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1 IntroductionHamiltonian dynamical systems are known to possess special properties, such as persis-tence of homoclinic orbits and a Liapunov Centre Theorem at elliptic �xed points, thathave precise analogies for symmetric trajectories in reversible systems (e.g. [De76]). Inthis context we take a restrictive de�nition of a reversible system; an even-order dynamicalsystem being invariant under time reversal and a linear involution that �xes half the phasespace variables. A trajectory is termed symmetric if it is invariant under such a trans-formation as a set. Standard examples are classical Hamiltonian systems with quadratickinetic energy.This paper makes a further contribution to the study of the dynamics in a neighborhood ofhomoclinic orbits to equilibria in autonomous reversible systems, see [Dev77, H�ar93, Ch94,FT96, Saetal96, Kno97] for other cases and [Ch98] for a review. The assumption here isthat the equilibrium (without loss of generality, the origin) is a saddle centre, that is a non-hyperbolic equilibrium having two real and two imaginary eigenvalues. The assumptionof reversibility is enough to ensure that such a linearisation will persist under parameterperturbation [De76] (the same would be true under just the assumption of Hamiltonianstructure). As argued below (see Figure 2), the existence of symmetric homoclinic orbitsin such systems is of codimension one, whereas non-symmetric homoclinic orbits are ofcodimension three in general, or codim two for Hamiltonian systems (see [Ler91, KL95]for an unfolding of the latter situation). Therefore, it does not a�ect the codimension ofsymmetric homoclinic connections whether Hamiltonian structure is present or not. Wewill analyse only systems of the lowest possible dimension, namely four, for which thephenomenon can occur. Presumably a `homoclinic centre manifold' theorem as in [San95]can be used to show similar results for higher-dimensional systems.Of prime concern will be the existence of multi-pulse homoclinic orbits, which are likeseveral copies of the primary seperated by a �nite number of small oscillations, for pa-rameter values close to that of the primary. Mielke, Holmes and O'Reilly [MHO92] haveanalysed this question for reversible Hamiltonian systems, and also the construction ofshift dynamics in a neighbourhood of the primary homoclinic orbit. See also the resultsof [Reg97]. Here we shall consider the e�ect of relaxing the assumption of Hamiltonianstructure, while keeping reversibility. It will be shown that there are both similarities anddi�erences between the Hamiltonian and reversible theories.We shall restrict our attention to double-pulse homoclinic orbits, but, by analogy withthe results of [MHO92], similar statements are likely to hold for general n-pulse (n > 2)homoclinic orbits too. We will also not study possible shift dynamics for perturbations of2



reversible homoclinic orbits to saddle centres, as this is more subtle than in the Hamiltoniancase since one cannot reduce the dynamics to the study of a two-dimensional map. In fact,as in the case of homoclinic orbits to saddle-focus in reversible systems [H�ar93, Ch94],whether shift dynamics necessarily occur is an open question at present.The rest of this paper is organised as follows. In the next section we give precise notationsand state our main theorems. As a preparation for the proofs, we describe in Section 3the dynamics in a neighbourhood of the equilibrium in terms of a normal form. Takingas an assumption that the dynamics is C1 conjugate to this normal form locally, we proveour two main theorems in Sections 4 and 5. In Section 6 we study two examples andperform some numerics to illustrate our results on two example systems. The �rst systemis obtained by adjusting a certain fourth-order equation arising as a continuous limit of adiscrete lattice equation to make the corresponding system non-Hamiltonian. The secondsystem has physical motivation as a model for nonlinear optical `spatial solitons' in thepresence of linear and nonlinear dispersion. For both models we provide direct numericalevidence of the distinction between Hamiltonian and non-Hamiltonian cases.Acknowledgement. We should like to the organisers of the Workshop on Time ReversibleSymmetries in Dynamical Systems at the University of Warwick, Dec 1996 at which thiswork was initiated. We should also like to thank Alexander Mielke (University of Hannover)and Patrick Bonckaert (Limburg University) for discussions on normal forms.2 The main resultsConsider the equation _x = f(x; �); (x; �) 2 IR4 � IR: (1)We assume(H1) f is reversible, i.e. there is a linear involution R with dim(�x(R)) = 2 andf(Rx; �) = �Rf(x; �) 8(x; �) 2 IR4 � IRp (2)An important property of reversible systems is the fact that with x(t) also Rx(�t) is asolution of (1).De�nition A trajectory is called symmetric if it is, as a whole, invariant under the re-versing symmetry R.Without loss of generality, since (1) is autonomous, for such trajectories we may assumex(0) 2 �x(R). Furthermore, we assume 3



