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Un arcobaleno



Spiegazione



È la spiegazione di Cartesio (1596-1650)



Il modello di Cartesio

• gocce d’acqua sferiche (non necessariamente dello stesso
raggio);

• rifrazione nei passaggi aria-acqua e acqua-aria: se i e r sono
gli angoli che il raggio incidente e il raggio rifratto formano
con la normale alla superficie che separa i due mezzi, si ha la
relazione

sin i

sin r
= n,

dove n è il coefficiente di rifrazione, che vale circa 1,33 per il
passaggio aria-acqua ed il reciproco di questo numero, 1/1,33
= 0,75 per il passaggio inverso.

• nella riflessione sul fondo della goccia l’angolo del raggio
incidente e quello del raggio riflesso coincidono.
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• nella rifrazione
sin i
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Deviazione totale causata da una goccia

ÂOC = 2(π − 2b) = 2π − 4b.
a + a + 2π − 4b + c = 2π, quindi c = 4b − 2a.
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Come c dipende da y
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Se R è il raggio della goccia, risulta y = R sin a.
Inoltre sin a = n sin b, con n = 1, 33.
Come abbiamo appena visto, c = 4b − 2a.
Da queste 3 equazioni ricaviamo c in funzione di y :

c(y) = 4b−2a = 4 arcsin
sin a

n
−2 arcsin sin a = 4 arcsin

y

nR
−2 arcsin

y

R
.
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Una prima conseguenza
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Una conseguenza dei nostri calcoli è che la luce riflessa dalle gocce
proviene dalla parte bassa del cielo.
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Chiaroscuri



Dove appare l’arcobaleno?

Sull’angolo
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√
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3
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.

si concentrano molti raggi luminosi.
Sostituendo n = 1, 33 troviamo c = 0, 74 radianti, ossia circa 42
gradi.

12 30

42



Dove appare l’arcobaleno?
Sull’angolo

c = 4 arcsin
1

n

√
4− n2

3
− 2 arcsin

√
4− n2

3
.

si concentrano molti raggi luminosi.

Sostituendo n = 1, 33 troviamo c = 0, 74 radianti, ossia circa 42
gradi.

12 30

42



Dove appare l’arcobaleno?
Sull’angolo

c = 4 arcsin
1

n

√
4− n2

3
− 2 arcsin

√
4− n2

3
.

si concentrano molti raggi luminosi.
Sostituendo n = 1, 33 troviamo c = 0, 74 radianti, ossia circa 42
gradi.

12 30

42



Dove appare l’arcobaleno?
Sull’angolo

c = 4 arcsin
1

n

√
4− n2

3
− 2 arcsin

√
4− n2

3
.

si concentrano molti raggi luminosi.
Sostituendo n = 1, 33 troviamo c = 0, 74 radianti, ossia circa 42
gradi.

12 30

42



E i colori?

Raffiniamo il modello di Cartesio:

• La luce solare è costituita dalla sovrapposizione di tutti i
colori.

• La costante di rifrazione n varia leggermente da colore a
colore, secondo la tabella:

8/5/11 2:43 PMFeature Column from the AMS
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So the caustic rays of different color, all from the same direction, are scattered as they exit the raindrop.

 

These all go to different observers. To a given observer go caustic rays of different colors, and that's what makes the rainbow.
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I colori

Usando il valore n = 1, 33141 del coefficiente di rifrazione della
luce rossa, troviamo il valore c = 0, 73845 = 42, 310.

Usando il valore n = 1, 34451 del coefficiente di rifrazione della
luce violetta, troviamo il valore c = 0, 70569 = 40, 430.

1210 30

42

40

Quindi la striscia rossa appare all’esterno dell’arco e quelle violetta
all’interno.
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L’arcobaleno di prima



Un altro arcobaleno



Spiegazione

Il secondo arcobaleno è formato da quei raggi che subiscono una
doppia riflessione all’interno della goccia.

Con calcoli simili ai precedenti si trova che la luce proveniente dal
secondo arcobaleno forma angoli tra i 500 e i 530 con la direzione
della luce solare.
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Il secondo arcobaleno è formato da quei raggi che subiscono una
doppia riflessione all’interno della goccia.

Con calcoli simili ai precedenti si trova che la luce proveniente dal
secondo arcobaleno forma angoli tra i 500 e i 530 con la direzione
della luce solare.



