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1 Introduction

This paper is devoted to the study of global attractors of a class of singularly per-
turbed scalar parabolic equations depending on a small parameter ¢. These equa-
tions possess a special structure allowing for a detailed description of the global
attractor. Many properties of the attractor can be deduced using information on
equilibria and their variational equations only. This leads to the study of certain
singularly perturbed boundary value problems which in general have many solutions.
As proposed by Allen and O’Malley [1] for problems where qualitative information
on solutions is sought rather than high order approximations we use phase plane
methods to describe the solutions of the boundary value problem.

As ¢ tends to zero one typically expects that the global attractor has either a very
simple structure (e.g. consists of one stable equilibrium only) or that its dimension
tends to infinity. The rather surprising result of this paper consists of the proof
that for a large class of nonlinearities the dimension of the global attractors stays

bounded as ¢ tends to zero.

1.1 Global attractors of scalar parabolic equations

Semiflows generated by scalar semilinear parabolic equations are a class of infinite-
dimensional dynamical systems whose qualitative behavior has been an object of

intensive research during the last fifteen years. It has been shown that the equation
U = Upy + (2, u,u,) , h € C? (1)

with Neumann boundary conditions

and initial condition
u(0, ) = uo(x) (2)
gives rise to a (local) C''-semiflow on the Sobolev space X C W?22([0,1],IR) of

functions satistying the boundary conditions at + = 0 and # = 1. The associated
semigroup T' assigns to each pair (¢, ug) the solution profile u(t,-) of (1) at time ¢ > 0
that satisfies the initial condition (2) at time ¢t = 0. If the nonlinearity h satisfies



some growth and sign conditions, the semiflow is global and dissipative, i.e. solutions
exist for all (positive) times and there exists a large ball B C X such that every
solution u(?) will eventually stay in this ball. Due to the smoothing properties of the
Laplacian, T'(¢,-) is compact for all ¢ > 0. Under these conditions a global attractor
A exists, defined as a maximal compact invariant set in B that attracts all bounded
subset of X, see e.g. the monograph of Hale [16] for theorems in this rather general
setting of compact and dissipative semigroups. This global attractor consists of all
orbits that are defined for all (positive and negative) times ¢ and that are uniformly
bounded.

There are two special features of scalar parabolic equations that allow for a more

precise description of the global attractor:

(a) a gradient structure and

(b) nodal properties.

Concerning (a), Zelenyak [28] showed already in the sixties that equation (1) pos-
sesses a Lyapunov functional. Except at equilibria, this Lyapunov functional de-
creases along trajectories. Since this Lyapunov functional can be shown to be
bounded on bounded sets, any orbit that stays uniformly bounded for all £ > 0
will tend to the set of equilibria of (1), i.e. the set of time independent solutions. In
other words, the w-limit set of a single point uy € X is contained in the set F of
all equilibria. Matano [25] showed that it even consists of exactly one equilibrium.
The same arguments hold for negative ¢ if a trajectory is defined there. So, for
every trajectory that is defined and bounded for all # < 0, the a-limit set is also
an equilibrium. Using the above characterization of the global attractor A as the
union of all uniformly bounded trajectories that are defined also for all negative ¢,

we obtain the following description of the global attractor:

Proposition 1.1 A =U.cg W"(e), where E is the set of all equilibria and W*(e)

is the unstable set of e. It consists of

o the set E of equilibria and

o heteroclinic orbits connecting different equilibria.

To refine this description, consider now the eigenvalue problem associated with the

linearization of (1) at an equilibrium v:

Wer + Ouh(z,v(2), v5(2))w + Oph(x,v(x),ve(2))w, = Aw }

w(0) =w,(1) = 0 (3)



Definition 1.2 An equilibrium v is called hyperbolic if 0 is not an eigenvalue of

the linearization at v, i.e. if (3) has no nontrivial solution for A = 0.

Definition 1.3 The Morse index i(v) of a hyperbolic equilibrium v is the number

of positive eigenvalues of the linearization at v.

In other words, ¢(v) is the dimension of the unstable manifold W*(v). If all equilibria
are hyperbolic then the global attractor is the finite union of equilibria and their

unstable manifolds.

It is a classical observation by Sturm that the eigenvalues are connected to the

oscillation properties of the eigenfunctions. There is a sequence of simple eigenvalues
A >A>..., \, > —00 asn — o0

and the eigenfunction wy, associated with Ay has exactly k zeroes in the open interval

(0,1).

If o = h(u,u;) does not depend explicitly on x, there is an important relation
between the Morse index of an equilibrium v and the number z(v,) of strict sign

changes of v, defined as

z(v) = sup{fn e IN;I0 < 1 < ... < x, < 1 with v(a;) - v(x;41) <0, 1 <i<n}
z(0) := 0.

