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ABSTRACT. We discuss the long-time behaviour of solutions to pe-
riodic scalar conservation laws with spatially inhomogeneous non-
linear source terms. In particular, we present a convergence result
to stationary and time-periodic solutions. We prove the existence
of discontinuous stationary solution if the characteristic equation
possesses a saddle point. Numerical simulations show that this
stationary state is asymptotically stable for a LWR traffic model
with a source term modelling on- and off-ramps.

1. Introduction

We are interested in the long-time behaviour of a scalar conservation law with a
space-dependent source term

(1) u+ f(u)e = g(u,z)

u(z,0) = wuo(x)
with z € S' ~ R/Z and t > 0. We assume that the initial condition uy € BV (S!, R)
belongs to the space of functions with bounded variation and

(A1) the flux f belongs to C?(R, R) and is strictly convex, i.e. f"/(u) > ¢ > 0 for
all u,
(A2) the source term g is in C* and there exists a constant M > 0 such that

u-g(u,z) < 0for all |ul| > M and allz € S*

(A3) the flux is strictly monotone.

For definiteness, we assume f' > 0. We will study admissible solutions, i.e. those
which satisfy for almost all ¢ > 0 the entropy condition

(2) u(a:—,t) Z ’U;($+,t)

where u(z+,t) denotes limy,\ o u(z & h,t).
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The long-time behaviour of solutions strongly depends on the properties of the
characteristic system

£(t) f'(v(8)
3) o(t) = g(&(t),v(t))-

We will impose the following non-degeneracy condition:

(A4) All periodic orbits of the characteristic system (3) are hyperbolic in the
o.d.e. sense, i.e. their nontrivial Floquet exponents do not lie on the imag-
inary axis.

Under these assumptions there are two possibilities for the large-time behavior of
entropy solutions:

Theorem 1.1 ([1]). Consider the scalar balance law
Ut+f(u)z = g(’u”x)a $€51
u(z,0) = wo(x)

with periodic data uo(z) € BV (SY,R). Under the assumptions (A1)—(A4) any
entropy solution u either converges uniformly to some stationary solution, or it
converges in L' to a discontinuous time-periodic solution. In the second case, the
period of this asymptotic solution corresponds to the period of a solution of the
associated characteristic equation (3).

Note that the situation is similar to the case of spatially homogeneous source
terms g = g(u) treated in [4, 2, 5]. In Theorem 1.1 the periodic solutions of the
characteristic equation (3) play a similar rdle as the zeroes of g in the case g = g(u).

1.1. Generalized characteristics

Without restriction we may assume that admissible solutions are continuous from
the left and satisfy the entropy condition (2) for all ¢ > 0.
A strong tool to study their qualitative properties are generalized characteristics.

Definition 1.2. A Lipschitz curve z = £(t), defined on an interval I = [a,b] is
called generalized characteristic associated with the solution u of (1) if it satisfies
the differential inequality

€ € [fuluw(E)+, ), fu(u(€(t)=,1))] for almost all t € I.

A characteristic is called genuine, if
u(€(t)—,t) = u(£(t)+,t) for almost all t € [a,b].

If £ is a genuine characteristic on the interval [a, b] then there exists a function
v(-) on [a,b] such that (£(-),v(:)) is a solution of the characteristic system (3). If
v(a) = u(&(a), a), then v(t) is a solution of equation (1) on the characteristic £(t)
at time ¢.

From Fillipov’s theory of differential inclusions it follows that there is a unique
generalized forward characteristic through any point (zZ,%) with £ > 0. On the
other hand, through a point (Z,?) there can exist many backward characteristics
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confined between a minimal backward characteristic £~ and a maximal backward
characteristic £T. Among the nice properties of generalized characteristics, we will
make use of the fact that these minimal and maximal backward characteristics
are always genuine. Moreover, two genuine characteristics can only intersect at
their endpoints, in particular extremal backward characteristics do not intersect
for t > 0. This allows to get a lot of qualitative information.

1.2. Long-time behaviour

In this section we give an outline of the proof of Theorem 1.1, for details we refer
to [1].

As noted before, an important role for the asymptotic behaviour of solutions to
(1) is played by the periodic solutions of the characteristic system. Assumptions
(A2)-(A4) imply that there can be only a finite number of periodic solutions, none
of them being contractible in the phase space S' x R of (3).

Definition 1.3. Let {(vi(t),&i(t)); 1 <1 < k} be the set of all periodic orbits of (3)
and denote with Ty > Ts > ... > T}, their minimal periods.

If (A3) holds, the periodic solutions of the characteristic system can be identified
with the continuous stationary solutions of the balance law, more precisely:
Lemma 1.4. There is a one-to-one correspondence between the periodic solutions
(vi(t),&i(t)) of (3) and the continuous stationary solutions u(z,t) = a;(z) of (1).

We will however see below that if (A3) is violated there may exist stationary
solutions with shocks.

The first step in the proof of Theorem 1.1 consists of finding an appropriate
candidate for the asymptotic profile. To this end, one shows, that after some time
the solution u(-, ) can intersect at most one of the stationary solutions.