(H2) 0 is a (symmetric) equilibrium for all �. The eigenvalues of the linearization Df(0)at � = 0 are ��;�i!.In this case, the equilibrium 0 is called a saddle-centre. Due to reversibility, the spectrumof the linearization at a symmetric equilibrium is always symmetric with respect to 0, see[De76]. This implies that for all small j�j there will be the same eigenvalue con�gurationwith a pair �� of real and a pair �i! of purely imaginary eigenvalues. Moreover, thecorresponding eigenspaces depend smoothly on �. Hence for su�ciently small �, by a linearchange of variables which depends smoothly on �, we may assume that the linearizationof f at 0 has the form Df(0) = 0BBBBB@ � 0 0 00 �� 0 00 0 0 �!0 0 ! 0
1CCCCCA (3)where � = �(0) > 0 and ! = !(0) > 0.Since the reversing symmetry R maps the eigenvector corresponding to the eigenvalue �(�)onto an eigenvector of ��(�) and preserves the eigenspace associated with the eigenvalues�i!(�), we set without restriction (after a possible change of sign of some co-ordinates)R = 0BBBBB@ 0 1 0 01 0 0 00 0 0 10 0 1 0

1CCCCCA : (4)Moreover, we assume that the equation can locally be put into some polynomial normalform. These normal forms are described below in Section 3.(H3) There is a C1-di�eomorphism that commutes with R and which, locally near 0,conjugates the vector �eld to a �nite-order normal form.Homoclinic orbits to the origin with systems of with this linearisation are of codimensionone in the topology of smooth reversible systems (see, for example, the proof of Lemma 4in Section 4 below). Hence we assume(H4) For � = 0, there is a symmetric homoclinic orbit q(t) converging to 0 as t! �1.The �nal condition is a non-degeneracy hypothesis that concerns the splitting of the stableand unstable manifolds as the parameter � is varied. In order to formulate it, recall thatthere is a Liapunov Centre Theorem for reversible systems [De76, Thm. 8.1]. Hence there4



is a smooth two-dimensional centre manifold C, locally tangent to the centre eigenspaceof 0, that consist entirely of hyperbolic periodic orbits in a neighbourhood of the origin.Using the normal form result in Section 3 below, this manifold will have well-de�ned 3-dimensional stable and unstable manifolds W s;u(C). Let �s be a �-independent Poincar�esection that for � = 0 contains a point, q(t�) for some t� > 0 su�ciently large, on theprimary homoclinic orbit in W sloc(0). Furthermore let 
(�) = W uglob(0;�) \ �s, such that
(0) = q(t�), then our non-degeneracy hypothesis is(H5) The vector v := dd�
(�) at � = 0 intersects W s(C) \ �s transversally.This condition is formulated more simply using local co-ordinates in Section 4.Under the above conditions we have the following bifurcation theorem for 2-homoclinicorbits.Theorem 1 Assume (H1)-(H5). Then there is a sequence �1; �2; �3; : : : converging to0 either from the left or from the right such that at parameter values � = �i there is areversible 2-homoclinic orbit to 0.Here an orbit is called 2-homoclinic if it lies entirely in a tubular neighborhood of theprimary homoclinic orbit q and makes exactly two windings in this tubular neighborhood.Our original motivation was the following observation: Holmes, Mielke & O'Reilly [MHO92]considered a system that satis�es assumptions equivalent to (H1)-(H4) but possesses alsoHamiltonian structure. Depending on the sign of a certain coe�cient s of the quadraticpart of the Hamiltonian (see Section 5 below for details) either of the following two casesoccurs:s < 0 there are two sequences �1 < �2 < �3 < : : : < 0 and �̂1 > �̂2 > �̂3 > : : : > 0of parameter values where 2-homoclinic orbits exist. (Moreover, although not ofconcern here, in a full �-neighbourhood of 0, there are dynamics conjugate to a shifton in�nitely many symbols).s > 0 there is a neighborhood of 0 in parameter space where no recurrent behaviour in aneighborhood of the primary homoclinic orbit q can be found.This sign condition is formulated in terms of the Hamiltonian, so it seems natural to �ndeither an analogue in the non-Hamiltonian case or to prove that there is some di�erencebetween the Hamiltonian and the non-Hamiltonian case. We will do the latter and showbelow that for Hamiltonian systems condition (H5) is never satis�ed (in fact, as we will5



