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Abstract

The bifurcation of double-pulse homoclinic orbits under parameter perturbation
is analysed for reversible systems having a homoclinic solution that is biasymptotic
to a saddle-centre equilibrium. This is a non-hyperbolic equilibrium with two real
and two purely imaginary eigenvalues. Reversibility enforces that small perturbations
will not change this eigenvalue configuration. It is found that (generically) an infinite
sequence of parameter values exists, on one side of that of the primary homoclinic,
for which there are double-pulse homoclinic orbits.

Mielke, Holmes and O’Reilly considered the same situation with the additional
assumption of Hamiltonian structure. There, double pulses exist on either both or
neither side, depending on a sign condition which also determines whether there can
be any recurrent dynamics. It is shown how this sign condition occurs in the purely
reversible case, via the breaking of a non-degeneracy assumption. Two possible two-
parameter bifurcation diagrams are constructed under the addition of a perturbation
that keeps reversibility but destroys Hamiltonian structure.

The results are illustrated by numerical computations on two example systems,
one arising as a model for optical spatial solitons in the presence of linear and nonlin-
ear dispersion. These computations agree perfectly with the theory including a differ-
ent rate at which double pulses accumulate in the Hamiltonian and non-Hamiltonian

cases.
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1 Introduction

Hamiltonian dynamical systems are known to possess special properties, such as persis-
tence of homoclinic orbits and a Liapunov Centre Theorem at elliptic fixed points, that
have precise analogies for symmetric trajectories in reversible systems (e.g. [De76]). In
this context we take a restrictive definition of a reversible system; an even-order dynamical
system being invariant under time reversal and a linear involution that fixes half the phase
space variables. A trajectory is termed symmetric if it is invariant under such a trans-
formation as a set. Standard examples are classical Hamiltonian systems with quadratic

kinetic energy.

This paper makes a further contribution to the study of the dynamics in a neighborhood of
homoclinic orbits to equilibria in autonomous reversible systems, see [Dev77, Har93, Ch94,
FT96, Saetal96, Kno97] for other cases and [Ch98| for a review. The assumption here is
that the equilibrium (without loss of generality, the origin) is a saddle centre, that is a non-
hyperbolic equilibrium having two real and two imaginary eigenvalues. The assumption
of reversibility is enough to ensure that such a linearisation will persist under parameter
perturbation [De76] (the same would be true under just the assumption of Hamiltonian
structure). As argued below (see Figure 2), the existence of symmetric homoclinic orbits
in such systems is of codimension one, whereas non-symmetric homoclinic orbits are of
codimension three in general, or codim two for Hamiltonian systems (see [Ler91, KL95]
for an unfolding of the latter situation). Therefore, it does not affect the codimension of
symmetric homoclinic connections whether Hamiltonian structure is present or not. We
will analyse only systems of the lowest possible dimension, namely four, for which the
phenomenon can occur. Presumably a ‘homoclinic centre manifold’ theorem as in [San95]

can be used to show similar results for higher-dimensional systems.

Of prime concern will be the existence of multi-pulse homoclinic orbits, which are like
several copies of the primary seperated by a finite number of small oscillations, for pa-
rameter values close to that of the primary. Mielke, Holmes and O’Reilly [MHO92| have
analysed this question for reversible Hamiltonian systems, and also the construction of
shift dynamics in a neighbourhood of the primary homoclinic orbit. See also the results
of [Reg97]. Here we shall consider the effect of relaxing the assumption of Hamiltonian
structure, while keeping reversibility. It will be shown that there are both similarities and

differences between the Hamiltonian and reversible theories.

We shall restrict our attention to double-pulse homoclinic orbits, but, by analogy with
the results of [MHO92|, similar statements are likely to hold for general n-pulse (n > 2)

homoclinic orbits too. We will also not study possible shift dynamics for perturbations of



reversible homoclinic orbits to saddle centres, as this is more subtle than in the Hamiltonian
case since one cannot reduce the dynamics to the study of a two-dimensional map. In fact,
as in the case of homoclinic orbits to saddle-focus in reversible systems [Har93, Ch94],

whether shift dynamics necessarily occur is an open question at present.

The rest of this paper is organised as follows. In the next section we give precise notations
and state our main theorems. As a preparation for the proofs, we describe in Section 3
the dynamics in a neighbourhood of the equilibrium in terms of a normal form. Taking
as an assumption that the dynamics is C'! conjugate to this normal form locally, we prove
our two main theorems in Sections 4 and 5. In Section 6 we study two examples and
perform some numerics to illustrate our results on two example systems. The first system
is obtained by adjusting a certain fourth-order equation arising as a continuous limit of a
discrete lattice equation to make the corresponding system non-Hamiltonian. The second
system has physical motivation as a model for nonlinear optical ‘spatial solitons’ in the
presence of linear and nonlinear dispersion. For both models we provide direct numerical

evidence of the distinction between Hamiltonian and non-Hamiltonian cases.

