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1 IntroductionThis paper is devoted to the study of global attractors of a class of singularly per-turbed scalar parabolic equations depending on a small parameter ". These equa-tions possess a special structure allowing for a detailed description of the globalattractor. Many properties of the attractor can be deduced using information onequilibria and their variational equations only. This leads to the study of certainsingularly perturbed boundary value problems which in general have many solutions.As proposed by Allen and O'Malley [1] for problems where qualitative informationon solutions is sought rather than high order approximations we use phase planemethods to describe the solutions of the boundary value problem.As " tends to zero one typically expects that the global attractor has either a verysimple structure (e.g. consists of one stable equilibrium only) or that its dimensiontends to in�nity. The rather surprising result of this paper consists of the proofthat for a large class of nonlinearities the dimension of the global attractors staysbounded as " tends to zero.1.1 Global attractors of scalar parabolic equationsSemiows generated by scalar semilinear parabolic equations are a class of in�nite-dimensional dynamical systems whose qualitative behavior has been an object ofintensive research during the last �fteen years. It has been shown that the equationut = uxx + h(x; u; ux) ; h 2 C2 (1)with Neumann boundary conditionsux(0) = ux(1) = 0and initial condition u(0; x) = u0(x) (2)gives rise to a (local) C1-semiow on the Sobolev space X � W 2;2([0; 1]; IR) offunctions satisfying the boundary conditions at x = 0 and x = 1. The associatedsemigroup T assigns to each pair (t; u0) the solution pro�le u(t; �) of (1) at time t > 0that satis�es the initial condition (2) at time t = 0. If the nonlinearity h satis�es1



some growth and sign conditions, the semiow is global and dissipative, i.e. solutionsexist for all (positive) times and there exists a large ball B � X such that everysolution u(t) will eventually stay in this ball. Due to the smoothing properties of theLaplacian, T (t; �) is compact for all t > 0. Under these conditions a global attractorA exists, de�ned as a maximal compact invariant set in B that attracts all boundedsubset of X, see e.g. the monograph of Hale [16] for theorems in this rather generalsetting of compact and dissipative semigroups. This global attractor consists of allorbits that are de�ned for all (positive and negative) times t and that are uniformlybounded.There are two special features of scalar parabolic equations that allow for a moreprecise description of the global attractor:(a) a gradient structure and(b) nodal properties.Concerning (a), Zelenyak [28] showed already in the sixties that equation (1) pos-sesses a Lyapunov functional. Except at equilibria, this Lyapunov functional de-creases along trajectories. Since this Lyapunov functional can be shown to bebounded on bounded sets, any orbit that stays uniformly bounded for all t � 0will tend to the set of equilibria of (1), i.e. the set of time independent solutions. Inother words, the !-limit set of a single point u0 2 X is contained in the set E ofall equilibria. Matano [25] showed that it even consists of exactly one equilibrium.The same arguments hold for negative t if a trajectory is de�ned there. So, forevery trajectory that is de�ned and bounded for all t < 0, the �-limit set is alsoan equilibrium. Using the above characterization of the global attractor A as theunion of all uniformly bounded trajectories that are de�ned also for all negative t,we obtain the following description of the global attractor:Proposition 1.1 A = Se2E W u(e), where E is the set of all equilibria and W u(e)is the unstable set of e. It consists of� the set E of equilibria and� heteroclinic orbits connecting di�erent equilibria.To re�ne this description, consider now the eigenvalue problem associated with thelinearization of (1) at an equilibrium v:wxx + @uh(x; v(x); vx(x))w + @ph(x; v(x); vx(x))wx = �wwx(0) = wx(1) = 0 9=; (3)2



De�nition 1.2 An equilibrium v is called hyperbolic if 0 is not an eigenvalue ofthe linearization at v, i.e. if (3) has no nontrivial solution for � = 0.De�nition 1.3 The Morse index i(v) of a hyperbolic equilibrium v is the numberof positive eigenvalues of the linearization at v.In other words, i(v) is the dimension of the unstable manifoldW u(v). If all equilibriaare hyperbolic then the global attractor is the �nite union of equilibria and theirunstable manifolds.It is a classical observation by Sturm that the eigenvalues are connected to theoscillation properties of the eigenfunctions. There is a sequence of simple eigenvalues�0 > �1 > : : : ; �n ! �1 as n!1and the eigenfunction wk associated with �k has exactly k zeroes in the open interval(0; 1).If h = h(u; ux) does not depend explicitly on x, there is an important relationbetween the Morse index of an equilibrium v and the number z(vx) of strict signchanges of vx de�ned asz(v) := supfn 2 IN;90 < x1 < : : : < xn < 1 with v(xi) � v(xi+1) < 0 ; 1 � i < ngz(0) := 0:Proposition 1.4 If h = h(u; ux) does not depend on x, then:(i) the Morse index of any nonconstant hyperbolic equilibrium v is either z(vx) orz(vx) + 1.(ii) the linearization at a nonconstant non-hyperbolic equilibrium v possesses onezero eigenvalue and z(vx)� 1 or z(vx) positive eigenvalues.This can be proved by a simple application of the Sturm comparison theorem to vxand the eigenfunctions wn�1 and wn where n = z(vx) + 1.In case (ii), Henry [22] has shown that the center-unstable manifold W cu(v) is amanifold with boundary which has dimension z(vx) or z(vx) + 1.The second peculiarity of scalar parabolic equations is the existence of a discreteLyapunov functional connected to the zero number z(u(�)) of the solution u in (0; 1).3