Spiegazione
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C’è dell’altro?



Strisce supplementari ancora più visibili



Il modello ondulatorio

• La luce è composta da onde, che interferiscono rafforzandosi
(interferenza costruttiva), oppure cancellandosi (interferenza
distruttiva).

• Le diverse lunghezze d’onda sono responsabili dei colori.
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La spiegazione di George Biddel Airy (1801-1892)
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What is important in this picture is the way the wave front doubles back on itself, in effect mingling two waves, each with a different front. These two
components of the waves mix with each other in a complicated fashion, leading to interference (and those bands of light we are trying to explain). In order
to understand what's going on in simple terms, one needs a useful trick - not looking at the true wavefront as it emerges from the drop, but looking instead
at a virtual wave front, which is the wave front in clear air that would cause the emerged wave front:

 

Now we can see that we are in fact looking at a mathematical problem that is quite simple to state (if not to solve) what is the wave propagation from an S
shaped wave front?

Il problema può essere ridotto al seguente: come evolve un fronte
d’onda forma di S?
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This is an exercise in Huyghen's principle, which says that a wave can be reconstructed from a single wave front by considering each point on that wave
front as an isolated infinitesimal source, all of them contributing to the propagation. If we reorient our coordinate system so that the caustic ray is the
negative x-axis, the S-shaped curve may be expressed to a good approximation in the form x = k y3. We may express k = c/R2 where c is a dimensionless
constant and R is the radius of the raindrop.

 

The amplitude of the wave determining light at some far away point in the direction ! is the integral of the contributions at all the points on the cubic curve.
According to the figure above, the difference in phase from contributions at (0,0) and (x,y) is (x sin ! - y cos !)/"  where " is the wave length concerned.
This leads after some calculation to an approximation to the magnitude of the wave at some far away point in direction ! - it is some constant times the
infinite integral

 

where m is proportional to !. There are a number of simplifications involved here that I am passing along without elaboration - for example, replacing an
integral over a finite interval by an infinite one, and approximating sin s by s, and cos s by 1 when s is small.

De Morgan

In order to verify that his theory agreed with phenomena, Airy had to evaluate his integral for various values of m. It seems astonishing to us now to see

Principio di Huygens: l’evoluzione è la stessa che si avrebbe se il
fronte d’onda di partenza fosse costituito da sorgenti puntiformi.
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front as an isolated infinitesimal source, all of them contributing to the propagation. If we reorient our coordinate system so that the caustic ray is the
negative x-axis, the S-shaped curve may be expressed to a good approximation in the form x = k y3. We may express k = c/R2 where c is a dimensionless
constant and R is the radius of the raindrop.

 

The amplitude of the wave determining light at some far away point in the direction ! is the integral of the contributions at all the points on the cubic curve.
According to the figure above, the difference in phase from contributions at (0,0) and (x,y) is (x sin ! - y cos !)/"  where " is the wave length concerned.
This leads after some calculation to an approximation to the magnitude of the wave at some far away point in direction ! - it is some constant times the
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where m is proportional to !. There are a number of simplifications involved here that I am passing along without elaboration - for example, replacing an
integral over a finite interval by an infinite one, and approximating sin s by s, and cos s by 1 when s is small.

De Morgan

In order to verify that his theory agreed with phenomena, Airy had to evaluate his integral for various values of m. It seems astonishing to us now to see

Principio di Huygens: l’evoluzione è la stessa che si avrebbe se il
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What is important in this picture is the way the wave front doubles back on itself, in effect mingling two waves, each with a different front. These two
components of the waves mix with each other in a complicated fashion, leading to interference (and those bands of light we are trying to explain). In order
to understand what's going on in simple terms, one needs a useful trick - not looking at the true wavefront as it emerges from the drop, but looking instead
at a virtual wave front, which is the wave front in clear air that would cause the emerged wave front:

 

Now we can see that we are in fact looking at a mathematical problem that is quite simple to state (if not to solve) what is the wave propagation from an S
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Il problema può essere ridotto al seguente: come evolve un fronte
d’onda forma di S?

