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1 Introduction

This thesis is devoted to the study of global attractors of a class of singularly per-
turbed scalar parabolic equations depending on a small parameter ¢. These equa-
tions possess a special structure allowing for a detailed description of the global
attractor. Moreover, many properties of the attractor can be deduced using mainly
information on equilibria and their variational equations. This leads to the study
of a class of singularly perturbed boundary value problems which in general have
many solutions.

The main part of this paper describes how to find solutions of these boundary
value problems and how to determine their stability considered as equilibria of the
parabolic equation. As proposed by Allen and O’Malley [AO90] for problems where
qualitative information is sought rather than high order approximations we use phase
plane methods to describe all solutions of the boundary value problem. Some special
difficulties arise thereby from our choice of Neumann boundary conditions.

As ¢ tends to zero one expects typically that the global attractor has either a very
simple structure (e.g. consists of one stable equilibrium only) or that its dimension
tends to infinity. The rather surprising main result of this dissertation consists of
the proof that for a class of nonlinearities the dimension of the global attractors can
be very high but nevertheless stays bounded as ¢ tends to zero. We also show that

the dimension can stabilize at any given dimension.
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1.1 Global attractors of scalar parabolic equations

Semiflows generated by scalar semilinear parabolic equations are a class of infinite-

dimensional dynamical systems whose qualitative behavior has been an object of



intensive research during the last fifteen years. It has been shown that the equation
U = Upy + (2, u,u,) , b€ C? (1)

with Neumann boundary conditions

and initial condition

u(0,2) = ug(x)

gives rise to a (local) C''-semiflow on the Sobolev space X C W?22([0,1],IR) of
functions satistying the boundary conditions at + = 0 and # = 1. The associated
semigroup T assigns to each pair (f,ug) the solution profile u(t,-) of (1) at time
t > 0 that satisfies the initial condition (1.1) at time ¢ = 0. If the nonlinearity A
satisfies some growth and sign conditions, the semiflow is global and dissipative, i.e.
solutions exist for all (positive) times and there exists a large ball B C X such that
every solution u(t) will eventually stay in this ball. Due to the smoothing properties
of the Laplacian, T'(¢,-) is compact for all £ > 0. Under these conditions a global
attractor A exists, defined as a maximal compact invariant set in B that attracts all
bounded subset of X, see e.g. the monograph of Hale [Hal88] for theorems in this
rather general setting of compact and dissipative semigroups. This global attractor
consists of all orbits that are defined for all (positive and negative) times ¢ and that

are uniformly bounded.

There are two special features of scalar parabolic equations that allow for a more
precise description of the global attractor:
(a) a gradient structure and

(b) nodal properties.

Concerning (a), already in the sixties Zelenyak [Zel68] showed that equation (1)
possesses a Lyapunov functional. Except at equilibria, this Lyapunov functional
decreases along trajectories. For h not depending on w, and Neumann boundary

conditions, the Lyapunov functional can be given explicitly as

Viu, o) := /01 (%ui — H(:z:,u)) dx
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where h is the derivative of H with respect to u.

Then

d 1

 Viu(t),z) = —/ u? de < 0,

dt 0
If h also depends on w, the construction of such a Lyapunov functional becomes
considerably more difficult, nevertheless there is still one. Since this Lyapunov func-
tional can be shown to be bounded on bounded sets, any orbit that stays uniformly
bounded for all £ > 0 will tend to the set of equilibria of (1), i.e. the set of time
independent solutions. In other words, the w-limit set of a single point uy € X 1s
contained in the set E of all equilibria. Matano [Mat78] showed that it even consists
of exactly one equilibrium. The same arguments hold for negative ¢ if a trajectory
is defined there. So, for every trajectory that is defined and bounded for all ¢ < 0,
the a-limit set is also an equilibrium. Using the above characterization of the global
attractor A as the union of all uniformly bounded trajectories that are defined also

for all negative ¢, we obtain the following description of the global attractor:

Proposition 1.1 A = .cg W¥(e), where E is the set of all equilibria and W*(e)

is the unstable set of e. It consists of
o the set E of equilibria and
o heteroclinic orbits connecting different equilibria.

To refine this description, consider now the eigenvalue problem associated with the

linearization of (1) at an equilibrium v.

Wer + Oh(z,v(2), v5(2))w + Oph(x,v(x), ve(2))w, = Aw }
w(0) =w,(1) = 0

Definition 1.2 An equilibrium v is called hyperbolic if 0 is not an eigenvalue of

the linearization at v, i.e. if (2) has no nontrivial solution for A = 0.

Definition 1.3 The Morse index i(v) of a hyperbolic equilibrium v is the number

of positive eigenvalues of the linearization at v.

It all equilibria are hyperbolic then the global attractor is the finite union of equilibria

and their unstable manifolds.



It is a classical observation by Sturm that the eigenvalues are connected to the

oscillation properties of the eigenfunctions. There is a sequence of simple eigenvalues
A >A>..., A, > —00 asn — o0

and the eigenfunction wy, associated with A\; has exactly k zeroes in the open interval

(0,1).

If h = h(u,u;) does not depend explicitly on x, there is an important relation
between the Morse index of an equilibrium v and the number z(v,) of strict sign

changes of v, defined as

z(v) = sup{fn e IN;I0 < 2y < ... <, <1 with v(a;) - v(ri41) <0, 1 <i<n}
z(0) := 0.

Proposition 1.4 If h = h(u,u,) does not depend on x, then the Morse index of

any nonconstant hyperbolic equilibrium v is either z(v,) or z(vy) + 1.

Proof: Suppose that i(v) = n such that A\,_y > 0 > A,. Differentiating the
equilibrium equation

Vgz + h(v,0,) =0

with respect to x shows that v, is a solution of the linearized equation but does
not satisfy the Neumann boundary conditions. Nevertheless, the Sturm comparison
theorem is applicable and yields that between two consecutive zeroes of u,,_1 there is
a zero of v, and between two consecutive zeroes of v, there is a zero of u,. Since for
any nonconstant equilibrium v the zeroes of v, are simple, v, has exactly z(v,;) — 1
zeroes in the interior of the interval (0,1) and another two at @ = 0 and « = 1 due
to the Neumann boundary conditions. Therefore, v, has at least n and not more
than n+ 1 zeroes. Translating this back into the notions of i(v) and z(v,) completes
the proof.

O
Remark: If the nonconstant equilibrium v is not hyperbolic one can prove along
exactly the same lines that its center-unstable manifold has dimension z(v.) or
z(vy) + 1. In this case v has exactly one zero eigenvalue and the center-unstable

manifold is a manifold with boundary, see [Hen85].
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The second peculiarity of scalar parabolic equations is the existence of a discrete
Lyapunov functional connected to the zero number z(u(-)) of the solution w in (0, 1).
Already Sturm recognized that the zero number z(u'(¢,-) —u*(t,-)) of the difference
of two solutions u' and u? is non-increasing in time. This result was rediscovered
several times during the last 150 years. The most recent version is due to Angenent
[Ang88] who also shows that z(u'(t,-) — u*(t,-)) drops strictly at time ¢ if u'(¢,-) —
u*(t,-) possesses a multiple zero. One consequence of those nodal properties is the
Morse-Smale property of the attractor: There can only exist heteroclinic connections

from equilibria with higher Morse index to such with lower Morse index.

1.2 Equilibria, permutations and connections

Since the global attractor is the union of equilibria and connecting orbits, given a spe-
cific equation, one may want to find the equilibrium solutions first and think about
connecting orbits afterwards. The equilibria are simply solutions of the boundary
value problem

Upy — h(x,uyuy) = 0 } (3)

u(0) =u,(1) = 0.

The next step in the description of the attractor consists of finding criteria whether
two given equilibria are connected by a heteroclinic orbit or not. This question was
first adressed by Brunovsky and Fiedler [BF88],[BF89] in the case of a nonlinearity
depending on u only with hyperbolic equilibria. Later, Fiedler and Rocha [FR96a],
could show that also in case h = h(x,u,u,) all information on the connections can
already be derived from the equilibrium solutions. Their work uses the observation
of Fusco and Rocha [FR91] that all information on the Morse indices of the equilibria
as well as on zero numbers of differences of equilibria is contained in the ordering
of the equilibrium solutions at © = 0 and * = 1. Their results are formulated by
means of a permutation 7 that is induced by the two orderings of the equilibria in
the following way:
While at the left boundary = =0

v1(0) < v2(0) < ... < vg(0),
the equilibria satisfy at the right boundary = =1
vﬂ(l)(l) < Ur(z)(l) < ... < vﬂ(k)(l).

5



This ordering is related to a shooting approach to find the equilibria of (1). Consider

the initial value problem

vo= w
w' = —h(z,v,w)
=1

with
v(0) =v9, w(0)=0, x(0)=0.

This choice of initial conditions ensures that the left boundary conditions will be
satisfied. The shooting surface is just the union of all these solutions and as
shooting curve S we denote the intersection of the shooting surface with the
plane {& = 1}. Clearly, v(x) solves the boundary value problem (3) if, and only if,
w(1) lies on the u-axis, i.e. if (v(1),w(1)) is a point of intersection between S and
the u-axis.

The following proposition from [FR91] gives a relation between the permutation =

and the Morse indices and zero numbers.

Proposition 1.5 [Fusco & Rocha] Let the semiflow generated by (1) be dissipa-
tive. Let vi,vq,...,0; be the equilibria of (1) with associated permutation ® and
assume that all equilibria are hyperbolic. Then, the Morse index i(v,,) of the equi-
librium v,, is given by

m—1

(V) = Z(—l)”l sign (771 (5 + 1) —77'(9)). (4)

J=1
(empty sums equal zero.)

For any 1 <m < n <1, the zero number z(v, — v,,) is given by

e —vm) = ilvm) + H(=1)" sign (+(n) — 7 m)) — 1]
+ Y (=1 sign (271 (g) — 77 (m)).
Fedler and Rocha later showed that this information suffices to decide whether two

equilibria are connected.

Proposition 1.6 [Fiedler & Rocha] Under the assumptions of proposition 1.5
the permutation © determines which equilibria are connected by a heteroclinic orbit

and which are not. More precisely:



(i) Two equilibria v and w with Morse indices 1(v),i{(w) are connected if, and only

if, there exists a sequence
W = €9y€1y...,€p =V

of equilibria with i(exy1) = t(ex) + 1 such that exy1 and ey, are connected by a

heteroclinic orbit.

(i) Two equilibria v and w with Morse indices i(v) and i(w) = i(v) — 1 are not

connected if z(v —w) # i(w) (‘Morse blocking®).

(tii) Two equilibria v and w with Morse indices i(v) and i(w) = i(v) — 1 are not
connected if there exists a third equilibrium w such that z(v —w) = z(w—w) =
z(v —w) and the value w(x) lies in between v(x) and w(x), at @ = 0 (‘zero

number blocking*).

(iv) Two equilibria v and w with Morse indices i(v) and i(w) = i(v) — 1 are con-

nected if neither (i) nor (iii) holds.

1.3 Singular perturbations

We introduce now a small positive parameter ¢ in front of the diffusivity term of the

parabolic equation (1), which thereby becomes

(5)

Up = EUgy + b2, u,uy)
uy(0,1) = u,(1,t) = 0.

It is easy to check that most of the statements above do not depend on . It
neither influences the global existence nor the dissipativeness and compactness of
the (e-dependent) semigroup. Thus, for each fixed ¢ > 0 equation (5) possesses a
global attractor A.. In general, this attractor A. will vary with e. In particular,
hyperbolicity of all equilibria will not hold for all ¢ as the following ’classical” example
shows. Consider a nonlinearity & = h(u) not depending on x and u,, e.g. the cubic
h(u) = u(l —u?). Chafee and Infante [CI74] showed that the equilibrium u = 0
undergoes a sequence of pitchfork bifurcations at values e = (Ix)™2, 1 = 1,2,.... At
each of these pitchfork bifurcations two new equilibria appear and the Morse index

of u = 0 is increased by one. So there are two problems in getting a description
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of the attractor as € tends to 0: the number of equilibria and the dimension of the
attractor both tend to infinity. In terms of the shooting curve this is visible as the
fact that & winds around the equilibrium v = 0 an increasing number of times as €
becomes smaller and smaller. It is not difficult to see that this behaviour is typical

for nonlinearities depending on u only. In this case the equilibria satisty the equation
EUyy + h(u) = 0,

which has a Hamiltonian structure. By rescaling z = \/c¢ the equilibrium equation

becomes

uge + h(u) =0, (6)

and does not depend on ¢ any more, only the boundary condition at = 1 reads
now ug(e7/?) = 0 and contains the parameter . If h has at least two zeroes then
(6) admits for families of periodic orbits that accumulate onto a homoclinic orbit
or a pair of heteroclinic orbits. A solution of (6) following one of these periodic
orbits with period p, say % turns is a solution of the boundary value problem if
e~1/? = %-p. It is now easy to see that the following alternative holds, depending on
whether h has exactly one or more than one zero: Either there is only one (spatially
homogenous) equilibrium that does not depend on &, or the attractor A. blows up

in the way described above.

A natural question to ask is, whether the same is true for more general nonlinearities
h. There are some results indicating that for A = h(x,u) the behaviour is rather
more complicated. While for A not depending on x and the gradient u, all noncon-
stant equilibria are unstable, Angenent, Mallet-Paret and Peletier [AMPP87] found
stable solutions which develop a transition layer. Later, Hale and Sakamoto [HS88]

described also unstable equilibrium solutions with transition layers.

Below, a class of nonlinearities h of the special form h(z,u,u,) = (f(u)). + g(u)
will be shown to cause a different behaviour of A.: The dimension of A. remains
bounded for all small ¢ and in some cases all the attractors are equivalent in a sense
that is to be specified in the next section. This shows that convection can prevent,

at least in some cases, the attractor from blowing up.



1.4 Equivalence of attractors

Our description of attractors of singularly perturbed parabolic equations is to a large

extend based on the following notion of equivalence of attractors.

Definition 1.7 The global attractors Aj, and Ay corresponding to the scalar parabolic
equations

Up = Upy + A2, u,uy), up(0,1) = uy(1,4) =0

and
Up = Ugp + k{2, u,uy), ug(0,1) =uy(1,2) =0

are called (C°)-equivalent if there is a homeomorphism between the global attractors

Aj, and Ay, that maps orbits onto orbits preserving the direction of time.

Note that C°-equivalence implies connection equivalence. Here two attractors are

called connection equivalent if

(i) the equilibria of A}, are in one-to-one correspondance with the equilibria of Ay

and

(ii) two equilibria of A, are connected by a heteroclinic orbit iff the corresponding

equilibria of Ay are connected.

The main result about C°-equivalence was obtained only recently by Fiedler and

Rocha [FR96D].

Proposition 1.8 [Fiedler & Rocha] If for two nonlinearities h and k all equilibria
are hyperbolic and the two permutations x;, and 7y induced by the shooting curves

are identical, then the two attractors Ay and Ay are C°-equivalent.

This notion of equivalence can be adapted to the singularly perturbed setting. In
that case there are no different nonlinearities, but one wants to compare the global
attractors of (5) with the same nonlinearity h but different values of . To this end,
time is rescaled by a factor ¢ which does not alter the global attractor. Dividing the

equation by this factor ¢ yields

h(x,u,uy)
5

Ut = Ugy +



such that different values of € only affect the nonlinear part and definition 1.7 applies

directly.

The ultimate goal would be to show that for a certain class of nonlinearities described
below and sufficiently small ¢ there exists a finite e-independent number of equilibria,
all hyperbolic, and the global attractors A. are all C%equivalent. At the moment,
we are only able to prove such a result for a rather restricted class of nonlinearities.
Nevertheless, one should consider the following theorems as a (first) step in this

direction.

1.5 The Main Theorems

Now all ingredients are collected such that the main results of this paper can be
formulated. Theorem 1.1 tells that the dimension of the global attractor A. remains

bounded as € \, 0 for a class of nonlinearities h of the form

hu,ug) = =(f(w)e + g(u)

Theorem 1.1 Consider the singularly perturbed parabolic equation of the special

form
ur + (f(u)), = etz + g(u), f,ge€C
Assume that

(H1) g is a dissipative function
(H2) the critical points of [ are quadratic folds, i.e. f'(u)=0= f"(0) #0
(H3) the derivative of f does not vanish at zeroes of g.

Then the dimension of A. remains bounded as ¢ — 0.

Under stronger conditions the dimension of A, not only stays bounded but it stabi-

lizes.

Theorem 1.2 There exists an open (with respect to the strong Whitney topology)
class of functions f and g such that the following holds: There is an 9 and some
integer d such that for all 0 < ¢ < g¢ the dimension of the global attractor A. is
contained in {d,d + 1}.

10



The precise conditions on f and ¢ will be given as the additional hypotheses (H4)-
(H7) in chapter 4. It can be checked easily that the conditions (H1)-(H3) persist
under C%-small perturbations. Dissipativeness of ¢ implies that only a finite range
of u is really important for the asymptotic behavior of solutions and hence for the
global attractor A.. Assuming dissipativeness, the other conditions (H2)-(H7) are
open and dense with respect to the Whitney topology.