Already Sturm recognized that the zero number z(u1(t; �)�u2(t; �)) of the di�erenceof two solutions u1 and u2 is non-increasing in time. In a recent version, Angenent[3] shows that z(u1(t; �)�u2(t; �)) drops strictly at time t if u1(t; �)�u2(t; �) possessesa multiple zero. One consequence of those nodal properties is the Morse-Smale prop-erty of the attractor: There can only exist heteroclinic connections from equilibriawith higher Morse index to such with lower Morse index.1.2 Equilibria and connectionsSince the global attractor is the union of equilibria and connecting orbits, given a spe-ci�c equation, one may want to �nd the equilibrium solutions �rst and think aboutconnecting orbits afterwards. The equilibria are simply solutions of the boundaryvalue problem uxx � h(x; u; ux) = 0ux(0) = ux(1) = 0: 9=; (4)The next step in the description of the attractor consists of �nding criteria whethertwo given equilibria are connected by a heteroclinic orbit or not. This questionwas �rst adressed by Brunovsk�y and Fiedler [7, 8] in the case of a nonlinearitydepending on u only. Later, Fiedler and Rocha [13], could show that also in caseh = h(x; u; ux) all information on the connections can already be derived from theequilibrium solutions. Their work uses the observation of Fusco and Rocha [15] thatall information on the Morse indices of the equilibria as well as on zero numbers ofdi�erences of equilibria is contained in the ordering of the equilibrium solutions atx = 0 and x = 1. Their statement is a constructive one: for a given nonlinearityh, from the knowledge of all equilibrium solutions, one can determine explicitly theMorse indices and the zero numbers of the di�erence of two equilibria.Based on this, Fiedler and Rocha [13] gave explicit criteria to decide whether twoequilibria are connected.1.3 Singular perturbationsWe introduce now a small positive parameter " in front of the di�usivity term of theparabolic equation (1), which thereby becomesut = "uxx + h(x; u; ux)ux(0; t) = ux(1; t) = 0: 9=; (5)4



It is easy to check that most of the statements above do not depend on ". Itneither inuences the global existence nor the dissipativeness and compactness ofthe ("-dependent) semigroup. Thus, for each �xed " > 0 equation (5) possesses aglobal attractor A". In general, this attractor A" will vary with ". In particular,hyperbolicity of all equilibria will not hold for all " as the following 'classical' exampleshows.Consider a nonlinearity h = h(u) not depending on x and ux, e.g. the cubic h(u) =u(1 � u2). Chafee and Infante [9] showed that the equilibrium u � 0 undergoesa sequence of pitchfork bifurcations at values " = (l�)�2, l = 1; 2; : : :. At eachof these pitchfork bifurcations two new equilibria appear and the Morse index ofu � 0 is increased by one. Hence there are two problems in getting a descriptionof the attractor as " tends to 0: the number of equilibria and the dimension of theattractor both tend to in�nity. It is not di�cult to see that this behaviour is typicalfor nonlinearities depending on u only. In this case the equilibria satisfy the equation"uxx + h(u) = 0;which has a Hamiltonian structure. By rescaling x = p"� the equilibrium equationbecomes u�� + h(u) = 0; (6)and does not depend on " any more, only the boundary condition at x = 1 istransformed into u�("�1=2) = 0 and contains the parameter ". If h has at leasttwo zeroes then (6) admits for families of periodic orbits that accumulate onto ahomoclinic orbit or a pair of heteroclinic orbits. A solution of (6) following one ofthese periodic orbits with period p, say, k2 turns is a solution of the boundary valueproblem if "�1=2 = k2 � p. It is now easy to see that the following alternative holds,depending on whether h has exactly one or more than one zero: Either there is onlyone (spatially homogenous) equilibrium that does not depend on ", or the attractorA" blows up in the way described above.A natural question to ask is, whether the same is true for more general nonlinearitiesh. There are some results indicating that for h = h(x; u) the behaviour is rathermore complicated. While for h not depending on x and the gradient ux all noncon-stant equilibria are unstable, Angenent, Mallet-Paret and Peletier [5] found stablesolutions which develop a transition layer. Later, Hale and Sakamoto [17] describedalso unstable equilibrium solutions with transition layers.Theorem 1.1 below shows that for a class of nonlinearities h of the special formh(x; u; ux) = (f(u))x+g(u) a di�erent behaviour of A" occurs: The dimension of A"5



