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EXISTENCE OF ROLLWAVES IN A VISCOUS SHALLOWWATER EQUATIONJ. H�ARTERICHFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanyE-mail: haerter�math.fu-berlin.deIn the present paper we 
onsider a shallow water equation with Chezy fri
tionterm. It is well-known that this hyperboli
 PDE admits a one-parameter familyof dis
ontinuous periodi
 roll wave solutions parametrized by their wavelength aswell as a dis
ontinuous homo
lini
 wave.We show that analogous traveling waves exist when small vis
ous terms of size "are added to the equation and determine how the velo
ity of the vis
ous homo
lini
waves di�ers from the velo
ity of the invis
id waves. The 
orreponding travelingwave equation leads to a singularly perturbed problem involving points on the slowmanifold whi
h are not normally hyperboli
. The periodi
 roll waves follow stableand unstable parts of the slow manifold and are therefore of \
anard" type.1. Introdu
tionIn 1949, Dressler 1 used the shallow water equations with a nonlinear fri
-tion term to give a mathemati
al explanation for the o

uren
e of periodi
roll waves in an open narrow 
hannel with a 
onstant slope. He showedthat no 
ontinuous periodi
 solutions are possible, although periodi
 waveswere observed. However, there are periodi
 dis
ontinuous entropy solutionsfor any given wave length if the Froude number is larger than 2.Kranenburg 3 1992 derived a nonlinear vis
osity term and studied theinstability of the 
onstant 
ow whi
h leads to the evolution of roll waves.Re
ently, Noble and Travadel 5 studied this physi
ally motivated nonlinearvis
osity and the 
orresponding vis
ous roll wave solutions.With a di�erent approa
h using geometri
 singular perturbation theoryand invariant manifolds we are able to prove that periodi
 and homo
lini
traveling waves of the hyperboli
 equation persists for small vis
osity andthat the velo
ity is only slightly perturbed.1
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22. The invis
id equationTo des
ribe the 
ow in an open re
tangular 
hannel with 
onstant slopeone 
an use the shallow water equations with Chezy fri
tionht + (hu)x = 0ut + � 12u2 + gh 
os ��x = g sin � � Cf u2h 9=; (1)where Cf denotes the fri
tion 
oeÆ
ient and � is the in
lination angle.
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Figure 1. Water waves in an in
lined 
hannel.We want to study traveling waves with speed s.One may integrate the �rst equation via (s � u)h = K and s
ale thevariables a

ording toH = h(g 
os �)1=3K2=3 ; S = s(Kg 
os �)1=3 (1 + F ) ; � = t(g 
os �)1=3K2=3 : (2)to eliminate g 
os � and K from the traveling wave equation. This leads todHd� = dhdt = Cf F 2H3 � (SH(1 + F )� 1)2H3 � 1 (3)where F := q tan �Cf denotes the Froude number. The numerator possessesthree zeroes H0(S) with H0(1) = 1 and H = H�(S) with 0 < H� <H+ < 1 provided that F > 2. Due to the zero of the denominator thereis a singularity at H = 1. Traje
tories will typi
ally rea
h H = 1 in�nite (forward or ba
kward) time and 
annot be 
ontinued. However, forH = S = 1 the numerator and denominator vanish simultaneously allowingtraje
tories to pass 
ontinuously through H = 1.Together with the Rankine-Hugoniot jump 
ondition this 
an be usedto show the following existen
e result:Proposition 2.1. At S = 1, equation (3) possesses a one-parameter fam-ily of dis
ontinuous periodi
 solutions (\roll waves") parametrized by their
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3wavelength and a unique (up to translation) dis
ontinuous homo
lini
 trav-eling wave with H(�) ! H+ for � ! �1.3. The vis
ous equationKranenburg in 1992 3 derived a one-dimensional model whi
h takes intoa