Acknowledgement. We should like to the organisers of the Workshop on Time Reversible
Symmetries in Dynamical Systems at the University of Warwick, Dec 1996 at which this
work was initiated. We should also like to thank Alexander Mielke (University of Hannover)

and Patrick Bonckaert (Limburg University) for discussions on normal forms.

2 The main results

Consider the equation
&= f(z,p), (z, 1) € R* X R. (1)

We assume

(H1) f is reversible, i.e. there is a linear involution R with dim(fix(R)) = 2 and

f(R:c,,u) = —Rf(«’faﬂ) V(SU,/L) € R' xR (2)

An important property of reversible systems is the fact that with x(¢) also Rz(—t) is a

solution of (1).

Definition A trajectory is called symmetric if it is, as a whole, invariant under the re-

versing symmetry R.

Without loss of generality, since (1) is autonomous, for such trajectories we may assume
x(0) € fix(R). Furthermore, we assume



(H2) 0is a (symmetric) equilibrium for all x. The eigenvalues of the linearization D f(0)
at p =0 are o, iw.

In this case, the equilibrium 0 is called a saddle-centre. Due to reversibility, the spectrum
of the linearization at a symmetric equilibrium is always symmetric with respect to 0, see
[De76]. This implies that for all small |u| there will be the same eigenvalue configuration
with a pair +a of real and a pair +iw of purely imaginary eigenvalues. Moreover, the
corresponding eigenspaces depend smoothly on p. Hence for sufficiently small u, by a linear
change of variables which depends smoothly on p, we may assume that the linearization
of f at 0 has the form

a 0 0 O
0 —a 0 0

prO=| 3
0 w 0

where @ = «(0) > 0 and w = w(0) > 0.

Since the reversing symmetry R maps the eigenvector corresponding to the eigenvalue o(u)
onto an eigenvector of —a(u) and preserves the eigenspace associated with the eigenvalues

+iw(p), we set without restriction (after a possible change of sign of some co-ordinates)

0
X ()
1

O = O O

1
0
0
0

o O = O

Moreover, we assume that the equation can locally be put into some polynomial normal

form. These normal forms are described below in Section 3.

(H3) There is a C!'-diffeomorphism that commutes with R and which, locally near 0,

conjugates the vector field to a finite-order normal form.

Homoclinic orbits to the origin with systems of with this linearisation are of codimension
one in the topology of smooth reversible systems (see, for example, the proof of Lemma 4

in Section 4 below). Hence we assume
(H4) For pu = 0, there is a symmetric homoclinic orbit ¢(¢) converging to 0 as t — +oc.

The final condition is a non-degeneracy hypothesis that concerns the splitting of the stable
and unstable manifolds as the parameter p is varied. In order to formulate it, recall that

there is a Liapunov Centre Theorem for reversible systems [De76, Thm. 8.1]. Hence there



is a smooth two-dimensional centre manifold C', locally tangent to the centre eigenspace
of 0, that consist entirely of hyperbolic periodic orbits in a neighbourhood of the origin.
Using the normal form result in Section 3 below, this manifold will have well-defined 3-
dimensional stable and unstable manifolds W**(C'). Let X° be a p-independent Poincaré
section that for p = 0 contains a point, ¢(t*) for some t* > 0 sufficiently large, on the
primary homoclinic orbit in W (0). Furthermore let v(u) = W, (0; 1) N X%, such that

9
v(0) = ¢(t*), then our non-degeneracy hypothesis is

(H5) The vector v := %v(u) at u = 0 intersects W*(C') N £* transversally.

This condition is formulated more simply using local co-ordinates in Section 4.

Under the above conditions we have the following bifurcation theorem for 2-homoclinic

orbits.

Theorem 1 Assume (H1)-(H5). Then there is a sequence iy, fig, i3, ... converging to
0 either from the left or from the right such that at parameter values p = p; there is a

reversible 2-homoclinic orbit to 0.

Here an orbit is called 2-homoclinic if it lies entirely in a tubular neighborhood of the

primary homoclinic orbit ¢ and makes exactly two windings in this tubular neighborhood.

Our original motivation was the following observation: Holmes, Mielke & O’Reilly [MHO92]
considered a system that satisfies assumptions equivalent to (H1)-(H4) but possesses also
Hamiltonian structure. Depending on the sign of a certain coefficient s of the quadratic
part of the Hamiltonian (see Section 5 below for details) either of the following two cases

occurs:

s < 0 there are two sequences p; < po < pz < ... < 0and i3 > fig > i3 > ... > 0
of parameter values where 2-homoclinic orbits exist. (Moreover, although not of
concern here, in a full g-neighbourhood of 0, there are dynamics conjugate to a shift

on infinitely many symbols).

s > 0 there is a neighborhood of 0 in parameter space where no recurrent behaviour in a

neighborhood of the primary homoclinic orbit ¢ can be found.

This sign condition is formulated in terms of the Hamiltonian, so it seems natural to find
either an analogue in the non-Hamiltonian case or to prove that there is some difference
between the Hamiltonian and the non-Hamiltonian case. We will do the latter and show

below that for Hamiltonian systems condition (H5) is never satisfied (in fact, as we will



see in Section 5, the vector v generically lies tangent to W*(C') in X*). This explains the
difference between our Theorem 1 and the results in [MHO92]. We want to emphasize that
Theorem 1 shows that without Hamiltonian structure one can generically expect to find

infinitely many 2-homoclinic orbits for parameter values near 0.

