t; �x� Æ; �t=2)dt � f(1� Æ)� f(0)before x = �"n(t; �x � Æ; �t=2) meeting x = �"n(t; �x; �t). Thus, the urve x = �"n(t; �x �Æ; �t=2) and x = �"n(t) must interset at some t < �t. This proves our laim.Case II. u(zj(t)�; t) < u(zj(t)+; t).In this ase, one has u(zj(t)�; t) = �1 = �u(zj(t)+; t).We laim that in this ase, zj(�t) � aj for some j 2 J and all �t 2 [0; Tj) under theassumption f 0(0) = 0.To this end, we onsider two points x1 and x2 suÆiently lose to zj(�t) and x1 <zj(�t) < x2. By de�nition of zj(t), sign(u"n(x1�; �t)) = 1 = �sign(u"n(x2�; �t)) forlarge n.From (15), the minimal bakward harateristis through points (x1; �t) and (x2; �t)satisfy d�"n(t; x1; �t)dt < 0 < d�"n(t; x2; �t)dt : (31)Sine the sign of u"n is onstant along extremal bakward harateristis, one hasx1 < �(t; x1; �t) < zj(t) < �(t; x2; �t) < x2: (32)Now, let x1 ! zj(t)� and x2 ! zj(�t)+, estimates (31) and (32) imply that zj(t) isonstant for t 2 [0; �t℄.It follows immediately from the arbitrariness of �t 2 [0; Tj) and zj(0) = aj thatzj(t) � aj for all t in its domain of de�nition.From the above analysis, we see that the the limit funtion u(x; t) is ompletelydetermined by the urves zj(t), j 2 J .Furthermore, these urves zj(t) are uniquely determined by the Rankine-Hugoniotondition (30) with zj(0) = aj or is equal to a onstant aj for some j 2 J . Inother words, no matter how the subsequene f"ng are hosen, the limit funtionsu(x; t) = limn!1 u"n(x�; t) are the same.This proves the onvergene of u" as "! 0+. 127
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