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We study traveling wave solutions of scalar hyperbolic balance laws
up + f(u)y =g(u), z€IR, uelR (1)

and their viscous counterpart

ug+ f(u)y = eugy +g(u), z€IR, ueIR (2)
where the viscosity € is assumed to be small. We assume the following about f and g:
(F) fisconvex: f € C3 f"(u) >0
(G) g € C? with simple zeroes
and look for entropy traveling waves of (1).

Def. 1 An entropy traveling wave is a solution of (1) of the form u(x,t) = u(§) where
& = x — st for some wave speed s € IR with the following properties:

(i) u is piecewise C', i.e. u € CY(IR\ J) with a set J that has only isolated accumulation
points. At points where u is continuously differentiable it satisfies the ordinary differential
equation

(f'(u()) = s) (&) = g(u(g)). (3)

(ii) At points of discontinuity the one-sided limits u(é+) and w(§—) of u satisfy both the
Rankine-Hugoniot condition and the entropy condition u({+) < u(é—).

A classification of all traveling waves has been given by Mascia [?] and can also be found in
[?]. An interesting question is whether all traveling waves of the hyperbolic balance law can be
obtained as the limit of traveling waves of the viscous balance law in the following sense.

Def. 2 An entropy traveling wave ug of (1) with wave speed s is called admissible, if there is a
sequence (u") of traveling wave solutions of (2) s. t. en (0, sp — s and [[u* —ug| 1Ry — 0.

The results on admissibility can be summarized as:

Thm. 3 Most types of entropy traveling waves are admissible. However, there exist classes of
entropy traveling waves which are not admissible.

Proofs can befound in [?] for the cases where classical singular perturbation theory, e.g. [?]
applies, and in [?] where blow-up techniques as in [?, ?] are used. [?] contains also two cases of
entropy traveling waves for which no viscous profile exists.

Here we prove existence of a viscous profile for one particular class of waves: Let uq, us, us
be three consecutive zeroes of g with ¢'(u1) < 0, ¢'(u2) > 0 and ¢'(u3) < 0. Then there
is a unique differentiable entropy traveling wave uy(£) with monotone increasing profile and
wave speed s = f'(uz). Note that both sides of (3) vanish simultanously when u(§) = ug, but

lim S, s = 40420 exists.
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Figure 1: The phase portrait for small ¢ and wave speed s = s(¢)

Thm. 4 This type of entropy traveling wave admits a viscous profile.

Writing the second order equation one obtains from (2) with the traveling wave ansatz z—st =: £
as a first order system gives

!

eu' = v+ f(u) —su
o= —g(u). } (4)

We collect some properties of this system:

Lemma 5 Given d, § > 0 small, there exists some k, ¢1 > 0, such that for all 0 < ¢ < &1 and
all |s — f'(ug)| sufficiently small all trajectories of (4) leave the regions

U, := {(u,v);ulguqu—d, v—l—f(u)—su—i—&% §k€3/29(u)|} and
Ve = {(u,v);uQ—dguqu—é\/g, v—l—f(u)—su—l—&% §k|g(uQ—d)|€3/2}

on the right side. Moreover, a branch of the unstable manifold of ui passes through Uy and V...
Similar regions U_ and V_ exist to the right of us, see figure 1.

Proof: One needs to compare the slope of the upper and lower boundary of Uy, V, with the
vector field on these boundaries and with the slope of the unstable manifold at u;. See [?] for
details of the calculation. O

Lemma 6 There ezists a unique wave speed s = s(e) with

f" (u2)g' (ug) — g" (ua) f" (u2)
2f”(u2)2

s(e) = f'(ug) + €+ h.o.t.

such that a heteroclinic connection u.(£) of (4) from uy to ug exists.



Proof: Existence and uniqueness can be shown by the method of rotated vector fields [?]. For
the asymptotics the blow-up method as in [?, ?] is used. Details of the calculation can be found
in [?]. O

We parametrize the heteroclinic orbits such that ug(0) = u.(0) = us. Let ni = n+(e) be such
that u.(ne) = ug + d4/.

Lemma 7 u.(§) > ¢ for & € [n_,ny] with a constant ¢ > 0 independent of €.

Proof: This follows from the fact that the heteroclinic orbit leaves the strip V; at a height

v(n-) > —f(u) + s()u + il — ke¥/? = =3 ["(uz)e + %2 + O(e%/?) which is bigger than
ce if § is chosen sufficiently small. Similarly, v(ny) > ce. Moreover, v(§) + f(u(€)) — su(§) >
v(&) > min{v(n-),v(ns)} for £ € [n_,n4]. So, on this small part of the heteroclinic orbit we

have u' = L(v + f(u) — s(e)u) > c. O

Proof of theorem 4: Let n € IN be given. We want to show that [lug — ucl[z1(ry < L for
¢ small. Since the heteroclinic orbits of both the hyperbolic and the viscous traveling wave
converge to u; resp. uz exponentially fast as & — +o0o, we can find &4 such that

[ oo
[ ) =@ de < g and [ ) — o) e < 5

By choosing € small, we have due to lemma 7

N+ N+
[ et€) —wole) de < [ @)+ wole)] de < o

Also, ug(n+) and u.(ny) are O(y/e)-close. From the fact that the heteroclinic solution passes
through the invariant region U, and V. we know that uf and u. are also O(y/e)-close on [¢_,n_]
and on [n4,&1]. The remaining estimates

[ et~ o) de < e omd [ o)~ un(o) e < o

follow then by a use of the Gronwall inequality. O
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