Lemma 1.5 ([2], Lemma 3.3). There is a constant T > 0 depending only on the
minimal periods Th,Ts, ..., Ty, such that for all t > T the set

k
{(u(e£,1),6); €€ 5"} [ {(a:(9),); € 5}
=1

is either empty or a subset of {(an(£),£); € € S} for precisely onen € {1, --- , k}.

It will turn out that if this stationary solution is stable as a periodic solution of
the characteristic system (3), then the solution v will converge to the stationary
solution a,, in L*°. More precisely, we have the following dichotomy:

Lemma 1.6. Either
(I) lim ||u(-,t) — a2m+1(-)||lzee =0 for some m or
t—o0

(II) there is some m such that for all t > 0 there ezists some z € S!
with  u(z+,t) = agpm(z) or u(z—,t) = asm(z)
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The proof of Theorem 1.1 is complete if we can show that in case (II) the solution
u converges to a time-periodic solution of (1). To this end we determine the set of
characteristics which is defined on the infinite interval [0, c0).
Definition 1.7. Fiz t > 0. Let A(f) C S* be the set of intersections of extremal
Tom—periodic backward characteristics through points (Z,t) with the z-azxis:

A(D) == {€5(0;3,%) € S*; u(@+,1) = azm () or w(Z—,%) = asn(2),7 € S}
In particular, if we are in case (II) of Lemma 1.6 then A(Z) is non-empty for all
t > 0. Moreover, due to properties of genuine characteristics, A() is compact and

A(t1) C A(ts) for t1 > ta. Consequently, Ay, := Ni~oA(¢) is a compact, non-empty
subset of S! and can therefore be written as

Ao = S\ | (bnycn)

n=1

with at most countably many disjoint open intervals (b, ¢,)-
For every z € A, there is a genuine T5,,—periodic characteristic £ emanating
from (z,0) and defined for all ¢ > 0. In particular, there are genuine characteristics

Br, Yn such that B, (0) = by, ¥n(0) = ¢n and u(Bn(t),t) = a2m(Ba(?)), u(va(t),t) =
a2m (Yn(t)) for all ¢ > 0.
For each n we then consider the strip

S = {(z,t) € S* x R*; @ € [Bu(t), 1a(t)]}

on the cylinder S x Rt. Outside the union of the strips S,, the solution is deter-
mined by the stationary solution as,:

u(z,t) = agm () if (z,t) ¢ G Sn

n=1
If we consider the backward characteristics emanating from points in S, with

large t it turns out that they intersect the line {t = 0} very close to the boundary
of S,:

Lemma 1.8 ([2], Lemma 3.8).
Let e > 0. Then there exists a time T'(¢) > 0 such that for any extremal backward
characteristic & through a point (Z,t) € S, with t > T(¢)
£(0) € [bp,bn + ) U (cn —&,cp).

As in [2] one can show that there exists some function x,, : [T'(€), 00) — S! such
that for t > T'(g)

Sy (B) {2 € Ba(®), m@D]; £ (0;2,7) € [ba, by + €]} = [Ba(t), xn(?))]
S:(E) = {.’IJ € [571({)7771({)]7 §+(0;$,f) € [cn - &, cn]} = [Xn(t)”}’n(t)]

where x, is a generalized characteristic defined on [T'(€),00). It can be shown
that the solution w is discontinuous at Xy, (¢), therefore the Rankine-Hugoniot jump
condition holds along xp.
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To prove that the curve x,, converges to a Ta,,-periodic curve as t — 0o we define
the Rankine-Hugoniot vector field. The idea here is the following:
We extend the two characteristics 8, and v, for —oo < t < 0 by (3). For any
point (Z,t) € S,, we then determine a unique value u ™ (Z,?) such that the minimal
backward characteristic £~ from (z,%) with v(t) = v~ (Z,t) converges to (,(t) as
t — —oo. Similarly, u*(Z,%) is defined as the unique value for which the maximal
backward characteristic £+ from (Z,t) with v(f) = u*(Z,%) converges to v, (t):

i [€°(52,0) — 7a(0)] = 0
Jlim_ € (62,8 = Bu(0)] = 0.

Then the Rankine-Hugoniot vector field defined as
(4) ¢ = s(z,1)

with
_a . fwf(@,t) - fu (z,1))
(5) 5(3,8) = ut(z,t) —u(z,t)

describes the velocity of a (hypothetical) shock at some point (z,t) € S, with left
state v~ and right state u* via the Rankine-Hugoniot condition.
The following properties of the Rankine-Hugoniot vector field are derived in [1]:

Lemma 1.9. The Rankine-Hugoniot vector field defined in equations (4) and (5)
is well-defined, Lipschitz in T and continuous with respect to t. Moreover, it is
Ty, —periodic in t.

It points outside the strip S, along the two boundary curves (B, and v, and
possesses exactly one Ty, —periodic solution o, within the strip S,.

The solution u and the states u™ are connected in the following way:

Lemma 1.10. Let u be an entropy solution of the hyperbolic balance law (1). For
every § > 0 there exists some time 7(8) such that the following holds for t > 7(6):

€ SHt) = |u(z,t) —uT(z,t)] <5
zeS, ) = |u(zt)—u (z1)] <6
Moreover, the shock curve x, which separates S}t and S, tends to the curve op:
tlggo [Xn(t) — on(t)] = 0.

