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1 IntroductionThis thesis is devoted to the study of global attractors of a class of singularly per-turbed scalar parabolic equations depending on a small parameter ". These equa-tions possess a special structure allowing for a detailed description of the globalattractor. Moreover, many properties of the attractor can be deduced using mainlyinformation on equilibria and their variational equations. This leads to the studyof a class of singularly perturbed boundary value problems which in general havemany solutions.The main part of this paper describes how to �nd solutions of these boundaryvalue problems and how to determine their stability considered as equilibria of theparabolic equation. As proposed by Allen and O'Malley [AO90] for problems wherequalitative information is sought rather than high order approximations we use phaseplane methods to describe all solutions of the boundary value problem. Some specialdi�culties arise thereby from our choice of Neumann boundary conditions.As " tends to zero one expects typically that the global attractor has either a verysimple structure (e.g. consists of one stable equilibrium only) or that its dimensiontends to in�nity. The rather surprising main result of this dissertation consists ofthe proof that for a class of nonlinearities the dimension of the global attractors canbe very high but nevertheless stays bounded as " tends to zero. We also show thatthe dimension can stabilize at any given dimension.AcknowledgementsI am indepted to my advisor Bernold Fiedler for proposing an interesting subjectfor my thesis, for lots of valuable comments and for always encouraging me thatthere will be some result. I have bene�ted much from helpful discussions with ArndScheel, Christian Leis and Kunimochi Sakamoto on related subjects. The wholeNonlinear Dynamics group helped me by answering (and asking) many questionsand, last but not least, I want to express my thanks to Katharina Meyer, for hernon-mathematical support of my work.1.1 Global attractors of scalar parabolic equationsSemiows generated by scalar semilinear parabolic equations are a class of in�nite-dimensional dynamical systems whose qualitative behavior has been an object of1



intensive research during the last �fteen years. It has been shown that the equationut = uxx + h(x; u; ux) ; h 2 C2 (1)with Neumann boundary conditionsux(0) = ux(1) = 0and initial condition u(0; x) = u0(x)gives rise to a (local) C1-semiow on the Sobolev space X � W 2;2([0; 1]; IR) offunctions satisfying the boundary conditions at x = 0 and x = 1. The associatedsemigroup T assigns to each pair (t; u0) the solution pro�le u(t; �) of (1) at timet > 0 that satis�es the initial condition (1.1) at time t = 0. If the nonlinearity hsatis�es some growth and sign conditions, the semiow is global and dissipative, i.e.solutions exist for all (positive) times and there exists a large ball B � X such thatevery solution u(t) will eventually stay in this ball. Due to the smoothing propertiesof the Laplacian, T (t; �) is compact for all t > 0. Under these conditions a globalattractor A exists, de�ned as a maximal compact invariant set in B that attracts allbounded subset of X, see e.g. the monograph of Hale [Hal88] for theorems in thisrather general setting of compact and dissipative semigroups. This global attractorconsists of all orbits that are de�ned for all (positive and negative) times t and thatare uniformly bounded.There are two special features of scalar parabolic equations that allow for a moreprecise description of the global attractor:(a) a gradient structure and(b) nodal properties.Concerning (a), already in the sixties Zelenyak [Zel68] showed that equation (1)possesses a Lyapunov functional. Except at equilibria, this Lyapunov functionaldecreases along trajectories. For h not depending on ux and Neumann boundaryconditions, the Lyapunov functional can be given explicitly asV (u; x) := Z 10 �12u2x �H(x; u)�dx2



where h is the derivative of H with respect to u.Then ddt V (u(t); x) = � Z 10 u2t dx < 0:If h also depends on ux the construction of such a Lyapunov functional becomesconsiderably more di�cult, nevertheless there is still one. Since this Lyapunov func-tional can be shown to be bounded on bounded sets, any orbit that stays uniformlybounded for all t � 0 will tend to the set of equilibria of (1), i.e. the set of timeindependent solutions. In other words, the !-limit set of a single point u0 2 X iscontained in the set E of all equilibria. Matano [Mat78] showed that it even consistsof exactly one equilibrium. The same arguments hold for negative t if a trajectoryis de�ned there. So, for every trajectory that is de�ned and bounded for all t < 0,the �-limit set is also an equilibrium. Using the above characterization of the globalattractor A as the union of all uniformly bounded trajectories that are de�ned alsofor all negative t, we obtain the following description of the global attractor:Proposition 1.1 A = Se2EW u(e), where E is the set of all equilibria and W u(e)is the unstable set of e. It consists of� the set E of equilibria and� heteroclinic orbits connecting di�erent equilibria.To re�ne this description, consider now the eigenvalue problem associated with thelinearization of (1) at an equilibrium v.wxx + @uh(x; v(x); vx(x))w + @ph(x; v(x); vx(x))wx = �wwx(0) = wx(1) = 0 9=; (2)De�nition 1.2 An equilibrium v is called hyperbolic if 0 is not an eigenvalue ofthe linearization at v, i.e. if (2) has no nontrivial solution for � = 0.De�nition 1.3 The Morse index i(v) of a hyperbolic equilibrium v is the numberof positive eigenvalues of the linearization at v.If all equilibria are hyperbolic then the global attractor is the �nite union of equilibriaand their unstable manifolds. 3



It is a classical observation by Sturm that the eigenvalues are connected to theoscillation properties of the eigenfunctions. There is a sequence of simple eigenvalues�0 > �1 > : : : ; �n ! �1 as n!1and the eigenfunction wk associated with �k has exactly k zeroes in the open interval(0; 1).If h = h(u; ux) does not depend explicitly on x, there is an important relationbetween the Morse index of an equilibrium v and the number z(vx) of strict signchanges of vx de�ned asz(v) := supfn 2 IN;90 < x1 < : : : < xn < 1 with v(xi) � v(xi+1) < 0 ; 1 � i < ngz(0) := 0:Proposition 1.4 If h = h(u; ux) does not depend on x, then the Morse index ofany nonconstant hyperbolic equilibrium v is either z(vx) or z(vx) + 1.Proof: Suppose that i(v) = n such that �n�1 > 0 > �n. Di�erentiating theequilibrium equation vxx + h(v; vx) = 0with respect to x shows that vx is a solution of the linearized equation but doesnot satisfy the Neumann boundary conditions. Nevertheless, the Sturm comparisontheorem is applicable and yields that between two consecutive zeroes of un�1 there isa zero of vx and between two consecutive zeroes of vx there is a zero of un. Since forany nonconstant equilibrium v the zeroes of vx are simple, vx has exactly z(vx)� 1zeroes in the interior of the interval (0; 1) and another two at x = 0 and x = 1 dueto the Neumann boundary conditions. Therefore, vx has at least n and not morethan n+1 zeroes. Translating this back into the notions of i(v) and z(vx) completesthe proof. 2Remark: If the nonconstant equilibrium v is not hyperbolic one can prove alongexactly the same lines that its center-unstable manifold has dimension z(vx) orz(vx) + 1. In this case v has exactly one zero eigenvalue and the center-unstablemanifold is a manifold with boundary, see [Hen85].4



The second peculiarity of scalar parabolic equations is the existence of a discreteLyapunov functional connected to the zero number z(u(�)) of the solution u in (0; 1).Already Sturm recognized that the zero number z(u1(t; �)�u2(t; �)) of the di�erenceof two solutions u1 and u2 is non-increasing in time. This result was rediscoveredseveral times during the last 150 years. The most recent version is due to Angenent[Ang88] who also shows that z(u1(t; �)� u2(t; �)) drops strictly at time t if u1(t; �)�u2(t; �) possesses a multiple zero. One consequence of those nodal properties is theMorse-Smale property of the attractor: There can only exist heteroclinic connectionsfrom equilibria with higher Morse index to such with lower Morse index.1.2 Equilibria, permutations and connectionsSince the global attractor is the union of equilibria and connecting orbits, given a spe-ci�c equation, one may want to �nd the equilibrium solutions �rst and think aboutconnecting orbits afterwards. The equilibria are simply solutions of the boundaryvalue problem uxx � h(x; u; ux) = 0ux(0) = ux(1) = 0: 9=; (3)The next step in the description of the attractor consists of �nding criteria whethertwo given equilibria are connected by a heteroclinic orbit or not. This question was�rst adressed by Brunovsk�y and Fiedler [BF88],[BF89] in the case of a nonlinearitydepending on u only with hyperbolic equilibria. Later, Fiedler and Rocha [FR96a],could show that also in case h = h(x; u; ux) all information on the connections canalready be derived from the equilibrium solutions. Their work uses the observationof Fusco and Rocha [FR91] that all information on the Morse indices of the equilibriaas well as on zero numbers of di�erences of equilibria is contained in the orderingof the equilibrium solutions at x = 0 and x = 1. Their results are formulated bymeans of a permutation � that is induced by the two orderings of the equilibria inthe following way:While at the left boundary x = 0v1(0) < v2(0) < : : : < vk(0);the equilibria satisfy at the right boundary x = 1v�(1)(1) < v�(2)(1) < : : : < v�(k)(1):5



This ordering is related to a shooting approach to �nd the equilibria of (1). Considerthe initial value problem v0 = ww0 = �h(x; v; w)x0 = 1with v(0) = v0 ; w(0) = 0 ; x(0) = 0:This choice of initial conditions ensures that the left boundary conditions will besatis�ed. The shooting surface is just the union of all these solutions and asshooting curve S we denote the intersection of the shooting surface with theplane fx = 1g. Clearly, v(x) solves the boundary value problem (3) if, and only if,w(1) lies on the u-axis, i.e. if (v(1); w(1)) is a point of intersection between S andthe u-axis.The following proposition from [FR91] gives a relation between the permutation �and the Morse indices and zero numbers.Proposition 1.5 [Fusco & Rocha] Let the semiow generated by (1) be dissipa-tive. Let v1; v2; : : : ; vl be the equilibria of (1) with associated permutation � andassume that all equilibria are hyperbolic. Then, the Morse index i(vm) of the equi-librium vm is given byi(vm) = m�1Xj=1 (�1)j+1 sign (��1(j + 1) � ��1(j)): (4)(empty sums equal zero.)For any 1 � m < n � l, the zero number z(vn � vm) is given byz(vn � vm) = i(vm) + 12 [(�1)n sign (��1(n)� ��1(m))� 1]+ Pn�1j=m+1(�1)j sign (��1(j)� ��1(m)):Fiedler and Rocha later showed that this information su�ces to decide whether twoequilibria are connected.Proposition 1.6 [Fiedler & Rocha] Under the assumptions of proposition 1.5the permutation � determines which equilibria are connected by a heteroclinic orbitand which are not. More precisely: 6



(i) Two equilibria v and w with Morse indices i(v); i(w) are connected if, and onlyif, there exists a sequence w = e0; e1; :::; en = vof equilibria with i(ek+1) = i(ek) + 1 such that ek+1 and ek are connected by aheteroclinic orbit.(ii) Two equilibria v and w with Morse indices i(v) and i(w) = i(v) � 1 are notconnected if z(v � w) 6= i(w) (`Morse blocking`).(iii) Two equilibria v and w with Morse indices i(v) and i(w) = i(v) � 1 are notconnected if there exists a third equilibrium �w such that z(v� �w) = z(w� �w) =z(v � w) and the value �w(x) lies in between v(x) and w(x), at x = 0 (`zeronumber blocking`).(iv) Two equilibria v and w with Morse indices i(v) and i(w) = i(v)� 1 are con-nected if neither (ii) nor (iii) holds.1.3 Singular perturbationsWe introduce now a small positive parameter " in front of the di�usivity term of theparabolic equation (1), which thereby becomesut = "uxx + h(x; u; ux)ux(0; t) = ux(1; t) = 0: 9=; (5)It is easy to check that most of the statements above do not depend on ". Itneither inuences the global existence nor the dissipativeness and compactness ofthe ("-dependent) semigroup. Thus, for each �xed " > 0 equation (5) possesses aglobal attractor A". In general, this attractor A" will vary with ". In particular,hyperbolicity of all equilibria will not hold for all " as the following 'classical' exampleshows. Consider a nonlinearity h = h(u) not depending on x and ux, e.g. the cubich(u) = u(1 � u2). Chafee and Infante [CI74] showed that the equilibrium u � 0undergoes a sequence of pitchfork bifurcations at values " = (l�)�2, l = 1; 2; : : :. Ateach of these pitchfork bifurcations two new equilibria appear and the Morse indexof u � 0 is increased by one. So there are two problems in getting a description7



of the attractor as " tends to 0: the number of equilibria and the dimension of theattractor both tend to in�nity. In terms of the shooting curve this is visible as thefact that S winds around the equilibrium u � 0 an increasing number of times as �becomes smaller and smaller. It is not di�cult to see that this behaviour is typicalfor nonlinearities depending on u only. In this case the equilibria satisfy the equation"uxx + h(u) = 0;which has a Hamiltonian structure. By rescaling x = p"� the equilibrium equationbecomes u�� + h(u) = 0; (6)and does not depend on " any more, only the boundary condition at x = 1 readsnow u�("�1=2) = 0 and contains the parameter ". If h has at least two zeroes then(6) admits for families of periodic orbits that accumulate onto a homoclinic orbitor a pair of heteroclinic orbits. A solution of (6) following one of these periodicorbits with period p, say k2 turns is a solution of the boundary value problem if"�1=2 = k2 �p. It is now easy to see that the following alternative holds, depending onwhether h has exactly one or more than one zero: Either there is only one (spatiallyhomogenous) equilibrium that does not depend on ", or the attractor A" blows upin the way described above.A natural question to ask is, whether the same is true for more general nonlinearitiesh. There are some results indicating that for h = h(x; u) the behaviour is rathermore complicated. While for h not depending on x and the gradient ux all noncon-stant equilibria are unstable, Angenent, Mallet-Paret and Peletier [AMPP87] foundstable solutions which develop a transition layer. Later, Hale and Sakamoto [HS88]described also unstable equilibrium solutions with transition layers.Below, a class of nonlinearities h of the special form h(x; u; ux) = (f(u))x + g(u)will be shown to cause a di�erent behaviour of A": The dimension of A" remainsbounded for all small " and in some cases all the attractors are equivalent in a sensethat is to be speci�ed in the next section. This shows that convection can prevent,at least in some cases, the attractor from blowing up.8



1.4 Equivalence of attractorsOur description of attractors of singularly perturbed parabolic equations is to a largeextend based on the following notion of equivalence of attractors.De�nition 1.7 The global attractorsAh and Ak corresponding to the scalar parabolicequations ut = uxx + h(x; u; ux); ux(0; t) = ux(1; t) = 0and ut = uxx + k(x; u; ux); ux(0; t) = ux(1; t) = 0are called (C0)-equivalent if there is a homeomorphism between the global attractorsAh and Ak that maps orbits onto orbits preserving the direction of time.Note that C0-equivalence implies connection equivalence. Here two attractors arecalled connection equivalent if(i) the equilibria of Ah are in one-to-one correspondance with the equilibria of Akand(ii) two equilibria of Ah are connected by a heteroclinic orbit i� the correspondingequilibria of Ak are connected.The main result about C0-equivalence was obtained only recently by Fiedler andRocha [FR96b].Proposition 1.8 [Fiedler& Rocha] If for two nonlinearities h and k all equilibriaare hyperbolic and the two permutations �h and �k induced by the shooting curvesare identical, then the two attractors Ah and Ak are C0-equivalent.This notion of equivalence can be adapted to the singularly perturbed setting. Inthat case there are no di�erent nonlinearities, but one wants to compare the globalattractors of (5) with the same nonlinearity h but di�erent values of ". To this end,time is rescaled by a factor " which does not alter the global attractor. Dividing theequation by this factor " yieldsut = uxx + h(x; u; ux)"9



such that di�erent values of " only a�ect the nonlinear part and de�nition 1.7 appliesdirectly.The ultimate goal would be to show that for a certain class of nonlinearities describedbelow and su�ciently small " there exists a �nite "-independent number of equilibria,all hyperbolic, and the global attractors A" are all C0-equivalent. At the moment,we are only able to prove such a result for a rather restricted class of nonlinearities.Nevertheless, one should consider the following theorems as a (�rst) step in thisdirection.1.5 The Main TheoremsNow all ingredients are collected such that the main results of this paper can beformulated. Theorem 1.1 tells that the dimension of the global attractor A" remainsbounded as "& 0 for a class of nonlinearities h of the formh(u; ux) = �(f(u))x + g(u).Theorem 1.1 Consider the singularly perturbed parabolic equation of the specialform ut + (f(u))x = "uxx + g(u); f; g 2 C3:Assume that(H1) g is a dissipative function(H2) the critical points of f are quadratic folds, i.e. f 0(u) = 0) f 00(0) 6= 0(H3) the derivative of f does not vanish at zeroes of g.Then the dimension of A" remains bounded as "! 0.Under stronger conditions the dimension of A" not only stays bounded but it stabi-lizes.Theorem 1.2 There exists an open (with respect to the strong Whitney topology)class of functions f and g such that the following holds: There is an "0 and someinteger d such that for all 0 < " � "0 the dimension of the global attractor A" iscontained in fd; d+ 1g. 10