The dimension of the A, can stabilize at any integer d > 1 but there is a special

case where we have achieved our goal to prove C'°-equivalence of the attractors A.:

Theorem 1.3 [f the conditions of theorem 1.2 are satisfied and f is a convex func-
tion then the global attractor is (at most) two-dimensional for all 0 < & < gy and
for all 0 < &' < & < gy the global attractors A. and A, are C°-equivalent.

The rest of the paper is organized in the following way: Chapter 2 deals with viscous
balance laws. Chapter 3 contains a first investigation of equilibrium solutions to the
viscous balance law and the proof of theorem 1.1. In chapter 4 the reduced system
that corresponds to ¢ = 0 is examined. In chapter 5 the relation between the reduced
system and the system for ¢ > 0 is investigated. To this end we use a normal form
which is derived in the appendix. In chapter 6, theorem 1.2 is proved and the
existence of (in general, many) equilibrium solutions is shown. After establishing
uniqueness of solutions for some cases in chapter 7, the planar case of theorem 1.3

is treated in chapter 8. The paper concludes with a short discussion.

2 Balance Laws

Since in the rest of this paper viscous balance laws are considered, we will show in
this section that they fit in the above setting. Viscous balance law is a term used

for a scalar parabolic equation of the special form

ut + (fu)), = g(u) + ctiz,. (7)

We will study this equation on the unit interval with Neumann boundary conditions

and initial data



Here f and g are of class C'* and ¢ is a dissipative function, i.e.
u-gu)<0 Viul>R (8)

with some (large) constant R. The parameter ¢ is very small and adds some dissi-

pativeness to the usual ”balance law”

ur + (f(w), = g(u). (9)

Balance laws are a generalization of conservation laws

up + (f(u)), =0

where a source term ¢(u) is present.

As with conservation laws, for balance laws there are in general no global smooth
solutions even for arbitrarily smooth initial data. After a finite time, shocks are
formed. Often such first order hyperbolic equations are considered with = on the
whole real line. As Kruzhkov [Kru70] showed, under some admissibility condition
for any bounded measurable ug there is a unique solution of the hyperbolic equation
(9). On finite time intervals the solution of the viscous balance law (7) converges to
this unique solution as ¢ tends to 0.

Only recently conservation as well as balance laws on an interval have attracted
more attention. This is mostly due to the occurence of steep transition layers that
move very slowly [RW95]. With these property, these second order scalar equations
serve as crude models for phase transitions or semiconductors [BH95]. Especially,
they are used as test problems for numerical analysists who are interested in the
numerical treatment of more complicated (and hopefully more realistic) problems,
e.g. higher dimensional equations describing phase transitions.

One difference between scalar conservation laws and balance laws is the fact that
solutions of balance laws need not decay to a spatially homogenous state as time
tends to infinity. In the case of # € IR and periodic initial data it was shown
1970 by Glimm and Lax that solutions of scalar conservation laws decay like O(¢71)
to their spatial average when the time ¢ tends to infinity. This is not true for
balance laws: There may exists periodic solutions and at least in the case of f being
convex, a Poincaré-Bendixson type result holds: Every solution either tends to an

equilibrium or to a periodic orbit, which is a traveling wave then. This result was

12



shown by Lyberopoulos [Lyb94], Fan & Hale [FH95] and also by Sinestrari [Sin95b]
and ressembles very much the results in the parabolic case treated in Angenent &
Fiedler [AF88] and Fiedler & Mallet-Paret [FMP89] although the methods are quite
different.

Local existence of weak solutions of solutions for the parabolic equation

ue + (fu)), = g(u) + ctiey (10)

with Neumann boundary conditions can be shown by semigroup methods as in
the book of Henry [Hen81]. The (unbounded) linear operator cu,, together with
the Neumann boundary conditions generates an analytical semigroup on the space
W2(0,1) and the smoothness assumptions on f and g are sufficient to guarantee a
local solution of (10). This solution lies in the domain of the infinitesimal generator,
i.e. in the space X C W?? of functions which satisfy the Neumann boundary con-
ditions. Furthermore, the time derivative u;(?,-) is Holder continuous so by elliptic
Schauder regularity theory the solution is a classical solution. This allows to talk
about derivatives of the solution, to use maximum principles involving u,,, etc..
Although this could also be derived from general theorems by Amann [Ama83], it
will be shown here in an elementary way that the local solutions of the viscous
balance law (10) exist globally in time and that dissipativeness is guaranted by the
sign condition (8) on g.

Global existence of solutions will be shown via some a-priori estimates on v and the

derivative u,:

Lemma 2.1 [fu satisfies equation (7) for all t € [0,T], then:
(i) Nu(T, )|~ < C(ug) independent of e
(i) [[ua(T, )|z < Cluo, €)

Proof: (i) follows from a maximum principle. Due to the dissipativeness condition

(8), in any positive maximum u(xg,to) with 0 < to < T and |u(xo,t0)| > R

Up = € Uyy — [(u)uy +g(u) < 0.
SO =0 <0

In the same way we can conclude that in any negative minimum wu(xg,%o) with

0 <ty <T and u(xg,to) < —R we have u; > 0. Therefore, the L>-norm decreases

13



as long as u(t,-) takes values outside [— R, R] and hence
HUHL2 < HuHLoo < max {R7 Hu(()7 )HLOO} — (.

To proof claim (ii), first note that for u € W??

1 1
lealfe = [ utde < [ uwlde < flulo oo

hence for any solution u

~l[taallze < =Co - [lullz:

where the constant
C = 1
0 02

depends on ug. Furthermore,

1
jﬁ f(wugtigy de < max | f'(w)] - |lug| g2l 22

lul<C
< Slhusallts + 5l
-2 2e
Multiplying equation (7) by u,, one obtains after integrating
d 1 2 2 b v 2
ol = el = [ @ de+ [ () da
dt 2 0 0
3 eC 3 C
< = Slhelle = Sl Sl o2 + )
< 0 for ||ugllzz > C(ug, )

= lua(t,)llze < max {[Jua(0,-)]|z2, C(uo, )}

O
This lemma implies immediately that all solutions exist globally in time and that
(forward) orbits are bounded in W2, Due to the variational structure of equation
(7), for any ug € W2 the w-limit set of ug is contained in the union of the equilibrium
solutions of (7). To prove dissipativeness, it remains only to show that for any
fixed e the equilibrium solutions form a bounded set. Below we will focus a lot
on equilibrium solutions and for this reason we postpone the proof of boundedness
to lemma 3.4. Here we only note that the boundedness of the set of equilibrium

solutions implies the dissipativeness of the semiflow.
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3 Equilibrium solutions

3.1 A singularly perturbed boundary value problem

Since, by definition, equilibrium solutions do not depend on time ¢, we will write
for these solutions simply u(x) instead of u(x,?). Equilibrium solutions of (7) are

solutions of the boundary value problem

S — (f(u), + 9(u) = 0 }

u(0) =u,(1) = 0. (11)

This singularly perturbed boundary value problem can be written as a first order
system
cu, = v+ f(u)
vy = —g(u) (12)
ur(0) = wuy(l) =0,

a choice of coordinates which is sometimes called the “Liénard plane” in contrast
to the more common “phase plane” where v = u,. Concerning the shooting curve
S, there is no important difference between the usual phase plane and the Liénard
plane. The u-coordinate is always the same and hence the permutation = used in

proposition 1.5 and proposition 1.8 can also be read off from the Liénard plane.

Note that the boundary condition in (12) could also be written in the form
v(x)+ f(u(z))=0 atz=0andz =1,

so, geometrically speaking, we are looking for trajectories of (12) which take exactly
“time” Az = 1 to join two points on the curve v 4+ f(u) = 0. To avoid too much

confusion between time and space variables, we recast (12) in the form

eu' = v+ flu)
. (13)

Z =1

0<s<1
uw'(0)=u'(1)=2(0)=0

15



where ’ denotes differentiation with respect to a new variable s that looks more
like a time variable than = does, although obviously # = s. Below, methods from
singular perturbation theory are used that compare the system for small ¢ with some
limiting systems for ¢ = 0. There are different possibilities to perform this limit,
leading to the so called “slow” and “fast” systems which both describe a part of the
limiting behaviour of system (12). The difference originates in a different scaling of
the variable s.

Setting ¢ = 0 in equation (12), we arrive at the “slow system”

0 = v+t flu)

/

o' = —g(u).

Here the motion is confined to a curve given by the first of the two equations, while
the second one describes the flow along this curve. Since this curve will play a

special role in the next chapters it deserves a name on its own:

Definition 3.1 The curve C given by the equation v + f(u) =0 in the (u,v)-plane

is called the singular curve.

Note that u, = 0 exactly where the trajectory hits or crosses the curve C. Later,
when we have to determine z(u,) to use lemma 1.4 we will use this property. We
can simply count the number of intersections between the trajectory and the curve
C.

System (12) can also be scaled in another way. If the second equation is multiplied

by ¢ and the variable s is rescaled according to s = eo, we arrive at
i = vt fw
v = —eg(u).

with “denoting the derivative with respect to the fast variable o. Putting ¢ = 0, the

“fast system”

i = vt flu)
v = 0

is obtained. Here, the singular curve consists of equilibrium points only. According
to the stability of these equilibria, parts of C where f’ > 0 are called unstable arcs
of C, while the parts with f/ < 0 are called stable arcs.
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Before theorem 1.2 is proved using singular perturbation theory, we will give a
pedestrian proof of theorem 1.1. Although it is rather elementary, it contains some

information on system (12) that will prove useful later.

3.2 Proof of theorem 1.1

From the three assumptions theorem 1.1, we have already used one: The dissipative-
ness (H1) of ¢ was necessary for the existence of a global attractor. The condition
(H2) that all zeroes of f’ be simple can probably be weakened on the price of longer
and more complicated calculations. Let us just mention in short that the assump-
tion (H3) which states that no zeroes of ¢ lie on the fold points of the singular curve
C is necessary to prevent a blow-up of A. similar to the Chafee-Infante example

presented in the introduction.

We begin with a short outline of the proof. Recall the characterization of A. as the
unstable manifold of the set F of equilibria. If all equilibria are hyperbolic then they
are isolated and the attractor is contained in the union of the unstable manifolds of
all single equilibria. The hyperbolicity of all equilibria is not guaranteed under the
weak assumptions of theorem 1.1, such that we have to consider the possibility of a
non-hyperbolic attractor, too. In this case a bound on the dimension of the center-
unstable manifolds of the equilibria will be derived. We will distinguish between
spatially homogenous and non-homogenous equilibrium solutions. It will turn out,
that for the homogenous solutions the linearization has at most one non-negative
eigenvalue. For the non-homogenous ones in view of lemma 1.4 it is necessary to
prove that for some integer N and all small £ the equilibria have at most N extrema.
This will be an immediate consequence of lemma 3.6 where we will prove that three
extrema of an equilibrium solution v cannot be arbitrarily close to each other. On

the way to this lemma, we collect some properties of the two-dimensional system

eu' = v+ flu)
o= —g(u) } .

for small «.

Observe first that the equilibrium points of system (14) lie on the curve C and have
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as u-coordinates exactly the zeroes of g. Due to assumption (H3), the eigenvalues

(o) £ 1/ (u0)? — deg/ (uo)
2e

Hi2 =

of the linearization at such an equilibrium (ug, vg) turn out to be real for small ¢

and behave asymptotically like

ffluo) o 9 (u0)
- d py f’(uo)'

If ¢'(uo) # 0 the corresponding equilibrium of (14) is hyperbolic and a saddle exactly

M1~

if ¢'(ug) < 0. If all zeroes of ¢ are simple, the equilibria are alternately saddles and
sources or sinks.

Each of these zeroes of g corresponds to one homogenous equilibrium solution. The
next step consists of showing that (e.g. in contrast to the Chafee-Infante case) these

homogenous equilibrium solutions cannot become very unstable as ¢ decreases.

Lemma 3.2 [f g(a) = 0 then for ¢ sufficiently small the first eigenvalue Ao of the
equiltbrium solution u = u is

Ao = g'(u1)
and all other eigenvalues are strictly negative. In particular, u = u is hyperbolic iff
g'(w) # 0 and in this case the Morse index is 0 for g'(u) < 0 resp. 1 for ¢'(a) > 0.

Proof: For a homogenous equilibrium solution the eigenvalue equation is just a

linear second-order boundary-value problem

Wz — f(W)w, + ¢ (W)w = Aw
w(0) =w,(1) = 0.

The solutions of this second-order equation can be found easily to be of the form
w(z) = e eh=)7 1 oo ent ()7

where

P E @)~ ae(g'(@) - )
2e '

M+
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Thus, g_(¢) and py(e) are real if
P — el (3) — 3) > 0.

With real p_(¢) and g4 (¢) the boundary value problem only has a solution if y4(¢) =
0 and this holds exactly for A = ¢’(@). Other eigenvalues require p_(¢) and p4(¢)

to be complex which is only possible for

[

A< —
4e

+¢'(u).

Thus, for all sufficiently small e, A = ¢’(@) has to be the first eigenvalue.

The next definition keeps track of the fact that our interest is not in any trajectory
of (14), but mainly in those that correspond to solutions of the Neumann boundary

value problem.

Definition 3.3 An admissible trajectory of system (14) is a trajectory that cor-
responds to a solution of the boundary value problem, i.e. it is a finite piece of a
trajectory u(s) that satisfies u'(0) = v'(1) = 0.

Let us now state a simple lemma that allows us to restrict our attention to a finite

range of w.

Lemma 3.4 Let f and g be as in theorem 1.1 and denote with U, mandi,,., the

minimal, resp. maximal zero of g. Then:

(i) For any admissible trajectory (u(s),v(s)) of (14)

Umin S U(8) < Upae Vs € [0, 1].

(ii) There are constants C,eq such that for 0 < ¢ < eg along any admissible
trajectory of (14)
C

() <

Vs e [0,1].
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Figure 1: Admissible solutions are confined to a bounded region in the Liénard

plane

Proof : To prove part (i) indirectly, suppose that for some s € [0,1] we have
u(8) < Umin. The curve v + f(u) = 0 divides the region {(u,v);u < Upy} into two
parts. Since the vector field is vertical on the curve {v + f(u) = 0} and horizontal
on the line u = wy, the region {(u,v); v < wpin,v < f(u)} is positively invariant
while {(u,v); u < Upmin,v > f(u)} is negatively invariant, see figure 1.

If (u(s),v(s)) lies in the positively invariant region for some s then the right bound-
ary condition can obviously not be satisfied. If (u(s),v(s)) lies in the upper, nega-
tively invariant region there is no chance of satisfying the left boundary condition.
So a solution of the boundary value problem may not enter one of the two regions.
It cannot stay on the curve {v 4 f(u) = 0} either since by assumption t;, is the
leftmost zero of g. Thus, there can be no solution of the boundary value problem
that takes a value less than t,;,. The argument excluding u(s) > 4, is similar.

Claim (ii) obviously follows by showing that
eu'(s) = v(s) + flu(s)) < C.
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To see this take

Vmaz > SUp{—f(u) 5 Umin < U < Upar} + 1

and
Vmin < lﬂf{—f(U) y Umin S u S umaac} — 1.

For ¢ small enough the trajectory starting in (min, Vmaez) Will be almost horizontal
and intersects the line u = u,,,, without having hit the singular curve before. Sim-
ilarly, the trajectory starting in (tmaz, Umin) stays below the singular curve until it
hits the line v = u,,;,. Therefore, all admissible trajectories are for small ¢ confined
to a bounded region of the (u,v)-plane.

O

The restriction of admissible trajectories to a bounded region also yields an upper
bound on v’

Along any admissible trajectory we have

[v'(s)] < max lg(w)| =: C,.

Umin Susuma:p

There are also some restrictions on trajectories that are close to the curve C:

Lemma 3.5 Consider again the system (14) and assume that f'(u) < 0 (f'(u) > 0)
for all w € Ju_,uy].
Then:

(i) For all sufficiently large k and all small e trajectories can leave (enter) a region
{(u,v);u <u <ugp,—ke <v+ flu) < kel
only at w =u_ oru=1uy.

(it) If furthermore u_ and uy are two adjacent zeroes of g, then there is a positively
invariant region between the curves C and v + f(u) — keg(u) = 0 for k large

and all ¢ small (a negatively invariant region between C and a curve v+ f(u)+

keg(u) =0).

(tii) In this case the two equilibria (u—,—f(u_)) and (uy,—f(uy)) on the singular

curve are connected by a heteroclinic orbit.
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Remark: The heteroclinic orbits of (iii) are part of the slow manifold, an invari-
ant manifold that exists for ¢ > 0 near the singular curve C except in a neighborhood
of the fold points, cf. [Fen79].

Proof:

(i) For definiteness, we suppose that f'(u) < 0 for v € [u_,u4]. The case f'(u) >0
can be treated in the same way.

Along a curve v 4+ f(u) 4+ ke = 0 the trajectories written as v = v(u) satisfy

‘g(U)
=

dv(u)
du

Since ¢ is bounded on [u_,uy], by choosing

one can achieve that the vector field is directed into the region
{(u,v);u <u<ugp,—ke <v+ flu) < ke}

along the whole curve so that trajectories can leave the region only via the left or
the right boundary. Especially, trajectories that enter a neighborhood of a stable
arc of C can leave such a neighborhood only near a fold.

