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In the present paper we consider a shallow water equation with Chezy friction
term. It is well-known that this hyperbolic PDE admits a one-parameter family
of discontinuous periodic roll wave solutions parametrized by their wavelength as
well as a discontinuous homoclinic wave.

We show that analogous traveling waves exist when small viscous terms of size e
are added to the equation and determine how the velocity of the viscous homoclinic
waves differs from the velocity of the inviscid waves. The correponding traveling
wave equation leads to a singularly perturbed problem involving points on the slow
manifold which are not normally hyperbolic. The periodic roll waves follow stable
and unstable parts of the slow manifold and are therefore of “canard” type.

1. Introduction

In 1949, Dressler ! used the shallow water equations with a nonlinear fric-
tion term to give a mathematical explanation for the occurence of periodic
roll waves in an open narrow channel with a constant slope. He showed
that no continuous periodic solutions are possible, although periodic waves
were observed. However, there are periodic discontinuous entropy solutions
for any given wave length if the Froude number is larger than 2.

Kranenburg 2 1992 derived a nonlinear viscosity term and studied the
instability of the constant flow which leads to the evolution of roll waves.
Recently, Noble and Travadel ° studied this physically motivated nonlinear
viscosity and the corresponding viscous roll wave solutions.

With a different approach using geometric singular perturbation theory
and invariant manifolds we are able to prove that periodic and homoclinic
traveling waves of the hyperbolic equation persists for small viscosity and
that the velocity is only slightly perturbed.
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2. The inviscid equation

To describe the flow in an open rectangular channel with constant slope
one can use the shallow water equations with Chezy friction

ht—l—(hu)z =0
1,2 : u’ (1)
us + (3u® + ghcosf) = gs1n9—0f7

where Cy denotes the friction coefficient and 6 is the inclination angle.

Figure 1. Water waves in an inclined channel.

We want to study traveling waves with speed s.
One may integrate the first equation via (s — u)h = K and scale the
variables according to
- h(gcosf)/3 P s o t(gcosf)/3
K2/3 7 (Kgcos)'/3(1+F)’ K2/3
to eliminate g cosf and K from the traveling wave equation. This leads to
dH  dh F2H? — (SH(1 + F) —1)?

ar T 1 )

(2)

where F := ,/% denotes the Froude number. The numerator possesses

three zeroes Hy(S) with Ho(1) = 1 and H = H4(S) with 0 < H_ <
H, < 1 provided that F' > 2. Due to the zero of the denominator there
is a singularity at H = 1. Trajectories will typically reach H = 1 in
finite (forward or backward) time and cannot be continued. However, for
H = S =1 the numerator and denominator vanish simultaneously allowing
trajectories to pass continuously through H = 1.

Together with the Rankine-Hugoniot jump condition this can be used
to show the following existence result:

Proposition 2.1. At S =1, equation (3) possesses a one-parameter fam-
ily of discontinuous periodic solutions (“roll waves”) parametrized by their
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wavelength and a unique (up to translation) discontinuous homoclinic trav-
eling wave with H(1) — Hy for 7 — +oo.

3. The viscous equation

Kranenburg in 1992 3 derived a one-dimensional model which takes into
account the viscosity. He obtains the parabolic-hyperbolic system

he + (hu)y = 0

§ 4
Ut+(%u2 +9C059h)z:OfgcosﬂF2_Cf%+5(hl;:)z_ (4)

Using the same scaling (2) as for the inviscid equation we arrive at

(H—}%>H”—Qﬂﬂﬂ+cy(ﬂ1+Fy—%>2:5<%§l (5)

where § = 355 and the prime now denotes differentiation with respect to 7.
Our goal consists of finding homoclinic and periodic traveling waves with
speed close to S = 1 analogous to the waves in the inviscid equation.

3.1. Bifurcation of periodic and homoclinic orbits

For § > 0 (continuous) periodic roll waves are created via Hopf bifurcation
if the Froude number is sufficiently large. They disappears via a homoclinic
bifurcation when their period becomes unbounded.

Theorem 3.1. For 6 > 0 sufficiently small, the constant state H = 1 un-
dergoes a supercritical Hopf bifurcation at S = 1. The branch of periodic
orbits terminates in a homoclinic bifurcation when it collides with a ho-
moclinic orbit asymptotic to a stationary point E,. This homoclinic orbit
exists at S = Shom (0) with

Cs(F —2)(2F — 1)

3/2
EEan 0t OE):

Shom(é) =1+

For the proof we make use of some coordinates which are adapted to the
slow-fast structure of the traveling wave problem:
Setting P=InH = P' = Hﬁ', we can rewrite (5) as

— —-P 1 2P 3
5PI——Q+6 +§€ — 3

Q' = CfF2eP - Cf(S(l +F) - e_P)2
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Figure 2. The bifurcation diagram.