Proposition 1.4 If h = h(u,u,) does not depend on x, then:

(i) the Morse index of any nonconstant hyperbolic equilibrium v is either z(v;) or

z(vg) + 1.

(ii) the linearization at a nonconstant non-hyperbolic equilibrium v possesses one

zero eigenvalue and z(v,) — 1 or z(v,) positive eigenvalues.

This can be proved by a simple application of the Sturm comparison theorem to v,
and the eigenfunctions w,_; and w, where n = z(v,) + 1.
In case (ii), Henry [22] has shown that the center-unstable manifold W(v) is a

manifold with boundary which has dimension z(v,) or z(v,) + 1.

The second peculiarity of scalar parabolic equations is the existence of a discrete

Lyapunov functional connected to the zero number z(u(-)) of the solution w in (0, 1).



Already Sturm recognized that the zero number z(u'(¢,-) —u*(t,-)) of the difference
of two solutions u' and u? is non-increasing in time. In a recent version, Angenent
[3] shows that z(u'(t,-) —u?(¢,-)) drops strictly at time ¢ if u'(¢,-) —u?(¢, -) possesses
a multiple zero. One consequence of those nodal properties is the Morse-Smale prop-
erty of the attractor: There can only exist heteroclinic connections from equilibria

with higher Morse index to such with lower Morse index.

1.2 Equilibria and connections

Since the global attractor is the union of equilibria and connecting orbits, given a spe-
cific equation, one may want to find the equilibrium solutions first and think about
connecting orbits afterwards. The equilibria are simply solutions of the boundary
value problem
Upy — (2, uyuy) = 0 } (1)
uy(0) =u,(l) = 0.

The next step in the description of the attractor consists of finding criteria whether
two given equilibria are connected by a heteroclinic orbit or not. This question
was first adressed by Brunovsky and Fiedler [7, 8] in the case of a nonlinearity
depending on u only. Later, Fiedler and Rocha [13], could show that also in case
h = h(x,u,u,) all information on the connections can already be derived from the
equilibrium solutions. Their work uses the observation of Fusco and Rocha [15] that
all information on the Morse indices of the equilibria as well as on zero numbers of
differences of equilibria is contained in the ordering of the equilibrium solutions at
x =0 and x = 1. Their statement is a constructive one: for a given nonlinearity
h, from the knowledge of all equilibrium solutions, one can determine explicitly the
Morse indices and the zero numbers of the difference of two equilibria.

Based on this, Fiedler and Rocha [13] gave explicit criteria to decide whether two

equilibria are connected.

1.3 Singular perturbations

We introduce now a small positive parameter ¢ in front of the diffusivity term of the

parabolic equation (1), which thereby becomes

Up = EUgy + b2, u,uy) } (5)

uy(0,1) = u,(1,t) = 0.



It is easy to check that most of the statements above do not depend on . It
neither influences the global existence nor the dissipativeness and compactness of
the (e-dependent) semigroup. Thus, for each fixed ¢ > 0 equation (5) possesses a
global attractor A.. In general, this attractor A. will vary with e. In particular,
hyperbolicity of all equilibria will not hold for all ¢ as the following ’classical” example
shows.

Consider a nonlinearity h = h(u) not depending on = and u,, e.g. the cubic h(u) =
u(l — u?). Chafee and Infante [9] showed that the equilibrium v = 0 undergoes
a sequence of pitchfork bifurcations at values ¢ = (Ir)™%, 1 = 1,2,.... At each
of these pitchfork bifurcations two new equilibria appear and the Morse index of
u = 0 is increased by one. Hence there are two problems in getting a description
of the attractor as € tends to 0: the number of equilibria and the dimension of the
attractor both tend to infinity. It is not difficult to see that this behaviour is typical

for nonlinearities depending on w only. In this case the equilibria satisty the equation
EUyy + h(u) =0,

which has a Hamiltonian structure. By rescaling z = /£ the equilibrium equation

becomes

uge + h(u) =0, (6)
and does not depend on ¢ any more, only the boundary condition at =+ = 1 is
transformed into wug(¢™'/2) = 0 and contains the parameter . If h has at least

two zeroes then (6) admits for families of periodic orbits that accumulate onto a
homoclinic orbit or a pair of heteroclinic orbits. A solution of (6) following one of
these periodic orbits with period p, say, % turns is a solution of the boundary value

172 = % - p. It is now easy to see that the following alternative holds,

problem if e~
depending on whether h has exactly one or more than one zero: Either there is only
one (spatially homogenous) equilibrium that does not depend on ¢, or the attractor
A. blows up in the way described above.