see in Section 5, the vector v generically lies tangent to W s(C) in �s). This explains thedi�erence between our Theorem 1 and the results in [MHO92]. We want to emphasize thatTheorem 1 shows that without Hamiltonian structure one can generically expect to �ndin�nitely many 2-homoclinic orbits for parameter values near 0.However, a reversible Hamiltonian system as considered in [MHO92] can be embeddedin a one-parameter family of reversible vector �elds. To this end we introduce anotherparameter � and consider_x = f(x; �; �); (x; �; �) 2 IR4 � IR� IR: (5)Then the following theorem holds:Theorem 2 Assume(i) Conditions (H1)-(H4) hold for all �.(ii) System (5) is a Hamiltonian system for � = 0.(iii) dd�v = d2d�d�
(�; �) at � = � = 0 is transverse to W s(C) \ �s.Then there are in�nitely many curves �i = �i(�), i = 1; 2; : : : that correspond to 2-homoclinic orbits.Two cases can be distinguished (compare Figs. 1(a) and (b)) corresponding to the sign ofs for the Hamiltonian system at � = 0.Finally, suppose that system (1) has odd symmetry(H6) f(x; �) = f(�x; �).Then we have that (1) is reversible under �R also, which leads to the following.Corollary 3 Assume (H1)-(H4) and (H6), then:� Given (H5), then there are two sequences �1 < �2 < �3 < : : : < 0 and �̂1 > �̂2 >�̂3 > : : : > 0 of parameter values where 2-homoclinic orbits exist. One sequencecorresponds to R-reversible orbits, the other to �R-reversible.� Given Hamiltonian structure, then there are two sequences �1 < �2 < �3 < : : : < 0and �̂1 > �̂2 > �̂3 > : : : > 0 both corresponding to S-reversible 2-homoclinic orbitswhere S = R or �R depending on the sign of s.� Given the assumptions of Theorem 2, then the sign of � for which R-reversible and�R-reversible pulses occur is determined by the sign of �.6
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Figure 1: Two-parameter unfolding of 2-pulse homoclinic orbits (dashed lines) in a neighbour-hood of a primary homoclinic which occurs for � = 0. The parameter � is a generic Hamiltonian-breaking parameter. Cases (a) and (b) correspond respectively to s > 0 and s < 0 for theHamiltonian system at � = 0. The additional solid straight line corresponds to parameter values� = �h(�) at which heteroclinic orbits exist from the origin to a small amplitude periodic orbit(see Section 5).
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3 The normal formIt has become quite standard to simplify a dynamical system near a singular point by usingnormal form analysis, see for example [Eletal, IA92]. Such a normal form in the case ofinterest here will be essentially determined by the linear part of f and the reversibility. Theprocedure is simple. First one calculates the normal form near a saddle-centre equilibriumwithout taking reversibility into account. The normal form inherits the reversibility of theoriginal vector �eld. So in a second step we have to check which restrictions are imposed onthe already computed normal form. Without the reversibility one arrives at the following(2n+ 1)st-order normal form where P1; P2; Q1 and Q2 are n-th order polynomials:_x = 0BBBBB@ x1 � P1(x1x2; x23 + x24; �)x2 � P2(x1x2; x23 + x24; �)x4 �Q1(x1x2; x23 + x24; �)x3 �Q2(x1x2; x23 + x24; �)
1CCCCCA : (1)Taking into account the reversibility, gives the additional restrictionP1 = �P2 ; Q1 = �Q2:Hence one arrives at the following (2n+ 1)-st order normal form:_x = 0BBBBB@ x1 � P (x1x2; x23 + x24; �)�x2 � P (x1x2; x23 + x24; �)�x4 �Q(x1x2; x23 + x24; �)x3 �Q(x1x2; x23 + x24; �)
1CCCCCA (2)with P and Q being real n-th order polynomials and P (0; 0; �) = �(�); Q(0; 0; �) = !(�).Note that this normal form is integrable: it possesses the �rst integrals I1 := x1x2 andI2 := x23 + x24.It is not known whether any vector �eld locally near a reversible saddle-center can beconjugated to such a normal form. The Liapunov Centre Theorem for reversible systemsguarantees the existence of a two-dimensional centre manifold, but this is not enough. Ingeneral, only higher order terms in the \hyperbolic" directions x1; x2 can be removed, seee.g. [Sam83, Bon97]. Hence, the resulting normal normal form is more complicated and itis not even clear that the conjugating di�eomorphism commutes with the action of R. Sofor the present paper, we take as an assumption that our original vector �eld is conjugateto the normal form (2).Note also that, for the normal form (2), the local unstable and stable manifolds of 0 arejust the x1- and x2-axis. The local center manifold C is �lled with circular periodic orbitsand its stable manifold W s(C) = fx2 = 0g is independent of �.8