remains bounded for all small ". This shows that convection can prevent, at leastin some cases, the attractor from blowing up.Theorem 1.1 Consider the singularly perturbed parabolic equation of the specialform ut + (f(u))x = "uxx + g(u); f; g 2 C3: (7)with Neumann boundary conditions.Assume that(H1) g is a dissipative function, i.e.u � g(u) < 0 8 juj > R (8)with some (large) constant R.(H2) the critical points of f are quadratic folds, i.e. f 0(u) = 0) f 00(0) 6= 0(H3) the derivative of f does not vanish at zeroes of g.Then the dimension of A" remains bounded as "! 0.Note that condition (H1) is open with respect to the strong Whitney topologywhile the conditions (H2) and (H3) persist under C2-small perturbations. Hencetheorem 1.1 is a rather general statement.The rest of the paper is organized in the following way: Chapter 2 deals with viscousbalance laws. Chapter 3 contains an investigation of equilibrium solutions to theviscous balance law and the proof of theorem 1.1. The paper concludes with a shortdiscussion.2 Balance LawsViscous balance law is a term used for a scalar parabolic equation of the form (7).We will study this equation on the unit interval with Neumann boundary conditionsux(0) = ux(1) = 0and initial data u(0; �) = u0(�) 2 W 1;2:6



Here f and g are of class C2 and g satis�es the dissipativeness assumption (H1).The parameter " is very small and adds some viscosity to the usual \balance law"ut + (f(u))x = g(u): (9)Balance laws are a generalization of conservation lawsut + (f(u))x = 0where a source term g(u) is present. As with conservation laws, for balance lawsthere are in general no global smooth solutions even for arbitrarily smooth initialdata. After a �nite time, shocks are formed. For x on the whole real line, Kruzhkov[23] showed that under some admissibility condition for any bounded measurable u0there is a unique solution of the hyperbolic equation (9). On �nite time intervalsthe solution of the viscous balance law (7) converges to this unique solution as "tends to 0.Only recently conservation as well as balance laws on an interval have attracted moreattention. This is mostly due to the occurence of steep transition layers that movevery slowly [26]. With these property, these second order scalar equations serveas crude models for phase transitions or semiconductors [6]. Especially, they areused as test problems for numerical analysists who are interested in the numericaltreatment of more complicated (and hopefully more realistic) problems, e.g. higherdimensional equations describing phase transitions.One di�erence between scalar conservation laws and balance laws is the fact thatsolutions of balance laws need not decay to a spatially homogenous state as timetends to in�nity. In the case of x 2 IR and periodic initial data it was shown 1970 byGlimm and Lax that solutions of scalar conservation laws decay like O(t�1) to theirspatial average when the time t tends to in�nity. This is not true for balance laws:There may exists periodic solutions and at least in the case of f being convex, aPoincar�e-Bendixson type result holds: Every solution either tends to an equilibriumor to a periodic orbit, which is a traveling wave then. This result was shown byLyberopoulos [24], Fan & Hale [10] and also by Sinestrari [27] and ressembles verymuch the results in the parabolic case treated in Angenent & Fiedler [4] and Fiedler& Mallet-Paret [12] although the methods are quite di�erent.Local existence of weak solutions of solutions for the parabolic equationut + (f(u))x = g(u) + "uxx (10)7



with Neumann boundary conditions can be shown by semigroup methods as in thebook of Henry [21]. The (unbounded) linear operator "uxx together with the Neu-mann boundary conditions generates an analytical semigroup on the spaceW 1;2(0; 1)and the smoothness assumptions on f and g are su�cient to guarantee a local so-lution of (10). This solution lies in the domain of the in�nitesimal generator, i.e. inthe space X � W 2;2 of functions which satisfy the Neumann boundary conditions.Furthermore, the time derivative ut(t; �) is H�older continuous so by elliptic Schauderregularity theory the solution is a classical solution. This allows to talk aboutderivatives of the solution, to use maximum principles involving uxx, etc..Although this could also be derived from general theorems by Amann [2], it willbe shown here in an elementary way that the local solutions of the viscous balancelaw (10) exist globally in time and that dissipativeness is guaranted by the signcondition (8) on g.Global existence of solutions will be shown via some a-priori estimates on u and thederivative ux:Lemma 2.1 If u satis�es equation (7) for all t 2 [0; T ], then:(i) ku(T; �)kL1 � C(u0) independent of "(ii) kux(T; �)kL2 � C(u0; ")Proof: (i) follows from a maximum principle. Due to the dissipativeness condition(8), in any positive maximum u(x0; t0) with 0 < t0 � T and ju(x0; t0)j > Rut = " uxx|{z}�0 � f 0(u)ux| {z }=0 + g(u)| {z }<0 < 0:In the same way we can conclude that in any negative minimum u(x0; t0) with0 < t0 � T and u(x0; t0) < �R we have ut > 0. Therefore, the L1-norm decreasesas long as u(t; �) takes values outside [�R;R] and hencekukL2 � kukL1 � max fR; ku(0; �)kL1g =: C:To proof claim (ii), �rst note that for u 2 W 2;2kuxk2L2 = Z 10 u2xdx � Z 10 juuxxjdx � kukL2kuxxkL2hence for any solution u �kuxxk2L2 � �C0 � kuxk4L2where the constant C0 := 1C28