The precise conditions on f and g will be given as the additional hypotheses (H4)-(H7) in chapter 4. It can be checked easily that the conditions (H1)-(H3) persistunder C2-small perturbations. Dissipativeness of g implies that only a �nite rangeof u is really important for the asymptotic behavior of solutions and hence for theglobal attractor A". Assuming dissipativeness, the other conditions (H2)-(H7) areopen and dense with respect to the Whitney topology.The dimension of the A" can stabilize at any integer d � 1 but there is a specialcase where we have achieved our goal to prove C0-equivalence of the attractors A":Theorem 1.3 If the conditions of theorem 1.2 are satis�ed and f is a convex func-tion then the global attractor is (at most) two-dimensional for all 0 < " � "0 andfor all 0 < "0 < " � "0 the global attractors A" and A"0 are C0-equivalent.The rest of the paper is organized in the following way: Chapter 2 deals with viscousbalance laws. Chapter 3 contains a �rst investigation of equilibrium solutions to theviscous balance law and the proof of theorem 1.1. In chapter 4 the reduced systemthat corresponds to " = 0 is examined. In chapter 5 the relation between the reducedsystem and the system for " > 0 is investigated. To this end we use a normal formwhich is derived in the appendix. In chapter 6, theorem 1.2 is proved and theexistence of (in general, many) equilibrium solutions is shown. After establishinguniqueness of solutions for some cases in chapter 7, the planar case of theorem 1.3is treated in chapter 8. The paper concludes with a short discussion.2 Balance LawsSince in the rest of this paper viscous balance laws are considered, we will show inthis section that they �t in the above setting. Viscous balance law is a term usedfor a scalar parabolic equation of the special formut + (f(u))x = g(u) + "uxx: (7)We will study this equation on the unit interval with Neumann boundary conditionsux(0) = ux(1) = 0and initial data u(0; �) = u0(�) 2 W 1;2:11



Here f and g are of class C2 and g is a dissipative function, i.e.u � g(u) < 0 8 juj > R (8)with some (large) constant R. The parameter " is very small and adds some dissi-pativeness to the usual "balance law"ut + (f(u))x = g(u): (9)Balance laws are a generalization of conservation lawsut + (f(u))x = 0where a source term g(u) is present.As with conservation laws, for balance laws there are in general no global smoothsolutions even for arbitrarily smooth initial data. After a �nite time, shocks areformed. Often such �rst order hyperbolic equations are considered with x on thewhole real line. As Kruzhkov [Kru70] showed, under some admissibility conditionfor any bounded measurable u0 there is a unique solution of the hyperbolic equation(9). On �nite time intervals the solution of the viscous balance law (7) converges tothis unique solution as " tends to 0.Only recently conservation as well as balance laws on an interval have attractedmore attention. This is mostly due to the occurence of steep transition layers thatmove very slowly [RW95]. With these property, these second order scalar equationsserve as crude models for phase transitions or semiconductors [BH95]. Especially,they are used as test problems for numerical analysists who are interested in thenumerical treatment of more complicated (and hopefully more realistic) problems,e.g. higher dimensional equations describing phase transitions.One di�erence between scalar conservation laws and balance laws is the fact thatsolutions of balance laws need not decay to a spatially homogenous state as timetends to in�nity. In the case of x 2 IR and periodic initial data it was shown1970 by Glimm and Lax that solutions of scalar conservation laws decay likeO(t�1)to their spatial average when the time t tends to in�nity. This is not true forbalance laws: There may exists periodic solutions and at least in the case of f beingconvex, a Poincar�e-Bendixson type result holds: Every solution either tends to anequilibrium or to a periodic orbit, which is a traveling wave then. This result was12



shown by Lyberopoulos [Lyb94], Fan & Hale [FH95] and also by Sinestrari [Sin95b]and ressembles very much the results in the parabolic case treated in Angenent &Fiedler [AF88] and Fiedler & Mallet-Paret [FMP89] although the methods are quitedi�erent.Local existence of weak solutions of solutions for the parabolic equationut + (f(u))x = g(u) + "uxx (10)with Neumann boundary conditions can be shown by semigroup methods as inthe book of Henry [Hen81]. The (unbounded) linear operator "uxx together withthe Neumann boundary conditions generates an analytical semigroup on the spaceW 1;2(0; 1) and the smoothness assumptions on f and g are su�cient to guarantee alocal solution of (10). This solution lies in the domain of the in�nitesimal generator,i.e. in the space X � W 2;2 of functions which satisfy the Neumann boundary con-ditions. Furthermore, the time derivative ut(t; �) is H�older continuous so by ellipticSchauder regularity theory the solution is a classical solution. This allows to talkabout derivatives of the solution, to use maximum principles involving uxx, etc..Although this could also be derived from general theorems by Amann [Ama85], itwill be shown here in an elementary way that the local solutions of the viscousbalance law (10) exist globally in time and that dissipativeness is guaranted by thesign condition (8) on g.Global existence of solutions will be shown via some a-priori estimates on u and thederivative ux:Lemma 2.1 If u satis�es equation (7) for all t 2 [0; T ], then:(i) ku(T; �)kL1 � C(u0) independent of "(ii) kux(T; �)kL2 � C(u0; ")Proof: (i) follows from a maximum principle. Due to the dissipativeness condition(8), in any positive maximum u(x0; t0) with 0 < t0 � T and ju(x0; t0)j > Rut = " uxx|{z}�0 � f 0(u)ux| {z }=0 + g(u)| {z }<0 < 0:In the same way we can conclude that in any negative minimum u(x0; t0) with0 < t0 � T and u(x0; t0) < �R we have ut > 0. Therefore, the L1-norm decreases13



as long as u(t; �) takes values outside [�R;R] and hencekukL2 � kukL1 � max fR; ku(0; �)kL1g =: C:To proof claim (ii), �rst note that for u 2 W 2;2kuxk2L2 = Z 10 u2xdx � Z 10 juuxxjdx � kukL2kuxxkL2hence for any solution u �kuxxk2L2 � �C0 � kuxk4L2where the constant C0 := 1C2depends on u0. Furthermore,Z 10 f 0(u)uxuxx dx � maxjuj�C jf 0(u)j � kuxkL2kuxxkL2� "2kuxxk2L2 + C2"kuxk2L2:Multiplying equation (7) by uxx one obtains after integratingddt 12kuxk2L2 = �"kuxxk2L2 � Z 10 f 0(u)uxuxx dx+ Z 10 g0(u)u2x dx� �"2kuxxk2L2 � "C02 kuxk4L2 + "2kuxxk2L2 + C2�kuxk2L2 + C(u0)kuxk2L2� 0 for kuxkL2 � C(u0; ")) kux(t; �)kL2 � maxfkux(0; �)kL2 ; C(u0; ")g 2This lemma implies immediately that all solutions exist globally in time and that(forward) orbits are bounded in W 1;2. Due to the variational structure of equation(7), for any u0 2 W 1;2 the !-limit set of u0 is contained in the union of the equilibriumsolutions of (7). To prove dissipativeness, it remains only to show that for any�xed " the equilibrium solutions form a bounded set. Below we will focus a loton equilibrium solutions and for this reason we postpone the proof of boundednessto lemma 3.4. Here we only note that the boundedness of the set of equilibriumsolutions implies the dissipativeness of the semiow.14



3 Equilibrium solutions3.1 A singularly perturbed boundary value problemSince, by de�nition, equilibrium solutions do not depend on time t, we will writefor these solutions simply u(x) instead of u(x; t). Equilibrium solutions of (7) aresolutions of the boundary value problem"uxx � (f(u))x + g(u) = 0ux(0) = ux(1) = 0: 9=; (11)This singularly perturbed boundary value problem can be written as a �rst ordersystem "ux = v + f(u)vx = �g(u)ux(0) = ux(1) = 0; 9>>=>>; (12)a choice of coordinates which is sometimes called the \Li�enard plane" in contrastto the more common \phase plane" where v = ux. Concerning the shooting curveS, there is no important di�erence between the usual phase plane and the Li�enardplane. The u-coordinate is always the same and hence the permutation � used inproposition 1.5 and proposition 1.8 can also be read o� from the Li�enard plane.Note that the boundary condition in (12) could also be written in the formv(x) + f(u(x)) = 0 at x = 0 and x = 1 ;so, geometrically speaking, we are looking for trajectories of (12) which take exactly\time" �x = 1 to join two points on the curve v + f(u) = 0. To avoid too muchconfusion between time and space variables, we recast (12) in the form"u0 = v + f(u)v0 = �g(u)x0 = 1 9>>=>>; (13)0 < s < 1u0(0) = u0(1) = x(0) = 015



where 0 denotes di�erentiation with respect to a new variable s that looks morelike a time variable than x does, although obviously x � s. Below, methods fromsingular perturbation theory are used that compare the system for small " with somelimiting systems for " = 0. There are di�erent possibilities to perform this limit,leading to the so called \slow" and \fast" systems which both describe a part of thelimiting behaviour of system (12). The di�erence originates in a di�erent scaling ofthe variable s.Setting " = 0 in equation (12), we arrive at the \slow system"0 = v + f(u)v0 = �g(u):Here the motion is con�ned to a curve given by the �rst of the two equations, whilethe second one describes the ow along this curve. Since this curve will play aspecial rôle in the next chapters it deserves a name on its own:De�nition 3.1 The curve C given by the equation v + f(u) = 0 in the (u; v)-planeis called the singular curve.Note that ux = 0 exactly where the trajectory hits or crosses the curve C. Later,when we have to determine z(ux) to use lemma 1.4 we will use this property. Wecan simply count the number of intersections between the trajectory and the curveC.System (12) can also be scaled in another way. If the second equation is multipliedby " and the variable s is rescaled according to s = "�, we arrive at_u = v + f(u)_v = �"g(u):with _ denoting the derivative with respect to the fast variable �. Putting " = 0, the\fast system" _u = v + f(u)_v = 0is obtained. Here, the singular curve consists of equilibrium points only. Accordingto the stability of these equilibria, parts of C where f 0 > 0 are called unstable arcsof C, while the parts with f 0 < 0 are called stable arcs.16



Before theorem 1.2 is proved using singular perturbation theory, we will give apedestrian proof of theorem 1.1. Although it is rather elementary, it contains someinformation on system (12) that will prove useful later.3.2 Proof of theorem 1.1From the three assumptions theorem 1.1, we have already used one: The dissipative-ness (H1) of g was necessary for the existence of a global attractor. The condition(H2) that all zeroes of f 0 be simple can probably be weakened on the price of longerand more complicated calculations. Let us just mention in short that the assump-tion (H3) which states that no zeroes of g lie on the fold points of the singular curveC is necessary to prevent a blow-up of A" similar to the Chafee-Infante examplepresented in the introduction.We begin with a short outline of the proof. Recall the characterization of A" as theunstable manifold of the set E of equilibria. If all equilibria are hyperbolic then theyare isolated and the attractor is contained in the union of the unstable manifolds ofall single equilibria. The hyperbolicity of all equilibria is not guaranteed under theweak assumptions of theorem 1.1, such that we have to consider the possibility of anon-hyperbolic attractor, too. In this case a bound on the dimension of the center-unstable manifolds of the equilibria will be derived. We will distinguish betweenspatially homogenous and non-homogenous equilibrium solutions. It will turn out,that for the homogenous solutions the linearization has at most one non-negativeeigenvalue. For the non-homogenous ones in view of lemma 1.4 it is necessary toprove that for some integer N and all small " the equilibria have at most N extrema.This will be an immediate consequence of lemma 3.6 where we will prove that threeextrema of an equilibrium solution u cannot be arbitrarily close to each other. Onthe way to this lemma, we collect some properties of the two-dimensional system"u0 = v + f(u)v0 = �g(u) 9=; (14)for small ".Observe �rst that the equilibrium points of system (14) lie on the curve C and have17



as u-coordinates exactly the zeroes of g. Due to assumption (H3), the eigenvalues�1;2 = f 0(u0)�qf 0(u0)2 � 4"g0(u0)2"of the linearization at such an equilibrium (u0; v0) turn out to be real for small "and behave asymptotically like�1 � f 0(u0)" and �2 � g0(u0)f 0(u0) :If g0(u0) 6= 0 the corresponding equilibrium of (14) is hyperbolic and a saddle exactlyif g0(u0) < 0. If all zeroes of g are simple, the equilibria are alternately saddles andsources or sinks.Each of these zeroes of g corresponds to one homogenous equilibrium solution. Thenext step consists of showing that (e.g. in contrast to the Chafee-Infante case) thesehomogenous equilibrium solutions cannot become very unstable as " decreases.Lemma 3.2 If g(~u) = 0 then for " su�ciently small the �rst eigenvalue �0 of theequilibrium solution u � ~u is �0 = g0(~u)and all other eigenvalues are strictly negative. In particular, u � ~u is hyperbolic i�g0(~u) 6= 0 and in this case the Morse index is 0 for g0(~u) < 0 resp. 1 for g0(~u) > 0.Proof: For a homogenous equilibrium solution the eigenvalue equation is just alinear second-order boundary-value problem"wxx � f 0(~u)wx + g0(~u)w = �wwx(0) = wx(1) = 0:The solutions of this second-order equation can be found easily to be of the formw(x) = c1e��(")x + c2e�+(")xwhere �� = f 0(~u)�qf 0(~u)2 � 4"(g0(~u)� �)2" :18



Thus, ��(") and �+(") are real iff 0(~u)2 � 4"(g0(~u)� �) > 0:With real ��(") and �+(") the boundary value problem only has a solution if �+(") =0 and this holds exactly for � = g0(~u). Other eigenvalues require ��(") and �+(")to be complex which is only possible for� < �f 0(~u)24" + g0(~u):Thus, for all su�ciently small ", � = g0(~u) has to be the �rst eigenvalue. 2The next de�nition keeps track of the fact that our interest is not in any trajectoryof (14), but mainly in those that correspond to solutions of the Neumann boundaryvalue problem.De�nition 3.3 An admissible trajectory of system (14) is a trajectory that cor-responds to a solution of the boundary value problem, i.e. it is a �nite piece of atrajectory u(s) that satis�es u0(0) = u0(1) = 0.Let us now state a simple lemma that allows us to restrict our attention to a �niterange of u.Lemma 3.4 Let f and g be as in theorem 1.1 and denote with uminandumax theminimal, resp. maximal zero of g. Then:(i) For any admissible trajectory (u(s); v(s)) of (14)umin � u(s) � umax 8s 2 [0; 1]:(ii) There are constants C; "0 such that for 0 < " � "0 along any admissibletrajectory of (14) u0(s) � C" 8s 2 [0; 1]:19
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Figure 1: Admissible solutions are con�ned to a bounded region in the Li�enardplaneProof : To prove part (i) indirectly, suppose that for some s 2 [0; 1] we haveu(s) < umin. The curve v + f(u) = 0 divides the region f(u; v);u < uming into twoparts. Since the vector �eld is vertical on the curve fv + f(u) = 0g and horizontalon the line u = umin the region f(u; v); u < umin; v < f(u)g is positively invariantwhile f(u; v); u < umin; v > f(u)g is negatively invariant, see �gure 1.If (u(s); v(s)) lies in the positively invariant region for some s then the right bound-ary condition can obviously not be satis�ed. If (u(s); v(s)) lies in the upper, nega-tively invariant region there is no chance of satisfying the left boundary condition.So a solution of the boundary value problem may not enter one of the two regions.It cannot stay on the curve fv + f(u) = 0g either since by assumption umin is theleftmost zero of g. Thus, there can be no solution of the boundary value problemthat takes a value less than umin. The argument excluding u(s) > umax is similar.Claim (ii) obviously follows by showing that"u0(s) = v(s) + f(u(s)) � C:20



To see this take vmax > supf�f(u) ; umin � u � umaxg+ 1and vmin < inff�f(u) ; umin � u � umaxg � 1:For " small enough the trajectory starting in (umin; vmax) will be almost horizontaland intersects the line u = umax without having hit the singular curve before. Sim-ilarly, the trajectory starting in (umax; vmin) stays below the singular curve until ithits the line u = umin. Therefore, all admissible trajectories are for small " con�nedto a bounded region of the (u; v)-plane. 2The restriction of admissible trajectories to a bounded region also yields an upperbound on v0:Along any admissible trajectory we havejv0(s)j � maxumin�u�umax jg(u)j =: Cg:There are also some restrictions on trajectories that are close to the curve C:Lemma 3.5 Consider again the system (14) and assume that f 0(u) < 0 (f 0(u) > 0)for all u 2 [u�; u+].Then:(i) For all su�ciently large k and all small " trajectories can leave (enter) a regionf(u; v);u� � u � u+;�k" � v + f(u) � k"gonly at u = u� or u = u+.(ii) If furthermore u� and u+ are two adjacent zeroes of g, then there is a positivelyinvariant region between the curves C and v + f(u) � k"g(u) = 0 for k largeand all " small (a negatively invariant region between C and a curve v+f(u)+k"g(u) = 0).(iii) In this case the two equilibria (u�;�f(u�)) and (u+;�f(u+)) on the singularcurve are connected by a heteroclinic orbit.21