In these coordinates the “conserved” quantities are separated from the
source term. In terms of fast—slow dynamical systems the conserved quan-
tities correspond to the fast dynamics while the source terms play a role
only for the slow dynamics.

Following the usual strategy in singular perturbation theory, system (6)
determines for 6 — 0 two limiting systems which both display a part of the
behavior which is present for § small but nonzero. By setting § = 0 one
obtains the slow system

— -P 1 2P 3
0——Q+€ +§€ — 3

Q' = CfF2eP —Cf(S(l + F) —e_P)2

defining the slow manifold C = {(P,Q); Q = e~ T + %e2p — %}, a strictly
convex curve with a minimum at P = @ = 0. The second equation describes
the slow flow on C by projection. The slow flow possesses three equilibria
E_,E;and P=Q =0.

Setting § = 0 and rescaling the time one arrives at the fast system

Pz—Q—l—e_P—i—%ezp—%, Q=0.

In this system, the complete curve C consists of equilibria. For P < 0 these
stationary points are attracting while for P > 0 they are repelling.

We know already that for 6 > 0 and S close to 1 there are three equi-
libria: an attracting node E_, a saddle point £, and the stationary point
P = @ = 0 whose stability depends on the sign of S — 1.

According to Fenichels geometric singular perturbation theory 2 a com-
pact piece of the attracting branch of C will persist as an invariant manifold
As for 6 > 0 sufficiently small. The flow on this invariant manifold is O(§)—
close to the flow on C in the slow system. Similarly, a compact normally
hyperbolic piece of the repelling branch of C perturbs to an invariant man-
ifold Rs.
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Trajectories can only pass from As to R4 if some equilibrium is close
to the fold point. This situation was recently analyzed by Krupa and Sz-
molyan. Applying Theorem 3.1 in Krupa and Szmolyan * to our setting
we get an intersection of the intersection of the two branches A5 and Ry of
the slow manifold.

Proposition 3.1. Let 7w be the transition map between two Poincaré sec-
tions Y to Yous as in figure 3.1. Let (P;n(8) be the intersection of the
slow manifold with X;, and (Pyy:(8) the intersection of the slow manifold
with Yoyt-
Then there exists a smooth function S¢(v/8) such that w(Pi,) = Py if
and only if
Cy(F —2)(2F — 1)
18(1+ F)

S =25.(0)=1+ 5+ 0(8%/%).

The transition map 7 is defined only for S in an interval of length (’)(e"*/‘s)
around S,(v/8) where k > 0 is some constant.

E_e slow manifold
/ for 6=0

Y

| )

Figure 3. The geometric situation.

Proof of theorem 3.1:

By standard bifurcation theory one can show that for fixed 6 > 0 a
unique family of periodic orbits is created in a supercritical Hopf bifurcation
at S = 1. Since the equilibrium (0,0) which is surrounded by the periodic
orbits does not have purely imaginary eigenvalues for S # 1, the family
of periodic orbits cannot terminate at another Hopf point. Note that no
period—doubling may occur either, because we are in two dimensions only.
Concerning the global fate of the family of periodic orbits, there remain
only three other possibilities:
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(i) the family of periodic orbits exists for all values S > 1,
(ii) the family of periodic orbits becomes unbounded in phase space or
(iii) the minimal period becomes unbounded.

Using the fact from proposition 3.1 that the transition map 7 is not defined
for S —1 of order O(1) one can rule out the first two possibilities. We show
that indeed (iii) occurs and the family of periodic orbits terminates at a
homoclinic orbit.

Since the invariant manifold As contains the stationary point E, the
unstable manifold W* of E, coincides with the slow manifold A; and
therefore passes close to the fold point (0,0). A branch W* of the stable
manifold of F, follows the fast direction backward and approaches Rs. It
then follows the slow manifold down to a vicinity of the fold point. Due
to the strong attraction W* and Rs are O(e~“/%)-close to each other at a
Poincaré section X,,:. A homoclinic orbit exists iff W* and W* coincide.
Because of the exponential closeness of these manifolds to the two branches
As and Rs of the slow manifold this intersection happens for a parameter
value Shom(8) which is exponentially close to S.(4). It therefore possesses
the same expansion in §. Moreover, the homoclinic orbit is a canard tra-
jectory since it follows the unstable branch of the slow manifold for a time
of order O(1).
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