depends on u0. Furthermore,Z 10 f 0(u)uxuxx dx � maxjuj�C jf 0(u)j � kuxkL2kuxxkL2� "2kuxxk2L2 + C2"kuxk2L2 :Multiplying equation (7) by uxx one obtains after integratingddt 12kuxk2L2 = �"kuxxk2L2 � Z 10 f 0(u)uxuxx dx+ Z 10 g0(u)u2x dx� �"2kuxxk2L2 � "C02 kuxk4L2 + "2kuxxk2L2 + C2�kuxk2L2 + C(u0)kuxk2L2� 0 for kuxkL2 � C(u0; ")) kux(t; �)kL2 � maxfkux(0; �)kL2 ; C(u0; ")g 2This lemma implies immediately that all solutions exist globally in time and that(forward) orbits are bounded in W 1;2. Due to the variational structure of equation(7), for any u0 2 W 1;2 the !-limit set of u0 is contained in the union of the equilibriumsolutions of (7). To prove dissipativeness, it remains only to show that for any �xed" the equilibrium solutions form a bounded set. Below we will study equilibriumsolutions in detail and for this reason we postpone the proof of boundedness to lemma3.4. Here we only note that the boundedness of the set of equilibrium solutionsimplies the dissipativeness of the semiow.3 Equilibrium solutions3.1 A singularly perturbed boundary value problemSince, by de�nition, equilibrium solutions do not depend on time t, we will writefor these solutions simply u(x) instead of u(x; t). Equilibrium solutions of (7) aresolutions of the boundary value problem"uxx � (f(u))x + g(u) = 0ux(0) = ux(1) = 0: 9=; (11)9



This singularly perturbed boundary value problem can be written as a �rst ordersystem "ux = v + f(u)vx = �g(u)ux(0) = ux(1) = 0; 9>>=>>; (12)a choice of coordinates which is sometimes called the \Li�enard plane" in contrast tothe more common \phase plane" where v = ux.Note that the boundary condition in (12) could also be written in the formv(x) + f(u(x)) = 0 at x = 0 and x = 1 ;so, geometrically speaking, we are looking for trajectories of (12) which take exactly\time" �x = 1 to join two points on the curve v + f(u) = 0. To avoid too muchconfusion between time and space variables, we recast (12) in the form"u0 = v + f(u)v0 = �g(u)x0 = 1 9>>=>>; (13)0 < s < 1u0(0) = u0(1) = x(0) = 0where 0 denotes di�erentiation with respect to a new variable s that looks morelike a time variable than x does, although obviously x � s. Below, methods fromsingular perturbation theory are used that compare system (13) for small " withsome limiting systems for " = 0. There are di�erent possibilities to perform thislimit, leading to the so called \slow" and \fast" systems which both describe a partof the limiting behaviour of system (12). The di�erence originates in a di�erentscaling of the variable s.Setting " = 0 in equation (12), we arrive at the \slow system"0 = v + f(u)v0 = �g(u):Here the motion is con�ned to a curve given by the �rst of the two equations, whilethe second one describes the ow along this curve. Since this curve will play aspecial rôle later on it deserves a name on its own:De�nition 3.1 The curve C given by the equation v + f(u) = 0 in the (u; v)-planeis called the singular curve. 10