However, a reversible Hamiltonian system as considered in [MHO92| can be embedded
in a one-parameter family of reversible vector fields. To this end we introduce another

parameter v and consider
= f(z,p,v), (z,m,v) € R* x Rx R. (5)
Then the following theorem holds:
Theorem 2 Assume
(i) Conditions (H1)-(H4) hold for all v.

(i1) System (5) is a Hamiltonian system for v = 0.

(iii) Lo = dﬁ;yv(u, v) at p=v =0 is transverse to W*(C) N X*.

Then there are infinitely many curves v; = vi(p), i = 1,2,... that correspond to 2-

homoclinic orbits.

Two cases can be distinguished (compare Figs. 1(a) and (b)) corresponding to the sign of

s for the Hamiltonian system at v = 0.

Finally, suppose that system (1) has odd symmetry

(H6) f(z,p) = f(—z,p).

Then we have that (1) is reversible under —R also, which leads to the following.
Corollary 3 Assume (H1)-(H4) and (H6), then:

e Given (H5), then there are two sequences g < pa < pz < ... < 0 and i1 > fiz >
fti3 > ... > 0 of parameter values where 2-homoclinic orbits exist. One sequence

corresponds to R-reversible orbits, the other to —R-reversible.

o Given Hamiltonian structure, then there are two sequences p1 < pg < pg < ... <0
and fi; > fig > fi3 > ... > 0 both corresponding to S-reversible 2-homoclinic orbits
where S = R or —R depending on the sign of s.

o Given the assumptions of Theorem 2, then the sign of p for which R-reversible and

— R-reversible pulses occur is determined by the sign of v.
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Figure 1: Two-parameter unfolding of 2-pulse homoclinic orbits (dashed lines) in a neighbour-
hood of a primary homoclinic which occurs for 4 = 0. The parameter v is a generic Hamiltonian-
breaking parameter. Cases (a) and (b) correspond respectively to s > 0 and s < 0 for the
Hamiltonian system at v = 0. The additional solid straight line corresponds to parameter values

= pr(v) at which heteroclinic orbits exist from the origin to a small amplitude periodic orbit

(see Section 5).



3 The normal form

It has become quite standard to simplify a dynamical system near a singular point by using
normal form analysis, see for example [Eletal, TA92]. Such a normal form in the case of
interest here will be essentially determined by the linear part of f and the reversibility. The
procedure is simple. First one calculates the normal form near a saddle-centre equilibrium
without taking reversibility into account. The normal form inherits the reversibility of the
original vector field. So in a second step we have to check which restrictions are imposed on
the already computed normal form. Without the reversibility one arrives at the following

(2n + 1)st-order normal form where Py, P», Q1 and Q9 are n-th order polynomials:

zy - Py(21209, 25 + 23, 1)
Ty Py(x129, 25 + 23, 1)
T4+ Qi(T129, 75 + 3, 1)
T3 - Qa(12, 23 + 23, 1)

Taking into account the reversibility, gives the additional restriction

PlZ—PQ 3 QlZ_QZ‘
Hence one arrives at the following (2n + 1)-st order normal form:

xy - P(zym9, 2% + 22, 1)
| T P(zy39, 23 + 23, 1) @)
—24 - Q(129, 25 + 25, 1)
3 Q219,23 + x5, 1)
with P and @ being real n-th order polynomials and P(0,0, 1) = a(u), Q(0,0, u) = w(p).
Note that this normal form is integrable: it possesses the first integrals I} := zyx9 and
I :=z% + 23
It is not known whether any vector field locally near a reversible saddle-center can be
conjugated to such a normal form. The Liapunov Centre Theorem for reversible systems
guarantees the existence of a two-dimensional centre manifold, but this is not enough. In
general, only higher order terms in the “hyperbolic” directions z, x5 can be removed, see
e.g. [Sam83, Bon97]. Hence, the resulting normal normal form is more complicated and it
is not even clear that the conjugating diffeomorphism commutes with the action of R. So
for the present paper, we take as an assumption that our original vector field is conjugate

to the normal form (2).

Note also that, for the normal form (2), the local unstable and stable manifolds of 0 are
just the z;- and x,-axis. The local center manifold C' is filled with circular periodic orbits
and its stable manifold W*(C') = {xy = 0} is independent of p.
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Figure 2: (a) The maps IIj,. and Iy in a neighbourhood of a symmetric homoclinic orbit.
The figure is drawn by projecting out the two co-ordinate directions corresponding to the centre
manifold at 0. (b) A possible configuration of non-symmetric homoclinic orbits. By reversibility
they must occur in pairs, and since they do not intersect fix(R) they are of a higher co-dimension.

Given odd symmetry (H5) these orbits would be symmetric under —R.