Remark: The heteroclinic orbits of (iii) are part of the slow manifold, an invari-ant manifold that exists for " > 0 near the singular curve C except in a neighborhoodof the fold points, cf. [Fen79].Proof:(i) For de�niteness, we suppose that f 0(u) < 0 for u 2 [u�; u+]. The case f 0(u) > 0can be treated in the same way.Along a curve v + f(u) + k" = 0 the trajectories written as v = v(u) satisfy�����dv(u)du ����� = �����g(u)k ����� :Since g is bounded on [u�; u+], by choosingk > maxu��u�u+ ����� g(u)f 0(u) �����one can achieve that the vector �eld is directed into the regionf(u; v);u� � u � u+;�k" � v + f(u) � k"galong the whole curve so that trajectories can leave the region only via the left orthe right boundary. Especially, trajectories that enter a neighborhood of a stablearc of C can leave such a neighborhood only near a fold.(ii): To establish the invariant regions, one has to check that along curves v+f(u)�k"g(u) = 0 trajectories satisfy �����dvdu ����� = 1k :which is for k large enough and all small " certainly smaller than the in�muminfu��u�u+ jf 0(u)� k"g0(u)jof the slope of the curve.Then the existence of invariant regions is easily established by distinguishing thetwo cases g > 0 and g < 0 on (u�; u+). In both cases one �nds a positively invariantregion either above or below C. It is easy to check that for f 0 > 0 there are negativelyinvariant regions.(iii): A simple argument proves the heteroclinic connection between the two equi-libria: Since the two equilibria are adjacent, one of them is a saddle and the other a22



positively invariant regions

C v + f(u)� k"g(u) = 0v + f(u) + k"g(u) = 0Figure 2: Invariant regions near the singular curve Csink. Consider the eigenvector to the unstable eigenvalue �2 of the saddle. A shortcomputation shows that the (one-dimensional) invariant manifold corresponding to�2 is directed into the invariant region if only k is chosen large enough. Since thisregion contains in its interior neither equilibria nor periodic orbits (u0 has a de�nitesign there) the invariant manifold must connect to the sink lying on the boundaryof the invariant region. 2Figure 2 shows a situation with f 0 < 0 and two positively invariant regions. Thereare heteroclinic orbits from the upper and lower equilibrium to the one in betweenwhich are not shown in the �gure.Note also that admissible trajectories may not enter one of the regions enclosed byC and such a heteroclinic orbit because once inside such a region they cannot reachthe curve C again to satisfy the boundary condition.Now we state the lemma which is crucial for proving theorem 1.1 since it shows thatfor all small " and any solution u of the boundary value problem (11) the number23



z(ux) will not exceed a certain bound.Lemma 3.6 Let (u(s); v(s)); 0 � s � 1 be a nonconstant admissible trajectory.Then there exists a "0 > 0 and some � > 0 such that for 0 < " � "0 the followingholds: If s1 < s2 < s3 are three di�erent zeroes of u0, then s3 � s1 > �.Proof: The proof concentrates on s2 and shows that s3� s2 > � or s2� s1 > �. Wemay without restriction assume, that there are no other zeroes of u0 in the intervals(s1; s2) and (s2; s3). The arguments di�er depending on whether (u(s2); v(s2)) liesnear a fold or on a stable or unstable arc of C. To this end the interval [umin; umax]is divided into several parts. It was assumed that all zeroes of f 0 are simple, so theycannot accumulate and there is a �nite number of points u1 < u2 < : : : < uF in[umin; umax] with f 0(ui) = 0:The case of g(ui) < 0 and f 00(ui) > 0 is treated here in detail, but all other combi-nations of signs for g(ui) and f 00(ui) lead to similar results.It is possible to �nd a neighborhood [�i; �i] of ui such thatf(�i) = f(�i)and both g(u) > c and f 00(u) > chold for all u in the whole interval [�i; �i] and some c > 0.The condition g(u) > c implies that all trajectories that cross C between �i and�i will do this from above. It is easy to see that these trajectories can leave theregion enclosed by C and the horizontal line v = �f(�i) only through just this line.Between �i and �i, one can �nd ~�i and ~�i with�i < ~�i < ui < ~�i < �i;f(~�i) = f( ~�i)and f(~�i)� f(�i) = 12(f(ui)� f(�i));compare �gure 3. 24
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Figure 3Consider the case that an admissible trajectory hits the curve C between ~�i and ~�iat the time s = s2. Since jv0j was bounded by Cg independent of ", it will take thetrajectory a time of at least �si := f(~�i)� f(�i)Cgto leave the region enclosed by C and the line v = �f(�i). During this time itcannot hit the singular curve again. Thus, if s2 lies in the interval [~�i; ~�i], we haves3 � s2 � �si:The same situation appears if g(ui) > 0 and f 00(ui) < 0. For the other two caseswhere g(ui) > 0 and f 00(ui) > 0 have the same sign a similar reasoning shows that atrajectory that hits C near the fold cannot have hit it for a certain time before andhence s2 � s1 � �si:Thus, if s2 lies in some interval [~�i; ~�i] the lemma is proved by chosing � smallerthan the in�mum of the �si. 25



If the trajectory intersects the singular curve on a stable arc in some interval [ ~�i�1; ~�i]and " is su�ciently small then the trajectory is in one of the stripsf(u; v);u� � u � u+;�k" � v + f(u) � k"gof lemma 3.5 that can only be left at their left or right boundary.Two things can be shown:1) A trajectory cannot intersect the singular curve again before leaving the strip.2) The trajectory stays inside the strip for at least the time �si=2.To prove the �rst claim, remember that an admissible trajectory may not enter one ofthe regions enclosed by C and a heteroclinic orbit connecting two adjacent equilibriaon the same (stable or unstable) arc of C. Therefore, an admissible trajectory cancross the curve C only between a fold and the nearest equilibria on either side. Bycrossing C there, the trajectory enters a region enclosed by C and a curve v+f(u)+k"g(u) = 0 with large jkj. As was shown in lemma 3.5(ii), this region can be leftonly at u = u� or u = u+.The second claim, concerning the time it takes a trajectory to leave the invariantstrip, is proved here for the case f 0(u+) < 0 and g(u+) < 0, i.e. of a trajectory thatfollows a stable arc of C to its right end. However, all other cases can be treated inthe same way changing signs appropriately and reversing time if necessary. The ideais simple again: By choosing " small enough, the trajectory has to cover a certainv-distance near C and since the velocity in v-direction is bounded by Cg this willtake a certain amount of time. More precisely, if u� is chosen close to ui�1 and u+close to ui, and furthermore " is su�ciently small, then�f(u+)� k"+ f(�i) � 14 (�f(ui) + f(�i)) :If a trajectory intersects the singular curve on the stable arc below v = �f(�i) andleaves the invariant strip at u = u+ the v-coordinate has to increase by at least14 (�f(ui) + f(�i)) :This implies that a trajectory needs at least the time�si=2 from a horizontal sectionv = �f(�i) to the point where it leaves the invariant strip.So, in the case that (u(s2); v(s2)) lies on a stable arc of C we have shown thats3 � s2 � infi �si=226



independent of ". The case that (u(s2); v(s2)) lies on an unstable arc is similar andleads to the result that s2 � s1 � infi �si=2:Choosing � smaller than the in�mum of the �si=2 completes the proof of lemma3.6. 2We are now able to �nish the proof of theorem 1.1. It was shown that for anynon-homogenous equilibrium solution u of the viscous balance law the zero numberof ux can be estimated by z(ux) � 2� + 1:This ensures that the dimension of the center-unstablemanifold of any non-homogenousequilibriumsolution of the viscous balance law does not exceed a certain "-independentbound 2� + 2. The spatially homogenous equilibria have been shown in lemma 3.2to have an at most one-dimensional unstable resp. center manifold.Assume �rst that for a given " there is �nite number of equilibria which are allhyperbolic. Then the global attractor is the union of the unstable manifolds ofthese equilibria. Each of these manifolds has a dimension not exceeding 2� + 2 sothis gives an upper bound on the dimension of A" as well and the theorem is provedfor this case.In the other cases with non-hyperbolic and possibly in�nitely many equilibria thearguments have to be re�ned.The set of equilibria is a closed subset of A" in the space X where the semiow isde�ned and hence a compact set. Consider a local center-unstable manifold W culoc(u)of an equilibrium u. Despite of non-uniqueness, it contains all the solutions from aneighborhood N (u) that are bounded backward in time, especially all the equilibriacontained in N (u). Due to compactness of the set of equilibria a �nite union of localcenter-unstable manifolds k[i=1W culoc(ui)su�ces to cover all equilibria. We claim that the global attractor is contained in theset W := 1[n=1 k[i=1T (n;W culoc(ui))27



where T (n; �) is the time-n-map of the semiow. The dimension of W is not greaterthan the maximal dimension of the center-unstable manifolds since applying thesemiow to a set over a �nite time does not increase the dimension. Recall that theglobal attractor consists of equilibria and heteroclinic orbits only, so it remains onlyto show that every heteroclinic orbit h(t) is contained inW. The ��limit set of h isan equilibrium h�1 and there is a i0 such that h�1 lies inW culoc(ui0). Moreover, thereexists a time t� < 0 such that h(t) lies in N (ui0) for all times t < t�. Therefore,h(t) 2 W culoc(ui0) for t < t�. So it is clear that the whole heteroclinic orbit h iscontained in 1[n=1 T (n;W culoc(ui0))�nishing thereby the proof of theorem 1.1. 24 The reduced systemTo get not only an upper bound but sharper estimates on the dimension of theglobal attractor it is necessary to �nd some (or better: all) equilibrium solutions ofthe parabolic equation and to determine their Morse indices.In the last chapter, the "slow" and "fast" system were introduced, the slow systembeing de�ned only on C while for the fast system the curve C consists of equilibriumpoints only.The combination of the "slow" system on the curve v + f(u) = 0 and the "fast"system o� this curve indicates where in the phase plane one has to look for solu-tions of the boundary value problem. This combination is often refered to as thereduced system. Solutions of the reduced system consist alternately of slow partswhere they solve the slow system and jumps according to the fast system. In theLi�enard plane we will consider trajectories of the reduced system consisting ofslow motion along the singular curve and horizontal trajectories of the fast system.Due to the di�erent time scales, only the slow parts contribute to the time along atrajectory of the reduced system while the \velocity" along the fast parts is in�nite.One might expect to �nd solutions for small nonzero " near such trajectories of thereduced systems. Unfortunately, this is not always true. Unlike for the singularly28
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v= −uphase portrait of the phase portrait of thereduced system (" = 0) perturbed system (" > 0)Figure 4perturbed initial value problem there need not be a solution of the singularly per-turbed boundary value problem near a solution of the reduced system even if thissolution of the reduced system satis�es the boundary conditions.As a simple example consider (11) with f(u) = u and g(u) = u � u3. There arein�nitely many solutions of the reduced system that follow the singular curve v = �ubut for " > 0 any trajectory starting on this curve is either constant or tends toin�nity. These trajectories will never come back to the singular curve and therefore(11) has no nonconstant solution.As the example shows, some di�culties are caused by the heteroclinic orbits whoseexistence was established in lemma 3.5 (iii). They block the curve C from one sidesuch that trajectories can leave or reach C only from the other side. To take accountof that and also of the fact that C is invariant only for the reduced system at " = 0we introduce the notion of admissible solutions also for the reduced system. Thiswill be done in such a way that the admissible solutions of the reduced system willcorrespond to the solutions of the boundary value problem (12). In some sense theywill be the limit of admissible solutions as "& 0.To avoid lots of di�erent but similar cases we introduce a suggestive colorful notation29



�rst:To any point on C we associate two colors, one for its left side and one for its rightside. In fact, we will give the same color to segments of C that lie either between twoequilibria, between two fold points or between an equilibrium and a fold accordingto the following rules:� All points between two equilibria on the same arc of C get the color red on theside of C where the heteroclinic orbit connecting the two equilibria is located.The other side is colored green.� Between a fold and the nearest equilibrium or between two folds the sidewhere the invariant region from lemma 3.5(ii) is gets the color yellow whilethe opposite side is given green.� Equilibria are green on both sides.or in other words: If g(u) � 0 then the left side is green while for g(u) � 0 the rightside is green. The opposite side is red or yellow depending on the fact whether thepoint (u;�f(u)) lies between two equilibria on the same arc of C or not.The interpretation of this coloring is easy: Red sides are the forbidden ones. Noadmissible trajectory of the system (14) leaves C to the red side or reaches it fromthe red side. In contrast, green sides are the sides to which trajectories leave aneighborhood of C or from which they enter. The yellow parts are somehow inbetween: The curve C is not quite blocked from that side but trajectories will onlycreep along C to the next fold without intersecting the singular curve. Especially,a trajectory cannot end after jumping to a yellow segment because the boundarycondition cannot be satis�ed there.In view of this interpretation the following de�nition seems reasonable:De�nition 4.1 A solution (u(s); v(s)); 0 � s � T of the reduced system is calledan admissible solution of the reduced boundary value problem on the interval [0; T ]if the following properties hold:(i) (u(0); (v(0)) and (u(T ); v(T )) both lie on C.(ii) The solution does neither begin with a nonconstant slow part on an unstable arcof C, nor does it end with a nonconstant slow part on a stable arc.(iii) The solution does neither jump to C from a red side nor does it leave C to a redside. 30



Remarks:1) All nonconstant solutions of the reduced system in the preceding example are notadmissible due to condition (ii).2) We will only be interested in admissible solutions on ontervals with length near1. If no interval length is speci�ed, we always assume T = 1.3) Admissible trajectories can start or end at an equilibrium point and spend anarbitrarily long time there. They cannot reach or leave an equilibrium via thesingular curve since this would take an in�nite time.To avoid some technical complications, the following assumptions on f and g willbe posed for the proof of theorem 1.2:(H4) The zeroes of g are simple.(H5) If f(u1) = f(u2) and either g(u1) = g(u2) = 0 or f 0(u1) = f 0(u2) = 0 orf 0(u1) = g(u2) = 0 then there is a u3 between u1 and u2 with f(u3) = f(u1),i.e. there is no fast connection between two equilibria, between two folds orbetween a fold and an equilibrium on C.It is well known that (H4) is a generic condition on g. Similarly, (H5) holds for anopen set of f and g and moreover an arbitrarily (C2)-small perturbation of g su�cesto break a possible fast connection between two fold or equilibrium points. In fact,a local perturbation of g will be su�cient, such that there can be no problem withthe dissipativeness (H1).These assumptions simplify the reduced system considerably and enable us to givea not too long classi�cation of all admissible solutions. The important observationis that a trajectory, once it has reached a stable arc of C either will terminate there(i.e. converge to an equilibrium on this stable arc) or will follow the stable arc toa fold and has to leave C there to either escape to in�nity or to jump onto anotherstable arc. Similarly, a backward trajectory that has reached an unstable arc canonly jump to other unstable arcs. Consequently, any trajectory can be dividedinto two parts one of which may be empty: First, it follows always unstable arcs,afterwards all slow parts are only along stable arcs. We will, rather loosely, speak ofthe unstable part and the stable part of the trajectory. Dividing trajectoriesin this way has an important reason: While one can easily check that trajectories31



do not vary continuously with respect to the initial condition (consider for examplea trajectory that jumps from an unstable arc immediately to a fold point of thesingular curve C, but misses this fold point if the initial point is removed slightly),a small variation of a point (u; v) between the unstable and the stable part of thetrajectory will only have small e�ects on the trajectory. Taking into account thepossibilities of a start or end at an equilibrium point, etc., there remain six di�erentpossibilities. The number can be reduced if symmetry with respect to time reversalis considered. Type I comprises trajectories that start or end at an equilibrium, typeII are the typical trajectories that consist of an unstable part and a stable part. TypeIII contains three di�erent degenerate sorts of trajectories that do not persist undersmall perturbations of a point (u; v) on the fast part between the unstable and thestable part of the trajectory.Type III solutions do not occur for generic choices of f and g as we will explainlater. For this reason they will be excluded by assumption (H6). We list them herewith the other types to give a complete classi�cation of all possible trajectories.Type Ia The trajectory starts at an equilibrium point on an unstable arc of C, andjumps from there immediately to another point on C. This point has to be ona stable arc of C since forward orbits cannot reach an unstable arc and reachinga fold point on a trajectory of the fast system is forbidden by assumption (H5).The trajectory may now follow the stable arc to the next fold point and jumpfrom there to another stable arc. There may be an arbitrary number of furtherjumps from a fold point to a stable arc of C.Type Ib The same as type Ia but with time reversed: Trajectories start on an unstablearc, leave this arc somewhere and jump to a fold point where they follow theunstable arc. From this unstable arc the trajectory may again jump to a foldpoint. This can happen several times but after a number of such jumps thetrajectory does not jump to a fold but settles down at an equilibrium on astable arc of C. 32



equilibriumCFigure 5: A type Ia trajectory of the reduced systemType II The solution starts on an unstable arc, jumps from there immediately to a foldpoint and continues on the unstable arc that emanates from this fold point.From this unstable arc it may again jump to another fold point and continueagain along an unstable arc of C. After a number of jumps to fold points itjumps somewhere from an unstable directly to a stable arc. It continues alongthis stable arc to a fold point, jumps from there to another stable arc, and soon. An arbitrary number of jumps from a fold to other stable arcs may follow.To avoid additional cases type II comprises also solutions that start alreadyon a stable arc and do several jumps to other stable arcs, i.e. the unstable partof the trajectory may be empty. Similarly, the trajectory may consist of anunstable part only.Type IIIa The trajectory starts on an unstable arc and jumps from there immediately toa fold point. From there it continues along the unstable arc and jumps againto a fold point. This can happen several times. At one such fold point, thetrajectory takes the stable arc instead of the unstable one. It can continuealong the stable arc to a fold point and jump from there to another stable arcof C. Again, a number of jumps from a fold to a stable arc may follow.Type IIIb The same as type IIIa but with time reversed.Type IIIc The trajectory starts on an unstable arc and jumps immediately to a fold pointof C, continues along the unstable arc and jumps from there to another foldpoint, and so on. After one of these jumps to a fold point it continues alongthe fast trajectory to a stable arc of C. The trajectory may then follow the33