Note that ux = 0 exactly where the trajectory hits or crosses the curve C. Later,when we have to determine z(ux) to use lemma 1.4 we will use this property: Insteadof counting the extrema of u, we can simply count the number of intersectionsbetween the trajectory and the curve C.System (12) can also be scaled in another way. If the second equation is multipliedby " and the variable s is rescaled according to s = "�, we arrive at_u = v + f(u)_v = �"g(u):with _ denoting the derivative with respect to the fast variable �. Putting " = 0, the\fast system" _u = v + f(u)_v = 0is obtained. Here, the singular curve consists of equilibrium points only. Accordingto the stability of these equilibria, parts of C where f 0 > 0 are called unstable arcsof C, while the parts with f 0 < 0 are called stable arcs.3.2 Proof of theorem 1.1From the three assumptions of theorem 1.1, we have already used one: The dis-sipativeness (H1) of g was necessary for the existence of a global attractor. Thecondition (H2) that all zeroes of f 0 be simple is not the best possible. It can prob-ably be weakened on the price of longer and more complicated calculations. Let usjust mention in short that the assumption (H3) which states that no zeroes of g lieon the fold points of the singular curve C is necessary to prevent a blow-up of A"similar to the Chafee-Infante example presented in the introduction.We begin with a short outline of the proof. Recall the characterization of A" as theunstable manifold of the set E of equilibria. If all equilibria are hyperbolic then theyare isolated and the attractor is contained in the union of the unstable manifolds ofall single equilibria. The hyperbolicity of all equilibria is not guaranteed under theweak assumptions of theorem 1.1, such that we have to consider the possibility of anon-hyperbolic attractor, too. In this case a bound on the dimension of the center-unstable manifolds of the equilibria will be derived. We will distinguish betweenspatially homogenous and non-homogenous equilibrium solutions. It will turn out,that for the homogenous solutions the linearization has at most one non-negative11



eigenvalue. For the spatially non-homogenous equilibria, in view of lemma 1.4 itis necessary to prove that for some integer N and all small " any equilibrium hasat most N extrema. This will be an immediate consequence of lemma 3.6 wherewe will prove that three extrema of an equilibrium solution u cannot be arbitrarilyclose to each other. On the way to this lemma, we collect some properties of thetwo-dimensional system "u0 = v + f(u)v0 = �g(u) 9=; (14)for small ".Observe �rst that the equilibrium points of system (14) lie on the curve C and haveas u-coordinates exactly the zeroes of g. Due to assumption (H3), the eigenvalues�1;2 = f 0(u0)�qf 0(u0)2 � 4"g0(u0)2"of the linearization at such an equilibrium (u0; v0) turn out to be real for small "and behave asymptotically like�1 � f 0(u0)" and �2 � g0(u0)f 0(u0) :If g0(u0) 6= 0 the corresponding equilibrium of (14) is hyperbolic and a saddle exactlyif g0(u0) < 0. If all zeroes of g are simple, the equilibria are alternately saddles andsources or sinks.Each of these zeroes of g corresponds to one homogenous equilibrium solution. Thenext step consists of showing that (e.g. in contrast to the Chafee-Infante case) thesehomogenous equilibrium solutions cannot become very unstable as " decreases.Lemma 3.2 If g(~u) = 0 then for " su�ciently small the �rst eigenvalue �0 of theequilibrium solution u � ~u is �0 = g0(~u)and all other eigenvalues are strictly negative. In particular, u � ~u is hyperbolic i�g0(~u) 6= 0 and in this case the Morse index is 0 for g0(~u) < 0 resp. 1 for g0(~u) > 0.Proof: For a homogenous equilibrium solution the eigenvalue equation is just alinear second-order boundary-value problem with constant coe�cients:"wxx � f 0(~u)wx + g0(~u)w = �wwx(0) = wx(1) = 0:12



The solutions of this second-order equation can be found easily to be of the formw(x) = c1e��(")x + c2e�+(")xwhere �� = f 0(~u)�qf 0(~u)2 � 4"(g0(~u)� �)2" :Thus, ��(") and �+(") are real iff 0(~u)2 � 4"(g0(~u)� �) > 0:It is easy to check that for real ��(") and �+(") the boundary value problem canonly have a solution if either �+(") = 0 or ��(") = 0. This in turn holds exactly for� = g0(~u). Other eigenvalues require ��(") and �+(") to be complex which is onlypossible for � < �f 0(~u)24" + g0(~u):Thus, for all su�ciently small ", � = g0(~u) has to be the �rst eigenvalue. 2The next de�nition keeps track of the fact that our interest is not in any trajectoryof (14), but mainly in those that correspond to solutions of the Neumann boundaryvalue problem.De�nition 3.3 An admissible trajectory of system (14) is a trajectory that cor-responds to a solution of the boundary value problem, i.e. it is a �nite piece of atrajectory u(s) that satis�es u0(0) = u0(1) = 0.Let us now state a simple lemma that allows us to restrict our attention to a �niterange of u.Lemma 3.4 Let f and g be as in theorem 1.1 and denote with umin and umax theminimal, resp. maximal zero of g. Then:(i) For any admissible trajectory (u(s); v(s)) of (14)umin � u(s) � umax 8s 2 [0; 1]:(ii) There are constants C; "0 such that for 0 < " � "0 along any admissibletrajectory of (14) u0(s) � C" 8s 2 [0; 1]:13
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Figure 1: Admissible solutions are con�ned to a bounded region in the Li�enardplaneProof : To prove part (i) indirectly, suppose that for some s 2 [0; 1] we haveu(s) < umin. The curve v + f(u) = 0 divides the region f(u; v);u < uming into twoparts. Since the vector �eld is vertical on the curve fv + f(u) = 0g and horizontalon the line u = umin the region f(u; v); u < umin; v < f(u)g is positively invariantwhile f(u; v); u < umin; v > f(u)g is negatively invariant, see �gure 1.If (u(s); v(s)) lies in the positively invariant region for some s then the right bound-ary condition can obviously not be satis�ed. If (u(s); v(s)) lies in the upper, nega-tively invariant region there is no chance of satisfying the left boundary condition.So a solution of the boundary value problem may not enter one of the two regions.It cannot stay on the curve fv + f(u) = 0g either since by assumption umin is theleftmost zero of g. Thus, there can be no solution of the boundary value problemthat takes a value less than umin. The argument excluding u(s) > umax is similar.Claim (ii) obviously follows by showing that"u0(s) = v(s) + f(u(s)) � C:14