4 Proof of Theorem 1

By (H3), we may use the truncated normal form (2) of the vector field for our calculations.
The integrability of the normal form has the nice effect that most calculations are simple
and the geometry becomes very clear. The calculations are similar to those of Mielke et al.,

although through the absence of Hamiltonian structure the geometry is more complicated.

We will consider a Poincaré map along the primary homoclinic orbit ¢(¢). This Poincaré
map will be decomposed into a local and a global part where the local part is determined
by the normal form near 0 and the global part is modelled by a diffeomorphism. See Figure
2

For the decomposition, we will choose a transverse section X* to the homoclinic orbit ¢ at
1w =0. We take

S = {xy = a5 + 23 + a; < 8%}
where 7 and 6 are chosen small such that X" is contained in the neighborhood of 0 where

the vector field is given by the normal form. As a second transverse section we choose the



mirror image
Y= R(XY) = {29 = r; 2} + 22 + 27 < 6°}.

Using those two sections we define a local Poincaré map
. .3 — X

(27,23, 23) — (23,235, 7))
induced by the flow of the normal form (2). A global map

H;Llob . Eu e ZS

is given by the coordinate transformations near 0 and the global flow along the homoclinic
orbit q. We suppress for both Poincaré maps their dependence on the parameter p when

the meaning is obvious.

Due to the existence of the primary homoclinic orbit for 4 = 0, we know that II),, maps
(0,0,0) € ¥* to (0,0,0) € X*.

Since, by (H3), the coordinate transformation commutes with R, the global map is R-
reversible:

My (R) = Rl giop(2).

The next lemma characterizes 2-homoclinic solutions in terms of the two Poincaré return

maps.

Lemma 4 There exists a symmetric 2-homoclinic orbit at the parameter value i iff

Mg © ngob(oa 0,0)=Ro Hglob(oﬂ 0,0).
Proof of lemma 4: We explain first why in our system we are only interested in
symmetric homoclinic orbits. Recall that for reversible systems a Liapunov Centre Theorem
holds; the centre manifold is foliated by hyperbolic periodic orbits. For that reason every
homoclinic orbit has to lie in the one-dimensional unstable manifold of 0 and, since it is a
homoclinic orbit, also in the one-dimensional stable manifold of 0. So the homoclinic orbit
is (one component of) both the stable and unstable manifold. Since those two manifolds
are related by the reversing symmetry R (see [De76]) the homoclinic orbit has either to be
symmetric, or there are two symmetry-related homoclinic orbits (as in Fig 2(b)). However,
the non-symmetric situation is of codimension-three in general reversible systems because
we require two one-dimensional manifolds to be identified in R* (it would be codim 2 for

Hamiltonian reversible systems). By contrast, symmetric homoclinic orbits occur when

10



the one-dimensional manifold W*(0; 1) intersects the plane fix(R). This is of codimension
one in R?. Hence, since we are interested in generic phenomena on varying one parameter
i, we look only for symmetric 2-homoclinic solutions. These occur when W"(0) intersects
fix(R) in a neighbourhood of 0. As (0,0,0) € £ lies on the unstable manifold, for a orbit
to be 2-homoclinic the condition

Hglob % Hloc o Hglob(oa U, 0) = (Oa 07 0) €’

has to be satisfied. However, by reversibility (H1) the pre-image IT,;,,(0, 0, 0) is the image

under R of I1,,(0,0,0) which gives exactly the condition stated in the lemma. O

The condition from Lemma 4 can also be written in the form
gi06(0,0,0) € Ssymm
where the set Sy, is defined as
Ssymm = {(a7, x5, 23) € 3% Myoe(2], 23, 27) = R(x], 23, 23) }. (1)

Using the normal form we can get an accurate description of Sgy.mm as follows. Owing to
the imaginary eigenvalues, it is more convenient to use polar coordinates instead of x3 and

x4, hence we set

T3 = 0COSQ

Ty = psinp.
In these coordinates the normal form equations read

£y = P, I, p)x (2)

Ty = —P(I, I, p)xs (3)
= 0

¢ = QL I,p)

where the p-equation reflects the fact that I, = o is a first integral and the ¢-equation

gives the angular velocity of the periodic solutions that foliate the centre manifold of 0.

The ‘hyperbolic’ equations (2), (3) can be used to calculate the time a trajectory spends in
going from »® to ¥*. Especially, we can now give an expression for II;,. in terms of p and .

As before, we write ¢°, ® for the polar coordinates in ¥ and p", " for the coordinates in

11



Figure 3: The set Sgymm for 0 < ¢ < gmaz and 0 < 21 < Tpae > 0, for some Ppaz; Tmae < delta,
and its intersection with a generic y(u). Decreasing x; further than depicted, the double spiral
winds faster and faster, with its infinite leaves accumulating on the circle z1 = 0, 90 < gpaz; Which
is WH(C)nxs

12



¥*. Equations (2) and (3) can be solved explicitly since I and I, are constants of motion.