8/5/11 2:43 PMFeature Column from the AMS

Page 8 of 11http://www.ams.org/samplings/feature-column/fcarc-rainbows

 

This is an exercise in Huyghen's principle, which says that a wave can be reconstructed from a single wave front by considering each point on that wave
front as an isolated infinitesimal source, all of them contributing to the propagation. If we reorient our coordinate system so that the caustic ray is the
negative x-axis, the S-shaped curve may be expressed to a good approximation in the form x = k y3. We may express k = c/R2 where c is a dimensionless
constant and R is the radius of the raindrop.

 

The amplitude of the wave determining light at some far away point in the direction ! is the integral of the contributions at all the points on the cubic curve.
According to the figure above, the difference in phase from contributions at (0,0) and (x,y) is (x sin ! - y cos !)/"  where " is the wave length concerned.
This leads after some calculation to an approximation to the magnitude of the wave at some far away point in direction ! - it is some constant times the
infinite integral

 

where m is proportional to !. There are a number of simplifications involved here that I am passing along without elaboration - for example, replacing an
integral over a finite interval by an infinite one, and approximating sin s by s, and cos s by 1 when s is small.

De Morgan

In order to verify that his theory agreed with phenomena, Airy had to evaluate his integral for various values of m. It seems astonishing to us now to see

Principio di Huygens: l’evoluzione è la stessa che si avrebbe se il
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La matematica necessaria

Airy arriva alla seguente formula per l’ampiezza delle onde che ci
arrivano lungo una retta che forma un angolo x con la direzione
della luce solare:

A(x) =
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2
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Questo integrale non si calcola esplicitamente. Augustus De
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that the way he did this was by explicit numerical calculation of the integral. Not at all a task undertaken lightly. But then Airy went on to become the
Astronomer Royal, best known for the accuracy of the astronomical computations done during his administration rather than flights of imagination. He is in
fact most famous for having caused the British mathematician John Couch Adams not to get full credit for predicting the discovery of the planet Neptune.
His next moment of fame was his role in engineering design of the great Tay Bridge disaster.

Augustus De Morgan suggested very early in Airy's explorations a way around this tedious procedure, namely an explicit expression for the Taylor series of
Airy's integral around m=0.

But Airy refused to use de Morgan's method because de Morgan was unable at first to justify his procedure rigorously, even though his heuristic reasoning
seems to have been quite reasonable. De Morgan was finally able prove the validity of his computations, and in his second article on caustics Airy used the
series De Morgan had offered him. Most of this second article, in fact, amounts just to an extract of a letter from De Morgan explaining his argument. De
Morgan was well known in his time for other mathematical work, particularly involving Euclid and education, as well as for several popular expositions of
mathematics. But his discovery of the calculation of the Taylor series of the Airy integral showed a talent that his work didn't often exhibit.

The series that De Morgan came up was this:

 

The terms in the series can be calculated easily by recursion. For the first series

t0=1 

tn+1 = -tn x3 / 3(3n+2)(3n+3)

and for the second

t0 = x 

tn+1 = -tn x3 / 3(3n+3)(3n+4) .

The following figures show the graph of the function, the graph of its square, which is proportional to the magnitude of light, and the resulting "rainbow"
for monochromatic light.

 

 

Stokes

The Taylor series is useful for small values of m, but for large ones something unpleasant happens. For m large, the terms in the series grow rapidly, but
they largely cancel out, leaving very small terms. Because computers handle real numbers with limited precision, the cancellations start to produce more or
less random numbers after a while. (This happens already with the far simpler series for ex when x < 0. But there it is no problem, since the series with x >

0 offers no unusual difficulty, and e-x = 1/ex.)) For Airy, this limited the range for which he could compute A(x) to about [-4.0, 5.6].

Airy doesn't seem to have speculated on the obvious pattern the graph was showing, much less how to verify that there might be a way to find a rigorous
description of the behavior of A(x) for large values of |x| easing oscillations for x > 0. This challenge was taken up be the Cambridge mathematician George
Gabriel Stokes (after whom Stokes' Theorem is named), a man of much greater talent and imagination than Airy, and one of the greatest mathematical
physicists of the century. His investigations of Airy's integral led him to some extremely fruitful mathematical ideas.

There were two major contributions by Stokes. The first was that the Airy integral could be approximated for large values of |m| by asymptotic series. The
one for m > 0 approximates A(m) by a slowly decreasing oscillation, and the one for m < 0 approximates it by an exponentially decreasing function. These
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