A natural question to ask is, whether the same is true for more general nonlinearities
h. There are some results indicating that for A = h(x,u) the behaviour is rather
more complicated. While for A not depending on x and the gradient u, all noncon-
stant equilibria are unstable, Angenent, Mallet-Paret and Peletier [5] found stable
solutions which develop a transition layer. Later, Hale and Sakamoto [17] described
also unstable equilibrium solutions with transition layers.

Theorem 1.1 below shows that for a class of nonlinearities i of the special form

h(x,u,uy) = (f(u))s+g(u) a different behaviour of A, occurs: The dimension of A,



remains bounded for all small . This shows that convection can prevent, at least

in some cases, the attractor from blowing up.

Theorem 1.1 Consider the singularly perturbed parabolic equation of the special

form

with Neumann boundary conditions.

Assume that
(H1) g is a dissipative function, i.e.
w-g(u) <0 Vi|u >R (8)
with some (large) constant R.
(H2) the critical points of [ are quadratic folds, i.e. f'(u)=0= f"(0) #0
(H3) the derivative of f does not vanish at zeroes of g.

Then the dimension of A. remains bounded as ¢ — 0.

Note that condition (H1) is open with respect to the strong Whitney topology
while the conditions (H2) and (H3) persist under C'*-small perturbations. Hence
theorem 1.1 is a rather general statement.

The rest of the paper is organized in the following way: Chapter 2 deals with viscous
balance laws. Chapter 3 contains an investigation of equilibrium solutions to the
viscous balance law and the proof of theorem 1.1. The paper concludes with a short

discussion.

2 Balance Laws

Viscous balance law is a term used for a scalar parabolic equation of the form (7).

We will study this equation on the unit interval with Neumann boundary conditions

and initial data

u(0,) = uo(-) € WH2.



Here f and g are of class C? and ¢ satisfies the dissipativeness assumption (H1).

The parameter ¢ is very small and adds some viscosity to the usual “balance law”

ur + (f(w), = g(u). (9)

Balance laws are a generalization of conservation laws

up + (f(u)), =0

where a source term g(u) is present. As with conservation laws, for balance laws
there are in general no global smooth solutions even for arbitrarily smooth initial
data. After a finite time, shocks are formed. For x on the whole real line, Kruzhkov
[23] showed that under some admissibility condition for any bounded measurable ug
there is a unique solution of the hyperbolic equation (9). On finite time intervals
the solution of the viscous balance law (7) converges to this unique solution as &
tends to 0.

Only recently conservation as well as balance laws on an interval have attracted more
attention. This is mostly due to the occurence of steep transition layers that move
very slowly [26]. With these property, these second order scalar equations serve
as crude models for phase transitions or semiconductors [6]. Especially, they are
used as test problems for numerical analysists who are interested in the numerical
treatment of more complicated (and hopefully more realistic) problems, e.g. higher
dimensional equations describing phase transitions.

One difference between scalar conservation laws and balance laws is the fact that
solutions of balance laws need not decay to a spatially homogenous state as time
tends to infinity. In the case of € IR and periodic initial data it was shown 1970 by
Glimm and Lax that solutions of scalar conservation laws decay like O(¢7') to their
spatial average when the time ¢ tends to infinity. This is not true for balance laws:
There may exists periodic solutions and at least in the case of f being convex, a
Poincaré-Bendixson type result holds: Every solution either tends to an equilibrium
or to a periodic orbit, which is a traveling wave then. This result was shown by
Lyberopoulos [24], Fan & Hale [10] and also by Sinestrari [27] and ressembles very
much the results in the parabolic case treated in Angenent & Fiedler [4] and Fiedler
& Mallet-Paret [12] although the methods are quite different.

Local existence of weak solutions of solutions for the parabolic equation

s 4 (f(u), = glu) + ety (10)



with Neumann boundary conditions can be shown by semigroup methods as in the
book of Henry [21]. The (unbounded) linear operator cu,, together with the Neu-
mann boundary conditions generates an analytical semigroup on the space W*#(0, 1)
and the smoothness assumptions on f and ¢ are sufficient to guarantee a local so-
lution of (10). This solution lies in the domain of the infinitesimal generator, i.e. in
the space X C W?2? of functions which satisfy the Neumann boundary conditions.
Furthermore, the time derivative u(t, -) is Holder continuous so by elliptic Schauder
regularity theory the solution is a classical solution. This allows to talk about
derivatives of the solution, to use maximum principles involving u,,, etc..
Although this could also be derived from general theorems by Amann [2], it will
be shown here in an elementary way that the local solutions of the viscous balance
law (10) exist globally in time and that dissipativeness is guaranted by the sign
condition (8) on g.