Then II;,, can be written as

Ty = T
ot = 0
QL I, 1) <T>
= o+ L n | —
’ ’ p([h]zaﬂ) xi

A simple calculation shows that the reversing symmetry R leaves p fixed and acts on the

p-coordinate as

T
Rp=—— 0.
¥ 5 ¥
Using this, one gets
m QI I, i)
Ssmm: xs, s, sezs;xs>0,__ = s+ In(r/x% mod 27 .
Yy {( 1 Q SO ) 1 2 SO QO p([l,]Q,u) ( / 1) ( )

(4)

The condition x{ > 0 is necessary, because orbits with x{ < 0 leave a neighborhood of 0
not via the section X" but along the other branch of the unstable manifold. In particular,
these orbits do not lie in a tubular neighborhood of the primary homoclinic orbit. To get
an understanding of Theorem (1), it is useful to visualize the set Sy mm; see Fig. 3. The
intersection of Sy, with any of the planes {z§ = const.} is a curve through p = 0 tangent
to the line

S

0 = —%ln(r/xi) (mod 7).

s
4
Since the In-term tends to infinity as x} decreases to zero this line rotates infinitely often
around 0° = 0 as ] ™\, 0 to produce the surface Sy mm. It is easy to verify that the closure
of Ssymm consists of Sgymm U {2} = 0}. To find the 2-homoclinic orbits, consider now the

C'-curve
v(p) = 10},4,(0,0,0)

that describes how the unstable manifold intersects X°.

We parametrise the curve v as (2] (), 07 (1), »?(r)). Then, since in the normal form co-

ordinates W*(C) N X% = {(x}, 0*, ¢*)|z{ = 0}, (H5) implies that

d _,
@371 (1) # 0. (5)
We investigate the function
o 80 = 1) = = SRR E D0 7, ©)



As we have shown, a point of intersection between v and Sy, occurs iff
®(p) =0 (mod 7) and z7(u) > 0.

Note first that due to (5), the second condition is satisfied either for all small > 0 or
for all small 1 < 0. Without loss of generality we assume that z{(x) > 0 for all small
positive u. The existence of infinitely many intersections is then proved if we show that
®(p) tends to +oc or —oo as p tends to 0 from above. However, this is clear, since ¢7(u)
tends to a limit as p \, 0 and both I; and I, tend to 0. Hence, the In-term dominates and,
|®(1)| — oo which completes the proof. 0

The proof of the first part of Corollary 3 follows from noticing that
S*Symm = {(:ci,:rg,arj) € X% HZOC(xi:xgaxi) = —R(:ri,:rg,arj)} = _Ssymm'

Therefore, for the sign of y for which v(x) does not intersect Ssym,, there will be infinitely
many intersections between y(u) and —Ssymm. These intersections correspond to —R-

reversible 2-homoclinic orbits.

The other two parts of the Corollary can be derived similarly from the proof of Theorem
2, which follows. O

5 Proof of Theorem 2

Before we begin with the proof of Theorem 2, we show that assumption (H5) fails for

Hamiltonian systems:

Lemma 5 For Hamiltonian reversible systems, the vector

d
v = @‘Mzﬂnglob(oa 0, 0)

is always parallel to the plane {x§ = 0}.

Proof : Suppose that (1) may be written in Hamiltonian form with total energy H and
canonical co-ordinates ¢q, p1, g2, p2, and assume and without loss of generality that 0 is in
the zero energy surface 0 € Hy(p) := {H = 0}. Furthermore, suppose that reversibility

acts to reverse the momentum variables

R: (Q1;p1;Q2;p2) = (Q1; —P1, 42, —pz)-

14



Then, locally near 0, the transformation to write (1) in Hamiltonian co-ordinates must

take one of the two forms (up to change of sign of all the canonical variables)

q1 0 0 s s

0 0 —
Prl _ o § + h.o.t.
P2 1 -1 0 0

with s = £1 [MHO92|. Therefore, written in the original variables, near 0 the Hamiltonian
H has to be of the form

H =2ax79 + s%(x% +23) + h.o.t.. (7)

Moreover, when put into normal form (which may now be achieved for any analytical
Hamiltonian system by an analytic change of variables — see [MHO92]), then the higher
order terms depend only on z;79 and z3 + 23 (and u). If one looks for homoclinic orbits,
the set Ho(u) N X° is of importance since T}, (0, 0,0) has to lie in Hy(x). But, in normal
form co-ordinates,

HoNS* = {(21,20 =1, 0,¢) € X | 2072, + O((ra1)?) = —%92 +O0WY (8

which is the equation for a paraboloid tangent to the plane {x; = 0} at the origin in 3,
lying locally entirely in the half-space sz; < 0. In particular, IT};,, (0, 0,0) has to lie tangent

to the plane {z; = 0} at the origin as stated in the Lemma. O

Moreover, the above proof shows that y(u) lies on the same side of {z{ = 0} for all |y
small. Thus we conclude that one of the two pictures Fig. 4(a) or (b) applies according to

the sign of s.