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Figure 2: (a) The maps �loc and �glob in a neighbourhood of a symmetric homoclinic orbit.The �gure is drawn by projecting out the two co-ordinate directions corresponding to the centremanifold at 0. (b) A possible con�guration of non-symmetric homoclinic orbits. By reversibilitythey must occur in pairs, and since they do not intersect �x(R) they are of a higher co-dimension.Given odd symmetry (H5) these orbits would be symmetric under �R.4 Proof of Theorem 1By (H3), we may use the truncated normal form (2) of the vector �eld for our calculations.The integrability of the normal form has the nice e�ect that most calculations are simpleand the geometry becomes very clear. The calculations are similar to those of Mielke et al.,although through the absence of Hamiltonian structure the geometry is more complicated.We will consider a Poincar�e map along the primary homoclinic orbit q(t). This Poincar�emap will be decomposed into a local and a global part where the local part is determinedby the normal form near 0 and the global part is modelled by a di�eomorphism. See Figure2For the decomposition, we will choose a transverse section �u to the homoclinic orbit q at� = 0. We take �u := fx1 = r; x22 + x23 + x24 < �2gwhere r and � are chosen small such that �u is contained in the neighborhood of 0 wherethe vector �eld is given by the normal form. As a second transverse section we choose the
9



mirror image �s := R(�u) = fx2 = r; x21 + x23 + x24 < �2g:Using those two sections we de�ne a local Poincar�e map��loc : �s �! �u(xs1; xs3; xs4) 7�! (xu2 ; xu3 ; xu4)induced by the 
ow of the normal form (2). A global map��glob : �u �! �sis given by the coordinate transformations near 0 and the global 
ow along the homoclinicorbit q. We suppress for both Poincar�e maps their dependence on the parameter � whenthe meaning is obvious.Due to the existence of the primary homoclinic orbit for � = 0, we know that �0glob maps(0; 0; 0) 2 �u to (0; 0; 0) 2 �s.Since, by (H3), the coordinate transformation commutes with R, the global map is R-reversible: ��1glob(Rx) = R�glob(x):The next lemma characterizes 2-homoclinic solutions in terms of the two Poincar�e returnmaps.Lemma 4 There exists a symmetric 2-homoclinic orbit at the parameter value �� i����loc � ���glob(0; 0; 0) = R � ���glob(0; 0; 0):Proof of lemma 4: We explain �rst why in our system we are only interested insymmetric homoclinic orbits. Recall that for reversible systems a Liapunov Centre Theoremholds; the centre manifold is foliated by hyperbolic periodic orbits. For that reason everyhomoclinic orbit has to lie in the one-dimensional unstable manifold of 0 and, since it is ahomoclinic orbit, also in the one-dimensional stable manifold of 0. So the homoclinic orbitis (one component of) both the stable and unstable manifold. Since those two manifoldsare related by the reversing symmetry R (see [De76]) the homoclinic orbit has either to besymmetric, or there are two symmetry-related homoclinic orbits (as in Fig 2(b)). However,the non-symmetric situation is of codimension-three in general reversible systems becausewe require two one-dimensional manifolds to be identi�ed in IR4 (it would be codim 2 forHamiltonian reversible systems). By contrast, symmetric homoclinic orbits occur when10



the one-dimensional manifold W u(0;�) intersects the plane �x(R). This is of codimensionone in IR4. Hence, since we are interested in generic phenomena on varying one parameter�, we look only for symmetric 2-homoclinic solutions. These occur when W u(0) intersects�x(R) in a neighbourhood of 0. As (0; 0; 0) 2 �u lies on the unstable manifold, for a orbitto be 2-homoclinic the condition�glob � �loc ��glob(0; 0; 0) = (0; 0; 0) 2 �shas to be satis�ed. However, by reversibility (H1) the pre-image ��1glob(0; 0; 0) is the imageunder R of �glob(0; 0; 0) which gives exactly the condition stated in the lemma. 2The condition from Lemma 4 can also be written in the form�glob(0; 0; 0) 2 Ssymmwhere the set Ssymm is de�ned asSsymm := f(xs1; xs3; xs4) 2 �s; �loc(xs1; xs3; xs4) = R(xs1; xs3; xs4)g: (1)Using the normal form we can get an accurate description of Ssymm as follows. Owing tothe imaginary eigenvalues, it is more convenient to use polar coordinates instead of x3 andx4, hence we set x3 = % cos'x4 = % sin':In these coordinates the normal form equations read_x1 = P (I1; I2; �)x1 (2)_x2 = �P (I1; I2; �)x2 (3)_% = 0_' = Q(I1; I2; �)where the %-equation re