CFigure 6: A type II trajectory of the reduced systemsingular curve to a fold point and jump from there to another stable arc of C.This can be followed by an arbitrary (�nite) number of jumps to stable arcs.Type III trajectories are depicted in �gure 7.The following considerations show that this is a complete classi�cation of all pos-sible trajectories. Starting from any point that does not lie on C the forward andbackward trajectories are uniquely de�ned except possibly at points where the tra-jectory jumps onto a fold point. At a fold point, the trajectory could follow thestable or the unstable arc or continue on a fast part. Following the unstable arccorresponds to type II, following the stable arc to type IIIa and following the fasttrajectory to a type IIIc trajectory. For backward trajectories the situation is similarbut with type IIIb replacing type IIIa. We decide that forward trajectories will ata fold always take the stable arc while backward trajectories will always follow theunstable arc. By this convention we get unique forward and backward trajectoriesfor each initial value (u0; v0) =2 C and (u0; v0) lies on the fast part that separatesthe unstable form the stable part of the trajectory. This will be very importantin view of the time maps for trajectories of the reduced equation we are going tointroduce in a moment. The reader may check that no trajectories are excluded bythis convention: It is possible to �nd a point (u0; v0) =2 C on any given trajectory,34



such that this trajectory is exactly the (unique) trajectory through (u0; v0). Now letDj(u0; v0) denote the j-th drop point of the trajectory, i.e. the j-th point where aslow part of the trajectory begins. If this slow part extends to some fold point, wedenote this point with Fj(u0; v0). From there the trajectory may either escape orjump to Dj+1(u0; v0), etc. . The backward trajectory gives analogously drop pointsD�i(u0; v0) and fold points F�i(u0; v0).De�nition 4.2 For each point (u; v) not lying on C and i = 1; 2; : : : the time mapTi(u; v) is de�ned as the i-th time at which a (forward) trajectory starting in (u; v)hits a green side of C. Analogously, Ti(u; v); i = �1;�2; : : : are the time maps forthe backward trajectory. Denote with Pi(u; v); i 6= 0 the corresponding points wherethe forward or backward trajectories intersect C after time Ti.Remarks:1) If (u; v) lies on a trajectory of the fast system that joins an unstable and a stablearc of C it may happen that both T1(u; v) = T�1(u; v) = 0. 2) The reason why onlyhitting a green side of C gives rise to one of the time maps is the following: We willlater �nd trajectories of the system with " > 0 near the trajectory of the reducedsystem. These trajectories will intersect the curve C near the points Pi(u; v) but notnear points where the trajectory of the reduced system hits a red or yellow side.Note that the timemaps Ti may not be de�ned everywhere, but behave nicely almosteverywhere: Consider a point (u0; v0) =2 C and assume that this point does not lieon a trajectory of the fast system that begins or ends neither at a fold nor at anequilibrium point. Then the same is true for all (u; v) in a neighborhood of (u0; v0).Moreover, the trajectories through (u; v) and (u0; v0) coincide almost, i.e. except forthe �rst (forward and backward) fast parts and tiny pieces of the �rst slow parts.Therefore, all time maps Ti that are de�ned in (u0; v0) are de�ned and continuousin neighborhood of (u0; v0).Let us now state in terms of the time maps under which conditions an admissiblesolution of the reduced system exists:Lemma 4.3 An admissible solution of the reduced system on the interval [0; 1]through (u; v) exists if and only if one of the following conditions is satis�ed:35



(ia) The complete (i.e. forward and backward) trajectory through (u; v) is of type Iaand there is an integer j > 0 such that the (forward) time map Tj(u; v) satis�esTj(u; v) � 1:(ib) The complete (i.e. forward and backward) trajectory through (u; v) is of type Iband there is an integer i > 0 such that the (backward) time map T�i(u; v) satis�esT�i(u; v) � 1:(ii) The trajectory through (u; v) is of type II and there are i; j � �1 such thatT�i(u; v) + Tj(u; v) = 1:(iii) The trajectory through (u; v) is of type III and there are i; j > 0 such thatT�i(u; v) + Tj(u; v) = 1:Remark: i = �1 in case (ii) captures the possibility of a trajectory consisting onlyof a stable part while j = �1 corresponds to a trajectory without a stable part. Inboth cases the admissible solution does actually not pass through the point (u; v)but joins P1(u; v) and Pj(u; v) or P�j(u; v) and P�1(u; v).Proof:(ia) Since (u; v) lies between the unstable and the stable part of a trajectory of typeIa it has to be exactly on a trajectory of the fast system that joins an equilibriumpoint P�1(u; v) on an unstable arc and a point on a stable arc of C. If for some jthe time map Tj < 1 then an admissible solutions is easily constructed: Just stayfor the time 1�Tj at the equilibrium P�1(u; v) and follow afterwards the trajectoryfor exactly time Tj to the point Pj(u; v).The argument for (ib) is analogous.(ii) In this case (u; v) lies on the trajectory of the fast system that separates theunstable from the stable part of the trajectory. It is obvious that an admissible so-lution can only exist if the condition on some of the time maps is satis�ed. Then thetrajectory that joins P�i(u; v) and Pj(u; v) is an admissible solution of the reducedsystem. 36



(iii) If (u; v) lies on a type IIIa trajectory then it is located on a trajectory of thefast system that joins an unstable arc to a fold point such that T�1 = T1 = 0. Againit is clear that the condition is necessary for the existence of an admissible solution.In case of a type IIIc trajectory the argument is the same as in (ii). 2In contrast to trajectories of type I or II the trajectories of type III do not occurgenerically. To see this, note that the drop points for a type III trajectory can onlybe points that are joined to a fold point by a trajectory of the fast system. Thenumber of such points between umin and umax is �nite since there are only �nitelymany extrema of f between umin and umax and since to every extremum there areat most two drop points, one for the forward and one for the backward trajectoryof the fast system that passes through the extremum.Consequently, the di�erences jTi�Ti�1j can only take �nitely many di�erent valuescorresponding to the times a trajectory takes between a drop point and a fold. So,generically, as T�1 = T1 = 0 and the di�erence between Ti and Ti�1 takes onlycertain values, there will be no type III solution. Also, generically the �nitely manytrajectories that just \touch" a fold point, i.e. trajectories like the one in the middlepicture of �gure 7, will not yield an admissible solution on the interval [0; 1].For this reason, we will exclude all these solutions to keep things as simple aspossible:(H6) There are no admissible trajectories on [0; 1] of type III, see �gure 7.
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The classi�cation of trajectories into di�erent types was necessary because there isa di�erent transversality condition that is necessary in order that solutions persistfor small nonzero ":(H7) For any type Ia admissible solution of the reduced system with Tj(u; v) as inlemma 4.3 we require Tj(u; v) < 1. Similarly, type Ib solutions must satisfyT�i(u; v) < 1.For any type II solution of the reduced system with time maps taken from apoint (u0; v0) as in lemma 4.3, the mappingv 7�! (T�i(u; v) + Tj(u; v)� 1)(v � v0)has the same sign in a neighborhood of v = v0 and there is a constant C suchthat jT�i(u; v) + Tj(u; v)� 1j � Cjv � v0j.For type III solutions an analogous transversality condition could also be formulatedbut would be more complicated. The reason is that one has to embed the type IIIsolution correctly into a one-parameter family of trajectories. Then, for this family,transversality of the time maps has to be satis�ed.(H7) like all the other conditions is satis�ed for a generic choice of f and g since itconcerns only the reduced system and a small (local) change of g makes it possibleto change the time maps appropriately.We mention one important consequence of this transversality condition (H7) for thereduced system:Lemma 4.4 The reduced system possesses only �nitely many admissible solutionson the interval [0; 1].Proof:Admissible solutions of the reduced system share some properties with the admissi-ble solutions for " > 0 which we have proved in the last chapter: They are containedin the interval [umin; umax] and any admissible solution of the reduced system con-sists of a number of fast and slow parts. The velocity in v-direction is bounded byCg such that every slow part takes a certain minimal time. This is a consequence ofthe fact that on the fast parts, the v-coordinate remains unchanged while on slowparts of the trajectory v solves a di�erential equation which has a right hand side38



bounded by Cg. Thus, there is a number K such that any admisssible trajectoryconsists of at most K slow and fast parts. Suppose now that there were in�nitelymany admissible solutions of the reduced system for the interval [0; 1]. Then therehave to be in�nitely many admissible solutions of type II since at each of the �nitelymany equilibrium points in [umin; umax] at most K type I solutions can begin or endand thus the number of type I solutions is bounded. If there are in�nitely manytype II solutions, it is possible to choose a sequence (un; vn); n = 1; 2; : : : of pointswith the following properties:1) There are i; j > �1 independent of n such that T�i(un; vn) + Tj(un; vn) = 1 forall n.2) The points (un; vn) converge to some point (u1; v1).Three cases have to be considered now leading to di�erent contradictions:Case A: (u1; v1) is a fold point or lies on a trajectory of the fast system that con-nects to a fold point. In this case one can easily check that the trajectory throughthe fold point yields an admissible solution of type III in contradiction to (H6).Case B: (u1; v1) is an equilibrium point or lies on a trajectory of the fast systemthat connects to an equilibrium point. Suppose for de�niteness that the (forward)drop points D1(un; vn) approach an equilibrium point. Then T2(un; vn), if de�ned atall, is bigger than 1 for n su�ciently large. So j has to be 1 and Tj(un; vn) = 0 whichyields T�i(un; vn) = 1 and there is type Ib trajectory to the equilibrium point thatdoes not satisfy the transversality condition (H7). The same reasoning is possible ifthe backward drop points D�1(un; vn) approach an equilibrium point.Case C: If neither case A nor case B holds the points (un; vn) can be chosen in away such that (u1; v1) =2 C. Then the trajectory through (u1; v1) yields a typeII admissible solution but since the (un; vn) approach (u1; v1) the transversalitycondition (H7) is not satis�ed.Since each of the three cases leads to a contradiction the number of admissible so-lutions has to be �nite. 239



To �nd equilibrium solutions of our viscous balance law, we want to show that underthe transversality assumption (H7) admissible solutions of the reduced system persistfor small " > 0. It will be proved that for any admissible solution of the reducedsystem and any small " > 0 the system (12) has a solution nearby. Nearby meansthat the trajectory of the solution for " > 0 lies in a neighborhood of the solution ofthe reduced system in the (u; v)-plane. In particular, the solution for " > 0 followsthe same arcs of C and has the same jumps.To this end, it will be necessary to know something about trajectories for smallnonzero ". The next chapter provides us with the necessary information.5 Asymptotic behavior of trajectories and timemapsHaving limit cycles and their period in mind, Mishchenko and Rozov [MR80] carriedout the asymptotic analysis of solutions of system (14) for small positive ". Theypartitioned the trajectories into several pieces where di�erent asymptotic expansionsare valid. Four di�erent types were distinguished by them:(i) the slow part where the trajectory creeps along the singular curve,(ii) the junction part where the trajectory leaves a vicinity of the singular curvenear an extremum of f ,(iii) the fast part and(iv) the drop part where after a fast transition the trajectory reenters a neighbor-hood of the singular curve.For our discussion of boundary value problems we also have to consider how atrajectory starts o� from the singular curve or settles down at it. It turns out thatone has to distinguish the cases that a trajectory leaves the curve near an equilibriumpoint on C or somewhere else.In �gure 8 it is shown how a trajectory is decomposed into the di�erent parts.The trajectory starts at the point A near an equilibrium R and after leaving aneighborhood of the singular curve it moves fast from B to C. The fast part is40
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Figure 8followed by a drop part CD and from D to E there is the slow motion along thesingular curve. The curve is left via the junction part EF and after a second fastmotion part FG there is the terminal part GH where the trajectory returns to thesingular curve. The points A and H are chosen to lie on the singular curve whileB;C;F and G are on �xed sections u = constant and D and E are on sectionsv = constant.Assume for the moment that there is such a trajectory for any su�ciently small "although this will be proved only in the next chapter.The relation to trajectories of the reduced system is rather clear: For " > 0 there arejunction and drop parts between the slow and fast parts of a trajectory but theseparts disappear in the limit "& 0.Mishchenko and Rozov give in their monograph estimates for the time a trajectorystays in each of the di�erent regions and also for the trajectories and their distanceto C. Fortunately, for our purposes the leading terms of their expansions su�ce.Writing uA for the u-coordinate of the point A in �gure 1, vD for the v-coordinateof D etc., their results can be summarized as follows:41



Proposition 5.1 [Mishchenko & Rozov] Assume that sections are chosen nearthe singular curve and near the fold points as described above. Then there exists"1 > 0 and constants 0 < c < C such that for all 0 < " � "1(i) the time TDE for the slow part DE satis�es�����TDE � Z vEvD dvg(uC(v)) ����� � C" [equation (III.3.4) of [MR80]].(ii) the time TEF for the junction part EF satis�es�����TEF � Z vSvE dvg(uC(v))����� � C"2=3 [equation (III.4.21)]with vF � vS � C"2=3 [equation (II.16.10)] :and v + f(u) � c"2=3 [equation (II.16.12)]along the whole junction part.(iii) the time TFG for the fast part FG isTFG = " Z uGuF duvF + f(u) +O("5=3) � C" [equation (III.5.2)]and jvF � vGj = O("):(iv) the time TCD for the drop part CD satis�es�����TCD � Z vDvC dvg(uC(v))����� � C" ln 1" [equation (III.6.12)] :Here uC(v) and vC(u) are local parametrizations of the singular curve C over u andv respectively.The estimates for the initial part AB and the terminal part GH will be derived inthe appendix by means of a normal form since this takes a lot of additional notationthat is not connected to the rest of the paper. The following statements will beshown there: 42



Proposition 5.2 There is an "1 such that for any 0 < " � "1 and any prescribedtime T > 0 one can �nd an initial point A on the singular curve C such that theinitial time from A to B is TAB = T:The distance from A to the equilibrium point R on C will be very small, or moreprecisely, exponentially small:jvR � vAj � C � "�1exp(�ct="):Also, the v-coordinate does not change much between A and B:jvB � vAj � C � "�1exp(�ct="):The time for the terminal part GH isTGH � C � " ln 1"and the v-coordinate at G and H satisfyjvG � vHj � C � " ln 1":Putting together all these estimates we obtain for the time from A to HTAH = TAB + Z vSvR dvg(uC(v)) +O("2=3)where uC(v) is a parametrization of the stable arc of C to the left of S. Therefore noknowledge about the true trajectory is used to compute the lowest order terms of theexpansions. Only the slow system has to be integrated. This idea will be exploited inthe next section to construct admissible solutions for " > 0 from admissible solutionsof the reduced system.To this end we de�ne timemaps also for the system with " > 0 and state the relationto the time maps of the reduced system.De�nition 5.3 For any point (u0; v0) =2 C and any " > 0 denote with T "j (u0; v0),j = 1; 2; : : :, the time at which the forward trajectory through (u0; v0) intersects Cfor the j-th time. The according point on C will be called P "j (u0; v0). Time mapsT "�i(u0; v0) with i = 1; 2; : : : are analogously de�ned for the backward trajectory.43



Lemma 5.4 Consider a point (u0; v0) =2 C such that the forward trajectory of thefast system through (u0; v0) does neither connect to a fold point nor to an equilibriumpoint. Then the time maps Tj(u0; v0) and T "j (u0; v0) satisfyjTj(u0; v0)� T "j (u0; v0)j = O("2=3)as "& 0 for any j > 0 for which they are de�ned.Proof: Two ingredients are needed. First, the asymptotic estimates of Mishchenkoand Rozov tell how close the trajectory for " > 0 is to the trajectory of the reducedsystem. Then, recalling the de�nitions of time maps, green sides, red sides, etc. will�nish the proof. For the �rst part we choose a small neighborhood N";� of thesingular curve in the following way:N";� := f(u; v) ; 9(~u; ~v) 2 C : ju� ~uj � � and jv � ~vj � "1=2gand (u0; v0) =2 N";�:Then we choose " small enough such that all the invariant strips and regions we havefound in chapter 3 are contained in N";�. In analogy to the drop points Dk(u0; v0) ofa trajectory of the reduced system we de�ne for " > 0 the drop point D"k(u0; v0) asthe k-th point where the trajectory enters N";�. The point F "k is de�ned as the pointwhere the trajectory leavesN";� for the k-th time. Note that the construction of N";�near fold points is done in such a way that the trajectory for " > 0 through (u0; v0)will miss N";� i� the trajectory of the reduced system through (u0; v0) misses thecurve C near the fold. So, for " small enough there is a one-to-one correspondancebetween the drop points Dk(u0; v0) and D"k(u0; v0). Hence, the following estimatesare consequences of lemma 5.1 and lemma 5.2:jvD1(u0;v0) � vD"1(u0;v0)j = O(")jvFk(u0;v0) � vF "k (u0;v0)j = O("2=3) ; k � 1jvDk(u0;v0) � vD"k(u0;v0)j = O("2=3) ; k > 1where vD1(u0;v0) denotes again the v-coordinate of the point D1(u0; v0), etc. . Thusthe trajectory for " > 0 isO("2=3)-close to the trajectory of the reduced system. Nowrecall that our choice of colours for the sides of C was done exactly in a way suchthat trajectories of system (12) that enter N";� from a green side near D"k(u0; v0) will44