(ii): To establish the invariant regions, one has to check that along curves v+ f(u)—

keg(u) = 0 trajectories satisfy

dof 1
du kE

which is for k£ large enough and all small ¢ certainly smaller than the infimum

inf [ f'(u) = keg'(u)]

u_ <u<ug

of the slope of the curve.

Then the existence of invariant regions is easily established by distinguishing the
two cases ¢ > 0 and ¢ < 0 on (u_,u4). In both cases one finds a positively invariant
region either above or below C. It is easy to check that for f* > 0 there are negatively
invariant regions.

(iii): A simple argument proves the heteroclinic connection between the two equi-

libria: Since the two equilibria are adjacent, one of them is a saddle and the other a

22



positively invariant regions

Figure 2: Invariant regions near the singular curve C

sink. Consider the eigenvector to the unstable eigenvalue Ay of the saddle. A short
computation shows that the (one-dimensional) invariant manifold corresponding to
Ag is directed into the invariant region if only k is chosen large enough. Since this
region contains in its interior neither equilibria nor periodic orbits (v’ has a definite
sign there) the invariant manifold must connect to the sink lying on the boundary
of the invariant region.

O

Figure 2 shows a situation with f’ < 0 and two positively invariant regions. There
are heteroclinic orbits from the upper and lower equilibrium to the one in between
which are not shown in the figure.

Note also that admissible trajectories may not enter one of the regions enclosed by
C and such a heteroclinic orbit because once inside such a region they cannot reach
the curve C again to satisfy the boundary condition.

Now we state the lemma which is crucial for proving theorem 1.1 since it shows that

for all small ¢ and any solution u of the boundary value problem (11) the number
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z(uy) will not exceed a certain bound.

Lemma 3.6 Let (u(s),v(s)), 0 < s < 1 be a nonconstant admissible trajectory.
Then there exists a g9 > 0 and some 6 > 0 such that for 0 < ¢ < gg the following
holds: If sy < sy < 83 are three different zeroes of u', then s3 — sy > 6.

Proof: The proof concentrates on s, and shows that s3 — sy > 0 or 53— 81 > 6. We
may without restriction assume, that there are no other zeroes of u’ in the intervals
(s1,82) and (s2,s3). The arguments differ depending on whether (u(sg),v(s2)) lies
near a fold or on a stable or unstable arc of C. To this end the interval [t,in, Upmaz]
is divided into several parts. It was assumed that all zeroes of [’ are simple, so they
cannot accumulate and there is a finite number of points W; < Uy < ... < Up in
[Wmin, Wmaz] With
f'(w;) = 0.

The case of g(w;) < 0 and f"(w;) > 0 is treated here in detail, but all other combi-
nations of signs for ¢(w;) and f”(u;) lead to similar results.

[t is possible to find a neighborhood [a;, 8;] of @; such that

flei) = f(5)
and both
g(u) >c and f"(u) > ¢

hold for all w in the whole interval [a;, 3;] and some ¢ > 0.

The condition g(u) > ¢ implies that all trajectories that cross C between «; and
3; will do this from above. It is easy to see that these trajectories can leave the
region enclosed by C and the horizontal line v = — f(«;) only through just this line.

Between «; and f;, one can find &; and BZ with
a; < q; < < By < B,

fla) = f(B)
and |
flé) = flai) = 5(f(@) = flai)),

compare figure 3.
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Figure 3

Consider the case that an admissible trajectory hits the curve C between &; and f;
at the time s = sy. Since |v'| was bounded by C, independent of ¢, it will take the

trajectory a time of at least

to leave the region enclosed by C and the line v = —f(a;). During this time it

cannot hit the singular curve again. Thus, if s lies in the interval [&;, 8;], we have
83 — 89 > As;.

The same situation appears if g(@;) > 0 and f”(u@,;) < 0. For the other two cases
where ¢g(w@;) > 0 and f”(@;) > 0 have the same sign a similar reasoning shows that a
trajectory that hits C near the fold cannot have hit it for a certain time before and

hence
S9 — 81 > As;.

Thus, if s, lies in some interval [ON%BZ'] the lemma is proved by chosing ¢ smaller
than the infimum of the As;.
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If the trajectory intersects the singular curve on a stable arc in some interval [3;_1, &;]

and ¢ is sufficiently small then the trajectory is in one of the strips
{(u,v);u <u<ugp,—ke <v+ flu) < ke}

of lemma 3.5 that can only be left at their left or right boundary.

Two things can be shown:

1) A trajectory cannot intersect the singular curve again before leaving the strip.
2) The trajectory stays inside the strip for at least the time As; /2.

To prove the first claim, remember that an admissible trajectory may not enter one of
the regions enclosed by C and a heteroclinic orbit connecting two adjacent equilibria
on the same (stable or unstable) arc of C. Therefore, an admissible trajectory can
cross the curve C only between a fold and the nearest equilibria on either side. By
crossing C there, the trajectory enters a region enclosed by C and a curve v + f(u)+
keg(u) = 0 with large |k|. As was shown in lemma 3.5(ii), this region can be left
only at u =wu_ or u = uy,.

The second claim, concerning the time it takes a trajectory to leave the invariant
strip, is proved here for the case f'(u;) < 0 and g(uy) < 0, i.e. of a trajectory that
follows a stable arc of C to its right end. However, all other cases can be treated in
the same way changing signs appropriately and reversing time if necessary. The idea
is simple again: By choosing ¢ small enough, the trajectory has to cover a certain
v-distance near C and since the velocity in v-direction is bounded by (', this will
take a certain amount of time. More precisely, if u_ is chosen close to w;_; and uy

close to w;, and furthermore ¢ is sufficiently small, then

) — ke flo0) 2 1 (~ (@) + fa).

If a trajectory intersects the singular curve on the stable arc below v = — f(«;) and

leaves the invariant strip at u = uy the v-coordinate has to increase by at least

1 _

S + o).
This implies that a trajectory needs at least the time As; /2 from a horizontal section
v = —f(a;) to the point where it leaves the invariant strip.

So, in the case that (u(sz2),v(sz2)) lies on a stable arc of C we have shown that

s3 — 89 > inf As; /2
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independent of €. The case that (u(sz),v(s2)) lies on an unstable arc is similar and
leads to the result that

s — 81 > inf As; /2.
Choosing ¢ smaller than the infimum of the As;/2 completes the proof of lemma

3.6.
O

We are now able to finish the proof of theorem 1.1. It was shown that for any
non-homogenous equilibrium solution u of the viscous balance law the zero number
of u, can be estimated by

z(uy) < % + 1.
This ensures that the dimension of the center-unstable manifold of any non-homogenous
equilibrium solution of the viscous balance law does not exceed a certain e-independent
bound % + 2. The spatially homogenous equilibria have been shown in lemma 3.2
to have an at most one-dimensional unstable resp. center manifold.
Assume first that for a given ¢ there is finite number of equilibria which are all
hyperbolic. Then the global attractor is the union of the unstable manifolds of
these equilibria. Each of these manifolds has a dimension not exceeding % + 2 so
this gives an upper bound on the dimension of A, as well and the theorem is proved
for this case.
In the other cases with non-hyperbolic and possibly infinitely many equilibria the
arguments have to be refined.
The set of equilibria is a closed subset of A, in the space X where the semiflow is
defined and hence a compact set. Consider a local center-unstable manifold W% (u)
of an equilibrium wu. Despite of non-uniqueness, it contains all the solutions from a
neighborhood N (u) that are bounded backward in time, especially all the equilibria
contained in A'(u). Due to compactness of the set of equilibria a finite union of local

center-unstable manifolds

k
U Wige(ui)
=1
suffices to cover all equilibria. We claim that the global attractor is contained in the
set
o k
W= [J U T, W (u))
n=1:=1
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where T'(n,-) is the time-n-map of the semiflow. The dimension of W is not greater
than the maximal dimension of the center-unstable manifolds since applying the
semiflow to a set over a finite time does not increase the dimension. Recall that the
global attractor consists of equilibria and heteroclinic orbits only, so it remains only

to show that every heteroclinic orbit h(t) is contained in W. The a—limit set of A is

cu
loc

exists a time ¢_ < 0 such that A(¢) lies in N (u;,) for all times ¢ < ¢_. Therefore,
h(t) € Wt(u;,) for t < t_. So it is clear that the whole heteroclinic orbit h is

contained in

an equilibrium h_., and there is a ¢g such that ~A_., lies in (us, ). Moreover, there

) T(n. Wit ()

n=1

finishing thereby the proot of theorem 1.1.

4 The reduced system

To get not only an upper bound but sharper estimates on the dimension of the
global attractor it is necessary to find some (or better: all) equilibrium solutions of
the parabolic equation and to determine their Morse indices.

In the last chapter, the "slow” and "fast” system were introduced, the slow system
being defined only on C while for the fast system the curve C consists of equilibrium
points only.

The combination of the "slow” system on the curve v 4+ f(u) = 0 and the "fast”
system off this curve indicates where in the phase plane one has to look for solu-
tions of the boundary value problem. This combination is often refered to as the
reduced system. Solutions of the reduced system consist alternately of slow parts
where they solve the slow system and jumps according to the fast system. In the
Liénard plane we will consider trajectories of the reduced system consisting of
slow motion along the singular curve and horizontal trajectories of the fast system.
Due to the different time scales, only the slow parts contribute to the time along a
trajectory of the reduced system while the “velocity” along the fast parts is infinite.
One might expect to find solutions for small nonzero ¢ near such trajectories of the

reduced systems. Unfortunately, this is not always true. Unlike for the singularly
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phase portrait of the phase portrait of the
reduced system (¢ = 0) perturbed system (¢ > 0)
Figure 4

perturbed initial value problem there need not be a solution of the singularly per-
turbed boundary value problem near a solution of the reduced system even if this
solution of the reduced system satisfies the boundary conditions.

As a simple example consider (11) with f(u) = v and g(u) = u — u®. There are
infinitely many solutions of the reduced system that follow the singular curve v = —u
but for ¢ > 0 any trajectory starting on this curve is either constant or tends to
infinity. These trajectories will never come back to the singular curve and therefore
(11) has no nonconstant solution.

As the example shows, some difficulties are caused by the heteroclinic orbits whose
existence was established in lemma 3.5 (iii). They block the curve C from one side
such that trajectories can leave or reach C only from the other side. To take account
of that and also of the fact that C is invariant only for the reduced system at ¢ = 0
we introduce the notion of admissible solutions also for the reduced system. This
will be done in such a way that the admissible solutions of the reduced system will
correspond to the solutions of the boundary value problem (12). In some sense they
will be the limit of admissible solutions as ¢ \ 0.

To avoid lots of different but similar cases we introduce a suggestive colorful notation
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first:

To any point on C we associate two colors, one for its left side and one for its right
side. In fact, we will give the same color to segments of C that lie either between two
equilibria, between two fold points or between an equilibrium and a fold according

to the following rules:

o All points between two equilibria on the same arc of C get the color red on the
side of C where the heteroclinic orbit connecting the two equilibria is located.

The other side is colored green.

e Between a fold and the nearest equilibrium or between two folds the side
where the invariant region from lemma 3.5(ii) is gets the color yellow while

the opposite side is given green.

e Equilibria are green on both sides.

or in other words: If g(u) > 0 then the left side is green while for g(u) < 0 the right
side is green. The opposite side is red or yellow depending on the fact whether the
point (u, —f(u)) lies between two equilibria on the same arc of C or not.

The interpretation of this coloring is easy: Red sides are the forbidden ones. No
admissible trajectory of the system (14) leaves C to the red side or reaches it from
the red side. In contrast, green sides are the sides to which trajectories leave a
neighborhood of C or from which they enter. The yellow parts are somehow in
between: The curve C is not quite blocked from that side but trajectories will only
creep along C to the next fold without intersecting the singular curve. Especially,
a trajectory cannot end after jumping to a yellow segment because the boundary
condition cannot be satisfied there.

In view of this interpretation the following definition seems reasonable:

Definition 4.1 A solution (u(s),v(s)), 0 < s < T of the reduced system is called
an admissible solution of the reduced boundary value problem on the interval [0, T]
if the following properties hold:

(i) (u(0), (v(0)) and (u(T),v(T)) both lie on C.

(ii) The solution does neither begin with a nonconstant slow part on an unstable arc
of C, nor does it end with a nonconstant slow part on a stable arc.

(tii) The solution does neither jump to C from a red side nor does it leave C to a red

side.
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Remarks:

1) All nonconstant solutions of the reduced system in the preceding example are not
admissible due to condition (ii).

2) We will only be interested in admissible solutions on ontervals with length near
1. If no interval length is specified, we always assume T = 1.

3) Admissible trajectories can start or end at an equilibrium point and spend an
arbitrarily long time there. They cannot reach or leave an equilibrium via the

singular curve since this would take an infinite time.

To avoid some technical complications, the following assumptions on f and ¢ will

be posed for the proof of theorem 1.2:

(H4) The zeroes of g are simple.

(H5) If f(ur) = f(uz) and either g(ur) = g(uz) = 0 or f/(uw) = f/(uz) = 0 or
f'(ur) = g(uz) = 0 then there is a us between uy and uy with f(us) = f(uy),
i.e. there is no fast connection between two equilibria, between two folds or

between a fold and an equilibrium on C.

It is well known that (H4) is a generic condition on g. Similarly, (H5) holds for an
open set of f and ¢ and moreover an arbitrarily (C?)-small perturbation of ¢ suffices
to break a possible fast connection between two fold or equilibrium points. In fact,
a local perturbation of ¢ will be sufficient, such that there can be no problem with
the dissipativeness (H1).

These assumptions simplify the reduced system considerably and enable us to give
a not too long classification of all admissible solutions. The important observation
is that a trajectory, once it has reached a stable arc of C either will terminate there
(i.e. converge to an equilibrium on this stable arc) or will follow the stable arc to
a fold and has to leave C there to either escape to infinity or to jump onto another
stable arc. Similarly, a backward trajectory that has reached an unstable arc can
only jump to other unstable arcs. Consequently, any trajectory can be divided
into two parts one of which may be empty: First, it follows always unstable arcs,
afterwards all slow parts are only along stable arcs. We will, rather loosely, speak of
the unstable part and the stable part of the trajectory. Dividing trajectories

in this way has an important reason: While one can easily check that trajectories
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do not vary continuously with respect to the initial condition (consider for example
a trajectory that jumps from an unstable arc immediately to a fold point of the
singular curve C, but misses this fold point if the initial point is removed slightly),
a small variation of a point (u,v) between the unstable and the stable part of the
trajectory will only have small effects on the trajectory. Taking into account the
possibilities of a start or end at an equilibrium point, etc., there remain six different
possibilities. The number can be reduced if symmetry with respect to time reversal
is considered. Type I comprises trajectories that start or end at an equilibrium, type
IT are the typical trajectories that consist of an unstable part and a stable part. Type
1T contains three different degenerate sorts of trajectories that do not persist under
small perturbations of a point (u,v) on the fast part between the unstable and the

stable part of the trajectory.

Type III solutions do not occur for generic choices of f and ¢ as we will explain
later. For this reason they will be excluded by assumption (H6). We list them here

with the other types to give a complete classification of all possible trajectories.

Type la The trajectory starts at an equilibrium point on an unstable arc of C, and
jumps from there immediately to another point on C. This point has to be on
a stable arc of C since forward orbits cannot reach an unstable arc and reaching
a fold point on a trajectory of the fast system is forbidden by assumption (H5).
The trajectory may now follow the stable arc to the next fold point and jump
from there to another stable arc. There may be an arbitrary number of further

jumps from a fold point to a stable arc of C.

Type Ib The same as type Ia but with time reversed: Trajectories start on an unstable
arc, leave this arc somewhere and jump to a fold point where they follow the
unstable arc. From this unstable arc the trajectory may again jump to a fold
point. This can happen several times but after a number of such jumps the
trajectory does not jump to a fold but settles down at an equilibrium on a
stable arc of C.
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Type I1

Type Illa

Type I11b

Type Illc

R

C equilibrium

Figure 5: A type la trajectory of the reduced system

The solution starts on an unstable arc, jumps from there immediately to a fold
point and continues on the unstable arc that emanates from this fold point.
From this unstable arc it may again jump to another fold point and continue
again along an unstable arc of C. After a number of jumps to fold points it
jumps somewhere from an unstable directly to a stable arc. It continues along
this stable arc to a fold point, jumps from there to another stable arc, and so

on. An arbitrary number of jumps from a fold to other stable arcs may follow.

To avoid additional cases type Il comprises also solutions that start already
on a stable arc and do several jumps to other stable arcs, i.e. the unstable part
of the trajectory may be empty. Similarly, the trajectory may consist of an

unstable part only.

The trajectory starts on an unstable arc and jumps from there immediately to
a fold point. From there it continues along the unstable arc and jumps again
to a fold point. This can happen several times. At one such fold point, the
trajectory takes the stable arc instead of the unstable one. It can continue
along the stable arc to a fold point and jump from there to another stable arc

of C. Again, a number of jumps from a fold to a stable arc may follow.
The same as type Illa but with time reversed.