Global existence of solutions will be shown via some a-priori estimates on u and the

derivative u,:

Lemma 2.1 [fu satisfies equation (7) for all t € [0,T], then:

(i) NJu(T,)||pe < Clug) independent of €

(i) [Jue (T’ )22 < C(uo, )

Proof: (i) follows from a maximum principle. Due to the dissipativeness condition

(8), in any positive maximum u(xg,to) with 0 < to < T and |u(xo,t0)| > R

Up = € Uy — ['(w)uy + g(u) < 0.
SO =0 <0

In the same way we can conclude that in any negative minimum wu(xzg,%o) with
0 <ty < T and u(xg,to) < —R we have u; > 0. Therefore, the L*®-norm decreases

as long as u(t,-) takes values outside [— R, R] and hence
[ulle < flullze < max {R, [Ju(0, )|z} =: C.
To proof claim (ii), first note that for u € W??

1 1
lealfe = [ utde < [ uslde < flul oz oe

hence for any solution u

~l[taallze < =Co - [lullz:

where the constant



depends on ug. Furthermore,

1
/Of’(U)uxumdx < max |[f'(u)] - w2 [|uee 22

lul<C

< Sluwellze + -z

|
2 2e

Multiplying equation (7) by u,, one obtains after integrating

d 1 1 1
ol = el = [ @ de+ [ g () da
dt 2 0 0
3 eC 3 C
< —Sluaellfs = Sl + Sllwe e + Sl + C (o) sl
< 0 for ||ugllrz > C(ug,e)

= lua(t,)llze < max {[Jua(0,-)]|z2, C(uo, )}

O
This lemma implies immediately that all solutions exist globally in time and that
(forward) orbits are bounded in W2, Due to the variational structure of equation
(7), for any ug € W2 the w-limit set of ug is contained in the union of the equilibrium
solutions of (7). To prove dissipativeness, it remains only to show that for any fixed
¢ the equilibrium solutions form a bounded set. Below we will study equilibrium
solutions in detail and for this reason we postpone the proof of boundedness to lemma
3.4. Here we only note that the boundedness of the set of equilibrium solutions

implies the dissipativeness of the semiflow.

3 Equilibrium solutions

3.1 A singularly perturbed boundary value problem

Since, by definition, equilibrium solutions do not depend on time ¢, we will write
for these solutions simply u(x) instead of u(x,?). Equilibrium solutions of (7) are

solutions of the boundary value problem

gy — (fu)), +g(u) = 8 } (11)

uz(0) = u, (1) =

Ne)



This singularly perturbed boundary value problem can be written as a first order
system
cu, = v+ f(u)
vy = —g(u) (12)
ur(0) = uy(1) =0,
a choice of coordinates which is sometimes called the “Liénard plane” in contrast to

the more common “phase plane” where v = u,.

Note that the boundary condition in (12) could also be written in the form
v(x)+ f(u(z))=0 atz=0andz =1,

so, geometrically speaking, we are looking for trajectories of (12) which take exactly
“time” Az = 1 to join two points on the curve v 4+ f(u) = 0. To avoid too much

confusion between time and space variables, we recast (12) in the form

eu' = v+ flu)
o = () (13)

z =1

0<s<1
u'(0)=u'(1) =2(0) =0

where ’ denotes differentiation with respect to a new variable s that looks more
like a time variable than = does, although obviously # = s. Below, methods from
singular perturbation theory are used that compare system (13) for small ¢ with
some limiting systems for ¢ = 0. There are different possibilities to perform this
limit, leading to the so called “slow” and “fast” systems which both describe a part
of the limiting behaviour of system (12). The difference originates in a different
scaling of the variable s.
Setting ¢ = 0 in equation (12), we arrive at the “slow system”

0 = v+ flu)

vo= —g(u).
Here the motion is confined to a curve given by the first of the two equations, while
the second one describes the flow along this curve. Since this curve will play a

special role later on it deserves a name on its own:

Definition 3.1 The curve C given by the equation v + f(u) =0 in the (u,v)-plane

is called the singular curve.

10



Note that u, = 0 exactly where the trajectory hits or crosses the curve C. Later,
when we have to determine z(u,) to use lemma 1.4 we will use this property: Instead
of counting the extrema of u, we can simply count the number of intersections
between the trajectory and the curve C.

System (12) can also be scaled in another way. If the second equation is multiplied

by ¢ and the variable s is rescaled according to s = eo, we arrive at

i = ot f(u)
= —eg(u).

with “denoting the derivative with respect to the fast variable o. Putting ¢ = 0, the

“fast system”

i = v flu)
v = 0

is obtained. Here, the singular curve consists of equilibrium points only. According
to the stability of these equilibria, parts of C where f’ > 0 are called unstable arcs
of C, while the parts with f/ < 0 are called stable arcs.