intersect the singular curve there before they creep along the slow manifold, whiletrajectories approaching from a red or yellow side will not intersect the singularcurve C there because C is \blocked" by the slow manifold. Thus, if the time mapTj(u0; v0) corresponds to the drop point Dk(u0; v0) then the time map T "j (u0; v0)corresponds to a point P "j (u0; v0) which is close to the drop point D"k(u0; v0). It isshown in the appendix thatjvD"k(u0;v0) � vP "j (u0 ;v0)j = O(" ln("�1)) as "& 0:The time estimates given in the lemma follow now immediately by the time estimatesof Mishchenko and Rozov and the appendix. 2Remarks:1) Of course there is again an analogous statement for backward time maps if thebackward trajectory of the fast system through (u0; v0) does not connect to a foldor an equilibrium point of the slow system.2) The neighborhood N";� depends on the point (u0; v0). In particular, we do notget a uniform estimate for a sequence of points that approaches a fold point.6 Proof of theorem 1.2The conditions for theorem 1.2 were given at several places as (H1)-(H7). We haveindicated there why each of the hypotheses (H2)-(H7) holds for an open, dense setof f and g. Thus, proving that under these hypotheses the dimension of the globalattractor stabilizes at some level proves that this stabilization holds for an open,dense set f and g. Only the dissipativeness (H1) of g is required in addition. Theproof of theorem 1.2 splits into several parts. After proving persistence of type I andtype II solutions separately, we show that there are no other admissible solutions forsu�ciently small ". To show that the dimension of the global attractor A" satis�esdim A" 2 fd; d+ 1gfor some integer d We will show below that for all small " there is an equilibriumsolution u of the viscous balance law with z(ux) = d and no equilibrium solutionwith z(ux) > d. From lemma 1.4 we know that there is an equilibrium such that45



the linearization has d or d+1 positive eigenvalues. This gives immediately a lowerbound d for the dimension of A" since the global attractor contains at least thed- or (d + 1)-dimensional center-unstable manifold of this equilibrium. The upperbound d + 1 follows as in the proof of theorem 1.1. There we have shown that thedimension of the global attractor is not bigger than the maximal dimension of thecenter-unstable manifolds of the equilibria.Although the dimension of the global attractor A" stabilizes as " & 0, we cannotexclude the case that the number of equilibria nevertheless becomes in�nite. Thisis mainly a question of uniqueness: We are not able to prove that there is exactlyone admissible solution to any admissible solution of the reduced system. So, manyadmissible solutions for " > 0 may correspond to the same admissible solution ofthe reduced system and this number may even tend to in�nity as "& 0.The number d can be found in the following way: LetdIa := maxf1 + j ;9 type Ia trajectory with Tj(u0; v0) < 1g;where the maximum is taken over all type Ia trajectories of the reduced system. Thisde�nition reects the fact that for any su�ciently small " there is an equilibriumsolution u of the viscous balance law (7) with zero number z(ux) = j + 1 as wewill show soon. Here we use the fact that j counts how often the trajectory of thereduced system hits a green side of C. The corresponding statement for " > 0 isthat the trajectory crosses C exactly j times. Thus, j + 1 counts the number ofintersections between the trajectory with " > 0 and C. (We have to take j +1 sincean admissible trajectory starts already on C). The number dIb is de�ned similarlyas dIb := maxf1 + i ;9 type Ib trajectory with T�i(u0; v0) < 1g:The analogous number dII for type II trajectories of the reduced system isdII := maxfi+ j ;9 type II trajectory with T�i(u0; v0) + Tj(u0; v0) = 1gsince in this case there will be an equilibrium solution u of the viscous balance lawwith z(ux) = i+ j. Then d := maxfdIa; dIb; dIIg46



6.1 Persistence of type I solutionsWe will restrict ourselves to the case of a type Ia solution since the proof for typeIb trajectories follows by reversing \time" s in the ordinary di�erential equation forthe equilibria of the viscous balance law. So consider a type Ia trajectory startingat an equilibrium point (uE;�f(uE)) and passing through the point (u0; v0) suchthat Tj(u0; v0) < 1 for some j. We want to �nd a solution for " > 0 nearby thatintersects the curve C exactly j + 1 times. Choose T� and T+ withT� < 1 � Tj(u0; v0) < T+and a section u = u0. As is shown in the appendix, for any small " there are points(u�;�f(u�)) and (u+;�f(u+)) on C close to the equilibrium (uE;�f(uE)) suchthat the trajectories take exactly time T� from (u�;�f(u�)) to the section u = u0.These trajectories hit this section u = u0 in points (u0; v̂�) which are O(")-close tov0. Using continuity of the time maps and lemma 5.4 we get for the time map Tj���Tj(u0; v0)� T "j (u0; v̂�)��� � jTj(u0; v0)� Tj(u0; v̂�)j+ ���Tj(u0; v̂�)� T "j (u0; v̂�)���! 0as "& 0.So, we have found a trajectory through (u0; v̂+) that is close to the admissibletrajectory of the reduced system and takes timeT+ + Tj(u0; v0) +O("2=3) > 1to join two points on C and another trajectory nearby where the time isT� + Tj(u0; v0) +O("2=3) < 1:Now consider all trajectories that pass through points (u0; v) with v between v̂+ andv̂�. A simple continuity argument using shows that at least one of these trajectoriesyields an admissible solution with the intermediate valueT�1(u0; v) + Tj(u0; v) = 1:Thus, for any su�ciently small ", there is an admissible solution that stays near thegiven type Ia solution of the reduced system. This solution intersects the singularcurve exactly j+1 times. Thus, z(ux) = j+1 and by lemma 1.4 the linearization of47



the corresponding equilibrium solution to the viscous balance law possesses eitherj + 1 or j + 2 positive eigenvalues.No uniqueness has been shown, although we believe that for su�ciently small " thereis only one solution nearby. The next chapter contains a proof for the simplest caseof a type I trajectory with just one fast part. A slight modi�cation of this proofshows uniqueness for all solutions near type I trajectories of the reduced systemunder the transversality hypothesis (H7).6.2 Persistence of type II solutionsConsider a type II admissible solution of the reduced system passing through (u0; v0)such that T�i(u0; v0) + Tj(u0; v0) = 1 with i; j � �1. The transversality condition(H7) allows us to �nd admissible trajectories of the reduced system on intervalsslightly shorter resp. longer than 1 and passing near (u0; v0): There are v̂+ and v̂�near v0 and times T� < 1 < T+ such that the trajectories of the reduced systemthrough the points (u0; v̂�) coincide with the trajectory through (u0; v0) after aninitial part, and such that T�i(u0; v̂�) + Tj(u0; v̂�) = T�:Again the trajectories through (u0; v̂�) for small " > 0 satisfyT "�i(u0; v̂+) + T "j (u0; v̂+) = T+ +O("2=3) > 1and T "�i(u0; v̂�) + T "j (u0; v̂�) = T� +O("2=3) < 1:Thus, at least one of the trajectories through points (u0; v) with v between v̂+ andv̂� corresponds to a solution of the original boundary value problem (12).As above, no uniqueness of solutions for " > 0 is proved with this method. So itcould still happen that one admissible solution of the reduced system correspondsto more and more solutions of the boundary value problem (12) as "& 0.Summarizing, we haveProposition 6.1 There is "1 > 0 such that for 0 < " � "1 to any admissiblesolution of the reduced system an admissible solution exists. The trajectories of thesolution of the reduced system and for " > 0 are O("2=3)-close in the (u; v)-Li�enardplane. 48



6.3 No further solutionsTo �nish the proof we have to show that for su�ciently small " all admissiblesolutions can be found by looking at the reduced system. This will be the mostdi�cult part of the proof, so we give a short outline �rst and �ll in the details in acouple of lemmata later.Due to assumptions (H6) and (H7) we can �nd neighborhoods of all fold pointsand all equilibrium points such that admissible solutions of the reduced system canonly pass through these neighborhoods if they pass through the fold point resp. theequilibrium point itself. This even holds for admissible solutions of the reducedsystem on intervals [0; T ] with T near 1. Also, we will show that all admissiblesolutions of the reduced system on intervals of length near 1 are close to admissiblesolutions of the reduced system on the interval [0; 1]. After these preparations thatstill concern the reduced system only, we can now turn to admissible solutions with" > 0. Given such an admissible solution for " > 0, we prove that there is a fastpart separating the unstable and the stable part of the trajectory (exactly as fortrajectories of the reduced system). As in the proof of theorem 1.1 there is a numberK such that any admissible solution can be decomposed into at most K parts (fast,slow, junction, etc.) independent of " small.Then, using the transition time estimates from the preceding chapter it is shown thatnear any given admissible solution for " > 0 there is a solution of the reduced systemon an interval with length near 1. This will lead to a contradiction in some cases. Inother cases it will prove that the admissible solution is in an O("2=3)-neighborhoodof an admissible solution of the reduced system. Moreover, the number z(ux) canthen be determined from this admissible solution of the reduced system. Recall thatthis number z(ux) was the most important ingredient to determine the Morse indexof u.Recall that u1 < u2 < : : : < uF are the locations of the fold points of f . We startby taking neighborhoods of these fold points and the stable and unstable arcs of Cin a special way: To each fold point (uk;�f(uk)) and �1; �2 > 0 let Nk denote therectangle Nk := f(u; v) ; ju� ukj � �1; jv + f(uk)j � �2g:The numbers �1 and �2 will be speci�ed later. To the arc of C that joins the fold49
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Figure 9: Choosing the neighborhoods near Cpoints (uk;�f(uk) and (uk+1;�f(uk+1) we associate a neighborhood Ck joining Nkand Nk+1, see �gure 9. Note that there is no possibility of a direct transition froma neighborhood of an unstable arc to a neighborhood of a stable arc. Also, as canbe shown in the same manner as lemma 3.5(ii), there exists "1 > 0 such that for0 < " � "1 trajectories can leave neighborhoods of stable arcs only through the topor bottom section while neighborhoods of unstable arcs can only be entered fromthere.Also for any equilibrium point E with coordinates (uE;�f(uE)) 2 Cl we de�ne aneighborhood N (E) := Cl \ fjv + f(uE)j � �2g.According to (H5), no trajectory of the fast system connects a fold point to anequilibrium point. This carries over to neighborhoods of these points and " > 0:For �2 small and " � "1 trajectories do not connect directly some box Nk to one ofthe �2-neighborhoods N (E) of an equilibrium point E.50



We now show that any trajectory of the reduced system that intersects Nk can bean admissible solution on an interval with length near 1 only if it passes throughthe fold point itself.Lemma 6.2 If the numbers �1; �2 are chosen su�ciently small then there existssome � > 0 with the following properties:(i) If (u0; v0) is a point in Nk that does not lie in C [ fv = �f(uk)g thenT�i(u0; v0) + Tj(u0; v0) =2 [1� �; 1 + �] 8i; j � �1:(ii) If (u0; v0) is a point in N (E) that does not lie in C [ fv = �f(uE)g thenT�i(u0; v0) + Tj(u0; v0) =2 [1� �; 1 + �] 8i; j � �1:(iii) There is no type III admissible solution on [0; T ] with T 2 [1� �; 1 + �].Proof:(i) Assume the contrary. Then there are i; j � �1 and a sequence (un; vn)n=1;2;::: ofpoints converging to a fold or to an equilibrium such thatT�i(un; vn) + Tj(un; vn)! 1:One can check now that the case that the (un; vn) converge to a fold point contradictsassumption (H6). Depending from which side of C the points (un; vn) approach thefold point, there is either an admissible type III solution of the reduced system oran admissible solution that only touches the fold point. Both cases were excludedby (H6).(ii) If the points (un; vn) approach an equilibrium point the time it takes the back-ward trajectory to leave a neighborhood of the equilibrium point grows exponen-tially. From this we conclude that i = 1 andT�i(un; vn) = 0:As a consequence, we have Tj(un; vn) = 1 violating the transversality assumption(H7).(iii) is clear since there is only a �nite number of type III trajectories. Consider anyinterval length T such that one of these trajectories is an admissible solutions on51



[0; T ]. By (H6), T 6= 1, and since there are only �nitely many such trajectories thisimplies jT � 1j > �for some � > 0. 2From now on, we assume that �1 is �xed.Part (ii) of the preceding lemma tells that all slow parts of admissible solutions ofthe reduced system on intervals [0; T ] with T 2 [1��; 1+�] avoid the neighborhoodN (E) of equilibrium points. Consequently, there exists a number cg such thatjg(u)j � cgalong any slow part of an admissible solutions of the reduced system on [0; T ]. Thiscg may be interpreted as the \minimal velocity" in v-direction along slow parts ofadmissible solution.Recall that the transversality condition (H7) contained an inverse Lipschitz estimatefor the time maps: jTj(u0; v1)� T�i(u0; v1)� 1j � Cjv1 � v0j (15)if the trajectory through (u0; v0) is a type II admissible solution of the reducedsystem and jv1 � v0j is small.With this estimate we can show that any admissible solution of the reduced systemon an interval with length near 1 has to be near an admissible solution of the reducedsystem on [0; 1]:Lemma 6.3 There exists 0 < �0 � � with the following properties:(i) If a type I solution of the reduced system on [0; T ] with T 2 [1� �0; 1+ �0] passesthrough (u; v), then there is also a type I solution of the reduced system on [0; 1]through (u; v).(ii) If a type II admissible solution of the reduced system on an interval [0; T ] withT 2 [1� �0; 1 + �0] passes through the point (u; v) =2 C andT�i(u; v) + Tj(u; v) = T52



then there is a type II admissible solution of the reduced system on [0; 1] nearby.More precisely, there exists some v0 with jv � v0j � C�1jT � 1j such thatT�i(u; v0) + Tj(u; v0) = 1:Proof: (i) Choose �0 smaller than the in�mum of j1�Tj(u; v)j where the in�mumis taken over all j and over points (u; v) on the (�nitely many) fast trajectories thatconnect to an equilibrium point. The type I solution on [0; 1] can be found easily: Itcoincides with the given admissible solution on [0; T ] except that it spends a slightlydi�erent time at the equilibrium.(ii) Assume the contrary. Then there is a sequence (un; vn)n=1;2;::: of points such thatT�i(un; vn) + Tj(un; vn)! 1and jvn � vj > C�1jT�i(un; vn) + Tj(un; v)� 1j (16)for any type II admissible solution of the reduced system that passes through apoint (un; v). Moreover, by compactness we may suppose (un; vn)! (u1; v1). Wewill �nd a contradiction by showing that the point (u1; v1) belongs to a type IIadmissible solution that does not satisfy (16).By lemma 6.2, the trajectory of the fast system through the point (un; vn) doesnot enter one of the boxes Nk or one of the neighborhoods N (E) of an equilibriumpoint E. By continuity (and since the time maps are locally constant in u), alsothe trajectory of the fast system through the point point (u1; v1) cannot intersecta box Nk or one of the N (E). This implies that the time maps T�i and Tj arecontinuous at (u1; v1) and the trajectory through (u1; v1) is a type II admissiblesolution of the reduced system on [0; 1]. Note that locally near (u1; v1) the timemaps Tj(u; v) are monotone in v. The inverse Lipschitz estimate (15) implies thenthat by choosing �0 small enough one gets the desired estimatejvn � v1j � C�1jT�i(un; vn) + Tj(un; vn)� 1jin contradiction with (16). 253



There is a similar classi�cation for admissible solutions with " > 0 small as for theadmissible solutions of the reduced system: Any trajectory that enters a neighbor-hood Ck of a stable arc will either stay there forever or follow the stable arc to oneof the neighborhoods Nk or Nk+1 of a fold point. From there the trajectory has toleave a neighborhood of C and can reenter such a neighborhood only near anotherstable arc, but not near an unstable arc. Similarly, backward trajectories that havereached a neighborhood of an unstable arc of C cannot enter a neighborhood of thestable arcs. So, like the trajectories of the reduced system, the trajectories for " > 0can be split into an unstable and a stable part with a fast part between them.From the proof of theorem 1.1 we know already that for small " it takes trajectoriesa certain time to pass near a fold or to pass through the neighborhood of a stable orunstable arc. This implies that we can �nd "2 � "1 and a number K > 0 such thatall admissible trajectories for " � "2 consist of at most K parts (slow, fast, junction,etc.).We de�ne now �1 := �02Kand �x �1 and �1.We will choose �2 and " still smaller to achieve that any trajectory for " small enoughcannot lose more than \time" 2�1 on each part of the trajectory compared to sometrajectory of the reduced system. Then the di�erence cannot add up to more than�0 and we are able to use lemma 6.3.Choose �2 su�ciently small such that�2 � c�1g � �1 (17)such that a trajectory of the reduced system will need not more than time �1 tocover some extra distance �2.Denote with"u0min := inffjv + f(u)j ; (u; v) 2 [umin; umax]� [vmin; vmax] n ([k Nk [[l Cl)gthe minimal velocity in u-direction outside the neighborhoods Nk of the fold pointsand the neighborhoods Cl of the arcs of C. Let "0 � "2 be su�ciently small suchthat 54