The trajectory starts on an unstable arc and jumps immediately to a fold point
of C, continues along the unstable arc and jumps from there to another fold
point, and so on. After one of these jumps to a fold point it continues along

the fast trajectory to a stable arc of C. The trajectory may then follow the
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Figure 6: A type II trajectory of the reduced system

singular curve to a fold point and jump from there to another stable arc of C.

This can be followed by an arbitrary (finite) number of jumps to stable arcs.

Type III trajectories are depicted in figure 7.

The following considerations show that this is a complete classification of all pos-
sible trajectories. Starting from any point that does not lie on C the forward and
backward trajectories are uniquely defined except possibly at points where the tra-
jectory jumps onto a fold point. At a fold point, the trajectory could follow the
stable or the unstable arc or continue on a fast part. Following the unstable arc
corresponds to type II, following the stable arc to type Illa and following the fast
trajectory to a type Illc trajectory. For backward trajectories the situation is similar
but with type I1Ib replacing type Illa. We decide that forward trajectories will at
a fold always take the stable arc while backward trajectories will always follow the
unstable arc. By this convention we get unique forward and backward trajectories
for each initial value (ug,vo) ¢ C and (ug,vo) lies on the fast part that separates
the unstable form the stable part of the trajectory. This will be very important
in view of the time maps for trajectories of the reduced equation we are going to
introduce in a moment. The reader may check that no trajectories are excluded by

this convention: It is possible to find a point (ug,vg) ¢ C on any given trajectory,
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such that this trajectory is exactly the (unique) trajectory through (ug, vo). Now let
D;(ug,vg) denote the j-th drop point of the trajectory, i.e. the j-th point where a
slow part of the trajectory begins. If this slow part extends to some fold point, we
denote this point with Fj(ug,vo). From there the trajectory may either escape or
jump to Dji1(ug, vg), etc. . The backward trajectory gives analogously drop points
D_i(ug,vo) and fold points F_;(ug, vo).

Definition 4.2 For each point (u,v) not lying on C and ¢ = 1,2, ... the time map
Ti(u,v) is defined as the i-th time at which a (forward) trajectory starting in (u,v)
hits a green side of C. Analogously, Ti(u,v),i = —1,—=2,... are the time maps for
the backward trajectory. Denote with P;(u,v),t # 0 the corresponding points where

the forward or backward trajectories intersect C after time T;.

Remarks:

1) If (u,v) lies on a trajectory of the fast system that joins an unstable and a stable
arc of C it may happen that both Ti(u,v) = T_1(u,v) = 0. 2) The reason why only
hitting a green side of C gives rise to one of the time maps is the following: We will
later find trajectories of the system with ¢ > 0 near the trajectory of the reduced
system. These trajectories will intersect the curve C near the points P;(u,v) but not

near points where the trajectory of the reduced system hits a red or yellow side.

Note that the time maps T; may not be defined everywhere, but behave nicely almost
everywhere: Consider a point (ug,vo) ¢ C and assume that this point does not lie
on a trajectory of the fast system that begins or ends neither at a fold nor at an
equilibrium point. Then the same is true for all (u,v) in a neighborhood of (ug, vo).
Moreover, the trajectories through (u,v) and (ug, vo) coincide almost, i.e. except for
the first (forward and backward) fast parts and tiny pieces of the first slow parts.
Therefore, all time maps T; that are defined in (ug,vo) are defined and continuous

in neighborhood of (ug, vo).
Let us now state in terms of the time maps under which conditions an admissible

solution of the reduced system exists:

Lemma 4.3 An admissible solution of the reduced system on the interval [0,1]

through (u,v) exists if and only if one of the following conditions is satisfied:
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(ia) The complete (i.e. forward and backward) trajectory through (u,v) is of type la
and there is an integer j > 0 such that the (forward) time map Tj(u,v) satisfies

(ib) The complete (i.e. forward and backward) trajectory through (u,v) is of type Ib
and there is an integer i > 0 such that the (backward) time map T_;(u,v) satisfies

T_i(u,v) < 1.
(i) The trajectory through (u,v) is of type Il and there are i,j > —1 such that
T_i(u,v) + Ti(u,v) = 1.
(iii) The tragectory through (u,v) is of type III and there are ¢,j > 0 such that
T_i(u,v) + Ti(u,v) = 1.

Remark: ¢ = —1 in case (ii) captures the possibility of a trajectory consisting only
of a stable part while j = —1 corresponds to a trajectory without a stable part. In
both cases the admissible solution does actually not pass through the point (u,v)
but joins Pi(u,v) and Pj(u,v) or P_j(u,v) and P_i(u,v).

Proof:

(ia) Since (u,v) lies between the unstable and the stable part of a trajectory of type
Ia it has to be exactly on a trajectory of the fast system that joins an equilibrium
point P_i(u,v) on an unstable arc and a point on a stable arc of C. If for some j
the time map 7 < 1 then an admissible solutions is easily constructed: Just stay
for the time 1 — T} at the equilibrium P_;(u,v) and follow afterwards the trajectory
for exactly time T} to the point P;(u,v).

The argument for (ib) is analogous.

(ii) In this case (u,v) lies on the trajectory of the fast system that separates the
unstable from the stable part of the trajectory. It is obvious that an admissible so-
lution can only exist if the condition on some of the time maps is satisfied. Then the
trajectory that joins P_;(u,v) and P;(u,v) is an admissible solution of the reduced

system.
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(iii) If (u,v) lies on a type Illa trajectory then it is located on a trajectory of the
fast system that joins an unstable arc to a fold point such that T_; =77 = 0. Again
it is clear that the condition is necessary for the existence of an admissible solution.
In case of a type Illc trajectory the argument is the same as in (ii).

O

In contrast to trajectories of type I or II the trajectories of type III do not occur
generically. To see this, note that the drop points for a type III trajectory can only
be points that are joined to a fold point by a trajectory of the fast system. The
number of such points between wu,,;, and t,,,, 1s finite since there are only finitely
many extrema of [ between u,,;, and u,,., and since to every extremum there are
at most two drop points, one for the forward and one for the backward trajectory
of the fast system that passes through the extremum.

Consequently, the differences |T; — T;_1| can only take finitely many different values
corresponding to the times a trajectory takes between a drop point and a fold. So,
generically, as T_; = T} = 0 and the difference between T; and T;_; takes only
certain values, there will be no type III solution. Also, generically the finitely many
trajectories that just “touch” a fold point, i.e. trajectories like the one in the middle
picture of figure 7, will not yield an admissible solution on the interval [0, 1].

For this reason, we will exclude all these solutions to keep things as simple as

possible:

(H6) There are no admissible trajectories on [0, 1] of type III, see figure 7.

W \vv/

not allowed (type llla) not allowed (type llic) allowed

Figure 7
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The classification of trajectories into different types was necessary because there is
a different transversality condition that is necessary in order that solutions persist

for small nonzero &:

(H7) For any type la admissible solution of the reduced system with T;(u,v) as in
lemma 4.3 we require Tj(u,v) < 1. Similarly, type Ib solutions must satisfy

T_i(u,v) < 1.

For any type Il solution of the reduced system with time maps taken from a

point (ug,v) as in lemma 4.3, the mapping
v— (T_i(u,v) + Tj(u,v) — 1)(v — vg)

has the same sign in a neighborhood of v = vy and there is a constant C' such

that |T_;(u,v) + T;(u,v) — 1] > Clv — vl

For type III solutions an analogous transversality condition could also be formulated
but would be more complicated. The reason is that one has to embed the type III
solution correctly into a one-parameter family of trajectories. Then, for this family,
transversality of the time maps has to be satisfied.

(HT7) like all the other conditions is satisfied for a generic choice of f and g since it
concerns only the reduced system and a small (local) change of ¢ makes it possible
to change the time maps appropriately.

We mention one important consequence of this transversality condition (HT7) for the

reduced system:

Lemma 4.4 The reduced system possesses only finitely many admissible solutions
on the interval [0, 1].

Proof:

Admissible solutions of the reduced system share some properties with the admissi-
ble solutions for € > 0 which we have proved in the last chapter: They are contained
in the interval [t,in, Uma,] and any admissible solution of the reduced system con-
sists of a number of fast and slow parts. The velocity in v-direction is bounded by
(', such that every slow part takes a certain minimal time. This is a consequence of
the fact that on the fast parts, the v-coordinate remains unchanged while on slow

parts of the trajectory v solves a differential equation which has a right hand side
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bounded by ;. Thus, there is a number K such that any admisssible trajectory
consists of at most K slow and fast parts. Suppose now that there were infinitely
many admissible solutions of the reduced system for the interval [0,1]. Then there
have to be infinitely many admissible solutions of type Il since at each of the finitely
many equilibrium points in [0, Uma,| at most K type I solutions can begin or end
and thus the number of type I solutions is bounded. If there are infinitely many
type Il solutions, it is possible to choose a sequence (u,,v,), n = 1,2,... of points

with the following properties:

1) There are ¢,j > —1 independent of n such that T_;(u,,v,) + Tj(u,,v,) = 1 for

all n.
2) The points (u,,,v,) converge to some point (Uee, Voo ).

Three cases have to be considered now leading to different contradictions:

Case A: (Uoo, Vo) 1s a fold point or lies on a trajectory of the fast system that con-
nects to a fold point. In this case one can easily check that the trajectory through

the fold point yields an admissible solution of type III in contradiction to (H6).

Case B: (oo, Vs ) 18 an equilibrium point or lies on a trajectory of the fast system
that connects to an equilibrium point. Suppose for definiteness that the (forward)
drop points Dy (u,,,v,) approach an equilibrium point. Then Ty (uy,, v,,), if defined at
all, is bigger than 1 for n sufficiently large. So j has to be 1 and T}(u,,v,) = 0 which
yields T_;(u,,v,) = 1 and there is type Ib trajectory to the equilibrium point that
does not satisfy the transversality condition (H7). The same reasoning is possible if

the backward drop points D_1(u,,v,) approach an equilibrium point.

Case C: If neither case A nor case B holds the points (u,,v,) can be chosen in a
way such that (ts,ve) ¢ C. Then the trajectory through (u..,vs) yields a type
IT admissible solution but since the (u,,v,) approach (u..,vs) the transversality
condition (HT) is not satisfied.

Since each of the three cases leads to a contradiction the number of admissible so-

lutions has to be finite.
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To find equilibrium solutions of our viscous balance law, we want to show that under
the transversality assumption (H7) admissible solutions of the reduced system persist
for small ¢ > 0. It will be proved that for any admissible solution of the reduced
system and any small € > 0 the system (12) has a solution nearby. Nearby means
that the trajectory of the solution for ¢ > 0 lies in a neighborhood of the solution of
the reduced system in the (u,v)-plane. In particular, the solution for ¢ > 0 follows
the same arcs of C and has the same jumps.

To this end, it will be necessary to know something about trajectories for small

nonzero &. The next chapter provides us with the necessary information.

5 Asymptotic behavior of trajectories and time
maps

Having limit cycles and their period in mind, Mishchenko and Rozov [MR80] carried
out the asymptotic analysis of solutions of system (14) for small positive e. They
partitioned the trajectories into several pieces where different asymptotic expansions

are valid. Four different types were distinguished by them:

(i) the slow part where the trajectory creeps along the singular curve,

(ii) the junction part where the trajectory leaves a vicinity of the singular curve

near an extremum of f,
(iii) the fast part and

(iv) the drop part where after a fast transition the trajectory reenters a neighbor-

hood of the singular curve.

For our discussion of boundary value problems we also have to consider how a
trajectory starts off from the singular curve or settles down at it. It turns out that
one has to distinguish the cases that a trajectory leaves the curve near an equilibrium
point on C or somewhere else.

In figure 8 it is shown how a trajectory is decomposed into the different parts.

The trajectory starts at the point A near an equilibrium R and after leaving a

neighborhood of the singular curve it moves fast from B to (/. The fast part is
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equilibrium

Figure 8

followed by a drop part C'D and from D to E there is the slow motion along the
singular curve. The curve is left via the junction part EF and after a second fast
motion part F'GG there is the terminal part GH where the trajectory returns to the
singular curve. The points A and H are chosen to lie on the singular curve while
B,C,F and (G are on fixed sections u = constant and D and E are on sections

v = constant.

Assume for the moment that there is such a trajectory for any sufficiently small ¢

although this will be proved only in the next chapter.

The relation to trajectories of the reduced system is rather clear: For ¢ > 0 there are
junction and drop parts between the slow and fast parts of a trajectory but these

parts disappear in the limit ¢ \ 0.

Mishchenko and Rozov give in their monograph estimates for the time a trajectory
stays in each of the different regions and also for the trajectories and their distance
to C. Fortunately, for our purposes the leading terms of their expansions suffice.
Writing u4 for the u-coordinate of the point A in figure 1, vp for the v-coordinate

of D etc., their results can be summarized as follows:

41



Proposition 5.1 [Mishchenko & Rozov]| Assume that sections are chosen near
the singular curve and near the fold points as described above. Then there exists

g1 > 0 and constants 0 < ¢ < C such that for all 0 < e < &

(i) the time Tpg for the slow part DE satisfies

vE dv
Tpr — / —

o gluc(v)) < Ce [equation (II1.3.4) of [MRS0]].

(ii) the time Tgp for the junction part EF satisfies

Ter — /Us div < P [equation (111.4.21)]
vp g(uc(v))
with
op — vg < Ce? [equation (11.16.10)] .
and
v+ fu) > e?? [equation (11.16.12)]

along the whole junction part.

(iii) the time Tpg for the fast part FG is

FG u v [w(u) — i

|UF — vg| = 0(5)

(iv) the time Tep for the drop part CD satisfies

VD dv
Tep — / —_—

1
< (Celn - equation (111.6.12)] .
o Pl SO fequation (HL6.12)]

Here uc(v) and ve(u) are local parametrizations of the singular curve C over u and

v respectively.

The estimates for the initial part AB and the terminal part GH will be derived in
the appendix by means of a normal form since this takes a lot of additional notation
that is not connected to the rest of the paper. The following statements will be

shown there:
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Proposition 5.2 There is an & such that for any 0 < ¢ < &; and any prescribed
time T > 0 one can find an initial point A on the singular curve C such that the

initial time from A to B is

Tup="1T.

The distance from A to the equilibrium point R on C will be very small, or more

precisely, exponentially small:
lop —va| < C e texp(—ect/s).

Also, the v-coordinate does not change much between A and B:

1

lvg —va| < C e exp(—ct/e).

The time for the terminal part GH is

1
TGHSC'aSlH—
&

and the v-coordinate at G and H satisfy
1
lvg —vg| < C-eln—.
3

Putting together all these estimates we obtain for the time from A to H

vs dv

£2/3
o glac(e)) )

Tam =Tap +
where uc¢(v) is a parametrization of the stable arc of C to the left of S. Therefore no
knowledge about the true trajectory is used to compute the lowest order terms of the
expansions. Only the slow system has to be integrated. This idea will be exploited in
the next section to construct admissible solutions for € > 0 from admissible solutions
of the reduced system.

To this end we define time maps also for the system with & > 0 and state the relation

to the time maps of the reduced system.

Definition 5.3 For any point (ug,vo) ¢ C and any ¢ > 0 denote with TF(ug, vo),
J = 1,2,..., the time at which the forward trajectory through (ug,vo) intersects C
for the j-th time. The according point on C will be called P:(uo,vo). Time maps
T2, (ug,v0) with @ = 1,2, ... are analogously defined for the backward trajectory.
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Lemma 5.4 Consider a point (ug,vo) ¢ C such that the forward trajectory of the
fast system through (ug, vo) does neither connect to a fold point nor to an equilibrium

point. Then the time maps Tj(uo,vo) and TF(ug,vo) satisfy
|T5(wo, vo) = T5 (o, vo) | = O(*/?)
as e\, 0 for any 7 > 0 for which they are defined.

Proof: Two ingredients are needed. First, the asymptotic estimates of Mishchenko
and Rozov tell how close the trajectory for ¢ > 0 is to the trajectory of the reduced
system. Then, recalling the definitions of time maps, green sides, red sides, etc. will
finish the proof. For the first part we choose a small neighborhood N, of the

singular curve in the following way:

Ne, o= {(u,v); I0,0) €C:lu—a| <pand v -0 <e'/?}
and (ug, vg) & N ,.

Then we choose ¢ small enough such that all the invariant strips and regions we have
found in chapter 3 are contained in V. ,. In analogy to the drop points Dy (ug, vo) of
a trajectory of the reduced system we define for ¢ > 0 the drop point Df(u,vo) as
the k-th point where the trajectory enters V; ,. The point F is defined as the point
where the trajectory leaves N , for the k-th time. Note that the construction of NV, ,
near fold points is done in such a way that the trajectory for € > 0 through (ug,vo)
will miss N, , iff the trajectory of the reduced system through (ug,v) misses the
curve C near the fold. So, for ¢ small enough there is a one-to-one correspondance
between the drop points Dy(ug,ve) and Dj(ug,v). Hence, the following estimates

are consequences of lemma 5.1 and lemma 5.2:

|vD1(u07U0) - vDi(u07U0)| = 0(5)
|ka(u07U0) - vFlj(uo,vo)| = 0(52/3) 5 k > 1
|ka(u07U0) - vDZ(u07U0)| = 0(52/3) ) k>1

where vp, (49 ,00) denotes again the v-coordinate of the point Dy (ug,vo), etc. . Thus
the trajectory for ¢ > 0 is O(c2/%)-close to the trajectory of the reduced system. Now
recall that our choice of colours for the sides of C was done exactly in a way such

that trajectories of system (12) that enter A , from a green side near D5 (uq, vg) will
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intersect the singular curve there before they creep along the slow manifold, while
trajectories approaching from a red or yellow side will not intersect the singular
curve C there because C is “blocked” by the slow manifold. Thus, if the time map
T’;(uo,vo) corresponds to the drop point Dy(ug,vo) then the time map T (uo, vo)
corresponds to a point Pf(uo,ve) which is close to the drop point Dj(ug,vo). It is

shown in the appendix that

VDt (ug o) — Upjs(u07vo)| = O(cln(e™)) as e \, 0.