ects the fact that I2 = %2 is a �rst integral and the '-equationgives the angular velocity of the periodic solutions that foliate the centre manifold of 0.The `hyperbolic' equations (2), (3) can be used to calculate the time a trajectory spends ingoing from �s to �u. Especially, we can now give an expression for �loc in terms of % and '.As before, we write %s; 's for the polar coordinates in �s and %u; 'u for the coordinates in11
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Figure 3: The set Ssymm for 0 < % < %max and 0 < x1 < xmax > 0, for some %max; xmax < delta,and its intersection with a generic 
(�). Decreasing x1 further than depicted, the double spiralwinds faster and faster, with its in�nite leaves accumulating on the circle x1 = 0, % < %max; whichis W u(C) \ �s
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�u. Equations (2) and (3) can be solved explicitly since I1 and I2 are constants of motion.Then �loc can be written as xu2 = xs1%u = %s'u = 's + Q(I1; I2; �)P (I1; I2; �) ln rxs1!A simple calculation shows that the reversing symmetry R leaves % �xed and acts on the'-coordinate as R' = �2 � ':Using this, one getsSsymm = ((xs1; %s; 's) 2 �s ; xs1 > 0; �2 � 's � 's + Q(I1; I2; �)P (I1; I2; �) ln(r=xs1) (mod 2�)) :(4)The condition xs1 > 0 is necessary, because orbits with xs1 < 0 leave a neighborhood of 0not via the section �u but along the other branch of the unstable manifold. In particular,these orbits do not lie in a tubular neighborhood of the primary homoclinic orbit. To getan understanding of Theorem (1), it is useful to visualize the set Ssymm; see Fig. 3. Theintersection of Ssymm with any of the planes fxs1 = const:g is a curve through % = 0 tangentto the line 's � �4 � !2� ln(r=xs1) (mod �):Since the ln-term tends to in�nity as xs1 decreases to zero this line rotates in�nitely oftenaround %s = 0 as xs1 & 0 to produce the surface Ssymm. It is easy to verify that the closureof Ssymm consists of Ssymm [ fxs1 = 0g. To �nd the 2-homoclinic orbits, consider now theC1-curve 
(�) := ��glob(0; 0; 0)that describes how the unstable manifold intersects �s.We parametrise the curve 
 as (x
1(�); %
(�); '
(�)). Then, since in the normal form co-ordinates W s(C) \ �s = f(xs1; %s; �s)jxs1 = 0g, (H5) implies thatdd�x
1(�) 6= 0: (5)We investigate the function� 7! �(�) := '
(�)� �4 � Q(rx
1(�); %
(�))2; �)2P (rx
1(�); %
(�))2; �) ln(r=x
1(�)): (6)13



As we have shown, a point of intersection between 
 and Ssymm occurs i��(�) � 0 (mod �) and x
1(�) > 0:Note �rst that due to (5), the second condition is satis�ed either for all small � > 0 orfor all small � < 0. Without loss of generality we assume that x
1(�) > 0 for all smallpositive �. The existence of in�nitely many intersections is then proved if we show that�(�) tends to +1 or �1 as � tends to 0 from above. However, this is clear, since '
(�)tends to a limit as �& 0 and both I1 and I2 tend to 0. Hence, the ln-term dominates and,j�(�)j ! 1 which completes the proof. 2The proof of the �rst part of Corollary 3 follows from noticing thatS�symm := f(xs1; xs3; xs4) 2 �s; �loc(xs1; xs3; xs4) = �R(xs1; xs3; xs4)g = �Ssymm:Therefore, for the sign of � for which 
(�) does not intersect Ssymm there will be in�nitelymany intersections between 
(�) and �Ssymm. These intersections correspond to �R-reversible 2-homoclinic orbits.The other two parts of the Corollary can be derived similarly from the proof of Theorem2, which follows. 2
5 Proof of Theorem 2Before we begin with the proof of Theorem 2, we show that assumption (H5) fails forHamiltonian systems:Lemma 5 For Hamiltonian reversible systems, the vectorv = dd� j�=0��glob(0; 0; 0)is always parallel to the plane fxs1 = 0g.Proof : Suppose that (1) may be written in Hamiltonian form with total energy H andcanonical co-ordinates q1; p1; q2; p2, and assume and without loss of generality that 0 is inthe zero energy surface 0 2 H0(�) := fH = 0g. Furthermore, suppose that reversibilityacts to reverse the momentum variablesR : (q1; p1; q2; p2) 7! (q1;�p1; q2;�p2):14