3.2 Proof of theorem 1.1

From the three assumptions of theorem 1.1, we have already used one: The dis-
sipativeness (H1) of g was necessary for the existence of a global attractor. The
condition (H2) that all zeroes of f’ be simple is not the best possible. It can prob-
ably be weakened on the price of longer and more complicated calculations. Let us
just mention in short that the assumption (H3) which states that no zeroes of ¢ lie
on the fold points of the singular curve C is necessary to prevent a blow-up of A,
similar to the Chafee-Infante example presented in the introduction.

We begin with a short outline of the proof. Recall the characterization of A. as the
unstable manifold of the set F of equilibria. If all equilibria are hyperbolic then they
are isolated and the attractor is contained in the union of the unstable manifolds of
all single equilibria. The hyperbolicity of all equilibria is not guaranteed under the
weak assumptions of theorem 1.1, such that we have to consider the possibility of a
non-hyperbolic attractor, too. In this case a bound on the dimension of the center-
unstable manifolds of the equilibria will be derived. We will distinguish between
spatially homogenous and non-homogenous equilibrium solutions. It will turn out,

that for the homogenous solutions the linearization has at most one non-negative

11



eigenvalue. For the spatially non-homogenous equilibria, in view of lemma 1.4 it
is necessary to prove that for some integer NV and all small ¢ any equilibrium has
at most N extrema. This will be an immediate consequence of lemma 3.6 where
we will prove that three extrema of an equilibrium solution u cannot be arbitrarily

close to each other. On the way to this lemma, we collect some properties of the

T v—|—f(u)} (14)

two-dimensional system

Vo= —g(u)
for small .
Observe first that the equilibrium points of system (14) lie on the curve C and have

as u-coordinates exactly the zeroes of g. Due to assumption (H3), the eigenvalues

(o) £ 1/ F/(u0)? — deg’ (uo)
2e

Hi2 =

of the linearization at such an equilibrium (ug, vg) turn out to be real for small ¢
and behave asymptotically like

f'(uo)

/
i~ T8 and g 9'(wo)
€

2 "~ f’(uo) .
If ¢'(uo) # 0 the corresponding equilibrium of (14) is hyperbolic and a saddle exactly

if ¢'(uo) < 0. If all zeroes of ¢ are simple, the equilibria are alternately saddles and
sources or sinks.

Each of these zeroes of g corresponds to one homogenous equilibrium solution. The
next step consists of showing that (e.g. in contrast to the Chafee-Infante case) these

homogenous equilibrium solutions cannot become very unstable as ¢ decreases.

Lemma 3.2 [f g(a) = 0 then for ¢ sufficiently small the first eigenvalue Ao of the
equiltbrium solution u = u is

Ao = g'(i1)
and all other eigenvalues are strictly negative. In particular, u = u is hyperbolic iff
g'(w) # 0 and in this case the Morse index is 0 for g'(u) < 0 resp. 1 for ¢'(a) > 0.

Proof: For a homogenous equilibrium solution the eigenvalue equation is just a

linear second-order boundary-value problem with constant coefficients:

Wz — f(W)w, + ¢ (W)w = Aw
w(0) =w,(1) = 0.

12



The solutions of this second-order equation can be found easily to be of the form
w(z) = e eh=)7 1 oo ent ()7

where

e I O]

M+ e

Thus, g_(¢) and py(e) are real if
fi(a)? —4e(g'(a) = A) > 0.

It is easy to check that for real p_(g) and p4(e) the boundary value problem can
only have a solution if either y1(¢) = 0 or p_(e) = 0. This in turn holds exactly for
A = ¢'(@). Other eigenvalues require g_(¢) and p4(¢) to be complex which is only
possible for o
% +9'(a).

Thus, for all sufficiently small e, A = ¢’(@) has to be the first eigenvalue.

A< —

The next definition keeps track of the fact that our interest is not in any trajectory
of (14), but mainly in those that correspond to solutions of the Neumann boundary

value problem.

Definition 3.3 An admissible trajectory of system (14) is a trajectory that cor-
responds to a solution of the boundary value problem, i.e. it is a finite piece of a
trajectory u(s) that satisfies u'(0) = v'(1) = 0.

Let us now state a simple lemma that allows us to restrict our attention to a finite

range of w.

Lemma 3.4 Let f and g be as in theorem 1.1 and denote with ., and U, the

minimal, resp. maximal zero of g. Then:
(i) For any admissible trajectory (u(s),v(s)) of (14)

Umin S U(8) < Upae Vs € [0, 1].