Now suppose we perturb the Hamiltonian structure in such a way that condition (iii)
of Theorem 2 applies. Without loss of generality suppose d%vl = 1. Then we have an
unfolding as depicted in Fig. 5, which leads to one of the bifurcation diagrams in Fig. 1
depending on the sign of s. Note that the curve p,(v) corresponds to parameter values
for which the unstable H;‘l‘;z)(o, 0,0) intersects 2§ = 0 for p > 0. This corresponds to a
heteroclinic connection between the origin and a periodic orbit lying in the centre manifold.

O
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Figure 4: Showing intersections between Sgymm and y(p) for the Hamiltonian case with (a) s > 0,
and (b) s < 0. Depicted similarly to Fig. 3
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v=0 v>0

Figure 5: Depicting intersections of (v, ) and appropriate slices of Sgymm (represented by
infinitely many disjoint lines), in the two cases (a) s > 0, (b) s < 00
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6 Two examples

We shall illustrate the preceding theory with two examples, the first somewhat artificially
generated to suit our purposes, and the second taken from a particular problem in nonlinear
optics. In both cases, we do not attempt to verify the non-degeneracy conditions (H1)-
(H5) rigorously. Instead we provide strong a posteriori numerical evidence, obtained by
direct computation of paths of homoclinic orbits, that the conclusions of Theorems 1 and
2 hold. All numerical computations are based on solving boundary-value problems for
homoclinic solutions, see e.g. [Ch98] and references therein. Numerical continuation is
performed using the software AUTO [DKK91].

Before presenting the results, we note that we can use the formula (6) to deduce the
rate of parameter accumulation of 2-pulses on the primary orbit implied by Theorem 1 in
the case of general reversible systems and Theorem 2 for Hamiltonian reversible systems.
These rates may be used as additional numerical evidence for the presence or otherwise of

Hamiltonian structure.

Theorem 2 shows that there is a sequence of {y;} of parameter values at which homoclinic
solutions given by ®(x) = 0 (mod 7) occur. By (6), we have
QUra (pa), 0" (1), 1)
2P (ro{ (1), 0 (1i)?, i)

for some ny € Z. For y; sufficiently small (i sufficiently large) this gives

In(r /a7 (1)) = =¢" (1) + 7 + (no +)mO(n)

{_% + O(“i)} In(r/2] (1)) = —¢7(0) + % 4 (g + 07 + O(s)

which rearranges to

—2(ng + i)
w

) = Ko +0(u)) 0

where K = exp[2(¢?(0) — )]

Now, for general reversible systems satisfying hypothesis (H5) we have, by (5),

2 (1i) = ap; + O(13), (10)

for some a # 0. Substituting (10) into (9) for i = n and ¢ = n+ 1, and dividing, we obtain
Hnt1 —2am

Hn

—>exp< ) asn — oc. (11)

In the case of a Hamiltonian reversible system, obtained by fixing » = 0 in the hypothesis

of Theorem 2, generically we have

o] (i) = bpi + O(ud),
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Figure 6: Homoclinic orbits of the Hamiltonian system with » = 0; (a) primary homoclinic
solution at A\? = 1.94618..., (b) a two-pulse homoclinic solution at A\? = 1.95220....

for some nonzero b. This implies (11) should be replaced by

Pni1 exp <ﬂ> asn — oo (12)
fin w

for Hamiltonian reversible systems.

6.1 A fourth-order equation

The equation
1 3
ﬁv"" + 0" 4+ N+ + Zv(m/’ +(1+n)?)=0 (13)

with 7 = 0 arises in the continuous limit of a discrete lattice equation known to possess

‘up-down’ localised breather solutions. See Kivshar et al. [KCCB97] for more details.

When 7 = 0 there are a choice of variables that put (13) into Hamiltonian form with total
energy

A2 1 1

H = ?uz + §u'2 — ﬂ(u”)2 — —u" + —utu”.

The addition of the extra parameter n breaks the Hamiltonian structure of this equation.
We should remark, however, that we are not aware that 7 corresponds to anything physical

in this model.

For all values of 7 and \?, Equation (13), when viewed as a dynamical system in phase

space variables (u,u’,u”,u"), has odd symmetry and is reversible under

R . (u, ul} ull, UI”) — (u, _uI, uII, _UI”)
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Figure 7: R-symmetric homoclinic orbits of the non-Hamiltonian system with  # 0; (a) at
n=0.5, A2 =1.571219..., (b) at n = —0.5, A2 = 2.1944 .. ..

and —R.

For the Hamiltonian system, Kivshar et al. find a primary R — symmetric 1-homoclinic
solution for A\* = 1.94618. .., which is monotonic increasing up to its point of symmetry;
see Fig. 6(a). (There are further 1-homoclinics for larger A2, but these will not concern us
here). A simple calculation shows that s = 1 for this system with this reversibility, therefore
only —R-symmetric two pulse homoclinic orbits should exist for nearby A?-values. One of
these is plotted in fig. 6(b).