Then, locally near 0, the transformation to write (1) in Hamiltonian co-ordinates musttake one of the two forms (up to change of sign of all the canonical variables)0BBBBB@ q1p1q2p2
1CCCCCA = 2666664 0 0 s s0 0 s �s1 1 0 01 �1 0 0

3777775 + h.o.t.with s = �1 [MHO92]. Therefore, written in the original variables, near 0 the HamiltonianH has to be of the form H = 2�x1x2 + s!2 (x23 + x24) + h.o.t.: (7)Moreover, when put into normal form (which may now be achieved for any analyticalHamiltonian system by an analytic change of variables | see [MHO92]), then the higherorder terms depend only on x1x2 and x23 + x24 (and �). If one looks for homoclinic orbits,the set H0(�) \ �s is of importance since ��glob(0; 0; 0) has to lie in H0(�). But, in normalform co-ordinates,H0 \ �s := f(x1; x2 = r; %; ') 2 �s j 2�rx1 +O((rx1)2) = �s!2 %2 +O(%4)g (8)which is the equation for a paraboloid tangent to the plane fx1 = 0g at the origin in �s,lying locally entirely in the half-space sx1 � 0. In particular, ��glob(0; 0; 0) has to lie tangentto the plane fx1 = 0g at the origin as stated in the Lemma. 2Moreover, the above proof shows that 
(�) lies on the same side of fxs1 = 0g for all j�jsmall. Thus we conclude that one of the two pictures Fig. 4(a) or (b) applies according tothe sign of s.Now suppose we perturb the Hamiltonian structure in such a way that condition (iii)of Theorem 2 applies. Without loss of generality suppose dd�v1 = 1. Then we have anunfolding as depicted in Fig. 5, which leads to one of the bifurcation diagrams in Fig. 1depending on the sign of s. Note that the curve �h(�) corresponds to parameter valuesfor which the unstable �(�;�)glob (0; 0; 0) intersects xs1 = 0 for � > 0. This corresponds to aheteroclinic connection between the origin and a periodic orbit lying in the centre manifold.2
15
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6 Two examplesWe shall illustrate the preceding theory with two examples, the �rst somewhat arti�ciallygenerated to suit our purposes, and the second taken from a particular problem in nonlinearoptics. In both cases, we do not attempt to verify the non-degeneracy conditions (H1){(H5) rigorously. Instead we provide strong a posteriori numerical evidence, obtained bydirect computation of paths of homoclinic orbits, that the conclusions of Theorems 1 and2 hold. All numerical computations are based on solving boundary-value problems forhomoclinic solutions, see e.g. [Ch98] and references therein. Numerical continuation isperformed using the software AUTO [DKK91].Before presenting the results, we note that we can use the formula (6) to deduce therate of parameter accumulation of 2-pulses on the primary orbit implied by Theorem 1 inthe case of general reversible systems and Theorem 2 for Hamiltonian reversible systems.These rates may be used as additional numerical evidence for the presence or otherwise ofHamiltonian structure.Theorem 2 shows that there is a sequence of f�ig of parameter values at which homoclinicsolutions given by �(�) = 0 (mod �) occur. By (6), we haveQ(rx
1(�i); %
(�i)2; �i)2P (rx
1(�i); %
(�i)2; �i) ln(r=x
1(�i)) = �'
(�i) + �4 + (n0 + i)�O(�)for some n0 2 ZZ. For �i su�ciently small (i su�ciently large) this gives�� !2� +O(�i)� ln(r=x
1(�i)) = �'
(0) + �4 + (n0 + i)� +O(�i)which rearranges to x
1(�i) = Kr exp �2(n0 + i)��! +O(�i)! (9)where K = exp[�! ('
(0)� �4 )].Now, for general reversible systems satisfying hypothesis (H5) we have, by (5),x
1(�i) = a�i +O(�2i ); (10)for some a 6= 0. Substituting (10) into (9) for i = n and i = n+1, and dividing, we obtain�n+1�n ! exp��2��! � as n!1: (11)In the case of a Hamiltonian reversible system, obtained by �xing � = 0 in the hypothesisof Theorem 2, generically we havex
1(�i) = b�2i +O(�3i );18
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Figure 6: Homoclinic orbits of the Hamiltonian system with � = 0; (a) primary homoclinicsolution at �2 = 1:94618 : : :, (b) a two-pulse homoclinic solution at �2 = 1:95220 : : :.for some nonzero b. This implies (11) should be replaced by�n+1�n ! exp����! � as n!1 (12)for Hamiltonian reversible systems.6.1 A fourth-order equationThe equation 112v0000 + v00 + �2v + v3 + 34v(vv00 + (1 + �)v02) = 0 (13)with � = 0 arises in the continuous limit of a discrete lattice equation known to possess`up-down' localised breather solutions. See Kivshar et al. [KCCB97] for more details.When � = 0 there are a choice of variables that put (13) into Hamiltonian form with totalenergy H = �22 u2 + 12u02 � 124(u00)2 � 14u4 + 34u2u02:The addition of the extra parameter � breaks the Hamiltonian structure of this equation.We should remark, however, that we are not aware that � corresponds to anything physicalin this model.For all values of � and �2, Equation (13), when viewed as a dynamical system in phasespace variables (u; u0; u00; u000), has odd symmetry and is reversible underR : (u; u0; u00; u000)! (u;�u0; u00;�u000)19