(ii) There are constants C,eq such that for 0 < ¢ < eg along any admissible
trajectory of (14)
C

() <

Vs e [0,1].

13
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Figure 1: Admissible solutions are confined to a bounded region in the Liénard

plane

Proof : To prove part (i) indirectly, suppose that for some s € [0,1] we have
u(8) < Umin. The curve v + f(u) = 0 divides the region {(u,v);u < Upy} into two
parts. Since the vector field is vertical on the curve {v + f(u) = 0} and horizontal
on the line u = wy, the region {(u,v); v < wpin,v < f(u)} is positively invariant

while {(u,v); u < Upmin,v > f(u)} is negatively invariant, see figure 1.

If (u(s),v(s)) lies in the positively invariant region for some s then the right bound-
ary condition can obviously not be satisfied. If (u(s),v(s)) lies in the upper, nega-
tively invariant region there is no chance of satisfying the left boundary condition.
So a solution of the boundary value problem may not enter one of the two regions.
It cannot stay on the curve {v 4 f(u) = 0} either since by assumption t;, is the
leftmost zero of g. Thus, there can be no solution of the boundary value problem

that takes a value less than t,;,. The argument excluding u(s) > 4, is similar.

Claim (ii) obviously follows by showing that

eu'(s) = v(s) + f(u(s)) < C.

14



To see this take

Vmaz > SUp{—f(u) 5 Umin < U < Upar} + 1

and

Vmin < Inf{—=f(u) ; Umin < u < Upaz} — 1.

For ¢ small enough the trajectory starting in (min, Vmaez) Will be almost horizontal
and intersects the line u = u,,,, without having hit the singular curve before. Sim-
ilarly, the trajectory starting in (tmaz, Umin) stays below the singular curve until it
hits the line v = u,,;,. Therefore, all admissible trajectories are for small ¢ confined

to a bounded region of the (u,v)-plane.
O

The restriction of admissible trajectories to a bounded region also yields an upper
bound on v’

Along any admissible trajectory we have

[0'(s)| < max |g(u)] =: Cj.

Uman Susuma:p

There are also some restrictions on trajectories that are close to the curve C:

Lemma 3.5 Consider again the system (14) and assume that f'(u) < 0 (f'(u) > 0)
for all w € Ju_,uy].
Then:

(i) For all sufficiently large k and all small e trajectories can leave (enter) a region
{(u,v);u <u <ugp,—ke <v+ flu) < kel
only at w =u_ oru=1uy.

(it) If furthermore u_ and uy are two adjacent zeroes of g, then there is a positively
invariant region between the curves C and v + f(u) — keg(u) = 0 for k large

and all ¢ small (a negatively invariant region between C and a curve v+ f(u)+

keg(u) =0).

(tii) In this case the two equilibria (u—,—f(u_)) and (uy,—f(uy)) on the singular

curve are connected by a heteroclinic orbit.

15



Remark: The heteroclinic orbits of (iii) are part of the slow manifold, an invari-
ant manifold that exists for ¢ > 0 near the singular curve C except in a neighborhood
of the fold points, cf. [11].

Proof:

(i) For definiteness, we suppose that f'(u) < 0 for v € [u_,u4]. The case f'(u) >0
can be treated in the same way.

Along a curve v 4+ f(u) 4+ ke = 0 the trajectories written as v = v(u) satisfy

‘g(U)
=

dv(u)
du

Since ¢ is bounded on [u_,uy], by choosing

one can achieve that the vector field is directed into the region
{(u,v);u <u<ugp,—ke <v+ flu) < ke}

along the whole curve so that trajectories can leave the region only via the left or
the right boundary. Especially, trajectories that enter a neighborhood of a stable
arc of C can leave such a neighborhood only near a fold.

(ii): To establish the invariant regions, one has to check that along curves v+ f(u)—

keg(u) = 0 trajectories satisfy

do| 1
du k

which is for k£ large enough and all small ¢ certainly smaller than the infimum

inf |f'(u) — keg/(u)

u_ <u<ug

of the slope of the curve.

Then the existence of invariant regions is easily established by distinguishing the
two cases ¢ > 0 and ¢ < 0 on (u_,u4). In both cases one finds a positively invariant
region either above or below C. It is easy to check that for f* > 0 there are negatively
invariant regions.