Using these statements one can conclude that in case (II) of Lemma 1.6 the
solution u converges to a Tb,,-periodic solution with respect to the L'-norm as
t — 0o. This completes the proof of Theorem 1.1.

As a remark, we note that along the same lines one can also prove that solutions
to hyperbolic conservation laws

ug + fu,2), =0, z€SueR

with space-dependent flux converge to stationary solutions if f is strictly monotone
and convex in u.
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FIGURE 1. Phase portrait of the characteristic system under as-
sumption (A5). A possible stationary solution is drawn in bold.

2. Discontinuous Stationary Solutions

In many cases, assumption (A3) is too restrictive. We will show in this section
that if (A3) fails, the hyperbolic balance law (1) may possess discontinuous sta-
tionary solutions. In the last chapter we present some numerical evidence that
these discontinuous stationary solutions can be asymptotically stable.

If condition (A 3) is violated, the characteristic system (3) may possess equilibria.
We will assume that f'(vo) = 0. Then (vo,&) is an equilibrium if g(vg, &) = 0.
It is of saddle type if, and only if, g¢(vo,&) > 0 and a spiral node if g2(vo, &) —
4£"(v0)g¢ (vo, &) < 0.

Without (A3) there are still many different situations depending on the number
of equilibria, their eigenvalues, relative position of invariant manifolds, existence of
periodic orbits, etc.

Here we concentrate on a specific case with two equilibria and assume:

(A5) The characteristic system (3) has precisely two equilibria S and N where S
is of saddle type and N is a spiral node. Moreover, both unstable manifolds
of S form a heteroclinic orbit to N.

We show that under this condition there must always exist a discontinuous sta-
tionary solution:
Theorem 2.1. Assume (A1) and (A5). Then there ezists at least one discon-

tinuous stationary solution us(z,t) of the hyperbolic balance law (1). This solution
coincides with parts of the unstable manifold W*(S) of the saddle point S.
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Proof. Denote with W*(S) and W} (S) the two branches of the unstable manifold
W*(S). Let (vo,z—) and (vo,z4) be the first intersections of W*(S) and W}(S)
with the line {v = vo}.

Note that we can parameterize W*(S) as v = w® () for £ € [z, zo] and W}(S5)
as v = wY (§) for £ € [xo,T]. We now define

| w* (=) for z € [z, Z]
us(2) = { wY () for z € (Z, xo]
with Z such that the shock in % is stationary i.e.

Flus(E) = fus(E)
Us('/i+) - ’U’S(i._) ‘

Vshock (5) =

This is clearly a stationary solution since trajectories of the characteristic system
correspond to solutions of f(u), = g(z,u) and the shock joining different of these
trajectories is also stationary.

It remains to prove that such a Z always exists. First we observe that vgpecr iS
a continuous function of Z on [z, Z] because w (&) # w¥ (&) and f € C*'. Moreover

_ flus(z+)) — flus(z—)) Nudz—)) = f'(vn) =
Vshock(g) - Us(ﬁ‘}‘) _us(l_) < f ( S(— )) - f ( 0) 0

due to the convexity of f. Similarly we have

fu(@+,0)) — f(u(z—,0))
u(Z+,0) —u(z—,0)

Vshock(f) = > fl(us(f+)) = fl(vo) =0.
The intermediate value theorem now gives the existence of at least one  between
z and T with vspoer(Z) = 0. O

3. A traffic model with on- and off-ramps
As an application we study a traffic model of Lighthill-Whitham-Richards type [3]

o0t + (0v(0))z = g(o, )

on a circular road where g is the car density and v(g) is the velocity. As usual
we assume that pv(g) is a concave function of p. This implies that the entropy
condition reads

Q(CE-l—, t) Z Q($_7 t)'

To model the on-/off-ramps we assume that the source term takes positive and neg-
ative values corresponding to the entry and exit of vehicles. Moreover, it vanishes
for p = 0 and p = 2, the congested state. For small o we suppose that the number
of vehicles entering and leaving the freeway is approximately proportional to the
traffic density on the road. However, the tendency to leave the road increases as g
increases while the tendency to enter the road becomes smaller.
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Traffic model

0 50 100 150 200 250 300 350 400
X

FI1GURE 2. The asymptotic density profile for the traffic model

In our simulation we have chosen pv(g) = L0(2 — o) and

=32
o(0.0) = (3 (cost2ma) = 1) o= 36°) (1= (= 1)).
In particular, the characteristic system for this flux and source term gives a phase
portrait similar to the one in figure 1.

We have done simulations with a central scheme and found that solutions con-
verge to a stationary state with one shock, see figure 2. The density profile agrees
with parts of the unstable manifold of the saddle equilibrium in the characteristic
equation joined by a shock upstream of the on-ramp. Ahead of this shock there is
an acceleration wave. A similar pattern can be observed for other choices of the
source term, e.g. if the positive part of g does not depend on g.
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