To see this take vmax > supf�f(u) ; umin � u � umaxg+ 1and vmin < inff�f(u) ; umin � u � umaxg � 1:For " small enough the trajectory starting in (umin; vmax) will be almost horizontaland intersects the line u = umax without having hit the singular curve before. Sim-ilarly, the trajectory starting in (umax; vmin) stays below the singular curve until ithits the line u = umin. Therefore, all admissible trajectories are for small " con�nedto a bounded region of the (u; v)-plane. 2The restriction of admissible trajectories to a bounded region also yields an upperbound on v0:Along any admissible trajectory we havejv0(s)j � maxumin�u�umax jg(u)j =: Cg:There are also some restrictions on trajectories that are close to the curve C:Lemma 3.5 Consider again the system (14) and assume that f 0(u) < 0 (f 0(u) > 0)for all u 2 [u�; u+].Then:(i) For all su�ciently large k and all small " trajectories can leave (enter) a regionf(u; v);u� � u � u+;�k" � v + f(u) � k"gonly at u = u� or u = u+.(ii) If furthermore u� and u+ are two adjacent zeroes of g, then there is a positivelyinvariant region between the curves C and v + f(u) � k"g(u) = 0 for k largeand all " small (a negatively invariant region between C and a curve v+f(u)+k"g(u) = 0).(iii) In this case the two equilibria (u�;�f(u�)) and (u+;�f(u+)) on the singularcurve are connected by a heteroclinic orbit.15



Remark: The heteroclinic orbits of (iii) are part of the slow manifold, an invari-ant manifold that exists for " > 0 near the singular curve C except in a neighborhoodof the fold points, cf. [11].Proof:(i) For de�niteness, we suppose that f 0(u) < 0 for u 2 [u�; u+]. The case f 0(u) > 0can be treated in the same way.Along a curve v + f(u) + k" = 0 the trajectories written as v = v(u) satisfy�����dv(u)du ����� = �����g(u)k ����� :Since g is bounded on [u�; u+], by choosingk > maxu��u�u+ ����� g(u)f 0(u) �����one can achieve that the vector �eld is directed into the regionf(u; v);u� � u � u+;�k" � v + f(u) � k"galong the whole curve so that trajectories can leave the region only via the left orthe right boundary. Especially, trajectories that enter a neighborhood of a stablearc of C can leave such a neighborhood only near a fold.(ii): To establish the invariant regions, one has to check that along curves v+f(u)�k"g(u) = 0 trajectories satisfy �����dvdu ����� = 1k :which is for k large enough and all small " certainly smaller than the in�muminfu��u�u+ jf 0(u)� k"g0(u)jof the slope of the curve.Then the existence of invariant regions is easily established by distinguishing thetwo cases g > 0 and g < 0 on (u�; u+). In both cases one �nds a positively invariantregion either above or below C. It is easy to check that for f 0 > 0 there are negativelyinvariant regions.(iii): A simple argument proves the heteroclinic connection between the two equi-libria: Since the two equilibria are adjacent, one of them is a saddle and the other asink. Consider the eigenvector to the unstable eigenvalue �2 of the saddle. A shortcomputation shows that the (one-dimensional) invariant manifold corresponding to16