For all n € (—1,1), a continuous branch of primary orbits can be traced in the (A%, 7)-
plane, graphs of which orbits do not change qualitatively. For non-zero 1, we do indeed
find R-symmetric two-pulse homoclinic orbits accumulating on the primary, as described
by Theorems 2 and 3 (see fig. 7) for two such solutions. Figures 8 and 9 show the results of
tracing out curves of the various orbits in the parameter plane. These recover both cases
illustrated in fig. 1, case (a) for the —R-reversible two-pulses and (b) for R-reversible ones.

This is in accordance with Theorem 2 and Corollary 3 with s = 1.

Moreover, in Tables 1 and 2, the numerical rates of accumulation of sequences of two-pulses
on primary orbits are shown to agree with the scalings (12) in the Hamiltonian case n = 0
and (11) in the non-Hamiltonian case. The rates calculated from the formulae using the
eigenvalues +a, +w calculated at p = 0 are given in the captions to the tables. Note
that these eigenvalues vary with g (which explains the numerically observed drift from
the theoretical rate of accumulation for g # 0). A check that the computed sequence
represents successive 2-pulses according to the theory is also presented in showing that the

gap between the two large peaks (or troughs) differs by approximately 27 /w.
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T, —Thor | T A2 [in fin/ Pn—1
11.70 | 1.88573 | -0.06045
1.67 13.37 | 1.92720 | -0.01898 | 0.3139
1.69 15.06 | 1.94002 | -0.00615 | 0.3244
1.69 16.75 | 1.94416 | -0.00202 | 0.3281
1.70 18.45 | 1.94551 | -0.00067 | 0.3295
primary 1.94618
1.71 18.45 | 1.94684 | 0.00066 | 0.3310
1.71 16.74 | 1.94818 | 0.00200 | 0.3324
1.71 15.03 | 1.95220 | 0.00603 | 0.3354
1.72 13.32 | 1.96415 | 0.01798 | 0.3430
1.78 11.60 | 1.99859 | 0.05241 | 0.3550
9.82 | 2.09382 | 0.14764

Table 1: Showing z-interval T between successive large maxima of |u| against p = A2 —1.9461767
for two-pulse homoclinic orbits accumulating on the primary orbit of the Hamiltonian system
(13) with n = 0. The theoretical limits as 4 — 0 of the first and last column respectively are
27 /w(0) = 1.6973 and, by Equation (12) exp(—a/(0)r/w(0)) = 0.3303.
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Ty—Toa | T A2 [in fin/ bin—1
(a) —R-symmetric
12.62 | 1.050908 | -0.509751
1.18 13.80 | 1.556618 | -0.004042 | 0.00793
1.72 15.52 | 1.560136 | -0.000523 | 0.12962
1.71 17.23 | 1.560591 | -0.000069 | 0.13118
primary 1.560660
(b) R-symmetric
1.71 16.37 | 1.560849 | 0.000189 | 0.13205
1.73 14.66 | 1.562094 | 0.001434 | 0.13582
1.76 12.93 | 1.571219 | 0.010559 | 0.15455
1.94 11.17 | 1.628981 | 0.068321 | 0.19014
9.22 | 1.919970 | 0.359310

Table 2: Showing the z-interval T between successive large maxima of |u| against g =
A2 — 1.56065993 for two-pulse homoclinic orbits (both —R and R-symmetric) accumulating on
the primary orbit of the non-Hamiltonian system (13) with n = 0.5. The theoretical limits as
p — 0 of the first and last columns respectively are 27 /w(0) = 1.7166 and, by Equation (11),
exp(—2a(0)r/w(0)) = 0.13140.
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6.2 Massive Thirring Model with linear and nonlinear dispersion

A generalisation of the classical Massive Thirring Model was studied by Aceves and Wabnitz
[AW89] (see also [CJ89]) as a model for an optical fibre with grating. Champneys, Malomed
and Friedman [CMF98| studied the effect of dispersion on this model leading to partial
differential equations of the form

iy + ity + Dugy + (0\u\2+l/\v|2)u+v = 0, (14)
vy — v, + Dug, + (u|u|2+a|v\2)v+u = 0, (15)
where u(z,t) and v(z,t) are complex amplitudes of two counter-propagating waves. These
equations (with o = 0) also describe stationary tunnel-coupled planar nonlinear waveguides

with misaligned optical axis, ¢+ and = being the propagation distance and a transverse

coordinate. Here D is an effective diffraction (rather than dispersion) coefficient.

As in [CMF98], looking for quiescent solitary waves, we substitute the ansatz, u(x,t) =

e MU (z), v = e "V (x), make the further (symmetry reducing) simplification U = V*

(where asterisk denotes complex conjugation) and the apply the scaling U — \/VITUU' This
results in a single second-order complex ODE which may be written in Hamiltonian form
with total energy
1
H:D|U’|2+Q\U\2+\U\4+§(U2+(U*)2). (16)
The interest in solitary waves (so called ‘optical solitons’) implies seeking solutions that

are homoclinic to the origin.

