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EXISTENCE OF ROLLWAVES IN A VISCOUS SHALLOWWATER EQUATIONJ. H�ARTERICHFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanyE-mail: haerter�math.fu-berlin.deIn the present paper we onsider a shallow water equation with Chezy fritionterm. It is well-known that this hyperboli PDE admits a one-parameter familyof disontinuous periodi roll wave solutions parametrized by their wavelength aswell as a disontinuous homolini wave.We show that analogous traveling waves exist when small visous terms of size "are added to the equation and determine how the veloity of the visous homoliniwaves di�ers from the veloity of the invisid waves. The orreponding travelingwave equation leads to a singularly perturbed problem involving points on the slowmanifold whih are not normally hyperboli. The periodi roll waves follow stableand unstable parts of the slow manifold and are therefore of \anard" type.1. IntrodutionIn 1949, Dressler 1 used the shallow water equations with a nonlinear fri-tion term to give a mathematial explanation for the ourene of periodiroll waves in an open narrow hannel with a onstant slope. He showedthat no ontinuous periodi solutions are possible, although periodi waveswere observed. However, there are periodi disontinuous entropy solutionsfor any given wave length if the Froude number is larger than 2.Kranenburg 3 1992 derived a nonlinear visosity term and studied theinstability of the onstant ow whih leads to the evolution of roll waves.Reently, Noble and Travadel 5 studied this physially motivated nonlinearvisosity and the orresponding visous roll wave solutions.With a di�erent approah using geometri singular perturbation theoryand invariant manifolds we are able to prove that periodi and homolinitraveling waves of the hyperboli equation persists for small visosity andthat the veloity is only slightly perturbed.1
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22. The invisid equationTo desribe the ow in an open retangular hannel with onstant slopeone an use the shallow water equations with Chezy fritionht + (hu)x = 0ut + � 12u2 + gh os ��x = g sin � � Cf u2h 9=; (1)where Cf denotes the frition oeÆient and � is the inlination angle.
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Figure 1. Water waves in an inlined hannel.We want to study traveling waves with speed s.One may integrate the �rst equation via (s � u)h = K and sale thevariables aording toH = h(g os �)1=3K2=3 ; S = s(Kg os �)1=3 (1 + F ) ; � = t(g os �)1=3K2=3 : (2)to eliminate g os � and K from the traveling wave equation. This leads todHd� = dhdt = Cf F 2H3 � (SH(1 + F )� 1)2H3 � 1 (3)where F := q tan �Cf denotes the Froude number. The numerator possessesthree zeroes H0(S) with H0(1) = 1 and H = H�(S) with 0 < H� <H+ < 1 provided that F > 2. Due to the zero of the denominator thereis a singularity at H = 1. Trajetories will typially reah H = 1 in�nite (forward or bakward) time and annot be ontinued. However, forH = S = 1 the numerator and denominator vanish simultaneously allowingtrajetories to pass ontinuously through H = 1.Together with the Rankine-Hugoniot jump ondition this an be usedto show the following existene result:Proposition 2.1. At S = 1, equation (3) possesses a one-parameter fam-ily of disontinuous periodi solutions (\roll waves") parametrized by their
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3wavelength and a unique (up to translation) disontinuous homolini trav-eling wave with H(�) ! H+ for � ! �1.3. The visous equationKranenburg in 1992 3 derived a one-dimensional model whih takes intoaount the visosity. He obtains the paraboli-hyperboli system8<: ht + (hu)x = 0ut + � 12u2 + g os � h�x = Cf g os � F 2 � Cf u2h + " (hux)xh : (4)Using the same saling (2) as for the invisid equation we arrive at�H � 1H2�H 0 � Cf F 2H + Cf �S(1 + F )� 1H�2 = Æ�H 0H �0 (5)where Æ = "K2 and the prime now denotes di�erentiation with respet to � .Our goal onsists of �nding homolini and periodi traveling waves withspeed lose to S = 1 analogous to the waves in the invisid equation.3.1. Bifuration of periodi and homolini orbitsFor Æ > 0 (ontinuous) periodi roll waves are reated via Hopf bifurationif the Froude number is suÆiently large. They disappears via a homolinibifuration when their period beomes unbounded.Theorem 3.1. For Æ > 0 suÆiently small, the onstant state H = 1 un-dergoes a superritial Hopf bifuration at S = 1. The branh of periodiorbits terminates in a homolini bifuration when it ollides with a ho-molini orbit asymptoti to a stationary point E+. This homolini orbitexists at S = Shom(Æ) withShom(Æ) = 1 + Cf (F � 2)(2F � 1)18(F + 1) Æ +O(Æ3=2):For the proof we make use of some oordinates whih are adapted to theslow-fast struture of the traveling wave problem:Setting P = lnH ) P 0 = H0H , we an rewrite (5) asÆP 0 = �Q+ e�P + 12e2P � 32Q0 = CfF 2eP � Cf (S(1 + F )� e�P )29=; (6)
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Figure 2. The bifuration diagram.In these oordinates the \onserved" quantities are separated from thesoure term. In terms of fast{slow dynamial systems the onserved quan-tities orrespond to the fast dynamis while the soure terms play a roleonly for the slow dynamis.Following the usual strategy in singular perturbation theory, system (6)determines for Æ ! 0 two limiting systems whih both display a part of thebehavior whih is present for Æ small but nonzero. By setting Æ = 0 oneobtains the slow system0 = �Q+ e�P + 12e2P � 32Q0 = CfF 2eP � Cf (S(1 + F )� e�P )2de�ning the slow manifold C = f(P;Q); Q = e�P + 12e2P � 32g, a stritlyonvex urve with a minimumat P = Q = 0. The seond equation desribesthe slow ow on C by projetion. The slow ow possesses three equilibriaE�, E+ and P = Q = 0.Setting Æ = 0 and resaling the time one arrives at the fast system_P = �Q+ e�P + 12e2P � 32 ; _Q = 0:In this system, the omplete urve C onsists of equilibria. For P < 0 thesestationary points are attrating while for P > 0 they are repelling.We know already that for Æ > 0 and S lose to 1 there are three equi-libria: an attrating node E�, a saddle point E+ and the stationary pointP = Q = 0 whose stability depends on the sign of S � 1.Aording to Fenihels geometri singular perturbation theory 2 a om-pat piee of the attrating branh of C will persist as an invariant manifoldAÆ for Æ > 0 suÆiently small. The ow on this invariant manifold is O(Æ){lose to the ow on C in the slow system. Similarly, a ompat normallyhyperboli piee of the repelling branh of C perturbs to an invariant man-ifold RÆ .