(iii): A simple argument proves the heteroclinic connection between the two equi-
libria: Since the two equilibria are adjacent, one of them is a saddle and the other a
sink. Consider the eigenvector to the unstable eigenvalue Ay of the saddle. A short

computation shows that the (one-dimensional) invariant manifold corresponding to
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positively invariant regions

Figure 2: Invariant regions near the singular curve C

Ag is directed into the invariant region if only k is chosen large enough. Since this
region contains in its interior neither equilibria nor periodic orbits (v’ has a definite
sign there) the invariant manifold must connect to the sink lying on the boundary
of the invariant region.

O

Figure 2 shows a situation with f’ < 0 and two positively invariant regions. There
are heteroclinic orbits from the upper and lower equilibrium to the one in between
which are not shown in the figure.

Note also that admissible trajectories may not enter one of the regions enclosed by
C and such a heteroclinic orbit because once inside such a region they cannot reach
the curve C again in finite time to satisfy the boundary condition.

Now we state the lemma which is crucial for proving theorem 1.1 since it shows that
for all small ¢ and any solution u of the boundary value problem (13) the number

z(uy) will not exceed a certain bound.

Lemma 3.6 Let (u(s),v(s)), 0 < s < 1 be a nonconstant admissible trajectory.
Then there exists a g > 0 and some 6 > 0 such that for 0 < ¢ < gg the following
holds: If s1 < sy < 83 are three different zeroes of u', then s3 — sy > 0.
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Proof: The proof concentrates on s, and shows that s3 — sy > 0 or 53— 81 > 6. We
may without restriction assume, that there are no other zeroes of u’ in the intervals
(s1,82) and (s2,s3). The arguments differ depending on whether (u(sg),v(s2)) lies
near a fold or on a stable or unstable arc of C. To this end the interval [t,in, Upmaz]
is divided into several parts. It was assumed that all zeroes of f’ are simple, so they
cannot accumulate and there is a finite number of points W < Uy < ... < Up in
[Wmin, Wmaz] With
f'(w;) = 0.

The case of g(w;) < 0 and f"(w;) > 0 is treated here in detail, but all other combi-
nations of signs for ¢(w;) and f”(@;) lead to similar results.

[t is possible to find a neighborhood [a;, 8;] of @; such that

fleg) = f(5)

and both

g(u) >c and f"(u) > ¢
hold for all w in the whole interval [a;, 3;] and some ¢ > 0.
The condition g(u) > ¢ implies that all trajectories that cross C between «; and
3; will do this from above. It is easy to see that these trajectories can leave the
region enclosed by C and the horizontal line v = — f(«;) only through just this line.

Between «; and f;, one can find &; and BZ with
a; < q; < < By < B,

fléw) = f(3)

and

compare figure 3.
Consider the case that an admissible trajectory hits the curve C between &; and f;
|

at the time s = s5. Since |v/| was bounded by C, independent of ¢, it will take the

trajectory a time of at least

f&) = flay)
ASZ' = C—g

to leave the region enclosed by C and the line v = —f(a;). During this time it

cannot hit the singular curve again. Thus, if s, lies in the interval [&;, 8;], we have

83 — 89 > As;.
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\j

Figure 3

The same situation appears if g(@;) > 0 and f”(%@;) < 0. For the other two cases
where ¢g(w;) > 0 and f”(w;) > 0 have the same sign a similar reasoning shows that a
trajectory that hits C near the fold cannot have hit it for a certain time before and
hence

S9 — 81 > As;.

Thus, if s, lies in some interval [ON%BZ'] the lemma is proved by chosing ¢ smaller
than the infimum of the As;.

If the trajectory intersects the singular curve on a stable arc in some interval [3;_1, &;]

and ¢ is sufficiently small then the trajectory is in one of the strips
{(u,v);u <u<ugp,—ke <v+ flu) < ke}

of lemma 3.5 that can only be left at their left or right boundary.

Two things can be shown:

1) A trajectory cannot intersect the singular curve again before leaving the strip.
2) The trajectory stays inside the strip for at least the time As; /2.

To prove the first claim, remember that an admissible trajectory may not enter one of
the regions enclosed by C and a heteroclinic orbit connecting two adjacent equilibria

on the same (stable or unstable) arc of C. Therefore, an admissible trajectory can

19



cross the curve C only between a fold and the nearest equilibria on either side. By
crossing C there, the trajectory enters a region enclosed by C and a curve v + f(u)+
keg(u) = 0 with large |k|. As was shown in lemma 3.5(ii), this region can be left
only at u =wu_ or u = uy,.

The second claim, concerning the time it takes a trajectory to leave the invariant
strip, is proved here for the case f'(u;) < 0 and g(uy) < 0, i.e. of a trajectory that
follows a stable arc of C to its right end. However, all other cases can be treated in
the same way changing signs appropriately and reversing time if necessary. The idea
is simple again: By choosing ¢ small enough, the trajectory has to cover a certain
v-distance near C and since the velocity in v-direction is bounded by (', this will
take a certain amount of time. More precisely, if u_ is chosen close to w;_; and uy

close to w;, and furthermore ¢ is sufficiently small, then

—fluy) — ke + flag) > = (= f(@) + f(ar)) .