ount the vis
osity. He obtains the paraboli
-hyperboli
 system8<: ht + (hu)x = 0ut + � 12u2 + g 
os � h�x = Cf g 
os � F 2 � Cf u2h + " (hux)xh : (4)Using the same s
aling (2) as for the invis
id equation we arrive at�H � 1H2�H 0 � Cf F 2H + Cf �S(1 + F )� 1H�2 = Æ�H 0H �0 (5)where Æ = "K2 and the prime now denotes di�erentiation with respe
t to � .Our goal 
onsists of �nding homo
lini
 and periodi
 traveling waves withspeed 
lose to S = 1 analogous to the waves in the invis
id equation.3.1. Bifur
ation of periodi
 and homo
lini
 orbitsFor Æ > 0 (
ontinuous) periodi
 roll waves are 
reated via Hopf bifur
ationif the Froude number is suÆ
iently large. They disappears via a homo
lini
bifur
ation when their period be
omes unbounded.Theorem 3.1. For Æ > 0 suÆ
iently small, the 
onstant state H = 1 un-dergoes a super
riti
al Hopf bifur
ation at S = 1. The bran
h of periodi
orbits terminates in a homo
lini
 bifur
ation when it 
ollides with a ho-mo
lini
 orbit asymptoti
 to a stationary point E+. This homo
lini
 orbitexists at S = Shom(Æ) withShom(Æ) = 1 + Cf (F � 2)(2F � 1)18(F + 1) Æ +O(Æ3=2):For the proof we make use of some 
oordinates whi
h are adapted to theslow-fast stru
ture of the traveling wave problem:Setting P = lnH ) P 0 = H0H , we 
an rewrite (5) asÆP 0 = �Q+ e�P + 12e2P � 32Q0 = CfF 2eP � Cf (S(1 + F )� e�P )29=; (6)
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Figure 2. The bifur
ation diagram.In these 
oordinates the \
onserved" quantities are separated from thesour
e term. In terms of fast{slow dynami
al systems the 
onserved quan-tities 
orrespond to the fast dynami
s while the sour
e terms play a roleonly for the slow dynami
s.Following the usual strategy in singular perturbation theory, system (6)determines for Æ ! 0 two limiting systems whi
h both display a part of thebehavior whi
h is present for Æ small but nonzero. By setting Æ = 0 oneobtains the slow system0 = �Q+ e�P + 12e2P � 32Q0 = CfF 2eP � Cf (S(1 + F )� e�P )2de�ning the slow manifold C = f(P;Q); Q = e�P + 12e2P � 32g, a stri
tly
onvex 
urve with a minimumat P = Q = 0. The se
ond equation des
ribesthe slow 
ow on C by proje
tion. The slow 
ow possesses three equilibriaE�, E+ and P = Q = 0.Setting Æ = 0 and res
aling the time one arrives at the fast system_P = �Q+ e�P + 12e2P � 32 ; _Q = 0:In this system, the 
omplete 
urve C 
onsists of equilibria. For P < 0 thesestationary points are attra
ting while for P > 0 they are repelling.We know already that for Æ > 0 and S 
lose to 1 there are three equi-libria: an attra
ting node E�, a saddle point E+ and the stationary pointP = Q = 0 whose stability depends on the sign of S � 1.A

ording to Feni
hels geometri
 singular perturbation theory 2 a 
om-pa
t pie
e of the attra
ting bran
h of C will persist as an invariant manifoldAÆ for Æ > 0 suÆ
iently small. The 
ow on this invariant manifold is O(Æ){
lose to the 
ow on C in the slow system. Similarly, a 
ompa
t normallyhyperboli
 pie
e of the repelling bran
h of C perturbs to an invariant man-ifold RÆ .
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5Traje
tories 
an only pass from AÆ to RÆ if some equilibrium is 
loseto the fold point. This situation was re
ently analyzed by Krupa and Sz-molyan. Applying Theorem 3.1 in Krupa and Szmolyan 4 to our settingwe get an interse
tion of the interse
tion of the two bran
hes AÆ and RÆ ofthe slow manifold.Proposition 3.1. Let � be the transition map between two Poin
ar�e se
-tions �in to �out as in �gure 3.1. Let (Pin(Æ) be the interse
tion of theslow manifold with �in and (Pout(Æ) the interse
tion of the slow manifoldwith �out.Then there exists a smooth fun
tion S
(pÆ) su
h that �(Pin) = Pout ifand only if S = S
(Æ) = 1 + Cf (F � 2)(2F � 1)18(1 + F ) Æ +O(Æ3=2):The transition map � is de�ned only for S in an interval of length O(e��=Æ)around S
(pÆ) where � > 0 is some 
onstant.
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Figure 3. The geometri
 situation.Proof of theorem 3.1:By standard bifur
ation theory one 
an show that for �xed Æ > 0 aunique family of periodi
 orbits is 
reated in a super
riti
al Hopf bifur
ationat S = 1. Sin
e the equilibrium (0; 0) whi
h is surrounded by the periodi
orbits does not have purely imaginary eigenvalues for S 6= 1, the familyof periodi
 orbits 
annot terminate at another Hopf point. Note that noperiod{doubling may o

ur either, be
ause we are in two dimensions only.Con
erning the global fate of the family of periodi
 orbits, there remainonly three other possibilities:
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6 (i) the family of periodi
 orbits exists for all values S > 1,(ii) the family of periodi
 orbits be
omes unbounded in phase spa
e or(iii) the minimal period be
omes unbounded.Using the fa
t from proposition 3.1 that the transition map � is not de�nedfor S�1 of order O(1) one 
an rule out the �rst two possibilities. We showthat indeed (iii) o

urs and the family of periodi
 orbits terminates at ahomo
lini
 orbit.Sin
e the invariant manifold AÆ 
ontains the stationary point E+, theunstable manifold W u of E+ 
oin
ides with the slow manifold AÆ andtherefore passes 
lose to the fold point (0; 0). A bran
h W s of the stablemanifold of E+ follows the fast dire
tion ba
kward and approa
hes RÆ . Itthen follows the slow manifold down to a vi
inity of the fold point. Dueto the strong attra
tion W s and RÆ are O(e�
=Æ)-
lose to ea
h other at aPoin
ar�e se
tion �out. A homo
lini
 orbit exists i� W u and W s 
oin
ide.Be
ause of the exponential 
loseness of these manifolds to the two bran
hesAÆ and RÆ of the slow manifold this interse
tion happens for a parametervalue Shom(Æ) whi
h is exponentially 
lose to S
(Æ). It therefore possessesthe same expansion in Æ. Moreover, the homo
lini
 orbit is a 
anard tra-je
tory sin
e it follows the unstable bran
h of the slow manifold for a timeof order O(1).A
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