The time estimates given in the lemma follow now immediately by the time estimates
of Mishchenko and Rozov and the appendix.

O
Remarks:
1) Of course there is again an analogous statement for backward time maps if the
backward trajectory of the fast system through (ue,vo) does not connect to a fold
or an equilibrium point of the slow system.
2) The neighborhood N, depends on the point (ug,ve). In particular, we do not

get a uniform estimate for a sequence of points that approaches a fold point.

6 Proof of theorem 1.2

The conditions for theorem 1.2 were given at several places as (H1)-(H7). We have
indicated there why each of the hypotheses (H2)-(H7) holds for an open, dense set
of f and ¢g. Thus, proving that under these hypotheses the dimension of the global
attractor stabilizes at some level proves that this stabilization holds for an open,
dense set f and g. Only the dissipativeness (H1) of ¢ is required in addition. The
proof of theorem 1.2 splits into several parts. After proving persistence of type I and
type Il solutions separately, we show that there are no other admissible solutions for

sufficiently small . To show that the dimension of the global attractor A. satisfies
dim A. € {d,d+ 1}

for some integer d We will show below that for all small & there is an equilibrium
solution u of the viscous balance law with z(u,) = d and no equilibrium solution

with z(u;) > d. From lemma 1.4 we know that there is an equilibrium such that
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the linearization has d or d 4+ 1 positive eigenvalues. This gives immediately a lower
bound d for the dimension of A. since the global attractor contains at least the
d- or (d + 1)-dimensional center-unstable manifold of this equilibrium. The upper
bound d 4 1 follows as in the proof of theorem 1.1. There we have shown that the
dimension of the global attractor is not bigger than the maximal dimension of the
center-unstable manifolds of the equilibria.

Although the dimension of the global attractor A. stabilizes as ¢ \, 0, we cannot
exclude the case that the number of equilibria nevertheless becomes infinite. This
is mainly a question of uniqueness: We are not able to prove that there is exactly
one admissible solution to any admissible solution of the reduced system. So, many
admissible solutions for ¢ > 0 may correspond to the same admissible solution of
the reduced system and this number may even tend to infinity as ¢ \ 0.

The number d can be found in the following way: Let
dr, := max{l + j ;3 type la trajectory with T}(ug,vo) < 1},

where the maximum is taken over all type la trajectories of the reduced system. This
definition reflects the fact that for any sufficiently small ¢ there is an equilibrium
solution u of the viscous balance law (7) with zero number z(u,) = j 4+ 1 as we
will show soon. Here we use the fact that j counts how often the trajectory of the
reduced system hits a green side of C. The corresponding statement for ¢ > 0 is
that the trajectory crosses C exactly j times. Thus, 7 + 1 counts the number of
intersections between the trajectory with ¢ > 0 and C. (We have to take j + 1 since
an admissible trajectory starts already on C). The number dp, is defined similarly

as

dpp := max{l + ¢ ;3 type Ib trajectory with T_;(ug, vo) < 1}.

The analogous number dj; for type Il trajectories of the reduced system is
drr := max{t + j ; 3 type II trajectory with T_;(uo,vo) + T};(uo, vo) = 1}

since in this case there will be an equilibrium solution u of the viscous balance law

with z(u;) =4+ j. Then
d = max{dy,,dp,d;s}
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6.1 Persistence of type I solutions

We will restrict ourselves to the case of a type la solution since the proof for type
Ib trajectories follows by reversing “time” s in the ordinary differential equation for
the equilibria of the viscous balance law. So consider a type la trajectory starting
at an equilibrium point (ug, —f(ug)) and passing through the point (ug,vo) such
that T;(ug,ve) < 1 for some j. We want to find a solution for £ > 0 nearby that
intersects the curve C exactly 7 + 1 times. Choose T_ and T, with

T_ <1 —="T;(ug,v0) < T4

and a section u = ug. As is shown in the appendix, for any small € there are points
(u_,—f(u-)) and (uy,—f(uy)) on C close to the equilibrium (ug, —f(ug)) such
that the trajectories take exactly time Ty from (uy, —f(ug)) to the section u = ug.
These trajectories hit this section u = g in points (ug, 01+) which are O(e)-close to

vg. Using continuity of the time maps and lemma 5.4 we get for the time map 7}
(o, v0) = T (o, 8| < | T5(wo, v0) = Ty, 85)| + |Tj(uo, o) — T (uo, )| — 0

as € \, 0.

So, we have found a trajectory through (ug,?;) that is close to the admissible

trajectory of the reduced system and takes time
Ty + Ti(uo,vo) + (9(52/3) > 1

to join two points on C and another trajectory nearby where the time is
T_ + T;(ug,vo) + (9(52/3) < 1.

Now consider all trajectories that pass through points (ug,v) with v between 0, and
v_. A simple continuity argument using shows that at least one of these trajectories

yields an admissible solution with the intermediate value
T_1(ug,v) + Tj(ug,v) = 1.

Thus, for any sufficiently small ¢, there is an admissible solution that stays near the
given type la solution of the reduced system. This solution intersects the singular

curve exactly j + 1 times. Thus, z(u,) = 7+ 1 and by lemma 1.4 the linearization of

47



the corresponding equilibrium solution to the viscous balance law possesses either
J + 1 or j 4 2 positive eigenvalues.

No uniqueness has been shown, although we believe that for sufficiently small € there
is only one solution nearby. The next chapter contains a proof for the simplest case
of a type I trajectory with just one fast part. A slight modification of this proof
shows uniqueness for all solutions near type I trajectories of the reduced system

under the transversality hypothesis (HT7).

6.2 Persistence of type II solutions

Consider a type II admissible solution of the reduced system passing through (ug, vo)
such that T_;(uo,vo) + Tj(ug,ve) = 1 with ¢, > —1. The transversality condition
(H7) allows us to find admissible trajectories of the reduced system on intervals
slightly shorter resp. longer than 1 and passing near (ug,vo): There are 04 and o_
near vy and times T < 1 < T, such that the trajectories of the reduced system
through the points (ug,0+) coincide with the trajectory through (ug,vo) after an
initial part, and such that

T i(uo, 0+) + Tj(uo, 0+) = T4
Again the trajectories through (ug, 04) for small ¢ > 0 satisfy
T2 (o, 1) + T (uo, b4) = Ty + O(¥°) > 1

and

T (w0, =) + T (uo, 0-) = T_ + O(e*?) < 1.
Thus, at least one of the trajectories through points (ug, v) with v between ¢4 and
v_ corresponds to a solution of the original boundary value problem (12).
As above, no uniqueness of solutions for ¢ > 0 is proved with this method. So it
could still happen that one admissible solution of the reduced system corresponds
to more and more solutions of the boundary value problem (12) as £ \ 0.

Summarizing, we have

Proposition 6.1 There is e > 0 such that for 0 < e < &1 to any admissible
solution of the reduced system an admissible solution exists. The trajectories of the
solution of the reduced system and for ¢ > 0 are O(c*/®)-close in the (u,v)-Liénard

plane.
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6.3 No further solutions

To finish the proof we have to show that for sufficiently small ¢ all admissible
solutions can be found by looking at the reduced system. This will be the most
difficult part of the proof, so we give a short outline first and fill in the details in a
couple of lemmata later.

Due to assumptions (H6) and (H7) we can find neighborhoods of all fold points
and all equilibrium points such that admissible solutions of the reduced system can
only pass through these neighborhoods if they pass through the fold point resp. the
equilibrium point itself. This even holds for admissible solutions of the reduced
system on intervals [0, 7] with 7" near 1. Also, we will show that all admissible
solutions of the reduced system on intervals of length near 1 are close to admissible
solutions of the reduced system on the interval [0,1]. After these preparations that
still concern the reduced system only, we can now turn to admissible solutions with
¢ > 0. Given such an admissible solution for ¢ > 0, we prove that there is a fast
part separating the unstable and the stable part of the trajectory (exactly as for
trajectories of the reduced system). As in the proof of theorem 1.1 there is a number
K such that any admissible solution can be decomposed into at most K parts (fast,
slow, junction, etc.) independent of £ small.

Then, using the transition time estimates from the preceding chapter it is shown that
near any given admissible solution for ¢ > 0 there is a solution of the reduced system
on an interval with length near 1. This will lead to a contradiction in some cases. In
other cases it will prove that the admissible solution is in an O(£%?)-neighborhood
of an admissible solution of the reduced system. Moreover, the number z(u,) can
then be determined from this admissible solution of the reduced system. Recall that
this number z(u,) was the most important ingredient to determine the Morse index

of u.

Recall that Wy < Wy < ... < up are the locations of the fold points of f. We start
by taking neighborhoods of these fold points and the stable and unstable arcs of C
in a special way: To each fold point (@, —f(ux)) and p1,p2 > 0 let V), denote the

rectangle

Ny = A{(u,v) 5 |u =T < pry v+ f(@e)| < p2t-

The numbers p; and py will be specified later. To the arc of C that joins the fold
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Figure 9: Choosing the neighborhoods near C

points (U, — f(uy) and (Uxq1, — f(Ur41) we associate a neighborhood C joining Ny
and Npiq, see figure 9. Note that there is no possibility of a direct transition from
a neighborhood of an unstable arc to a neighborhood of a stable arc. Also, as can
be shown in the same manner as lemma 3.5(ii), there exists &y > 0 such that for
0 < & <&y trajectories can leave neighborhoods of stable arcs only through the top

or bottom section while neighborhoods of unstable arcs can only be entered from
there.

Also for any equilibrium point F with coordinates (ug, —f(ug)) € C; we define a
neighborhood NV (E) := C; 0 {|v+ f(ug)| < p2}.

According to (H5), no trajectory of the fast system connects a fold point to an
equilibrium point. This carries over to neighborhoods of these points and ¢ > 0:
For py small and ¢ < &7 trajectories do not connect directly some box N} to one of

the py-neighborhoods NV (FE) of an equilibrium point E.
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We now show that any trajectory of the reduced system that intersects Ny can be
an admissible solution on an interval with length near 1 only if it passes through
the fold point itself.

Lemma 6.2 [f the numbers py, py are chosen sufficiently small then there exists

some 1 > 0 with the following properties:
(i) If (ug,vo) is a point in Ny that does not lie in C U {v = —f(uy)} then
T_i(ug,vo) + Tj(ug,vo) ¢ [1 —n, 14 1] Vi, j > —1.
(ii) If (uo,vo) is a point in N'(E) that does not lie in CU {v = —f(ug)} then
T_i(ug,vo) + Tj(ug,vo) ¢ [1 —n, 14 1] Vi, j > —1.
(iii) There is no type Il admissible solution on [0,T] with T € [1 —n, 14 n].

Proof:
(i) Assume the contrary. Then there are ¢,7 > —1 and a sequence (uy,, v,)p=12,.. of

points converging to a fold or to an equilibrium such that
T_i(tp,vn) + Tj(uy, v,) — 1.

One can check now that the case that the (u,,v,) converge to a fold point contradicts
assumption (H6). Depending from which side of C the points (uy,,v,) approach the
fold point, there is either an admissible type III solution of the reduced system or
an admissible solution that only touches the fold point. Both cases were excluded
by (H6).

(ii) If the points (u,,v,) approach an equilibrium point the time it takes the back-
ward trajectory to leave a neighborhood of the equilibrium point grows exponen-

tially. From this we conclude that : = 1 and
T_i(uy,v,) = 0.

As a consequence, we have Tj(u,,v,) = 1 violating the transversality assumption
(HT).
(iii) is clear since there is only a finite number of type III trajectories. Consider any

interval length T' such that one of these trajectories is an admissible solutions on
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[0,7]. By (H6), T'# 1, and since there are only finitely many such trajectories this
implies

T —1] >

for some n > 0.

From now on, we assume that p; is fixed.
Part (ii) of the preceding lemma tells that all slow parts of admissible solutions of
the reduced system on intervals [0, T'] with 7" € [1 —n, 1+ ] avoid the neighborhood

N(E) of equilibrium points. Consequently, there exists a number ¢, such that

lg(u)] = ¢

along any slow part of an admissible solutions of the reduced system on [0,7]. This
¢, may be interpreted as the “minimal velocity” in v-direction along slow parts of

admissible solution.

Recall that the transversality condition (H7) contained an inverse Lipschitz estimate

for the time maps:
|75 (uo, v1) — T-i(uo, v1) — 1] = Clvg — wo (15)

if the trajectory through (ug,ve) is a type Il admissible solution of the reduced
system and |v; — vg| is small.

With this estimate we can show that any admissible solution of the reduced system
on an interval with length near 1 has to be near an admissible solution of the reduced

system on [0, 1]:

Lemma 6.3 There exists 0 < no < n with the following properties:

(i) If a type I solution of the reduced system on [0,T] with T € [1 —ng, 1 + o] passes
through (u,v), then there is also a type I solution of the reduced system on [0,1]
through (u,v).

(ii) If a type II admissible solution of the reduced system on an interval [0,T] with
T €[l —no, 1 + no| passes through the point (u,v) ¢ C and

T_i(u,v) + Tj(u,v) =T
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then there is a type I admissible solution of the reduced system on [0,1] nearby.
More precisely, there exists some vy with |v — ve| < C7HT — 1| such that

T_i(u,vo) + Tj(u,v9) = 1.

Proof: (i) Choose no smaller than the infimum of |1 — T}(u, v)| where the infimum
is taken over all j and over points (u,v) on the (finitely many) fast trajectories that
connect to an equilibrium point. The type I solution on [0, 1] can be found easily: It
coincides with the given admissible solution on [0, T'] except that it spends a slightly
different time at the equilibrium.

(ii) Assume the contrary. Then there is a sequence (u,, v, ),=12,... of points such that
T_i(tn,vn) + Tj(wn, v,) — 1

and

v, — v| > CTHT_i(up, vn) + T(tn,v) — 1| (16)

for any type II admissible solution of the reduced system that passes through a
point (u,,v). Moreover, by compactness we may suppose (ty,, v,) — (Uso, Vo). We
will find a contradiction by showing that the point (te.,vs ) belongs to a type II
admissible solution that does not satisfy (16).

By lemma 6.2, the trajectory of the fast system through the point (u,,v,) does
not enter one of the boxes N, or one of the neighborhoods N(E) of an equilibrium
point £. By continuity (and since the time maps are locally constant in u), also
the trajectory of the fast system through the point point (v, vs) cannot intersect
a box N or one of the NV(FE). This implies that the time maps T_; and 7} are
continuous at (tu, Vo) and the trajectory through (e, vs) is a type II admissible
solution of the reduced system on [0,1]. Note that locally near (to.,vs) the time
maps Tj(u,v) are monotone in v. The inverse Lipschitz estimate (15) implies then

that by choosing 79 small enough one gets the desired estimate
00 = el < O Tty 00) + Ty o) — 1

in contradiction with (16).
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There is a similar classification for admissible solutions with ¢ > 0 small as for the
admissible solutions of the reduced system: Any trajectory that enters a neighbor-
hood C} of a stable arc will either stay there forever or follow the stable arc to one
of the neighborhoods Ny or Njy; of a fold point. From there the trajectory has to
leave a neighborhood of C and can reenter such a neighborhood only near another
stable arc, but not near an unstable arc. Similarly, backward trajectories that have
reached a neighborhood of an unstable arc of C cannot enter a neighborhood of the
stable arcs. So, like the trajectories of the reduced system, the trajectories for e > 0
can be split into an unstable and a stable part with a fast part between them.
From the proof of theorem 1.1 we know already that for small ¢ it takes trajectories
a certain time to pass near a fold or to pass through the neighborhood of a stable or
unstable arc. This implies that we can find 3 < &7 and a number K > 0 such that
all admissible trajectories for ¢ < &y consist of at most K parts (slow, fast, junction,
etc.).

We define now
Mo
M= oK

and fix n; and p;.

We will choose p, and ¢ still smaller to achieve that any trajectory for € small enough
cannot lose more than “time” 2n; on each part of the trajectory compared to some
trajectory of the reduced system. Then the difference cannot add up to more than
no and we are able to use lemma 6.3.

Choose p; sufficiently small such that
proc;t <m (17)

such that a trajectory of the reduced system will need not more than time 7; to
cover some extra distance ps.
Denote with

cul = int {0+ F()] 5 (,0) € [tmins tas] X [Pins vmaa] | (U Ne UL O}

the minimal velocity in u-direction outside the neighborhoods Ny, of the fold points
and the neighborhoods C; of the arcs of C. Let ¢y < &9 be sufficiently small such
that
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2/3 estimates

(i) 05(2)/3 < 11 where C' from 5.1 is chosen large enough such that Ce
the time from a horizontal section taken {v = — f(ur)—p2} to a vertical section

{u=up+ p1}.