positively invariant regions

C v + f(u)� k"g(u) = 0v + f(u) + k"g(u) = 0Figure 2: Invariant regions near the singular curve C�2 is directed into the invariant region if only k is chosen large enough. Since thisregion contains in its interior neither equilibria nor periodic orbits (u0 has a de�nitesign there) the invariant manifold must connect to the sink lying on the boundaryof the invariant region. 2Figure 2 shows a situation with f 0 < 0 and two positively invariant regions. Thereare heteroclinic orbits from the upper and lower equilibrium to the one in betweenwhich are not shown in the �gure.Note also that admissible trajectories may not enter one of the regions enclosed byC and such a heteroclinic orbit because once inside such a region they cannot reachthe curve C again in �nite time to satisfy the boundary condition.Now we state the lemma which is crucial for proving theorem 1.1 since it shows thatfor all small " and any solution u of the boundary value problem (13) the numberz(ux) will not exceed a certain bound.Lemma 3.6 Let (u(s); v(s)); 0 � s � 1 be a nonconstant admissible trajectory.Then there exists a "0 > 0 and some � > 0 such that for 0 < " � "0 the followingholds: If s1 < s2 < s3 are three di�erent zeroes of u0, then s3 � s1 > �.17



Proof: The proof concentrates on s2 and shows that s3� s2 > � or s2� s1 > �. Wemay without restriction assume, that there are no other zeroes of u0 in the intervals(s1; s2) and (s2; s3). The arguments di�er depending on whether (u(s2); v(s2)) liesnear a fold or on a stable or unstable arc of C. To this end the interval [umin; umax]is divided into several parts. It was assumed that all zeroes of f 0 are simple, so theycannot accumulate and there is a �nite number of points u1 < u2 < : : : < uF in[umin; umax] with f 0(ui) = 0:The case of g(ui) < 0 and f 00(ui) > 0 is treated here in detail, but all other combi-nations of signs for g(ui) and f 00(ui) lead to similar results.It is possible to �nd a neighborhood [�i; �i] of ui such thatf(�i) = f(�i)and both g(u) > c and f 00(u) > chold for all u in the whole interval [�i; �i] and some c > 0.The condition g(u) > c implies that all trajectories that cross C between �i and�i will do this from above. It is easy to see that these trajectories can leave theregion enclosed by C and the horizontal line v = �f(�i) only through just this line.Between �i and �i, one can �nd ~�i and ~�i with�i < ~�i < ui < ~�i < �i;f(~�i) = f( ~�i)and f(~�i)� f(�i) = 12(f(ui)� f(�i));compare �gure 3.Consider the case that an admissible trajectory hits the curve C between ~�i and ~�iat the time s = s2. Since jv0j was bounded by Cg independent of ", it will take thetrajectory a time of at least �si := f(~�i)� f(�i)Cgto leave the region enclosed by C and the line v = �f(�i). During this time itcannot hit the singular curve again. Thus, if s2 lies in the interval [~�i; ~�i], we haves3 � s2 � �si:18
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u− C~�i �iv + f(u)� k" = 0
v + f(u) + k" = 0 �i ~�i �uiu+

Figure 3The same situation appears if g(ui) > 0 and f 00(ui) < 0. For the other two caseswhere g(ui) > 0 and f 00(ui) > 0 have the same sign a similar reasoning shows that atrajectory that hits C near the fold cannot have hit it for a certain time before andhence s2 � s1 � �si:Thus, if s2 lies in some interval [~�i; ~�i] the lemma is proved by chosing � smallerthan the in�mum of the �si.If the trajectory intersects the singular curve on a stable arc in some interval [ ~�i�1; ~�i]and " is su�ciently small then the trajectory is in one of the stripsf(u; v);u� � u � u+;�k" � v + f(u) � k"gof lemma 3.5 that can only be left at their left or right boundary.Two things can be shown:1) A trajectory cannot intersect the singular curve again before leaving the strip.2) The trajectory stays inside the strip for at least the time �si=2.To prove the �rst claim, remember that an admissible trajectory may not enter one ofthe regions enclosed by C and a heteroclinic orbit connecting two adjacent equilibriaon the same (stable or unstable) arc of C. Therefore, an admissible trajectory can19