(i) C"2=30 < �1 where C from 5.1 is chosen large enough such that C"2=3 estimatesthe time from a horizontal section taken fv = �f(�uk)��2g to a vertical sectionfu = �uk + �1g.(ii) "0u0min � (umax � umin) � �1:(iii) c�1g �C"2=30 + "0Cgu0min � (umax � umin)� � �1:(iv) 2�1"1=30 =c � �1:The constants c and C are the ones used in lemma 5.1 and lemma 5.2. The inter-pretation of these conditions is the following:From (i) we get that a trajectory that passes near a fold point will take the sametime (up to �1) to pass through Nk as the trajectory of the reduced system thatpasses through the fold point. Also, the time di�erence on any slow part which issmaller than C � " and the time di�erence at initial and drop parts which are smallerthan C �" ln("�1) can be estimated by �1. Condition (ii) states that a trajectory doesnot take longer than �1 for a fast part. Condition (iii) accounts for the possible extradistance that solution of the reduced system have to cover since the drop points ofthe trajectories for " > 0 and " = 0 di�er. The last condition (iv) ensures that anytrajectory that traverses some Nk above or below the fold will not need longer than�1.After all these preparations, consider now an admissible trajectory for some " � "0and choose a point (u0; v0) on that fast part between the unstable and the stablepart of the trajectory. There are i; j � �1 satisfyingT "�i(u0; v0) + T "j (u0; v0) = 1:Recall that i = �1 is the case where the trajectory consists of a stable part only.Similarly, j = �1 indicates absence of a stable part.Up to time reversal, we have to distinguish three cases:The forward and backward trajectory may both enter a neighborhood of the singularcurve C away from all the Nk's and the N (E). The second case treats the possibilitythat either the forward or backward trajectory enters one of the Nk, while the thirdcase considers the possibility that either the forward or backward trajectory enters aneighborhood N (E) of an equilibrium point E. Note that assumption (H5) prevents55



that both the forward and the backward trajectory enter into some Nk or N (E).Case 1: The forward trajectory through (u0; v0) enters the neighborhood Ck of astable arc away from all equilibria and the backward trajectory enters the neighbor-hood Cl of an unstable arc.Then the time maps for the reduced systems trajectory through (u0; v0) satisfyjT�i(u0; v0) + Tj(u0; v0)� 1j � 2K � �1 = �0: (18)This can be seen in the following way looking at the forward trajectory �rst: The�rst fast part does not take longer than �1 and the trajectory enters a neighborhoodof C at a drop point D"1(u0; v0). This drop point satis�esjvD"1(u0;v0) � vD1(u0;v0)j � C" (19)such that the trajectory of the reduced system (with velocity� cg) needs at mosttime �1 for the small extra portion between vD"1(u0;v0) and vD1(u0;v0). The drop partof the trajectory with " > 0 may take another time �1. Altogether the di�erencebetween the time maps for " = 0 and " 6= 0 may increase by 2�1 on the drop part.On the slow part the transition times for the trajectory of the reduced system andthe trajectory for " > 0 may di�er again by �1 and the same holds for the junctionpart. The next fast part takes at most time �1 and leads to a drop point that is ata distance of at most C"2=30 + "0Cgu0min � (umax � umin) from the drop point of thereduced systems trajectory. Then everything can be continued in the same way. Oneach part the transition times di�er at most by �1 and the trajectory may have tocover an extra distance near every drop point that takes another time �1. Applyingthe same arguments to the backward trajectory, yields then (18), since there are atmost K parts of the trajectory which contribute at most 2�1 each to the di�erencebetween the time maps. Therefore, the trajectory of the reduced system through(u0; v0) is an admissible solution on an interval with length T 2 [1� �0; 1 + �0]. So,by lemma 6.3 there exists a vred with jvred � v0j � C�1 � C"2=3 andT�i(u0; vred) + Tj(u0; vred) = 1and the given admissible solution is shown to be in an O("2=3)-neighborhood of anadmissible solution of the reduced system.56



Case 2: The forward trajectory through (u0; v0) enters the neighborhood Nk of afold point while the backward trajectory enters a neighborhood Cl of an unstablearc. Three subcases are treated depending on whether the trajectory leaves the boxNk via a fast part, along the stable arc of C or along the unstable arc of C.We will show that none of these cases can appear since they contradict lemma 6.2.Case 2a: The forward trajectory leaves Nk via a fast part and reaches a stable arcof C. Denote with (u1; v1) the point where the trajectory leaves Nk. We will showthat for this point T�i(u1; v1) + Tj(u1; v1) 2 [1� �; 1 + �]: (20)in contrast to lemma 6.2. The reasoning is similar than in the last case. There areonly two extra parts which can each contribute another �1 to the time di�erence:Due to condition (iv) from the choice of "0, the trajectory may take this time to passthrough Nk. Also the v-coordinate could change by at most �2 while the trajectorypasses through Nk. The trajectory of the reduced system may therefore have anextra v-distance on the next arc of C but by the choice (17) of �2 this extra distancetakes at most time �1. Summing up the transition times of the given trajectory andthe trajectory of the reduced system through (u1; v1) gives again a di�erence of lessthan � thus proving (20).Case 2b: The forward trajectory continues along the stable arc of C that originatesat the fold point.This is only possible if the point D"1(u0; v0) where the trajectory enters the neigh-borhood Nk satis�es vD"1(u0;v0) + f(uk) � C"2=3since the trajectory must hit Nk below the point where the backwards trajectoriesfrom the unstable arc of C leave Nk, see �gure 10.57
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CFigure 10: The situation in case 2bTherefore, we compare the trajectory through (u0; v0) with " > 0 and the type IIItrajectory of the reduced system through the fold point. In exactly the same manneras in case 2a) one gets that this type III trajectory is an admissible solution on aninterval of length T 2 [1� �; 1 + �] which contradicts lemma 6.2(iii).Case 2c: The forward trajectory continues along the unstable arc of C that origi-nates at the fold point.This case contradicts our choice of (u0; v0) to be on the fast part that separates theunstable from the stable part of the admissible solution.Case 3: The forward trajectory enters a neighborhood N (E) of an equilibriumpoint E while the backward trajectory leads to the neighborhood of an unstablearc.In this case we have to show that the admissible trajectory corresponds to one ofthe type I solutions of the reduced system. We have j = 1 since the height 2�2 ofN (E) was chosen so small that it takes trajectories more than time 1 to reach thenext neighborhood of a fold point.If the trajectory through (u0; v0) hits the curve C near the equilibrium point at a58



distance of less than C"2=3 then we are done because in that case the admissibletrajectory is near a type Ib trajectory. In the other case that it hits C at a distancebigger than C"2=3 the normal form analysis from the appendix shows that the timefrom (u0; v0) to C is of order O(" ln "�1). Then1� T�i(u0; v0) = O(" ln "�1)and with the same arguments that were already used in case 2 one shows that thetrajectory of the reduced system through (u0; v0) is a type II admissible solution on[0; T ] with T 2 [1� �; 1 + �]. This contradicts lemma 6.2(ii).All three cases together show that for " � "0 admissible solutions can only be locatedin the (u; v)-plane near admissible solutions of the reduced system and can hencebe found by studying the reduced system.This completes the proof of theorem 1.2. 26.4 An example: A dissipative Van der Pol oscillatorTo illustrate the preceding results, a concrete example will be given in this subsec-tion. For this example we will assume that to any admissible solution of the reducedsystem for su�ciently small " 6= 0 there exists exactly one hyperbolic equilibriumsolution of the viscous balance law. We cannot prove this hypothesis yet but believethat it is true.Since chapter contains an example of a two-dimensional attractors, we construct inthis section an example with a three-dimensional attractor. The considerations fromthe proof of theorem 1.2 suggest that we should chose f to have some turning pointsif we want to achieve a global attractor of a higher dimension. Also, it seems to bequite useful if the equilibrium equation admits periodic solutions because they canlead to solutions of the boundary value problem with a couple of oscillations andthus with a Morse index exceeding one or two.This yields the following construction:Choose f cubic-like with the curve v+f(u)=0 looking like in �gure 11 and take asg a function with three zeroes as indicated in the �gure. This is di�erent from the59
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Figure 11usual Van der Pol equation where f(u) = u�u3 and g(u) = u, but it is an easy wayto make g dissipative. As in the usual Van der Pol equation, there is a limit cyclewith slow parts near AC and DF and fast transitions near CD and FA.For the times a trajectory of the reduced system needs for the various slow parts wewill assume the following: TAC = Z vCvA dvg(uC(v)) < 1;TBC = Z vCvB dvg(uC(v)) < 1;TDF = Z vFvD dvg(uC(v)) < 1;TEF = Z vFvE dvg(uC(v)) < 1;60
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Figure 12 TBC + TDF > 1 andTEF + TAC > 1:We are not going to construct a suitable g but it is obvious that this can be done.Due to the last two inequalities there are no solutions that have more than two slowparts. One can easily inspect all possible cases to �nd that there are 11 admissiblesolutions of the reduced system. We assume now that " is small and that each ofthese 11 solutions corresponds to exactly one hyperbolic equilibrium solution of theviscous balance law although we cannot prove that. Their location in the Li�enardplane is indicated in the next �gure and the associated permutation that can be61
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Figure 13: The Shooting curve and the connection graphread o� this �gure is� = 0@ 1 2 3 4 5 6 7 8 9 10 111 10 3 4 7 6 5 8 9 2 11 1AThis gives the shooting curve shown in the upper part of �gure 13.Proposition 1.5 allows to compute the Morse indices and zero numbers of the di�er-ences from the permutation and from that information proposition 1.6 tells exactlywhich equilibria are connected. This is shown here in the connection graph wherearrows indicate which equilibria are connected. The connection graph just containsarrows between equilibria whose Morse indices di�er by one. So two equilibria are62



connected by a heteroclinic orbit if they are connected via a sequence of arrows inthe connection graph.From this picture it is easy to guess how the attractor might look like as a three-dimensional object. Just imagine the 1-skeleton embedded in a ball that is �lledwith heteroclinic orbits in a rather obvious way. Nevertheless, at the moment thereis no proof of a geometrical description of the global attractor.Also, it is obvious that we could �nd higher-dimensional global attractors for thesame f and g, simply by taking x in an interval [0; L] where the interval length L isbigger than 1. In fact, we could achieve an arbitrary high dimension by choosing Llarger and larger.7 Uniqueness of equilibriaIn this section we are going to prove that for " small enough near any type I solutionof the reduced equation with one fast part there is exactly one solution of theboundary value problem (12). As we have seen, there is at least one equilibrium u"near a type I solution of the reduced system. For symmetry reasons we will ourselvesrestrict again to type Ia solutions of the reduced system.Lemma 7.1 Consider a type Ia solution of the reduced equation with exactly onefast part beginning at an equilibrium (uE;�f(uE)).Then there exists "0 > 0 such that for 0 < " � "0 any equilibrium solution u" in aneighborhood is hyperbolic with Morse indexi(u") = 1 if g0(uE) < 0i(u") = 2 if g0(uE) > 0:Corollary 7.2 For 0 < " � "0 there is exactly one equilibrium solution u" corre-sponding to the admissible type Ia trajectory of the reduced system.Proof of the corollary: Suppose there were two equilibrium solutions u" and ~u"both corresponding to the same type Ia trajectory of the reduced system. Considernow the interval [u"(0); ~u"(0)]. It contains only �nitely many points that corre-spond to solutions of the boundary value problem. Otherwise there would be a63



non-hyperbolic equilibrium solution in contrast to the preceding lemma. So, with-out restriction, we may suppose that there is no other solution û" with û"(0) 2[u"(0); ~u"(0)]. Then u" and ~u" are adjacent on the shooting curve and their Morseindices have to di�er by 1 due to lemma 1.5 and cannot be equal. This contradictionto lemma 7.1 shows that there can be only one equilibrium u". 2Proof of the lemma: We will consider the eigenvalue problem"wxx � f 0(u")wx � f 00(u")u"xw + g0(u")w = �wwx(0) = wx(1) = 0: 9=; (21)at a family of equilibria u" of the viscous balance law with all u" corresponding tothe same type Ia trajectory of the reduced system. The eigenvalue equation can bewritten as a �rst order system"wx = z + f 0(u")wzx = �(g0(u")� �)wwx(0) = wx(1) = 0:Performing a Pr�ufer transformation"w = % cos'z = �% sin'leads to equations for % and '. We will only need the '-equation'x = sin2 '+ g0(u")� �" cos2 '� f 0(u")2" sin 2' (22)to determine the Morse index of u". The Neumann boundary conditions for theoriginal eigenvalue problem show up as initial resp. terminal conditiontan'(x) = f 0(u"(x))"at x = 0 and x = 1.So, if '0(x; "; �) denotes the solution of (22) with initial value'0(x = 0) = arctan f 0(u"(0))"64



there is an easy criterium for � to be an eigenvalue: The right boundary conditionhas to be satis�ed and thus� is an eigenvalue () tan'0(1; "; �) = f 0(u"(1))" :We will use the following relation between the Morse index i(u") and '0(1; "; � = 0):Lemma 7.3 Let '1 := arctan (f 0(u"(1))=") :Then the following holds:(i) If '0(1; "; 0)� '1 6= k�; k = 0; 1; 2; : : : ; then the equilibrium u" is hyperbolic.(ii) If '0(1; "; 0)� '1 2 ((k � 1)�; k�), then i(u") = k.Proof : Part (i) is just a simple consequence of the characterization of eigenvalues.If there was a nontrivial solution of the eigenvalue problem with � = 0 then thecorresponding ' would satisfy tan' = tan'1.To prove part (ii) consider � as a parameter and note that '0(1; "; �) depends mono-tonically on � and tends to ��2 as � ! �1 and to +1 as � ! +1. For theeigenvalue �k (k = 0; 1; 2; : : :) we �nd'0(1; "; �k) = '1 + (k � 1)�:To determine the Morse index of u" is hence equivalent to counting how many ofthe numbers '1 + k� lie between ��2 and '0(1; "; 0). 2Hale and Sakamoto [HS88] have used the Pr�ufer transformation to compute Morseindices and eigenvalues for equilibria of the equation ut = "uxx + f(x; u): Althoughthe details are quite di�erent, we will see that with similar methods we can �nd theMorse index of u".The main idea is the following: As z(u"x) = 1, by lemma 1.4 the Morse index i(u")has to be 1 or 2. Our goal is to compute '0(1; "; 0)�'1 accurately enough to decidewhether it belongs to the interval (0; �) or (�; 2�). For x 2 [0; �x] with 1� �x of orderO(" ln "�1) corresponding to the initial part of u" where u" is almost constant thereexist invariant strips in the (x; ')-plane. Some of them are positively invariant, somenegatively. Between these strips 'x is of order O(1"). Besides these invariant strips65



we will use a comparison with the solutions of (22) to di�erent initial values. Recallthat u"x solves the linearized equation (21) with Dirichlet boundary conditions andnote that Dirichlet boundary conditions translate into'(x) � �2 (mod �) at x = 0; 1:Hence, we already know two solutions of (22): The solution '� with initial value'�(0; "; 0) = ��2 satis�es '�(1; "; 0) = �2 . Simply due to �-periodicity of equation(22) there is another solution '+ with initial value '+(0; "; 0) = �2 and '+(1; "; 0) =3�2 .The solution '0 with '0(0; "; 0) = arctan(f 0(u"(0))=") is con�ned between '� and'+. As we will prove, '0 will after some time follow one of these solutions and endup very close to either �2 or 3�2 .The only property of u" that we need is, that it is almost constant and that it jumpsfrom an unstable arc of C to a stable arc. The latter fact shows up in the relationf 0(u"(1)) < 0 < f 0(u"(0)):The fast part and the drop part together are of lengthO(" ln("�1)), so we can choose�x 2 [0; 1] (depending on ") with 1� �x = O(" ln 1") (23)such that u"x � C"2 8x 2 [0; �x]: (24)and f 0(u") >  8x 2 [0; �x]for some constant  > 0 not depending on " 2 (0; "0]. Relation (24) can be derived bymeans of the normal form analysis of our appendix where we show that ux decreasesat an exponential rate proportional to "�1.We will �rst establish the existence of invariant strips. To this end de�ne ��(x) and�+(x) as the two angles in (��2 ; �2 ) where 'x = 0, or in other words," sin2�� � f 0(u")2 sin 2�� + g0(u") cos2�� = 0 (25)66



leading to tan��(x) = f 0(u"(x))�qf 0(u"(x))2 � 4"g0(u"(x))2" :As both f 0(u) and g0(u) are bounded for u 2 [umin; umax] using (23) and the asymp-totic behavior of arctan near �2 we get for x in[0; �x] where f 0(u"(x)) > 0:tan ��(x) = g0(u"(x))f 0(u"(x)) +O(");tan �+(x) = f 0(u"(x))" +O(1)such that �+(x) = �2 � f 0(u"(x))�1"+O("2):We show now the existence of a narrow negatively invariant strip around �+.Lemma 7.4 Consider (22) for � = 0, a given equilibrium u" and x 2 [0; �x]. Then:There is a negatively invariant strip of width O("3) around �+.Proof: We have to compare d�+dx with 'x at ' = �+ � k"3 for some k.Let's start withd�+dx = 2"4"2 + �f 0 +pf 02 � 4"g0�2 �  f 00 + f 0f 00 � 2"g00pf 02 � 4"g0! � u"x(x):Here we have written f 0 as an abbreviation for f 0(u"(x)), etc. .Expanding the square root one �nds easily that the �rst term is of order O(") whilethe second is of order O(1). Together with (24) we get�����d�+dx ����� � C"2 for x 2 [0; �x]:On the other hand, applying elementary addition formulas for sines and cosines,d'dx (�+ � k"3) = sin2(�+ � k"3) + g0" cos2(�+ � k"3) � f 02" sin(2�+ � 2k"3)= cos 2k"3  sin2�+ + g0" cos2�+ � f 02" sin 2�+!+sin2 k"3 1 + g0" !�12 sin 2k"3  g0" sin 2�+ + f 0" cos 2�+! :67