(H) €0u;m'n . (umaac - umzn) S m-.

(iii) c;l (053/3 + eoCyul i - (Umaz — Umm)) <.
(iv) 2120’ fe < mu.

The constants ¢ and C' are the ones used in lemma 5.1 and lemma 5.2. The inter-
pretation of these conditions is the following:

From (i) we get that a trajectory that passes near a fold point will take the same
time (up to 71) to pass through N as the trajectory of the reduced system that
passes through the fold point. Also, the time difference on any slow part which is
smaller than C'-¢ and the time difference at initial and drop parts which are smaller
than C'-eln(e™!) can be estimated by n;. Condition (ii) states that a trajectory does
not take longer than n; for a fast part. Condition (iii) accounts for the possible extra
distance that solution of the reduced system have to cover since the drop points of
the trajectories for ¢ > 0 and ¢ = 0 differ. The last condition (iv) ensures that any
trajectory that traverses some N above or below the fold will not need longer than
M.

After all these preparations, consider now an admissible trajectory for some ¢ < gg
and choose a point (ug,vg) on that fast part between the unstable and the stable

part of the trajectory. There are 7,7 > —1 satisfying
Tfi(uo, Uo) + T]'E(UO, Uo) =1.

Recall that ¢ = —1 is the case where the trajectory consists of a stable part only.
Similarly, 7 = —1 indicates absence of a stable part.

Up to time reversal, we have to distinguish three cases:

The forward and backward trajectory may both enter a neighborhood of the singular
curve C away from all the Ny’s and the N (E). The second case treats the possibility
that either the forward or backward trajectory enters one of the Ny, while the third
case considers the possibility that either the forward or backward trajectory enters a

neighborhood N(E) of an equilibrium point E. Note that assumption (H5) prevents
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that both the forward and the backward trajectory enter into some Ny or N'(E).

Case 1: The forward trajectory through (ug,vo) enters the neighborhood C} of a
stable arc away from all equilibria and the backward trajectory enters the neighbor-

hood C; of an unstable arc.

Then the time maps for the reduced systems trajectory through (ug,vo) satisfy
T i(uo, vo) + Tj(uo,vo) — 1| < 2K - 11 = . (18)

This can be seen in the following way looking at the forward trajectory first: The
first fast part does not take longer than 7, and the trajectory enters a neighborhood
of C at a drop point Dj(ug, vg). This drop point satisfies

|va(uo,vo) - UDl(uo,v0)| S Ce (19)

such that the trajectory of the reduced system (with velocity> ¢,) needs at most
time 1y for the small extra portion between D (uo v0) and vp,(uyvy)- The drop part
of the trajectory with ¢ > 0 may take another time 7. Altogether the difference
between the time maps for ¢ = 0 and ¢ # 0 may increase by 2n; on the drop part.
On the slow part the transition times for the trajectory of the reduced system and
the trajectory for ¢ > 0 may differ again by 7; and the same holds for the junction
part. The next fast part takes at most time 7y and leads to a drop point that is at

a distance of at most 05(2)/3 + e0Cyul i+ (Umazr — Umin) from the drop point of the
reduced systems trajectory. Then everything can be continued in the same way. On
each part the transition times differ at most by n; and the trajectory may have to
cover an extra distance near every drop point that takes another time 7. Applying
the same arguments to the backward trajectory, yields then (18), since there are at
most K parts of the trajectory which contribute at most 2n; each to the difference
between the time maps. Therefore, the trajectory of the reduced system through
(ug,vo) is an admissible solution on an interval with length 7" € [1 — ng, 1 4+ o). So,

2/3

by lemma 6.3 there exists a v,cq with |v,eq — vo| < C71- Ce?/? and

T—i(u07 vred) + T]‘(U(), vred) =1

and the given admissible solution is shown to be in an O(£?/?)-neighborhood of an

admissible solution of the reduced system.
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Case 2: The forward trajectory through (ug,vo) enters the neighborhood Nj of a
fold point while the backward trajectory enters a neighborhood C; of an unstable
arc. Three subcases are treated depending on whether the trajectory leaves the box

Nj. via a fast part, along the stable arc of C or along the unstable arc of C.
We will show that none of these cases can appear since they contradict lemma 6.2.

Case 2a: The forward trajectory leaves N, via a fast part and reaches a stable arc
of C. Denote with (uy,v1) the point where the trajectory leaves Ny. We will show
that for this point

T_i(uy,v1) + Tj(ug,v1) € [1 —n, 1+ 7). (20)

in contrast to lemma 6.2. The reasoning is similar than in the last case. There are
only two extra parts which can each contribute another 7, to the time difference:
Due to condition (iv) from the choice of €y, the trajectory may take this time to pass
through Nj. Also the v-coordinate could change by at most py; while the trajectory
passes through Nj. The trajectory of the reduced system may therefore have an
extra v-distance on the next arc of C but by the choice (17) of py this extra distance
takes at most time n;. Summing up the transition times of the given trajectory and
the trajectory of the reduced system through (uy,v1) gives again a difference of less

than 5 thus proving (20).

Case 2b: The forward trajectory continues along the stable arc of C that originates
at the fold point.

This is only possible if the point Dj(ug,vo) where the trajectory enters the neigh-
borhood N satisfies

vDi(UOJJO) —I_ f(ﬂk) S 052/3

since the trajectory must hit N, below the point where the backwards trajectories

from the unstable arc of C leave Ny, see figure 10.
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Figure 10: The situation in case 2b

Therefore, we compare the trajectory through (ug,vg) with ¢ > 0 and the type 11
trajectory of the reduced system through the fold point. In exactly the same manner
as in case 2a) one gets that this type Il trajectory is an admissible solution on an

interval of length T" € [1 — 5,1 4+ 5] which contradicts lemma 6.2(iii).

Case 2c: The forward trajectory continues along the unstable arc of C that origi-

nates at the fold point.

This case contradicts our choice of (ug, vg) to be on the fast part that separates the

unstable from the stable part of the admissible solution.

Case 3: The forward trajectory enters a neighborhood N (F) of an equilibrium
point F while the backward trajectory leads to the neighborhood of an unstable

arc.

In this case we have to show that the admissible trajectory corresponds to one of
the type I solutions of the reduced system. We have j = 1 since the height 2p, of
N(FE) was chosen so small that it takes trajectories more than time 1 to reach the

next neighborhood of a fold point.

If the trajectory through (ug,vo) hits the curve C near the equilibrium point at a
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2/3

distance of less than C'e*/°® then we are done because in that case the admissible

trajectory is near a type Ib trajectory. In the other case that it hits C at a distance

2/3 the normal form analysis from the appendix shows that the time

bigger than Ce
from (ug,vo) to C is of order O(elne™t). Then

1-— T—i(u07 Uo) = O((‘: In 5_1)

and with the same arguments that were already used in case 2 one shows that the
trajectory of the reduced system through (ug,vo) is a type II admissible solution on
[0,7] with T € [1 —n,1 4+ n]. This contradicts lemma 6.2(ii).

All three cases together show that for ¢ < gy admissible solutions can only be located
in the (u,v)-plane near admissible solutions of the reduced system and can hence
be found by studying the reduced system.

This completes the proof of theorem 1.2.

6.4 An example: A dissipative Van der Pol oscillator

To illustrate the preceding results, a concrete example will be given in this subsec-
tion. For this example we will assume that to any admissible solution of the reduced
system for sufficiently small ¢ # 0 there exists exactly one hyperbolic equilibrium
solution of the viscous balance law. We cannot prove this hypothesis yet but believe
that it is true.

Since chapter contains an example of a two-dimensional attractors, we construct in
this section an example with a three-dimensional attractor. The considerations from
the proof of theorem 1.2 suggest that we should chose f to have some turning points
if we want to achieve a global attractor of a higher dimension. Also, it seems to be
quite useful if the equilibrium equation admits periodic solutions because they can
lead to solutions of the boundary value problem with a couple of oscillations and
thus with a Morse index exceeding one or two.

This yields the following construction:

Choose f cubic-like with the curve v4+f(u)=0 looking like in figure 11 and take as

g a function with three zeroes as indicated in the figure. This is different from the
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Figure 11

usual Van der Pol equation where f(u) = u—u® and g(u) = u, but it is an easy way
to make ¢ dissipative. As in the usual Van der Pol equation, there is a limit cycle
with slow parts near AC' and DF' and fast transitions near C'D and F'A.

For the times a trajectory of the reduced system needs for the various slow parts we

will assume the following:

T —/UCdiv<1
T gluc(v)) T

T — /UC div < 1
PO s gluc(v)) T

T — /UF div < 1
P gluc(v)) T

T — /UF div <1
) gluc(v)) T
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Tgc +1Tpr > 1 and

Ter + Tac > 1.

We are not going to construct a suitable g but it is obvious that this can be done.
Due to the last two inequalities there are no solutions that have more than two slow
parts. One can easily inspect all possible cases to find that there are 11 admissible
solutions of the reduced system. We assume now that ¢ is small and that each of
these 11 solutions corresponds to exactly one hyperbolic equilibrium solution of the
viscous balance law although we cannot prove that. Their location in the Liénard

plane is indicated in the next figure and the associated permutation that can be
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Figure 13: The Shooting curve and the connection graph

read off this figure is

1 23 45 6 789 10 11
T =
110 3 4 76 5 89 211

This gives the shooting curve shown in the upper part of figure 13.

Proposition 1.5 allows to compute the Morse indices and zero numbers of the differ-
ences from the permutation and from that information proposition 1.6 tells exactly
which equilibria are connected. This is shown here in the connection graph where
arrows indicate which equilibria are connected. The connection graph just contains

arrows between equilibria whose Morse indices differ by one. So two equilibria are

62



connected by a heteroclinic orbit if they are connected via a sequence of arrows in
the connection graph.

From this picture it is easy to guess how the attractor might look like as a three-
dimensional object. Just imagine the 1-skeleton embedded in a ball that is filled
with heteroclinic orbits in a rather obvious way. Nevertheless, at the moment there

is no proof of a geometrical description of the global attractor.

Also, it is obvious that we could find higher-dimensional global attractors for the
same [ and ¢, simply by taking x in an interval [0, L] where the interval length L is
bigger than 1. In fact, we could achieve an arbitrary high dimension by choosing L

larger and larger.

7 Uniqueness of equilibria

In this section we are going to prove that for € small enough near any type I solution
of the reduced equation with one fast part there is exactly one solution of the
boundary value problem (12). As we have seen, there is at least one equilibrium u®
near a type I solution of the reduced system. For symmetry reasons we will ourselves

restrict again to type la solutions of the reduced system.

Lemma 7.1 Consider a type la solution of the reduced equation with exactly one
fast part beginning at an equilibrium (ug, —f(ug)).
Then there exists ¢g > 0 such that for 0 < ¢ < gg any equilibrium solution u® in «

neighborhood is hyperbolic with Morse index

i(w?) =1 4f ¢'(ug) <0
i(w) =2 if ¢'(ug)>0.

Corollary 7.2 For 0 < ¢ < gq there is exactly one equilibrium solution u® corre-

sponding to the admissible type la trajectory of the reduced system.

Proof of the corollary: Suppose there were two equilibrium solutions u® and u°
both corresponding to the same type la trajectory of the reduced system. Consider

now the interval [u*(0),a°(0)]. It contains only finitely many points that corre-

spond to solutions of the boundary value problem. Otherwise there would be a
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non-hyperbolic equilibrium solution in contrast to the preceding lemma. So, with-
out restriction, we may suppose that there is no other solution @° with @°(0) €
[u%(0),u%(0)]. Then u® and @° are adjacent on the shooting curve and their Morse
indices have to differ by 1 due to lemma 1.5 and cannot be equal. This contradiction

to lemma 7.1 shows that there can be only one equilibrium w®.

O
Proof of the lemma: We will consider the eigenvalue problem
cwyy — f(u)w, — f(u)uiw + ¢'(v)w = dw (21)
w(0) = w,(l) = 0.

at a family of equilibria u® of the viscous balance law with all u® corresponding to
the same type la trajectory of the reduced system. The eigenvalue equation can be

written as a first order system

cw, = z+ fl(u)w
zp = —(¢'(v) = ANw
w,(0) w,(1) = 0.

Performing a Prifer transformation

EW =  pCOSY

z = —psiny

leads to equations for p and . We will only need the ¢-equation

()€ _)\ ()€
€ 2e

cos? o — sin 2¢ (22)

to determine the Morse index of u®. The Neumann boundary conditions for the

original eigenvalue problem show up as initial resp. terminal condition

['(u* ()

tan p(x) =
£

at z=0and z = 1.

So, if wo(x;e, A) denotes the solution of (22) with initial value

['(w(0))

wo(x = 0) = arctan
£
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there is an easy criterium for A to be an eigenvalue: The right boundary condition
has to be satisfied and thus
[ (1))

A is an eigenvalue <= tanpg(l;e, ) =
€

We will use the following relation between the Morse index ¢(u®) and ¢o(1;¢, A = 0):

Lemma 7.3 Let ¢y := arctan (f'(u®(1))/e) .
Then the following holds:

(i) If po(1;6,0) — 1 # kr, k=0,1,2,..., then the equilibrium u® is hyperbolic.
(”) [f@o(l,@,()) - 991 S ((k - 1)77',]671'), then Z(us) = k

Proof : Part (i) is just a simple consequence of the characterization of eigenvalues.
If there was a nontrivial solution of the eigenvalue problem with A = 0 then the
corresponding ¢ would satisfy tan ¢ = tan ;.

To prove part (ii) consider A as a parameter and note that ¢o(1;, ) depends mono-

tonically on A and tends to —% as A — —oo and to +00 as A — +o0o. For the

eigenvalue A\ (k=0,1,2,...) we find
woll;e, \e) = 1 + (K — 1)r.

To determine the Morse index of u® is hence equivalent to counting how many of
the numbers ¢y + k7 lie between —7 and ¢o(1;¢,0).

O
Hale and Sakamoto [HS88] have used the Priifer transformation to compute Morse
indices and eigenvalues for equilibria of the equation u; = eu,, + f(x,u). Although
the details are quite different, we will see that with similar methods we can find the

Morse index of u®.

The main idea is the following: As z(u:) = 1, by lemma 1.4 the Morse index ¢(u°)
has to be 1 or 2. Our goal is to compute ¢o(1;¢,0) — 1 accurately enough to decide
whether it belongs to the interval (0, 7) or (7, 27). For « € [0, %] with 1 — & of order
O(elne™!) corresponding to the initial part of u® where u® is almost constant there
exist invariant strips in the (z, p)-plane. Some of them are positively invariant, some

negatively. Between these strips ¢, is of order O(%) Besides these invariant strips
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we will use a comparison with the solutions of (22) to different initial values. Recall
that uZ solves the linearized equation (21) with Dirichlet boundary conditions and

note that Dirichlet boundary conditions translate into

o(z) = g (mod ) at @ =0, 1.

Hence, we already know two solutions of (22): The solution ¢_ with initial value
©_(0;¢,0) = —7 satisfies ¢_(1;¢,0) = 7. Simply due to 7-periodicity of equation
(22) there is another solution ¢, with initial value ¢,(0;£,0) = T and ¢, (1;¢,0) =

37
o

The solution ¢q with ¢o(0;¢,0) = arctan(f'(u®(0))/e) is confined between ¢_ and
w1. As we will prove, g will after some time follow one of these solutions and end
up very close to either 7 or 37”

The only property of u® that we need is, that it is almost constant and that it jumps

from an unstable arc of C to a stable arc. The latter fact shows up in the relation
F(wr (1)) <0 < f/(u(0)).

The fast part and the drop part together are of length O(eIn(e™')), so we can choose
z € [0,1] (depending on ¢) with

such that
ul <Ce? Vzel0,z]. (24)

xr

and

P>y Voelo.a]

for some constant v > 0 not depending on € € (0,¢0]. Relation (24) can be derived by
means of the normal form analysis of our appendix where we show that u, decreases
at an exponential rate proportional to 71,

We will first establish the existence of invariant strips. To this end define ®_(z) and
® () as the two angles in (=7, 7) where ¢, = 0, or in other words,

! £
esin® @y — % sin 204 + ¢'(u®) cos® O = 0 (25)
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leading to

Fi(us(x)) £/ f (u(2))? — deg/(ue(2))
2¢e '
As both f/(u) and ¢'(u) are bounded for « € [Umin, Umaz] using (23) and the asymp-

tan @4 (x) =

totic behavior of arctan near 7 we get for x in[0,z] where f'(u"(z)) > 0:

tan ®_(z) = % + O(e),
tan @, (z) = M + O(1)

€
such that

s
() = 5 = [(wi(2)) e + O().
We show now the existence of a narrow negatively invariant strip around ®,.

Lemma 7.4 Consider (22) for A =0, a given equilibrium u® and « € [0,2]. Then:
There is a negatively invariant strip of width O(&3) around ¥.

Proof: We have to compare % with ¢, at ¢ = &, & ke® for some k.
Let’s start with

do 2e " f/f” — 259// €
+ )2 . (f + 7) .