To model the effects of nonlinear dispersion (or diffraction) we must include an extra term

with coefficient (3, viz
DU" +iU' + QU +UU|* + U* = iB(U|U|?)". (17)

Actually this additional term in isolation is likely to be more physically meaningful for
the case of the spatial waveguide model than for the temporal fibre model, because the
latter would also have to take into account the so-called Raman term (see, for example
[HK95]). Equation (17) may be viewed as a four-dimensional dynamical system in phase
space variables Re U(z), Re U'(z), Im U(z) and Im U'(z). Viewed as such it has odd

symmetry and is reversible under
R:(UU) — (U*,-U")
and —R.

In [CMF98] curves of one-pulse and two-pulse homoclinic orbits were computed in the
(D, Q)-plane for the Hamiltonian system (17) with § = 0, in the parameter region D >
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Figure 10: Homoclinic orbits of the system (17) at Q@ = 0 and 8 = 0.1. (a) primary orbit (—R-
symmetric) for D = 1.355173, (b) —R symmetric two-pulse for D = 1.355187, (c) R-symmetric
two-pulse for D = 1.355172, and (d) R-symmetric two-pulse for D = 1.354095.
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T,-T,.| T D, fin fin ] fin—1
16.49 | 0.839767 | -0.026258

4.77 21.26 | 0.862193 | -0.003832 | 0.1493

4.50 25.76 | 0.865412 | -0.000613 | 0.1600

primary 0.8660254

4.39 25.80 | 0.866633 | 0.000608 | 0.16593

4.20 21.41 | 0.869690 | 0.003664 | 0.17631
17.21 | 0.886808 | 0.020783

Table 3: Analogous to table 1, data for two-pulse —R-reversible homoclinic orbits for the
Hamiltonian system (17) with § = 0. Here p, = D, — 0.86660254. The theoretical limits as
p — 0 of the first and last column respectively are 27/w(0) = 4.442 and, by Equation (12),
exp(—a(0)m/w(0)) = 0.1630.

0, Q] < 1 where the origin is a saddle centre. All solutions computed were — R-symmetric

since a change of co-ordinates shows that s = —1.

Here we shall focus on showing that the addition of non-zero 3 destroys any Hamiltonian
structure, by providing numerical evidence that Theorem 1 (specifically Corollary 3) ap-
plies. This evidence shall take the form of a sequence of R-symmetric two-pulse solutions
for § = 0.1 accumulating on a one-pulse solution. Moreover we shall show that this se-
quence (and a sequence of —R symmetric solutions) obey the scaling (11). In contrast, for

the Hamiltonian system with 3 = 0, the scalings (12) apply.

For simplicity we take {2 = 0. Our starting point is a —R symmetric one-pulse homoclinic
solution found by [CMF98] to occur for = 0 at D = /3/2. A continuous branch of
such solutions can be traced numerically, passing through (D, §) = (1.355173,0.1). Figure
10 presents, for § = 0.1, this primary orbit and some two-pulse orbits, both —R and
R-symmetric, for nearby D-values. Table 3 shows strong evidence that the two-pulses
do indeed obey the accumulation law (11) whereas Table 4 shows that the two-pulses

accumulating on the corresponding primary solution for 3 = 0 obey (12).

7 Discussion

We have demonstrated a clear distinction between the behaviour of multi-pulse homoclinic

orbits to a saddle-focus equilibrium in the case of reversible and Hamiltonian systems. The
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T,—Ty1| T A fin fin/ tin 1
(a) R-symmetric
21.02 | 1.3409504 | -0.0142227
4.91 25.93 | 1.3550522 | -0.0001209 0.0085
6.05 31.98 | 1.5517158 | —1.51 x 1079 | 0.0124
primary 1.3551731
(b) —R-symmetric
6.09 28.99 | 1.3551866 | 1.348 x 10=° | 0.01285
5.82 22.90 | 1.3562225 0.0010493 0.02567
17.08 | 1.3960596 0.0408865

Table 4: Analogous to table 2, data for two-pulse homoclinic orbits for the non-Hamiltonian
system (17) with 8 = 0.1. Here pu, = D,,—1.35517309. The theoretical limits as y — 0 of the first
and last columns respectively are 27 /w(0) = 6.106 and, by Equation (11), exp(2a(0)7/w(0)) =
0.0125.

numerical calculations provide both good qualitative and quantitative agreement with the
theory. It is a subject of current interest to provide clear criteria for deciding whether there
exists a change of co-ordinates to place an arbitrary reversible system in Hamiltonian form
(see [LR9S8] for a review). So, one application of our work is a way (aided by a numerical
experimentation) for deciding whether such a transformation exists in a neighbourhood of
a primary homoclinic orbit to a saddle-center. If R-reversible two-pulses exist for one and
only one sign of parameter perturbation from the primary orbit, then the system cannot

be Hamiltonian (after any smooth co-ordinate transformation).

Despite compelling numerical evidence, we should stress that we have not proved rigorously
that the two examples presented in Section 6 fit into the theory, as we have not proved the
generic hypotheses (H1)-(H5). In particular we have taken a rather restrictive assumption
that there exists some smooth transformation that conjugates the system to a normal form
truncated at some order. This is largely a technical assumption which is hard to verify for
an arbitrary example system and does not appear necessary. The removal of this technical

condition is the subject of on-going work.
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