The �rst term vanishes due to (25) and sinceg0(u") sin 2�+ + f 0(u") cos 2�+ = f 0(u")� 2" sin2�+ tan �+= �f 0(u") +O(")the last term dominates and yieldsd'dx (�+ + k"3) � 12k � "2d'dx (�+ � k"3) � �12k � "2for " small enough and x 2 [0; �x]. Choosing k large enough gives negative invariancefor the strip around �+. 2The next lemma provides us with some larger invariant strips with the additionalproperty that j'xj is large outside these strips.Lemma 7.5 Consider (22) for � = 0, a family u" of equilibria and x 2 [0; �x]. Thenthere exists some "0 > 0 and constants �;C1; C2; C3 > 0 such that for 0 < " � "0(i) the strip [�+��;�++�] is negatively invariant and for solutions '1; '2 insidethis stripj'1(x2)� '2(x2)j � eC1" (x2�x1)j'1(x1)� '2(x1)j for 0 � x1 � x2 � �x:Analogously, the strip [����;��+�] is positively invariant and for solutions'1; '2 inside this stripj'1(x2)� '2(x2)j � e�C2" (x2�x1)j'1(x1)� '2(x1)j for 0 � x1 � x2 � �x:(ii) Outside these strips j'xj � C3" :Proof: (i) The existence of the invariant strips is proved in a similar fashion asin the preceding lemma, so we omit the proof here although there are some minordi�erences. 68



To prove the contraction and expansion properties we denote with H('; ") the righthand side of (22) with � = 0, i.e.H('; ") = sin2 '+ g0(u")" cos2 '� f 0(u")2" sin 2':and compute @H@' ('; x) = �f 0(u"(x)" + sin 2' + 2 sin2 ' tan':Evaluating this expression at ' = �+ gives@H@' (�+; x) = f 0(u"(x)" +O(1)such that @H@' ('; x) > C1"for " small enough and ' 2 [�+ � �;�+ + �].Similarly, @H@' (��; x) = �f 0(u"(x))" +O(1)and @H@' ('; x) < �C2"for " small enough and ' 2 [�� � �;�� + �].(ii) De�ne C3 := 12 inf jg0(u"(x)) cos2 '� f 0(u"(x))2 sin 2'j > 0"0 := 12C3where the in�mum is taken over the compact region that is obtained from therectangle [0; �x]� [��2 ; �2 ] by removing stripsf(x; '); 0 � x � �x; �� � � � ' � �� + �g:Then obviously "jH('; ")j � C3and the proof is complete. 269



The important observation is now that the initial value f 0(u"(0))" of the solution '0we are mainly interested in lies above or below this negatively invariant O("3)-striparound �+ depending on the sign of g0(u"(0)) which is the same as the sign of g0(uE).This follows simply from the expansiontan�+(0) = f 0(u"(0)) �qf 0(u"(0))2 � 4"g0(u"(0))2"= f 0(u"(0))" � g0(u"(0))f 0(u"(0)) +O("):Using the Laurent series of arctan at �=2 one gets�+(0) = �2 � 1f 0(u"(0))"� g0(u"(0))f 0(u"(0))"2 +O("3): (26)In particular, for " small enough and g0(uE) < 0 the initial value of '0 lies belowthe negatively invariant strip. Thus '0 has to stay below �� at least up to x = �x.Similarly, for g0(uE) < 0 the initial value of '0 lies above the negatively invariantstrip and '0 stays above this strip.Having established the existence of invariant strips, we want to take a solution of(22) that stays inside the negatively invariant strip as a reference. Let 'N be asolution on [0; �x] inside the negatively invariant strip. Clearly 'N can, for instance,be obtained by solving (22) backward starting with 'N (�x) = �+.In lemma 7.5 we have found a negatively invariant strip with the property thatsolutions in this strip separate with an exponential rate of C1=" and a positivelyinvariant strip where solutions approach each other at an exponential rate of C2=".Moreover, between these strips we havej'xj � C3="where all the constants are independent of ".We are now able to describe the behavior of '0(�; "; 0).1) g0(uE) < 0 : In this case we compare �rst '0 and 'N . Since 'N lies in theO("3)-strip around �+ and from (26) we have that'N(0) � '0(0; "; 0) � C4"2:70



Thus we can �nd some ~x1 of order O(" ln 1" ) such that '0 leaves the negativelyinvariant strip around �+ at x = ~x1. Outside the strip, 'x is large, so there is ~x2with ~x2 � ~x1 = O(")such that '0 enters the positively invariant strip around �� at x = ~x2. The situationis depicted in �gure 14.
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Figure 14: The case g0(uE) < 0Analogous arguments show that at x = ~x2 also '� must have entered the positivelyinvariant strip from below. Hencej'0(~x2; "; 0)� '�(~x2; "; 0)j � 2�71



and due to the contraction property inside the positively invariant strip'0(�x; "; 0)� '�(�x; "; 0) = O(exp(�C2=")):Even though '0 and '� may separate at an exponential rate of order C=" on theinterval [x1�x; 1] the di�erence between the two solutions stays small since the lengthof this interval is only of order O(" ln 1" ):'0(1; "; 0)� '�(1; "; 0) = O("�C exp(�C2=")):Thus, the di�erence tends to 0 very rapidly as "& 0 and since we know that'�(1; "; 0) = �2we can conclude that for " su�ciently small'0(1; "; 0) � '1 + � = �2 � 1f 0(u"(1))"+O(")since f 0(u"(1)) < 0.Hence, '0(1; "; 0)� '1 2 (0; �)and by lemma 7.3 the solution u" is for all small " a hyperbolic equilibrium solutionwith Morse index i(u") = 1.2) g0(uE) > 0 : Again we compare �rst '0 and 'N . The di�erence consists of thefact that '0 lies above the O("3)-strip that is negatively invariant and leaves thestrip [�+ � �;�+ + �] at the top. Therefore, �0 enters the positively invariant strip[�� � � + �;�� + � + �] at some ~x2 which is of order O(" ln 1" ). The solution �+enters this strip as well and with the same arguments as in the �rst case g0(uE) < 0one shows that '0(1; "; 0)� '+(1; "; 0) = O("�C exp(�C2=")):Since '+(1; "; 0) = 3�2this yields '0(1; "; 0)� '1 2 (�; 2�)72



and by lemma 7.3 the equilibrium u" of the viscous balance law is hyperbolic withMorse index i(u") = 2. 2Remark: The same arguments can be applied with slight modi�cations to allsolutions u" near type I trajectories of the reduced system. Depending on the signof g0(uE), the solution '0 follows either '� or '+. On the slow parts there are alsoinvariant strips with a strong contraction inside such that the di�erence betweenthe solutions is still very small after a (rather short) junction-fast-drop-part. Then,again strong contraction applies over a time of order 1, etc.8 Planar attractorsThere is an important case in which the attractor will be two-dimensional for allsu�ciently small ": For convex f and under the generic assumption that no zeroof g coincides with a zero of f 0 all equilibria have a Morse index of at most two.Moreover, the permutation � associated with the shooting curve S is the same forall small ". This will lead to a description of A" for small ".Theorem 8.1 Let u1; u2; : : : ; ul be the zeroes of g and assume that(i) f is convex(ii) f(ui) 6= f(uj) for 1 � i < j � l(iii) f 0(ui) 6= 0 for 1 � i � l(iv) g0(ui) 6= 0 for 1 � i � lLet �l be the number of zeroes ui of g such that there exists a ~ui with f(~ui) = f(ui)and g(~ui)(ui � ~ui) > 0:Then there is a "0, such that for all 0 < " � "0 the parabolic equation (5) has exactlyl + �l equilibrium solutions, more precisely, there are� l+12 equilibria with Morse index 0, 73



� l�12 + �l2 equilibria with Morse index 1 and� �l2 equilibria with Morse index 2.The permutation � induced by these equilibria is the same for all 0 < " � "0 and for0 < " < "0 � "0 the global attractors A" and A"0 are C0-equivalent.Proof: Obviously, there are l spatially homogenous equilibria u � ui; 1 � i � lindependent of " having Morse indices 0 and 1 alternately (see lemma 3.2). Theremay be also nonhomogenous equilibria with one boundary layer. Since the singularcurve C has at most one unstable and one stable arc, there can be no equilibriumsolutions with two boundary layers or an interior layer. The boundary layer solutionscorrespond to trajectories of the reduced system that either stay at an equilibriumon the unstable arc of C for time 1 and jump to the stable arc afterwards or jumpfrom the unstable to the stable arc immediately and stay there for time 1. Thecondition that a jump is possible was in our notation that the opposite side is green.Recalling our de�nition of green, yellow and red sides, one checks immediately thatg(~ui)(ui � ~ui) > 0 is exactly the condition for the opposite side to be a green one,or, in other words, this condition tells, that the curve C is not \blocked" by the slowmanifold.In the previous chapter we have shown uniqueness exactly for such solutions whichare near type I solutions of the reduced system and possess exactly one fast part.Also, it is clear that the ordering of the equilibrium solutions is the same for " � "0and hence the associated permutation � is identical for all small ".Together with proposition 1.8 this implies the claim about C0-equivalence of theglobal attractors. 28.1 The permutationSince for convex f the shooting curve has special properties the following simplecorollary of proposition 1.5 will prove useful.Lemma 8.1 Let v1; v2; : : : ; vk be all the equilibria of a semilinear parabolic equationwith associated permutation �. 74



If vn and vn+1 are two equilibrium solutions withj��1(n+ 1) � ��1(n)j = 1then z(vn+1 � vm) = z(vn � vm) for all equilibria vm with m 6= n; n+ 1.Proof: For all m di�erent from n and n+ 1 we have obviouslysign ���1(n+ 1) � ��1(m)� = sign ���1(n)� ��1(m)� :Consider now the di�erence z(vn+1 � vm)� z(vn � vm).Using proposition 1.5, we have z(vn+1 � vm)� z(vn � vm) = 0 sincei(vm) + 12 �(�1)n+1sign ���1(n+ 1) � ��1(m)�� 1� + nXj=m+1(�1)jsign ���1(j)� ��1(m)��i(vm)� 12 �(�1)nsign ���1(n)� ��1(m)�� 1�� n�1Xj=m+1(�1)jsign ���1(j)� ��1(m)�= �(�1)n+1sign ���1(n+ 1)� ��1(m)�� 1�+ nXj=n(�1)jsign ���1(j)� ��1(m)� = 0:The use of this proposition makes it easier to determine with proposition 1.6 whichequilibria are connected and which are not.8.2 One last exampleThis last example should illustrate how the 1-skeleton of the global attractor lookslike in the case of a convex f .We choose g to possess 5 zeroes u1 < u2 < u3 < u4 < u5, three on the unstable arcof C and two on the stable arc with�f(u1) < �f(u5) < �f(u2) < �f(u3) < �f(u4)as shown in �gure 15. This �gure also shows the slow manifold for small nonzero "and the dashed lines indicate the four possible solutions of the boundary value prob-lem with a boundary layer. Each of them starts or ends near one of the equilibriumpoints. 75
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CFigure 15Altogether, there are nine equilibria for " su�ciently small. From the shooting curve
Figure 16: The shooting curvw(or directly from the equilibria) we can read o� the permutation � as� = 0@ 1 2 3 4 5 6 7 8 91 8 7 2 3 6 5 4 9 1Agiving rise to the following connection graph:76
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3Figure 17: The connection graphAs in the example of chapter 6, one has immediately an idea how to �ll this 1-skeleton with some two-dimensional \meat". Nevertheless, up to now there is noproof of a geometrical description of the global attractor.9 DiscussionAs we have already pointed out in the introduction, this paper should be consideredas a �rst step towards the description of the global attractor A" as "& 0. Of courseit would be more satisfactory to have uniqueness of equilibrium solution for all casesof theorem 1.2 and not only in case f is a convex function. This would then yielda complete description of all equilibria and the connecting orbits between di�erentequilibria. We are optimistic that further work will soon remove the problems.77



A question that is perhaps best accessible via singularly perturbed equations con-cerns the realization of the heteroclinic orbits. Knowing that two equilibria areconnected by a heteroclinic orbit, one may be interested to know how this hetero-clinic orbit looks like, i.e. the shape of the u-pro�le. In the general case, there isno hope at the moment, but for singularly perturbed equations, heteroclinic orbitswith slowly moving transition layers have been constructed. To our knowledge, thisapproach has never been applied to balance laws.Since balance laws are often considered on the whole real line one could take theinterval length 0 � x � L as a parameter and look at the limit L !1: Typically,one would expect that new solutions appear (by a saddle-node bifurcation) at valuesof L for which the transversality condition (H7) or a similar condition for type IIIsolutions is not satis�ed.Another line of research is connected to balance laws with x 2 S1. Here the attrac-tor consists not only of equilibria and heteroclinic orbits but contains also rotatingwaves. Although there is also a discrete Lyapunov functional, nothing similar tothe permutation is available and there is by now no complete description whichequilibria and rotating waves are connected by heteroclinic orbits.For the hyperbolic balance law (" = 0) and convex f some work has been done in re-cent years by Fan and Hale [FH95], Lyberopoulos [Lyb94] and by Sinestrari[Sin95a].All these authors have proved a theorem of Poincar�e-Bendixson type for these equa-tions. Fan and Hale gave a description of the global attractor and some necessaryconditions for heteroclinic orbits between di�erent equilibria and rotating waveswhile Sinestrari was able to construct the !-limit set for a given initial condition.Nevertheless, the connection between the global attractors for " = 0 and for " > 0is not yet well understood.And these are only some of the challenges that remain in this �eld...
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AppendixIn the appendix we derive the asymptotic formulas given in chapter 5 as proposition5.2 which have been used in the proof of theorem 1.2.A A normal formRecall that in the setting of chapter 5 for " = 0 the singular curve C and thecurve corresponding to the (left or right) boundary condition coincide. To get someestimates on the time it takes a trajectory to leave a neighborhood of the singularcurve we have to �nd out how these two curves separate for " 6= 0. To that endanother choice of local coordinates will prove useful putting the vector �eld_u = v + f(u)_v = �"g(u): 9=;in a nicer form. Starting from a normal form given by Takens, we will furthersimplify the vector �eld using special features of our singularly perturbed problem.There are two cases to be considered:Case A: The normal form is computed near a point of the singular curve C that isnot an equilibrium, e.g. where g is nonzero.Case B: The normal form is computed near a point on C where g has a zero.Let (u0; v0) be a point on the singular curve. Then the local normal form near(u0; v0; 0) we will achieve in this section is given in the following lemma and will beproved in the rest of this chapter:Lemma A.1 If f; g 2 C3 with f 0(0) 6= 0, then there is a local C2-change of variables(~u; ~v; ~") = T (u; v; ")such that ~" = " and the transformed vector �eld is_~u = A(~v; ") ~u_~v = R(~v; "): 9=; (27)Here A and R are smooth functions of their arguments with A(0; 0) = f 0(u0) andR(~v; 0) = 0. In case B also R(0; ") = 0. 79



A.1 The Takens normal formIn 1971, Takens [Tak71] gave a normal form for vector �elds near a nonhyperbolicequilibrium. He showed the followingProposition A.2 Let 0 be a singular point of a C1-vector �eld X. If the eigenval-ues of dX at 0 satisfy a nonresonance condition ('Sternberg �(dX(0); k)-condition'),then there is a Ck-change of coordinates such that the vector �eld in the new coor-dinates is locally in the standard formX = cXi=1Xi(x1; :::; xc) @@xi + sXi;j=1Aij(x1; :::; xc)yj @@yi + uXi;j=1Bij(x1; :::; xc)zj @@ziwhere(1) all c eigenvalues of @Xi@xj (in x1 = ::: = xc = 0) have real part zero,(2) all s eigenvalues of Aij(0; :::; 0) have real part < 0 and(3) all u eigenvalues of Bij(0; :::; 0) have real part > 0.So, in the standard form the center manifold W c(0) is the linear space fy1 = : : : =ys = z1 = : : : = zu = 0g.Proof of lemma A.1: To prove lemma A.1 the Takens standard form will be usednear singular points of the fast system_u = v + f(u)_v = �"g(u)_" = 0 9>>=>>; (28)This system was not assumed to be of class C1, but a look at Takens proof revealsthat it is not necessary to have a C1-vector �eld. For vector �elds with a �nite orderof di�erentiability a similar normal form result holds. In fact, in the �rst step of hisproof Takens transforms the vector �eld to one with a �nite degree of smoothness.If no resonances occur between eigenvalues this degree of smoothness determines thesmoothness of the coordinate transformation T .At equilibrium points (u; v; ") of (28) with " = 0 the Jacobian of the fast system isJ = 0BB@ f 0(u0) 1 00 0 �g(u0)0 0 0 1CCA :80