=] =

If a trajectory intersects the singular curve on the stable arc below v = — f(«;) and

leaves the invariant strip at u = uy the v-coordinate has to increase by at least

(= /(@) + flai)) .

|

This implies that a trajectory needs at least the time As; /2 from a horizontal section
v = —f(a;) to the point where it leaves the invariant strip.

So, in the case that (u(sz2),v(sz2)) lies on a stable arc of C we have shown that
83 — 89 > inf As; /2

independent of €. The case that (u(sz),v(s2)) lies on an unstable arc is similar and
leads to the result that
s — 81 > inf As; /2.

Choosing ¢ smaller than the infimum of the As;/2 completes the proof of lemma
3.6.
O

We are now able to finish the proof of theorem 1.1. It was shown that for any
non-homogenous equilibrium solution u of the viscous balance law the zero number

of u, can be estimated by

2
l’<_ 17
Z(u)_5—|-
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where ¢ is the constant from the previous lemma 3.6.

This ensures that the dimension of the center-unstable manifold of any non-homogenous
equilibrium solution of the viscous balance law does not exceed a certain e-independent
bound % + 2. The spatially homogenous equilibria have been shown in lemma 3.2
to have an at most one-dimensional unstable resp. center manifold.

Assume first that for a given ¢ there is finite number of equilibria which are all
hyperbolic. Then the global attractor is the union of the unstable manifolds of
these equilibria. Each of these manifolds has a dimension not exceeding % + 2 so
this gives an upper bound on the dimension of A, as well and the theorem is proved
for this case.

In the other cases with non-hyperbolic and possibly infinitely many equilibria the
arguments have to be refined.

The set of equilibria is a closed subset of A, in the space X where the semiflow is
defined and hence a compact set. Consider a local center-unstable manifold W% (u)
of an equilibrium wu. Despite of non-uniqueness, it contains all the solutions from
some neighborhood A (u) that are bounded backward in time, especially all the
equilibria contained in M (u). Due to compactness of the set of equilibria a finite

union of local center-unstable manifolds
k
U Wii(us)
=1

suffices to cover all equilibria. We claim that the global attractor is contained in the
set
ok
W= U1 UIT(na Wige(us))

where T'(n,-) is the time-n-map of the semiflow. The dimension of W is not greater
than the maximal dimension of the center-unstable manifolds since applying the
semiflow to a set over a finite time does not increase the dimension. Recall that the
global attractor consists of equilibria and heteroclinic orbits only, so it remains only
to show that every heteroclinic orbit h(t) is contained in W. The a—limit set of h is
an equilibrium h_., and there is a g such that h_., lies in W% (u;, ). Moreover, there
exists a time ¢_ < 0 such that (¢) lies in N (u;,) for all times ¢ < ¢_. Therefore,
h(t) € W (u;y) for t < t_. So it is clear that the whole heteroclinic orbit h is
contained in

U 7, Wit (i)

n=1
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finishing thereby the proot of theorem 1.1.

4 Discussion

We have demonstrated that the dimension of the global attractor remains bounded
as ¢ tends to 0. By a more delicate analysis of the equilibrium solutions, it can be
shown that the dimension stabilizes in the following sense: There is an integer d
such that the dimension of A, is either d or d + 1 if ¢ is sufficiently small. This will
be shown in a subsequent article [20]. It seems in fact that the dimension tends to
a limit in most cases, although we are not able to prove this by now. A question
we have not adressed in the present article is the number of equilibrium solutions.
It is not yet clear under which assumptions not only the dimension of A. but also
the number of equilibria tends to a limit. It has been shown that in the rather
simple case of convex f the number of equilibria tends to a limit and moreover
the attractors A. are C%equivalent for all small ¢, see [18, 19]. For a definition of
C%-equivalence we refer to [14].

Another issue is the limiting hyperbolic case ¢ = 0. Unfortunately, our results do not
have straight-forward implications to the hyperbolic case, since it is not clear how to
perform the singular limit € \ 0. The hyperbolic equation might not be well defined
on the unit interval (characteristics may enter from the boundary) and there is no
direct equivalent of Neumann boundary conditions in the hyperbolic case. However,
it can easily be seen that our results do carry over to other boundary conditions.
So, there is some hope at least that finite-dimensionality of the attractor holds for
some hyperbolic initial-boundary value problems if they are well-defined on the unit

interval.
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