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Tn � Tn�1 T �2n �n �n=�n�111.70 1.88573 -0.060451.67 13.37 1.92720 -0.01898 0.31391.69 15.06 1.94002 -0.00615 0.32441.69 16.75 1.94416 -0.00202 0.32811.70 18.45 1.94551 -0.00067 0.3295primary 1.946181.71 18.45 1.94684 0.00066 0.33101.71 16.74 1.94818 0.00200 0.33241.71 15.03 1.95220 0.00603 0.33541.72 13.32 1.96415 0.01798 0.34301.78 11.60 1.99859 0.05241 0.35509.82 2.09382 0.14764Table 1: Showing x-interval T between successive large maxima of juj against � = �2�1:9461767for two-pulse homoclinic orbits accumulating on the primary orbit of the Hamiltonian system(13) with � = 0. The theoretical limits as � ! 0 of the �rst and last column respectively are2�=!(0) = 1:6973 and, by Equation (12) exp(��(0)�=!(0)) = 0:3303.
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Tn � Tn�1 T �2n �n �n=�n�1(a) �R-symmetric12.62 1.050908 -0.5097511.18 13.80 1.556618 -0.004042 0.007931.72 15.52 1.560136 -0.000523 0.129621.71 17.23 1.560591 -0.000069 0.13118primary 1.560660(b) R-symmetric1.71 16.37 1.560849 0.000189 0.132051.73 14.66 1.562094 0.001434 0.135821.76 12.93 1.571219 0.010559 0.154551.94 11.17 1.628981 0.068321 0.190149.22 1.919970 0.359310Table 2: Showing the x-interval T between successive large maxima of juj against � =�2 � 1:56065993 for two-pulse homoclinic orbits (both �R and R-symmetric) accumulating onthe primary orbit of the non-Hamiltonian system (13) with � = 0:5. The theoretical limits as� ! 0 of the �rst and last columns respectively are 2�=!(0) = 1:7166 and, by Equation (11),exp(�2�(0)�=!(0)) = 0:13140.
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6.2 Massive Thirring Model with linear and nonlinear dispersionA generalisation of the classical Massive Thirring Model was studied by Aceves andWabnitz[AW89] (see also [CJ89]) as a model for an optical �bre with grating. Champneys, Malomedand Friedman [CMF98] studied the e�ect of dispersion on this model leading to partialdi�erential equations of the formiut + iux +Duxx + ��juj2 + �jvj2� u+ v = 0; (14)ivt � ivx +Dvxx + ��juj2 + �jvj2� v + u = 0; (15)where u(x; t) and v(x; t) are complex amplitudes of two counter-propagating waves. Theseequations (with � = 0) also describe stationary tunnel-coupled planar nonlinear waveguideswith misaligned optical axis, t and x being the propagation distance and a transversecoordinate. Here D is an e�ective di�raction (rather than dispersion) coe�cient.As in [CMF98], looking for quiescent solitary waves, we substitute the ansatz, u(x; t) =e�i
tU(x), v = e�i
tV (x), make the further (symmetry reducing) simpli�cation U = V �(where asterisk denotes complex conjugation) and the apply the scaling U ! 1p�+�U . Thisresults in a single second-order complex ODE which may be written in Hamiltonian formwith total energy H = DjU 0j2 + 
jU j2 + jU j4 + 12(U2 + (U�)2): (16)The interest in solitary waves (so called `optical solitons') implies seeking solutions thatare homoclinic to the origin.To model the e�ects of nonlinear dispersion (or di�raction) we must include an extra termwith coe�cient �, viz DU 00 + iU 0 + 
U + U jU j2 + U� = i�(U jU j2)0: (17)Actually this additional term in isolation is likely to be more physically meaningful forthe case of the spatial waveguide model than for the temporal �bre model, because thelatter would also have to take into account the so-called Raman term (see, for example[HK95]). Equation (17) may be viewed as a four-dimensional dynamical system in phasespace variables Re U(x), Re U 0(x), Im U(x) and Im U 0(x). Viewed as such it has oddsymmetry and is reversible underR : (U; U 0)! (U�;�U 0�)and �R.In [CMF98] curves of one-pulse and two-pulse homoclinic orbits were computed in the(D;
)-plane for the Hamiltonian system (17) with � = 0, in the parameter region D >25
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Figure 10: Homoclinic orbits of the system (17) at 
 = 0 and � = 0:1. (a) primary orbit (�R-symmetric) for D = 1:355173, (b) �R symmetric two-pulse for D = 1:355187, (c) R-symmetrictwo-pulse for D = 1:355172, and (d) R-symmetric two-pulse for D = 1:354095.