cross the curve C only between a fold and the nearest equilibria on either side. Bycrossing C there, the trajectory enters a region enclosed by C and a curve v+f(u)+k"g(u) = 0 with large jkj. As was shown in lemma 3.5(ii), this region can be leftonly at u = u� or u = u+.The second claim, concerning the time it takes a trajectory to leave the invariantstrip, is proved here for the case f 0(u+) < 0 and g(u+) < 0, i.e. of a trajectory thatfollows a stable arc of C to its right end. However, all other cases can be treated inthe same way changing signs appropriately and reversing time if necessary. The ideais simple again: By choosing " small enough, the trajectory has to cover a certainv-distance near C and since the velocity in v-direction is bounded by Cg this willtake a certain amount of time. More precisely, if u� is chosen close to ui�1 and u+close to ui, and furthermore " is su�ciently small, then�f(u+)� k"+ f(�i) � 14 (�f(ui) + f(�i)) :If a trajectory intersects the singular curve on the stable arc below v = �f(�i) andleaves the invariant strip at u = u+ the v-coordinate has to increase by at least14 (�f(ui) + f(�i)) :This implies that a trajectory needs at least the time�si=2 from a horizontal sectionv = �f(�i) to the point where it leaves the invariant strip.So, in the case that (u(s2); v(s2)) lies on a stable arc of C we have shown thats3 � s2 � infi �si=2independent of ". The case that (u(s2); v(s2)) lies on an unstable arc is similar andleads to the result that s2 � s1 � infi �si=2:Choosing � smaller than the in�mum of the �si=2 completes the proof of lemma3.6. 2We are now able to �nish the proof of theorem 1.1. It was shown that for anynon-homogenous equilibrium solution u of the viscous balance law the zero numberof ux can be estimated by z(ux) � 2� + 1;20



where � is the constant from the previous lemma 3.6.This ensures that the dimension of the center-unstablemanifold of any non-homogenousequilibriumsolution of the viscous balance law does not exceed a certain "-independentbound 2� + 2. The spatially homogenous equilibria have been shown in lemma 3.2to have an at most one-dimensional unstable resp. center manifold.Assume �rst that for a given " there is �nite number of equilibria which are allhyperbolic. Then the global attractor is the union of the unstable manifolds ofthese equilibria. Each of these manifolds has a dimension not exceeding 2� + 2 sothis gives an upper bound on the dimension of A" as well and the theorem is provedfor this case.In the other cases with non-hyperbolic and possibly in�nitely many equilibria thearguments have to be re�ned.The set of equilibria is a closed subset of A" in the space X where the semiow isde�ned and hence a compact set. Consider a local center-unstable manifold W culoc(u)of an equilibrium u. Despite of non-uniqueness, it contains all the solutions fromsome neighborhood N (u) that are bounded backward in time, especially all theequilibria contained in N (u). Due to compactness of the set of equilibria a �niteunion of local center-unstable manifoldsk[i=1W culoc(ui)su�ces to cover all equilibria. We claim that the global attractor is contained in theset W := 1[n=1 k[i=1T (n;W culoc(ui))where T (n; �) is the time-n-map of the semiow. The dimension of W is not greaterthan the maximal dimension of the center-unstable manifolds since applying thesemiow to a set over a �nite time does not increase the dimension. Recall that theglobal attractor consists of equilibria and heteroclinic orbits only, so it remains onlyto show that every heteroclinic orbit h(t) is contained inW. The ��limit set of h isan equilibrium h�1 and there is a i0 such that h�1 lies inW culoc(ui0). Moreover, thereexists a time t� < 0 such that h(t) lies in N (ui0) for all times t < t�. Therefore,h(t) 2 W culoc(ui0) for t < t�. So it is clear that the whole heteroclinic orbit h iscontained in 1[n=1 T (n;W culoc(ui0))21



�nishing thereby the proof of theorem 1.1. 24 DiscussionWe have demonstrated that the dimension of the global attractor remains boundedas " tends to 0. By a more delicate analysis of the equilibrium solutions, it can beshown that the dimension stabilizes in the following sense: There is an integer dsuch that the dimension of A" is either d or d+ 1 if " is su�ciently small. This willbe shown in a subsequent article [20]. It seems in fact that the dimension tends toa limit in most cases, although we are not able to prove this by now. A questionwe have not adressed in the present article is the number of equilibrium solutions.It is not yet clear under which assumptions not only the dimension of A" but alsothe number of equilibria tends to a limit. It has been shown that in the rathersimple case of convex f the number of equilibria tends to a limit and moreoverthe attractors A" are C0-equivalent for all small ", see [18, 19]. For a de�nition ofC0-equivalence we refer to [14].Another issue is the limiting hyperbolic case " = 0. Unfortunately, our results do nothave straight-forward implications to the hyperbolic case, since it is not clear how toperform the singular limit "& 0. The hyperbolic equation might not be well de�nedon the unit interval (characteristics may enter from the boundary) and there is nodirect equivalent of Neumann boundary conditions in the hyperbolic case. However,it can easily be seen that our results do carry over to other boundary conditions.So, there is some hope at least that �nite-dimensionality of the attractor holds forsome hyperbolic initial-boundary value problems if they are well-de�ned on the unitinterval.References[1] J. D. Allen and R. E. O'Malley. Singularly perturbed boundary value prob-lems viewed in the Li�enard plane. In Asymptotic and computational analysis,Winnipeg 1989, volume 124 of Lect. Notes Pure Appl. Math., pages 357{378.Dekker, New York, 1990. 22
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