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5Trajetories an only pass from AÆ to RÆ if some equilibrium is loseto the fold point. This situation was reently analyzed by Krupa and Sz-molyan. Applying Theorem 3.1 in Krupa and Szmolyan 4 to our settingwe get an intersetion of the intersetion of the two branhes AÆ and RÆ ofthe slow manifold.Proposition 3.1. Let � be the transition map between two Poinar�e se-tions �in to �out as in �gure 3.1. Let (Pin(Æ) be the intersetion of theslow manifold with �in and (Pout(Æ) the intersetion of the slow manifoldwith �out.Then there exists a smooth funtion S(pÆ) suh that �(Pin) = Pout ifand only if S = S(Æ) = 1 + Cf (F � 2)(2F � 1)18(1 + F ) Æ +O(Æ3=2):The transition map � is de�ned only for S in an interval of length O(e��=Æ)around S(pÆ) where � > 0 is some onstant.
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Figure 3. The geometri situation.Proof of theorem 3.1:By standard bifuration theory one an show that for �xed Æ > 0 aunique family of periodi orbits is reated in a superritial Hopf bifurationat S = 1. Sine the equilibrium (0; 0) whih is surrounded by the periodiorbits does not have purely imaginary eigenvalues for S 6= 1, the familyof periodi orbits annot terminate at another Hopf point. Note that noperiod{doubling may our either, beause we are in two dimensions only.Conerning the global fate of the family of periodi orbits, there remainonly three other possibilities:
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6 (i) the family of periodi orbits exists for all values S > 1,(ii) the family of periodi orbits beomes unbounded in phase spae or(iii) the minimal period beomes unbounded.Using the fat from proposition 3.1 that the transition map � is not de�nedfor S�1 of order O(1) one an rule out the �rst two possibilities. We showthat indeed (iii) ours and the family of periodi orbits terminates at ahomolini orbit.Sine the invariant manifold AÆ ontains the stationary point E+, theunstable manifold W u of E+ oinides with the slow manifold AÆ andtherefore passes lose to the fold point (0; 0). A branh W s of the stablemanifold of E+ follows the fast diretion bakward and approahes RÆ . Itthen follows the slow manifold down to a viinity of the fold point. Dueto the strong attration W s and RÆ are O(e�=Æ)-lose to eah other at aPoinar�e setion �out. A homolini orbit exists i� W u and W s oinide.Beause of the exponential loseness of these manifolds to the two branhesAÆ and RÆ of the slow manifold this intersetion happens for a parametervalue Shom(Æ) whih is exponentially lose to S(Æ). It therefore possessesthe same expansion in Æ. Moreover, the homolini orbit is a anard tra-jetory sine it follows the unstable branh of the slow manifold for a timeof order O(1).AknowledgmentsThis work was supported by DFG priority researh program ANumE.Referenes1. R. F. Dressler: Mathematial Solution of the problem of Roll Waves in inlinedopen hannels, Comm. Pure Appl. Math. 2, 149{190 (1949).2. N. Fenihel: Geometri singular perturbation theory for ordinary di�erentialequations, J.Di�.Eq. 31, 53{98 (1979).3. C. Kranenburg: On the evolution of roll waves, J. Fluid Meh. 245, 249{261(1992).4. M. Krupa and P. Szmolyan: Extending geometri singular perturbation theoryto nonhyperboli points { fold and Canard points in two dimensions, SIAMJ. Math. Anal. 33, 266{314 (2001).5. P. Noble and S. Travadel: Non-persistene of roll-waves under visous pertur-bations, Disr. Cont. Dyn. Syst., Ser. B 1, 61{70 (2001).