If f 0(u0) 6= 0, it has a double zero eigenvalue and one nonzero eigenvalue f 0(u0). Sothere is only one eigenvalue with nonzero real part and all nonresonance conditionsused in Takens proof will be automatically satis�ed. In this case, his theorem tellsthat a Ck+1-vector �eld can be brought to the normal form by a Ck-change ofcoordinates. This is the reason why we assumed f and g to be of class C3. Then thenormal form is of class C2 which is su�cient for us as all arguments below will notinvolve higher than second derivatives. By Takens' theorem a C2-change of variables(~u; ~v; ~") = T (u; v; ")transforms the equation to the form_~u = A(~v; ~") ~u_~v = R(~v; ~")_~" = S(~v; ~"): 9>>=>>; (29)Note that any further C2-smooth change of coordinates that involves only ~v and~" but leaves ~u unchanged, does not alter the form of this normal form equations.We may therefore perform a linear transformation of ~v and ~" and suppose that the~v-direction corresponds to the zero eigenvector (�1=f 0(u0); 1; 0)T , i.e. dT (u0; v0; 0)maps (�1=f 0(u0); 1; 0)T onto (0; 1; 0)T . In addition, we may suppose that the eigen-vector of the hyperbolic eigenvalue is mapped onto the �rst basis vector.Concerning the Jacobian J , there are two cases that have to be distinguished de-pending on whether g(u0) is zero or not. in the �rst case, which was called case Aabove, g(u0) 6= 0 and the generalized kernel of J is spanned by the two vectors0BBB@ � 1f 0(u0)10 1CCCA and 0BBB@ 0�1�f 0(u0)g(u0) 1CCCA :Since in the new coordinates the center manifold W c(0) is exactly the (~v; ~")-plane,these two vectors will be mapped by dT (u0; v0; 0) to two vectors spanning this centermanifold. In the other case B, where g(u0) = 0, but g0(u0) 6= 0, there is an two-dimensional eigenspace to the zero eigenvalue spanned by0BBB@ � 1f 0(u0)10 1CCCA and 0BB@ 001 1CCA :81
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((~v0; ~"0; ~v); ~v)(~"0; ~v0)Figure 18: The foliation within W c(0)In other words, these two vectors span the tangent space of the center manifold.Another change of variables not a�ecting ~u will lead to the result that we cansuppose S(~v; ~") � 0 and ~" = ". The reason for this is the fact that for the originalequation there is an invariant foliation due to the invariance of the planes f" =const:g. As our calculation of the tangent space T(u0;v0;0)W c(0) has shown, the (two-dimensional) leaves of this foliation intersect the center manifold transversally at(u0; v0; 0). In fact, for the leaf corresponding to " = 0 the intersection is exactlythe curve fv + f(u) = 0g. The foliation is of course preserved by the coordinatechange. So, in the new coordinates the leaves of this foliation are of class C2 andtheir intersection with the center manifold induces at least locally a foliation of thecenter manifold. The ~v-axis f~" = 0g is a leaf of this foliation in the center manifold,so locally the leaf through (~v0; ~"0) is a graph over the ~v-axis:~" = (~v0; ~"0; ~v)Straightening these �bers is achieved by the di�eomorphismG(~v; ~") = (~v; (~v; ~"; 0)):82



Since the �bers are invariant under the ow of (29), after this transformation, thevector �eld has already the form given in lemma A.1. A change of ~" assigning eachof these leaves its original " yields that we can suppose ~" = ".The claims on A(0; 0) and R(~v; 0) are easily veri�ed because a C2-change of variablesdoes not a�ect eigenvalues and because the ~v-axis consists entirely of equilibriumpoints.In case B for every " there is exactly one equilibrium point corresponding to thepoint (u0; v0) in the old coordinates. By a (last) �ber preserving transformation onecan achieve that all these equilibrium points lie on the "-axis and thus R(0; ") = 0.The fact that the equilibrium point (u0; v0) does not depend on " implies thatdT (u0; v0; 0) maps the basis vector (0; 0; 1)T to itself. Altogether, we have nowdT �1(0; 0; 0) = 0BB@ 1 �1=f 0(u0) 00 1 00 0 1 1CCA : (30)There is still some freedom since we could stretch the axes, but this is the form wewill use in the next chapter. 2B Leaving a neighborhood of CThe normal form derived in the preceding section now serves as the basic tool toestimate the time a trajectory takes from the singular curve C to a section at a�nite distance � from C. At " = 0, both C and the manifold B corresponding to theboundary condition coincide. The two cases A and B di�er in the way how B andC separate for positive ".B.1 Transition time analysis for case AIn case A the normal form near an equilibriumpoint (u0; v0; 0) of (28) with f 0(u0) 6= 0and g(0) 6= 0 is used. The point (u0; v0 is mapped onto ~u = ~v = 0 and for j~uj; j~vj < �and " < "0 the vector �eld has the form_~u = A(~v; ") ~u83



_~v = R(~v; ")The points corresponding to the boundary condition v + f(u) = 0 form a two-dimensional manifold B. Since we want to perform the calculations in the newcoordinates ~u and ~v of lemma A.1 it is important to know how B looks like in thesecoordinates. In the original coordinates, the tangent space T(u0;v0;0)B in (u0; v0; 0)is spanned by the vector (�1; f 0(u0); 0)T which lies in the (plane) center manifoldW c(0) and the vector (0; 0; 1)T which has a component in the orthogonal complementof W c: 0BB@ 001 1CCA ��0BB@ 001 1CCA = � g(u0)(f 0(u0))2 0BB@ 100 1CCAwhere � is the orthogonal projection onto W c. So the distance between the twomanifolds B and C to �rst order grows proportional to " and B can therefore bewritten as a graph ~u = "	(~v; ") (31)with 	(0; 0) = � g(u0)(f 0(u0))2 6= 0The geometric situation of this case is depicted in �gure 19.Using representation (31) of B, the normal form from lemma A.1 will yield anestimate for the time t0 from a point (~u0; ~v0) on B to a section � := fj~uj = �g. Itdepends on the sign of 	(0; 0) whether f~u = �g or f~u = ��g is the right choice butsince both cases are treated in exactly the same way we restrict ourselves to the �rstcase that corresponds to g(u0) < 0.From lemma A.1 we have R(~v; 0) = 0 and thereforeR(~v; ") = "R1(~v; "):The ~v-equation from (27) then reads_~v = "R1(~v; ")and the solution with initial value ~v0 can be written as~v(s) = ~v0 + ~v1("s)84
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Figure 19: The geometry of case Awith ~v1(0) = 0:Integrating the ~u-equation _~u = A(~v; ") ~ugives the following condition on the time t0:" �	(~v0; ") � exp(Z t00 A(~v(s); ") ds) = �85



which is equivalent to Z t00 A(~v(s); ") ds = ln �"	(~v0; ")! : (32)Because A is bounded in a neighborhood of (0; 0) this already shows thatt0= ln �"	(~v0; ")! is bounded for j~v0j � �; " � "0:This asymptotic behaviour of t0 suggests the scaling that is to be used in a few lines.Before, we decompose A(~v(s); ") asA(~v(s); ") = A(~v0; 0) +A(~v0 + ~v1("s); ")�A(~v0; 0)= A(~v0; 0) +A1(~v0; "; "s)where A1 is a function satisfying A1(~v0; 0; 0) = 0:Using this decomposition in (32) and introducing � := "s as a new integrationvariable yields the equationt0 �A(~v0; 0) + 1" Z "t00 A1(~v0; "; �) d� = ln �"	(~v0; ")!() t0 � A(~v0; 0)ln � �"	(~v0;")� + 1" ln � �"	(~v0;")� Z "t00 A1(~v0; "; �) d� = 1:With the new variable � that is de�ned as1 + � := t0 � A(~v0; 0)ln � �"	(~v0;")�and compensates the asymptotic behaviour of t0 as " tends to 0, it is possible tode�ne a function F(�; ~v0; ") in a neighborhood of � = ~v0 = " = 0 such that (B.1)corresponds to F(�; ~v0; ") = 0. An application of the implicit function theorem willthen yield a solution � = �(~v0; ") and from this solution � it will be possible tocalculate t0(~v0; "). 86



We de�ne thusF(�; ~v0; ") = 8>>>>>>>>><>>>>>>>>>: �+ (�" ln (��1"	(~v0; ")))�1 R�" ln(��1"	(~v0;")) 1+�A(~v0;0)0 A1(~v0; "; �) d�; " > 0� ; " = 02��F(�; ~v0;�") ; " < 0:In other words, F(�; ~v0; ")�� is an odd function in ". Of course, it remains to showthat F is continuous. This has only to be checked at points where " = 0. As " tendsto 0 from above, also " ln �"	(~v0; ")! 1 + �A(~v0; 0) ! 0and the integral term in F , representing the average of A1 over an interval of thatlength, tends to A1(~v0; 0; 0) = 0. Thus, F has a one-sided limit as "& 0 and due tothe construction of F for " < 0 it is continuous. Note that especially � = " = 0 withany ~v0 is a solution of the equation F(�; ~v0; ") = 0. To apply the implicit functiontheorem near such a point, di�erentiability of F with respect to � has to be proved.The derivative @F@� is easily computed for �; " 6= 0:@F@� (�; ~v0; ") = 1 + 1A(~v0; 0)A1  ~v0; "; " ln( �"	(~v0; ")) 1 + �A(~v0; 0)!Again, A1(~v0; 0; 0) = 0 shows that @F@� tends to @F@� (�; ~v0; 0) = 1 as " ! 0, and theimplicit function theorem applies near every point with � = " = 0 and yields asolution � = �(~v0; ") of F(�; ~v0; ") = 0. Thus, the time t0 from the curve C to asection f~u = �g is t0(~v0; ") = 1 + �(~v0; ")A(~v0; 0) ln �"	(~v0; ")! :Di�erentiating this expression with respect to ~v0 shows immediately that@t0@~v0 �  ln �"	(~v0; ")!!�1is bounded for " 6= 0. Summarizing, we have the following:87



Proposition B.1 The time a trajectory needs from a point (~u0; ~v0) on the singularcurve C to a section f~u = j�jg is a function t0(~v0; ") witht0(~v0; ") = O  ln �"	(~v0; ")!!and @t0@~v0 (~v0; ") = O  ln �"	(~v0; ")!!as "! 0.Remark: All the normal form calculations were performed in the fast coordinates.Due to the scaling by a factor " the preceding proposition implies for the originaltrajectory that Tinitial = O(" ln(1")):B.2 Transition time analysis for case BIn case B the normal form is calculated near an equilibrium point (u0; v0; 0) of (28)with f 0(u0) 6= 0 and g(u0) = 0, but g0(u0) 6= 0. As in case A the �rst questionis, how the boundary condition v + f(u) = 0 is transformed to the normal formcoordinates. In case B the manifold B and the center manifold are tangent to eachother, so second order terms are needed to describe the distance between the twomanifolds. From the considerations at the end of chapter 4 about the normal formin case B, we know already the linear part dT �1. So we just add the second orderterms of the Taylor expansion of T �1 and compare the coe�cients of the vector �eldin old and new coordinates. To this end, the transformation T �1 is written in theform u = �(~u; ~v)= ~u+ �010~v + �200~u2 + �110~u~v + �020~v2 + �011~v"+ �101~u"+ �002"2+O �(j~uj+ j~vj+ j"j)2�v =  (~u; ~v)=  100~u+ ~v +  200~u2 +  110~u~v +  020~v2 +  011~v"+  101~u"+  002"2+O �(j~uj+ j~vj+ j"j)2� 88



From lemma A.1 we know that in case B both R(~v; 0) = 0 and R(0; ") = 0 so R hasthe form R(~v; ") = r11"~v + O((j~vj+ j"j)2):Plugging this into the equation (28) one gets a very long formula that we are notgoing to write down here. We just note the following results from the comparisonof coe�cients:Comparing the ~v-term of the �rst equation one gets  100 = 0From the ~v-term of the �rst equation : �010 = � 1f 0(u0)From the ~u2-term of the second equation :  200 = 0From the ~u2-term of the �rst equation : �200 = f 00(u0)2f 0(u0)From the ~u~v-term of the second equation :  110 = 0From the "~u-term of the second equation :  101 = � g0(u0)f 0(u0)From the "~v-term of the second equation : r11 = g0(u0)f 0(u0)With this coe�cients of T the boundary condition v + f(u) = 0 in the new coordi-nates reads Fbc(~u; ~v; ") = 0whereFbc(~u; ~v; ") := f 0(u0)~u+12f 00(u0)~u2�f 00(u0)f 0(u0) ~u~v� g0(u0)f 0(u0)"~u� g0(u0)f 0(u0)2"~v+O �(j~uj+ j~vj+ j"j)2�and since f 0(u0) 6= 0 we get by the implicit function theorem near ~u = ~v = " = 0 asolution of Fbc(~u; ~v; ") = 0 of the form ~u = ~ubc(~v; "). We have@~ubc@" (0; 0) = @~ubc@~v (0; 0) = 0:Important is the mixed derivative@2~ubc@"@~v (0; 0) = � @Fbc@~u (0; 0; 0)!�1 @2Fbc@"@~v (0; 0; 0) = � g0(u0)(f 0(u0))3 :Hence, the boundary condition v + f(u) = 0 is transformed into~u = "~v	(~v; ")with 	(0; 0) = � g0(u0)(f 0(u0))3 :89
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Figure 20: The geometry in case BSince we have R(~v; 0) = 0 as well as R(0; ") = 0, the ~v-equation from (27) can bewritten as _~v = "~vR1(~v; ")with R1(~v; ") = g0(u0)f 0(u0) + O(j~vj+ j"j):We will assume that the domain fj~uj; j~vj � �; " � "0g, where the normal form isvalid, is taken so small that12 jf 0(u0)j � jA(~v; ")j � 2jf 0(u0)j; (33)90



12 jg0(u0)j � jR1(~v; ")j � 2jg0(u0)j (34)and 12 ����� g0(u0)f 0(u0)3 ����� � j	(~v; ")j � 2 ����� g0(u0)f 0(u0)3 ����� : (35)We then have the (crude) estimate~v(s) � ~v0 exp(2jg0(u0)j"s) (36)as long as ~v(s) � �.We can now turn to the other equation_~u = A(~v; ") ~uAgain the time t0 is to be determined a trajectory takes from C to a section � :=f~u = �g. We have to estimate t0 from the equationZ t00 A(~v(s); ") ds = ln �"~v0	(~v0; ")! :With the simple bounds on A and 	 from (33) and (35) we get estimates for t0:12 �����f 0(u0) ln �f 0(u0)3"~v0g0(u0)!����� � t0 � 2 �����f 0(u0) ln �f 0(u0)3"~v0g0(u0)!����� :This estimates will su�ce to show the next proposition.Proposition B.2 Fix � small and some T > 0. Then for any " small enough thereexists a point (~u0; ~v0) on B such that the time for a trajectory starting in (~u0; ~v0) toa section � := fj~uj = �g is exactly T=".Remark: Translated back into the original "slow time" x this yields a trajectorythat needs exactly time T between the manifold B and the section �.Proof: It su�ces to show that for any small " we can �nd a point (~u1; ~v1) on B suchthat a trajectory starting from this point will hit the section fj~uj = �g after sometime which is strictly smaller than T=". Since the time a trajectory needs from B to� tends to in�nity if the starting point (~u0; ~v0) on B approaches (0; 0), by continuityof the time map between B n f0; 0g and � the proposition follows.91



Using the upper estimate for t0, we can get a lower bound on ~v0: If~v0 � 2�f 0(u0)3g0(u0)" exp(� T2"jf 0(u0)j)then the time from B to � will be less than T=".We have to check only, that for such an initial ~v0 the condition ~v(T=") � � can besatis�ed for otherwise our estimates are not valid. With the estimates from (36) wehave immediately that for the initial condition~v0 = 2�f 0(u0)3"g0(u0) exp(� T2"jf 0(u0)j)we obtain ~v(T" ) � 2�f 0(u0)3"g0(u0) exp(� T2"jf 0(u0)j) � e2jg0(u0)jTwhich clearly tends to 0 as " ! 0. Thus, for " su�ciently small, ~v remains in thedomain of the normal form long enough and we are �nished. 2Remark: All the transition times were calculated using sections of the special formf~u = const:g while the claims in chapter 5 used sections of the form fu = const:g.The di�erent choice of sections does not a�ect the asymptotic estimates, since bothsections are at a certain distance from the singular curve such that trajectories needonly a time of order O(") between them.References[AF88] S. Angenent and B. Fiedler. The dynamics of rotating waves in scalarreaction di�usion equations. Trans. AMS, 307:545{568, 1988.[Ama85] H. Amann. Global existence for semilinear parabolic systems. J. ReineAngew. Math., 360:47{83, 1985.[AMPP87] S. Angenent, J. Mallet-Paret, and L. A. Peletier. Stable transition layersin a semilinear boundary value problem. J. Di�. Eq., 67:212{242, 1987.[Ang88] S. Angenent. The zero set of a solution of a parabolic equation. J. ReineAngew.Math., 390:79{96, 1988.92
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ZusammenfassungIn der vorliegenden Arbeit werden globale Attraktoren von viskosen Erhaltungs-gleichungen mit Quellterm (sogenannte \balance laws") untersucht. Bei diesenGleichungen handelt es sich um skalare parabolische Di�erentialgleichungenut + (f(u))x = g(u) + "uxx ; 0 < x < 1auf dem Einheitsintervall, die von einem kleinen Parameter " abh�angen. In dervorliegenden Dissertation werden dazu Neumann-Randbedingungen gew�ahlt.F�ur festes " besteht der globale AttraktorA" aus station�aren (d.h. zeit-unabh�angigen)L�osungen der parabolischen Gleichung und aus heteroklinen Orbits zwischen ver-schiedenen station�aren L�osungen.Im gut verstandenen sogenannten \Chafee-Infante-Fall" f � 0 stellt sich heraus[CI74, Hen85], da� die Anzahl der station�aren L�osungen und sogar die Dimensiondes globalen Attraktors gegen unendlich strebt f�ur "& 0.Das Verhalten f�ur f 6� 0 ist jedoch vollkommen anders.Die Dissertation enth�alt dazu drei Hauptresultate:In Theorem 1.1 wird bewiesen, da� schon unter schwachen Voraussetzungen an fund g die Dimension des Attraktors A" beschr�ankt bleibt f�ur "& 0.Theorem 1.2 zeigt eine Stabilisierung der Dimension dimA" unter nur leicht st�arkerenVoraussetzungen: Es existiert eine nat�urliche Zahl d, so da� f�ur alle gen�ugend kleinen" gilt: dim A" 2 fd; d + 1g:Allerdings kann nicht ausgeschlossen werden, da� die Anzahl der station�aren L�osungen�uber alle Schranken w�achst, wenn " gegen 0 strebt.Theorem 1.3 schlie�t diese L�ucke wenigstens f�ur den Fall konvexer f , in dem dieauftretenden globalen Attraktoren h�ochstens zwei-dimensional sind.95
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