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Tn � Tn�1 T Dn �n �n=�n�116.49 0.839767 -0.0262584.77 21.26 0.862193 -0.003832 0.14934.50 25.76 0.865412 -0.000613 0.1600primary 0.86602544.39 25.80 0.866633 0.000608 0.165934.20 21.41 0.869690 0.003664 0.1763117.21 0.886808 0.020783Table 3: Analogous to table 1, data for two-pulse �R-reversible homoclinic orbits for theHamiltonian system (17) with � = 0. Here �n = Dn � 0:86660254. The theoretical limits as� ! 0 of the �rst and last column respectively are 2�=!(0) = 4:442 and, by Equation (12),exp(��(0)�=!(0)) = 0:1630.0; j
j < 1 where the origin is a saddle centre. All solutions computed were �R-symmetricsince a change of co-ordinates shows that s = �1.Here we shall focus on showing that the addition of non-zero � destroys any Hamiltonianstructure, by providing numerical evidence that Theorem 1 (speci�cally Corollary 3) ap-plies. This evidence shall take the form of a sequence of R-symmetric two-pulse solutionsfor � = 0:1 accumulating on a one-pulse solution. Moreover we shall show that this se-quence (and a sequence of �R symmetric solutions) obey the scaling (11). In contrast, forthe Hamiltonian system with � = 0, the scalings (12) apply.For simplicity we take 
 = 0. Our starting point is a �R symmetric one-pulse homoclinicsolution found by [CMF98] to occur for � = 0 at D = p3=2. A continuous branch ofsuch solutions can be traced numerically, passing through (D; �) = (1:355173; 0:1). Figure10 presents, for � = 0:1, this primary orbit and some two-pulse orbits, both �R andR-symmetric, for nearby D-values. Table 3 shows strong evidence that the two-pulsesdo indeed obey the accumulation law (11) whereas Table 4 shows that the two-pulsesaccumulating on the corresponding primary solution for � = 0 obey (12).7 DiscussionWe have demonstrated a clear distinction between the behaviour of multi-pulse homoclinicorbits to a saddle-focus equilibrium in the case of reversible and Hamiltonian systems. The27



Tn � Tn�1 T �2n �n �n=�n�1(a) R-symmetric21.02 1.3409504 -0.01422274.91 25.93 1.3550522 -0.0001209 0.00856.05 31.98 1.5517158 �1:51� 10�6 0.0124primary 1.3551731(b) �R-symmetric6.09 28.99 1.3551866 1:348� 10�5 0.012855.82 22.90 1.3562225 0.0010493 0.0256717.08 1.3960596 0.0408865Table 4: Analogous to table 2, data for two-pulse homoclinic orbits for the non-Hamiltoniansystem (17) with � = 0:1. Here �n = Dn�1:35517309. The theoretical limits as �! 0 of the �rstand last columns respectively are 2�=!(0) = 6:106 and, by Equation (11), exp(2�(0)�=!(0)) =0:0125.numerical calculations provide both good qualitative and quantitative agreement with thetheory. It is a subject of current interest to provide clear criteria for deciding whether thereexists a change of co-ordinates to place an arbitrary reversible system in Hamiltonian form(see [LR98] for a review). So, one application of our work is a way (aided by a numericalexperimentation) for deciding whether such a transformation exists in a neighbourhood ofa primary homoclinic orbit to a saddle-center. If R-reversible two-pulses exist for one andonly one sign of parameter perturbation from the primary orbit, then the system cannotbe Hamiltonian (after any smooth co-ordinate transformation).Despite compelling numerical evidence, we should stress that we have not proved rigorouslythat the two examples presented in Section 6 �t into the theory, as we have not proved thegeneric hypotheses (H1)-(H5). In particular we have taken a rather restrictive assumptionthat there exists some smooth transformation that conjugates the system to a normal formtruncated at some order. This is largely a technical assumption which is hard to verify foran arbitrary example system and does not appear necessary. The removal of this technicalcondition is the subject of on-going work.References[AW89] A. B. Aceves and S. Wabnitz. Self-induced transparency solitons in nonlinear28
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