& a4Vt r=eg)

Here we have written f’ as an abbreviation for f'(u®(x)), etc. .
Expanding the square root one finds easily that the first term is of order O(e) while
the second is of order O(1). Together with (24) we get

dd

< C¢? for « € [0, z].
dx

On the other hand, applying elementary addition formulas for sines and cosines,
dp 3 .2 3 g 3 I 3
d—(CI>+ + ke”) = sin®(®4 £ ke”) + = cos® (P4 £ ke”) — 2—s1n(2<1>+ + 2ke”)

x 3 3
g /
= cos 2ke® (sin2 d, + ~cos’ P, — —sin 2<I)+)
€ 2e
!
+sin? ke® (1 + g_)
3

1 ! !
—— sin 2ke® (g_ sin2®, + ! cos 2<I)+) .
2 € €
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The first term vanishes due to (25) and since

g (u)sin2®, + f'(u')cos20, = f'(u°)—2esin’ P, tan P
= —f'(v)+O(e)

the last term dominates and yields

dy 1
(D, + kP > kel
dep

%(CILr —ke®) < —=ky-e

for € small enough and = € [0, z]. Choosing k large enough gives negative invariance

for the strip around .
O

The next lemma provides us with some larger invariant strips with the additional

property that |p,| is large outside these strips.

Lemma 7.5 Consider (22) for A =0, a family u® of equilibria and x € [0,z]. Then
there exists some g9 > 0 and constants k,Cy,Cy, C3 > 0 such that for 0 < e < gg

(i) the strip [P —k, Py + k| is negatively invariant and for solutions @1,y inside

this strip
C
[1(22) — pa(2)] > €7 27 |0y (1) — pal@)] for 0 < 2y < 25 < 2.

Analogously, the strip [P_ — k, P_ 4 k]| is positively invariant and for solutions

Y1, o inside this strip
C.
lp1(22) — pa(a2)] < e = @2 | (1) — a(a1)] for 0 < @y < 2y < 7.

(ii) Outside these strips
Cly

&

Proof: (i) The existence of the invariant strips is proved in a similar fashion as
in the preceding lemma, so we omit the proof here although there are some minor

differences.
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To prove the contraction and expansion properties we denote with H (g, <) the right

hand side of (22) with A =0, i.e.

g'(u°) 2 f'(w?)

H(p, &) = sin® p + ==—= cos® ¢ — ~—— sin 2p.
€ 2e
and compute
aH ! £
8—(997 x) = —f (v () + sin 2¢ + 2sin? @ tan .
¥
Evaluating this expression at o = ¢, gives
o P ()
—(® = o1
(@) =T oq)
such that
QH( ) > 4
o) > L
Do 4 g
for ¢ small enough and ¢ € [®, — k, P, + &].
Similarly,
oH ['(w(2))
—(P_,z)=———40(1
o0 =) oy
and
OH Oy

%(%l‘) < Tz

for & small enough and ¢ € [P_ — x, P_ + &].

(ii) Define
1 ! =>4
Csy = §inf g’ (u(x)) cos® p — w sin 2| > 0
1
o = 503
where the infimum is taken over the compact region that is obtained from the
rectangle [0, 7] x [—Z, 7] by removing strips

{(r,0); 0 <<z, &L —k << Py + k).

Then obviously

and the proof is complete.
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The important observation is now that the initial value f/(u:(o)) of the solution ¢
we are mainly interested in lies above or below this negatively invariant O(e®)-strip
around @, depending on the sign of ¢’(u*(0)) which is the same as the sign of ¢'(ug).

This follows simply from the expansion

F(ut(0)) — P (0) — degr(ur(0))
2e

P 0

= T T e TOE

tan @, (0) =

Using the Laurent series of arctan at 7/2 one gets

1 '(us(0)) &2+ O(%). (26)

_T e~
®.(0) = 2 f(us(0)) f'(ws(0))

In particular, for ¢ small enough and ¢'(ug) < 0 the initial value of g lies below
the negatively invariant strip. Thus ¢ has to stay below ®_ at least up to = = .
Similarly, for ¢’(ug) < 0 the initial value of ¢q lies above the negatively invariant
strip and g stays above this strip.

Having established the existence of invariant strips, we want to take a solution of
(22) that stays inside the negatively invariant strip as a reference. Let ¢xn be a
solution on [0, z] inside the negatively invariant strip. Clearly ¢y can, for instance,
be obtained by solving (22) backward starting with pn(z) = P4

In lemma 7.5 we have found a negatively invariant strip with the property that
solutions in this strip separate with an exponential rate of (/e and a positively
invariant strip where solutions approach each other at an exponential rate of Cy/¢.

Moreover, between these strips we have

oo = Cs/e

where all the constants are independent of ¢.

We are now able to describe the behavior of ¢o(+;¢,0).

1) ¢'(ug) < 0 : In this case we compare first ¢y and py. Since @y lies in the
O(e?)-strip around @4 and from (26) we have that

en(0) — o(0;e,0) > Cye’.
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Thus we can find some &; of order O(elnl) such that po leaves the negatively

invariant strip around ®4 at x = #;. Outside the strip, ¢, is large, so there is 75

with

5/’2 — =%1 = O((‘:)

such that g enters the positively invariant strip around ®_ at + = ,. The situation

is depicted in figure 14.

A

37 i — P1 + 27
B e
ﬁ+ '
T —1+ 7
3 72(\
@ (0) = .
©o(0) negatively invariant strip
0 _ .
\ I
%o :
- Ll ‘\, positively invariant strip
_T : = %1
? oo

Figure 14: The case ¢'(ug) <0

Analogous arguments show that at = = 5 also ¢_ must have entered the positively

invariant strip from below. Hence

|9‘90(‘%2;570) - 99—(5;2;570” < 2K
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and due to the contraction property inside the positively invariant strip

wo(Z5¢,0) — p_(7;¢,0) = Olexp(—Cy/e)).

Even though ¢ and ¢_ may separate at an exponential rate of order '/ on the
interval [z12, 1] the difference between the two solutions stays small since the length

of this interval is only of order O(eln 1):
po(lie,0) — p_(1;¢,0) = O(c™ exp(—Ca/e)).
Thus, the difference tends to 0 very rapidly as £ N\, 0 and since we know that

©_(1;6,0) = =

we can conclude that for e sufficiently small

s 1
3 ey O

po(l;6,0) <1+ 7=
since f'(us(1)) < 0.
Hence,
wo(l;6,0) — 1 € (0,7)
and by lemma 7.3 the solution «* is for all small ¢ a hyperbolic equilibrium solution
with Morse index ¢(u®) = 1.

2) ¢'(ug) > 0 : Again we compare first o and ¢n. The difference consists of the
fact that ¢g lies above the O(e?)-strip that is negatively invariant and leaves the
strip [®4 — &, @4 + «] at the top. Therefore, ¢g enters the positively invariant strip
[P_ — k + 7, P_ + £ + 7] at some &y which is of order O(eln %) The solution ¢,
enters this strip as well and with the same arguments as in the first case ¢'(ug) <0

one shows that

wo(L:2,0) — pi(1;2,0) = O™ exp(—Cy/e)).

Since

37
0r(l;6,0) = —

this yields
po(l;€,0) — 1 € (7,27)
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and by lemma 7.3 the equilibrium u® of the viscous balance law is hyperbolic with
Morse index «(u®) = 2.

a

Remark: The same arguments can be applied with slight modifications to all
solutions u® near type I trajectories of the reduced system. Depending on the sign
of ¢’'(ug), the solution g follows either ¢_ or ;. On the slow parts there are also
invariant strips with a strong contraction inside such that the difference between
the solutions is still very small after a (rather short) junction-fast-drop-part. Then,

again strong contraction applies over a time of order 1, etc.

& Planar attractors

There is an important case in which the attractor will be two-dimensional for all
sufficiently small ¢: For convex f and under the generic assumption that no zero
of ¢ coincides with a zero of f’ all equilibria have a Morse index of at most two.
Moreover, the permutation = associated with the shooting curve S is the same for

all small e. This will lead to a description of A, for small e.

Theorem 8.1 Let uy,usg,...,u; be the zeroes of g and assume that
(i) f is convex
(ii) f(u;) # fluj) for1 <e<j <1
(tii) f'(u;) #0 for 1 <u <1
() ¢'(u;) #0 for1 <i <1

Let [ be the number of zeroes u; of g such that there exists a w; with f(i;) = f(u;)

and
g(&l)(uz — ﬂz) > 0.
Then there is a €g, such that for all0 < ¢ < &g the parabolic equation (5) has exactly

[ + 1 equilibrium solutions, more precisely, there are

o L

= equilibria with Morse index 0,
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equilibria with Morse index 1 and

B0 | =~

-1
° 2—|—

o L cquilibria with Morse index 2.

BO | =~

The permutation © induced by these equilibria is the same for all 0 < ¢ < &g and for
0 < e <& <egqy the global attractors A. and A, are C°-equivalent.

Proof: Obviously, there are [ spatially homogenous equilibria v = u;, 1 < ¢ </
independent of ¢ having Morse indices 0 and 1 alternately (see lemma 3.2). There
may be also nonhomogenous equilibria with one boundary layer. Since the singular
curve C has at most one unstable and one stable arc, there can be no equilibrium
solutions with two boundary layers or an interior layer. The boundary layer solutions
correspond to trajectories of the reduced system that either stay at an equilibrium
on the unstable arc of C for time 1 and jump to the stable arc afterwards or jump
from the unstable to the stable arc immediately and stay there for time 1. The
condition that a jump is possible was in our notation that the opposite side is green.
Recalling our definition of green, yellow and red sides, one checks immediately that
g(t;)(u; — ;) > 0 is exactly the condition for the opposite side to be a green one,
or, in other words, this condition tells, that the curve C is not “blocked” by the slow
manifold.

In the previous chapter we have shown uniqueness exactly for such solutions which
are near type I solutions of the reduced system and possess exactly one fast part.
Also, it 1s clear that the ordering of the equilibrium solutions is the same for ¢ < g
and hence the associated permutation 7 is identical for all small .

Together with proposition 1.8 this implies the claim about C°-equivalence of the

global attractors.
O

8.1 The permutation

Since for convex f the shooting curve has special properties the following simple

corollary of proposition 1.5 will prove useful.

Lemma 8.1 Let vy, vy, ...,v; be all the equilibria of a semilinear parabolic equation

with associated permutation .
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If v, and v,41 are two equilibrium solutions with
T (n+ 1) =77 (n)] =1
then z(vnp41 — vm) = 2(v, — vy,) for all equilibria v, with m # n,n + 1.
Proof: For all m different from n and n + 1 we have obviously
sign (W_l(n +1)— ﬂ'_l(m)) = sign (ﬂ'_l(n) — W_l(m)) .

Consider now the difference z(v,41 — vi) — (v, — V).

Using proposition 1.5, we have z(v,41 — vy) — 2(v, — v,) = 0 since

o)+ 5 (=07 sion (41 = n)) =1) + 3 (Wi (1) =)
—1(V) — % ((—1)”5ign (ﬂ'_l(n) — W_l(m)) — 1) — jz_: (—1)sign (ﬂ'_l(j) — W_l(m))

= ((—1)”+15ign (W_l(n +1)— W_l(m)) — 1) + Z(—l)jsign (ﬂ'_l(j) — r‘l(m)) = 0.
1=n
The use of this proposition makes it easier to determine with proposition 1.6 which

equilibria are connected and which are not.

8.2 One last example

This last example should illustrate how the 1-skeleton of the global attractor looks
like in the case of a convex f.
We choose ¢ to possess b zeroes uy < uy < uz < uyq < us, three on the unstable arc

of C and two on the stable arc with

—flur) < —flus) < —fluz) < —fluz) < —f(uaq)

as shown in figure 15. This figure also shows the slow manifold for small nonzero ¢
and the dashed lines indicate the four possible solutions of the boundary value prob-
lem with a boundary layer. Each of them starts or ends near one of the equilibrium

points.
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w

the slow manifold

Figure 15

Altogether, there are nine equilibria for ¢ sufficiently small. From the shooting curve

- ~ /

Figure 16: The shooting curvw

(or directly from the equilibria) we can read off the permutation = as

1 23456 789
T =
1 87236 549
giving rise to the following connection graph:
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Figure 17: The connection graph

As in the example of chapter 6, one has immediately an idea how to fill this 1-
skeleton with some two-dimensional “meat”. Nevertheless, up to now there is no

proof of a geometrical description of the global attractor.

9 Discussion

As we have already pointed out in the introduction, this paper should be considered
as a first step towards the description of the global attractor A. as ¢ \ 0. Of course
it would be more satisfactory to have uniqueness of equilibrium solution for all cases
of theorem 1.2 and not only in case f is a convex function. This would then yield
a complete description of all equilibria and the connecting orbits between different

equilibria. We are optimistic that further work will soon remove the problems.
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A question that is perhaps best accessible via singularly perturbed equations con-
cerns the realization of the heteroclinic orbits. Knowing that two equilibria are
connected by a heteroclinic orbit, one may be interested to know how this hetero-
clinic orbit looks like, i.e. the shape of the wu-profile. In the general case, there is
no hope at the moment, but for singularly perturbed equations, heteroclinic orbits
with slowly moving transition layers have been constructed. To our knowledge, this

approach has never been applied to balance laws.

Since balance laws are often considered on the whole real line one could take the
interval length 0 < o < L as a parameter and look at the limit L — oo. Typically,
one would expect that new solutions appear (by a saddle-node bifurcation) at values
of L for which the transversality condition (H7) or a similar condition for type III

solutions is not satisfied.

Another line of research is connected to balance laws with x € S*. Here the attrac-
tor consists not only of equilibria and heteroclinic orbits but contains also rotating
waves. Although there is also a discrete Lyapunov functional, nothing similar to
the permutation is available and there is by now no complete description which
equilibria and rotating waves are connected by heteroclinic orbits.

For the hyperbolic balance law (¢ = 0) and convex f some work has been done in re-
cent years by Fan and Hale [FH95], Lyberopoulos [Lyb94] and by Sinestrari[Sin95a).
All these authors have proved a theorem of Poincaré-Bendixson type for these equa-
tions. Fan and Hale gave a description of the global attractor and some necessary
conditions for heteroclinic orbits between different equilibria and rotating waves
while Sinestrari was able to construct the w-limit set for a given initial condition.
Nevertheless, the connection between the global attractors for ¢ = 0 and for ¢ > 0

is not yet well understood.

And these are only some of the challenges that remain in this field...
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Appendix
In the appendix we derive the asymptotic formulas given in chapter 5 as proposition

5.2 which have been used in the proof of theorem 1.2.

A A normal form

Recall that in the setting of chapter 5 for ¢ = 0 the singular curve C and the
curve corresponding to the (left or right) boundary condition coincide. To get some
estimates on the time it takes a trajectory to leave a neighborhood of the singular
curve we have to find out how these two curves separate for ¢ # 0. To that end

another choice of local coordinates will prove useful putting the vector field

i = vt f(u) }

v = —eg(u).

in a nicer form. Starting from a normal form given by Takens, we will further
simplify the vector field using special features of our singularly perturbed problem.
There are two cases to be considered:

Case A: The normal form is computed near a point of the singular curve C that is
not an equilibrium, e.g. where ¢ is nonzero.

Case B: The normal form is computed near a point on C where g has a zero.

Let (ug,vo) be a point on the singular curve. Then the local normal form near
(uo, vo,0) we will achieve in this section is given in the following lemma and will be

proved in the rest of this chapter:

Lemma A.1 If f,g € C® with f'(0) # 0, then there is a local C*-change of variables

(27)

S 2

| |
o
N TN
S

(@} (@}
R
=g
N——

Here A and R are smooth functions of their arqguments with A(0,0) = f'(ug) and
R(9,0) =0. In case B also R(0,e) = 0.
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A.1 The Takens normal form

In 1971, Takens [Tak71] gave a normal form for vector fields near a nonhyperbolic

equilibrium. He showed the following

Proposition A.2 Let 0 be a singular point of a C*-vector field X . If the eigenval-
ues of dX at 0 satisfy a nonresonance condition (‘Sternberg a(dX (0), k)-condition’),
then there is a C*-change of coordinates such that the vector field in the new coor-

dinates is locally in the standard form

C a s a ., a
X = ;Xi(:m, e ) Dz, + ”ZZ:I A,y :z:c)yja—% + ”ZZ:I Bij(x, ..., xC)Zja_ZZ’
where
(1) all e cigenvalucs of gi’(j (in xy = ... = x. = 0) have real part zero,

(2) all s eigenvalues of A;(0,...,0) have real part <0 and

(3) all u eigenvalues of Byj(0,...,0) have real part > 0.

So, in the standard form the center manifold W¢(0) is the linear space {y; = ... =
Ys =21 =...= z, = 0}.
Proof of lemma A.1: To prove lemma A.l the Takens standard form will be used

near singular points of the fast system

io= v+t flu)
o= —eg(u) (28)
e =0

This system was not assumed to be of class ">, but a look at Takens proof reveals
that it is not necessary to have a C'**-vector field. For vector fields with a finite order
of differentiability a similar normal form result holds. In fact, in the first step of his
proof Takens transforms the vector field to one with a finite degree of smoothness.
If no resonances occur between eigenvalues this degree of smoothness determines the
smoothness of the coordinate transformation 7.

At equilibrium points (u, v,e) of (28) with ¢ = 0 the Jacobian of the fast system is

flug) 1 0
J = 0 0 —g(uo)
0 0 0



If f'(uo) # 0, it has a double zero eigenvalue and one nonzero eigenvalue f’(ug). So
there is only one eigenvalue with nonzero real part and all nonresonance conditions
used in Takens proof will be automatically satisfied. In this case, his theorem tells
that a C**tl-vector field can be brought to the normal form by a C*-change of
coordinates. This is the reason why we assumed f and ¢ to be of class C®. Then the
normal form is of class C'? which is sufficient for us as all arguments below will not

involve higher than second derivatives. By Takens’ theorem a C'*-change of variables
(a,0,8) =T (u,v,¢)

transforms the equation to the form

u = A(0,8) 4
v = R(0,8) (29)
& o= S(v,8).

Note that any further C%-smooth change of coordinates that involves only ¢ and
€ but leaves @ unchanged, does not alter the form of this normal form equations.
We may therefore perform a linear transformation of v and & and suppose that the
-direction corresponds to the zero eigenvector (—1/f'(ug), 1,0)T, i.e. dT (ug,vo,0)
maps (—1/f"(uo),1,0)T onto (0,1,0)T. In addition, we may suppose that the eigen-
vector of the hyperbolic eigenvalue is mapped onto the first basis vector.

Concerning the Jacobian J, there are two cases that have to be distinguished de-
pending on whether g(ug) is zero or not. in the first case, which was called case A

above, g(ug) # 0 and the generalized kernel of .J is spanned by the two vectors

1
~ Pl 0
1 and —1
0 _ f/(uO)

9(uo)
Since in the new coordinates the center manifold W¢(0) is exactly the (o, &)-plane,
these two vectors will be mapped by d7 (ug, vg, 0) to two vectors spanning this center
manifold. In the other case B, where g(ug) = 0, but ¢'(ug) # 0, there is an two-
dimensional eigenspace to the zero eigenvalue spanned by

1
f'(uo)
1 and

0
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curves corresponding
to € =const.

Figure 18: The foliation within W<¢(0)

In other words, these two vectors span the tangent space of the center manifold.

Another change of variables not affecting @ will lead to the result that we can
suppose S(?,&) =0 and € = . The reason for this is the fact that for the original
equation there is an invariant foliation due to the invariance of the planes {e =
const.}. As our calculation of the tangent space T{y 10,00 °(0) has shown, the (two-
dimensional) leaves of this foliation intersect the center manifold transversally at
(ug,v0,0). In fact, for the leaf corresponding to ¢ = 0 the intersection is exactly
the curve {v + f(u) = 0}. The foliation is of course preserved by the coordinate
change. So, in the new coordinates the leaves of this foliation are of class C'* and
their intersection with the center manifold induces at least locally a foliation of the
center manifold. The v-axis {& = 0} is a leaf of this foliation in the center manifold,

so locally the leaf through (0o, £¢) is a graph over the v-axis:

Straightening these fibers is achieved by the diffeomorphism
G(v,€) = (9,7(0,;0)).
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Since the fibers are invariant under the flow of (29), after this transformation, the
vector field has already the form given in lemma A.1. A change of ¢ assigning each
of these leaves its original ¢ yields that we can suppose £ = ¢.

The claims on A(0,0) and R(9,0) are easily verified because a C'*-change of variables
does not affect eigenvalues and because the v-axis consists entirely of equilibrium
points.

In case B for every ¢ there is exactly one equilibrium point corresponding to the
point (ug, vg) in the old coordinates. By a (last) fiber preserving transformation one
can achieve that all these equilibrium points lie on the e-axis and thus R(0,¢) = 0.
The fact that the equilibrium point (ug,vo) does not depend on & implies that
dT (ug,vo,0) maps the basis vector (0,0, 1)T to itself. Altogether, we have now

L —=1/f"(uo) 0
dT=1(0,0,0) = | 0 | 0 |. (30)
0 0 1

There is still some freedom since we could stretch the axes, but this is the form we

will use in the next chapter.
O

B Leaving a neighborhood of C

The normal form derived in the preceding section now serves as the basic tool to
estimate the time a trajectory takes from the singular curve C to a section at a
finite distance ¢ from C. At ¢ = 0, both C and the manifold B corresponding to the
boundary condition coincide. The two cases A and B differ in the way how B and

C separate for positive ¢.

B.1 Transition time analysis for case A

In case A the normal form near an equilibrium point (ug, vg, 0) of (28) with f'(ug) # 0
and ¢(0) # 0 is used. The point (ug, v is mapped onto & = © = 0 and for |al, [0| < ¢
and ¢ < ¢ the vector field has the form



The points corresponding to the boundary condition v + f(u) = 0 form a two-
dimensional manifold B. Since we want to perform the calculations in the new
coordinates @ and v of lemma A.1 it is important to know how B looks like in these
coordinates. In the original coordinates, the tangent space Ty, ;008 in (uo, vo,0)
is spanned by the vector (—1, f'(ug),0)T which lies in the (plane) center manifold
W<(0) and the vector (0,0, 1)” which has a component in the orthogonal complement
of We:

1
_ ___olu)
ol I el I

where II is the orthogonal projection onto W¢. So the distance between the two
manifolds B and C to first order grows proportional to ¢ and B can therefore be

written as a graph
o =eW(v,¢) (31)
with

20,00 = ‘u%Z;J;)? #0

The geometric situation of this case is depicted in figure 19.

Using representation (31) of B, the normal form from lemma A.1 will yield an
estimate for the time to from a point (g, ¥9) on B to a section A := {|a| = 6}. It
depends on the sign of ¥(0,0) whether {a =6} or {i = —¢é} is the right choice but
since both cases are treated in exactly the same way we restrict ourselves to the first
case that corresponds to g(ug) < 0.

From lemma A.1 we have R(0,0) = 0 and therefore
R(v,e) = cRy(0,¢).
The v-equation from (27) then reads
b =Ry (D,¢)
and the solution with initial value vg can be written as
0(s) = 09+ v1(e8)
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"slow manifold"” w (0)

<

boundary conditions
v+f(u)=0

<

Figure 19: The geometry of case A

with

Integrating the u-equation

U= A(b,e)
gives the following condition on the time ¢:

to

e W(Bo.c) exp(/ A(6(s),¢) ds) = 6

0
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which is equivalent to

A(v ds=In|———]. 32
[ Ao as = () (32
Because A is bounded in a neighborhood of (0,0) this already shows that
o ) N
to/In | ———] is bounded for |vg] < é,e < .
eW (v, £)

This asymptotic behaviour of £, suggests the scaling that is to be used in a few lines.

Before, we decompose A(0(s),¢) as

A(0(s),e) = A(09,0) + A(0g + 01(e8),e) — A(00,0)
= A(90,0) 4+ A1(?o,e,€3)

where A; is a function satisfying

Al(f)o,0,0) — 0
Using this decomposition in (32) and introducing o := s as a new integration
variable yields the equation
to - A3 0)+1/6t°A(~ ) do =1 0
- Ao — Vg, e,0) do =1In | ———
0 0 = Jo 1LY0y < 5\11(13075)
A(0g,0) 1

et
< to / i Al(f)o,e,a) do = 1.
0

: +
() <o (za)

With the new variable y that is defined as
A(f)ov 0)

v (s

and compensates the asymptotic behaviour of ¢y, as € tends to 0, it is possible to

L+ x:=1o-

define a function F(y, vo,€) in a neighborhood of x = 09 = ¢ = 0 such that (B.1)
corresponds to F(x, v, £) = 0. An application of the implicit function theorem will
then yield a solution y = x(¥g,¢) and from this solution y it will be possible to

calculate to(0g, €).
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We define thus

-1 ~ -1 _Eln(5_15‘1’(5076))% .
X+ (—eln(67'eW¥(vo,2))) [y Av(io,e,0) do, = > 0

F(va)ovg): X ,e=10

2x — F(X, Vo, —¢) ,e<0.

In other words, F(x, o, &) — x is an odd function in e. Of course, it remains to show
that F is continuous. This has only to be checked at points where ¢ = 0. As ¢ tends

to 0 from above, also

eln ( 0 ) Lt x —
eW(vg,e) /) A(vo,0)
and the integral term in F, representing the average of A; over an interval of that
length, tends to A;(99,0,0) = 0. Thus, F has a one-sided limit as ¢ \, 0 and due to
the construction of F for e < 0 it is continuous. Note that especially y = ¢ = 0 with
any 0p is a solution of the equation F(x,0g,¢) = 0. To apply the implicit function
theorem near such a point, differentiability of F with respect to y has to be proved.

The derivative % is easily computed for y,e # 0:

OF i 1 . 1) I+ x
aX (X, Vo, 5) + A(f)o, 0) 1 (1)07 €& n({-j\p(f)o, 5) A(f)m 0))

Again, A1(09,0,0) = 0 shows that % tends to %(X,T)O,O) =1as e — 0, and the
implicit function theorem applies near every point with y = ¢ = 0 and yields a
solution x = x(vg,) of F(x,00,¢) = 0. Thus, the time #; from the curve C to a

section {u = 6} is

o0 = S ()

Differentiating this expression with respect to vy shows immediately that

o (n(wa)

is bounded for ¢ # 0. Summarizing, we have the following:
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Proposition B.1 The time a trajectory needs from a point (g, 0g) on the singular

curve C to a section {t = |6|} is a function to(0g, ) with

to(vo, ) = O (m (WSO,&:)))

9= ()

Remark: All the normal form calculations were performed in the fast coordinates.

and

as e — 0.

Due to the scaling by a factor ¢ the preceding proposition implies for the original

trajectory that
1
Tinitial = O(eln(g)).

B.2 Transition time analysis for case B

In case B the normal form is calculated near an equilibrium point (ug, vo,0) of (28)
with f'(ug) # 0 and g(ug) = 0, but ¢'(ug) # 0. As in case A the first question
is, how the boundary condition v + f(u) = 0 is transformed to the normal form
coordinates. In case B the manifold B and the center manifold are tangent to each
other, so second order terms are needed to describe the distance between the two
manifolds. From the considerations at the end of chapter 4 about the normal form
in case B, we know already the linear part d7 ~!. So we just add the second order
terms of the Taylor expansion of 7! and compare the coefficients of the vector field
in old and new coordinates. To this end, the transformation 7 ~! is written in the

form

u = o(u,v)
= U+ Po10D + Ga00l® + 11000 + Po20D” + Po110E + Pro1UE + Poo2e”
+o ((Ja] + o] + |e)?)
v o= P(u,?)
= P00t + D + a00l® + V11000 + Po2ed® + Yo110€ + Yro1tiE + Poge?
+o ((Ja] + o] + |e)?)
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From lemma A.1 we know that in case B both R(9,0) =0 and R(0,¢) =0 so R has

the form
R(0,¢) = ri1e0 + o((|o| + |5|)2)

Plugging this into the equation (28) one gets a very long formula that we are not
going to write down here. We just note the following results from the comparison
of coefficients:

Comparing the o-term of the first equation one gets 1199 = 0

From the v-term of the first equation : ¢g19 = —m

From the u2-term of the second equation : 100 = 0

From the u2-term of the first equation : ¢oq0 = %
From the uo-term of the second equation : 1119 = 0
From the su-term of the second equation : Y197 = —%Z—E%

From the ev-term of the second equation : ry; = ?i(zo

—

~—|

0

With this coefficients of 7 the boundary condition v + f(u) = 0 in the new coordi-

nates reads

where

)y 9wo) o 900 o (il + (3] + [e])?
o) O a0 rragyz=e e (2 4 1o+ D7)

and since f'(ug) # 0 we get by the implicit function theorem near t =0 =¢ =0 a

1
Fuelity 0) i= f (1)t 3" (o) i”

solution of Fp.(w,0,e) = 0 of the form @ = @;.(0,¢). We have

Oty Oty

9. (00 =55

Important is the mixed derivative

(0,0) = 0.

i, (IF 02 Fi _ (o)
8586(070) - ( o (07070)) D=0 (07070) - _(f,(uo))g‘

Hence, the boundary condition v 4+ f(u) = 0 is transformed into

o =eoVU(0,¢)

with



boundary conditions
v+f(u)=0

curve of equilibria

ey

Figure 20: The geometry in case B

Since we have R(0,0) = 0 as well as R(0,¢) = 0, the v-equation from (27) can be
written as

b= bRy (D,¢e)
with
B gl(uo)
a f’(uo)

We will assume that the domain {|ul,|?| < 6,6 < &9}, where the normal form is

B(0,¢) +o([o] + [e])-

valid, is taken so small that
1 .
5 [ (o) < [A(2, €)] < 2| f(uo)l, (33)
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19/ (o) < [R5, < 2lg'(uo)| (34)

e (o) (o)
1 9/ Uo N 9/ Ug
- < W(5,e)] <2 35
2 f’(uo) N | ( )| f’(uo)3 ( )
We then have the (crude) estimate
0(s) < g exp(2lg(uo)les) (36)

as long as 0(s) < 6.

We can now turn to the other equation
U= A(,) u

Again the time ¢ is to be determined a trajectory takes from C to a section A :=

{t = 6}. We have to estimate to from the equation
CA((s),¢) ds =1 ’
‘/0 (U(S),@) s = 1In (m) .

With the simple bounds on A and ¥ from (33) and (35) we get estimates for #y:

[ (224590 < 2 (202

— <ig <2
2 560g’(u0) == 560g’(u0)

This estimates will suffice to show the next proposition.

Proposition B.2 Fiz 6 small and some T > 0. Then for any ¢ small enough there
exists a point (Ug, Vo) on B such that the time for a trajectory starting in (tg, 0g) to
a section A = {|u| = 6} is exactly T/e.

Remark: Translated back into the original "slow time” z this yields a trajectory

that needs exactly time T' between the manifold B and the section A.

Proof: It suffices to show that for any small € we can find a point (i, 1) on B such
that a trajectory starting from this point will hit the section {|u| = 6} after some
time which is strictly smaller than 7'/e. Since the time a trajectory needs from B to
A tends to infinity if the starting point (@, 0g) on B approaches (0,0), by continuity
of the time map between B\ {0,0} and A the proposition follows.
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Using the upper estimate for ¢g, we can get a lower bound on vg: If
N 26 f'(ug)> T
Do > M exp(—=—=—)
9'(uo)e 2e]f"(uo)]|
then the time from B to A will be less than T'/e.
We have to check only, that for such an initial 0y the condition o(T'/¢) < é can be

satisfied for otherwise our estimates are not valid. With the estimates from (36) we

have immediately that for the initial condition

L 28 f"(uo)? (. T
~ eg'(uo) p( 25|f’(u0)|)
we obtaln / .
Ly < Bl o Ty e

2= ) )
which clearly tends to 0 as ¢ — 0. Thus, for ¢ sufficiently small, © remains in the
domain of the normal form long enough and we are finished.
O

Remark: All the transition times were calculated using sections of the special form
{t = const.} while the claims in chapter 5 used sections of the form {u = const.}.
The different choice of sections does not affect the asymptotic estimates, since both
sections are at a certain distance from the singular curve such that trajectories need

only a time of order O(e) between them.
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Zusammenfassung

In der vorliegenden Arbeit werden globale Attraktoren von viskosen Erhaltungs-
gleichungen mit Quellterm (sogenannte “balance laws”) untersucht. Bei diesen

Gleichungen handelt es sich um skalare parabolische Differentialgleichungen

g+ (f(u)), =g(u) +eug , 0<z<1

auf dem Einheitsintervall, die von einem kleinen Parameter ¢ abhangen. In der
vorliegenden Dissertation werden dazu Neumann-Randbedingungen gewahlt.

Fiir festes ¢ besteht der globale Attraktor A, aus stationaren (d.h. zeit-unabhangigen)
Losungen der parabolischen Gleichung und aus heteroklinen Orbits zwischen ver-
schiedenen stationaren Losungen.

Im gut verstandenen sogenannten “Chafee-Infante-Fall” f = 0 stellt sich heraus
[CI74, Hen85], dai die Anzahl der stationdren Losungen und sogar die Dimension
des globalen Attraktors gegen unendlich strebt fir ¢ N\ 0.

Das Verhalten fiir f #£ 0 ist jedoch vollkommen anders.

Die Dissertation enthalt dazu drei Hauptresultate:

In Theorem 1.1 wird bewiesen, dafl schon unter schwachen Voraussetzungen an f
und ¢ die Dimension des Attraktors A. beschrankt bleibt fiir ¢ X\ 0.
Theorem 1.2 zeigt eine Stabilisierung der Dimension dim A, unter nur leicht starkeren
Voraussetzungen: Es existiert eine natirliche Zahl d, so daf fiir alle gentigend kleinen
¢ gilt:

dim A. € {d,d+1}.

Allerdings kann nicht ausgeschlossen werden, dafl die Anzahl der stationaren Losungen
uber alle Schranken wachst, wenn ¢ gegen 0 strebt.
Theorem 1.3 schliefit diese Liicke wenigstens fiir den Fall konvexer f, in dem die

auftretenden globalen Attraktoren hochstens zwei-dimensional sind.
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