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Abstract. The notion of a G-completely reducible subgroup is important in the study
of algebraic groups and their subgroup structure. It generalizes the usual idea of complete
reducibility from representation theory: a subgroup H of a general linear group G = GLn(k)
is G-completely reducible if and only if the inclusion map i : H → GLn(k) is a completely
reducible representation of H. In these notes I give an introduction to the theory of complete
reducibility and its applications, and explain an approach to the subject using geometric
invariant theory.
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6. Other topics

1. Motivation and review of algebraic groups

My aim in these notes is to discuss the theory of G-completely reducible subgroups of
a reductive linear algebraic group G, and describe an approach using geometric invariant
theory. In particular, I give a reasonably complete and self-contained explanation of two key
results—the characterisation of G-completely reducible subgroups in terms of closed orbits
(Theorem 4.1) and the construction of the Kempf-Rousseau-Hesselink optimal destabilising
parabolic subgroup (Theorem 5.1)—introducing the necessary ideas from geometric invariant
theory along the way. Much of this geometric approach is based on work of Michael Bate,
Benjamin Martin and Gerhard Röhrle [3], but many of the ideas are originally due to Roger
Richardson [22].

Algebraic groups are to algebraic geometry what Lie groups are to differential geometry,
and they appear in many areas of group theory, algebraic geometry and number theory.
Simple (and, more generally, reductive) algebraic groups arise as automorphism groups of
interesting structures such as Lie algebras or Jordan algebras; they are the source of finite
groups of Lie type and they have applications to spherical buildings.

The main idea of G-complete reducibility is to generalise the definition of a completely
reducible representation from representation theory—which involves subgroups of a general
linear group GLn(k)—to subgroups of an arbitrary reductive algebraic group G. One can
then check which results from representation theory work in this more general setting. For
instance, Clifford’s Theorem still holds (see Theorem 5.13 below).

Some applications:

(1) The subgroup structure of reductive algebraic groups. (Given a subgroup H of G,
either H is G-completely reducible or it isn’t! We can say useful things in either
case.)

(2) Simple groups of Lie type.
(3) Spherical buildings.
(4) Geometric invariant theory.

Example 1.1. Let V be an n-dimensional vector space over k and let ρ : H → GL(V ) be
a representation of a linear algebraic group H. We want to know whether ρ is completely
reducible. Only the image of ρ is important, so we might as well assume that H ≤ GL(V )
and ρ is inclusion.

Let W be a subspace of V and let m = dim(W ). Choose a basis e1, . . . , em for W , then
extend this to a basis for V by adding vectors em+1, . . . , en. We can identify GL(V ) with
GLn(k) via this choice of basis, so we get an inclusion ψ : H → GLn(k). We see that W is
H-stable if and only if ψ(H) ≤ P , where P is the group of block upper triangular matrices
with an m×m block followed by an (n−m)× (n−m) block down the leading diagonal.

Now suppose W is H-stable. Then W has an H-stable complement if and only if we can
choose em+1, . . . , en above in such a way that they span an H-stable subspace of V . Now
em+1, . . . , en span an H-stable subspace of V if and only if ψ(H) ≤ L, where L is the group
of block diagonal matrices with an m × m block followed by an (n − m) × (n − m) block
down the leading diagonal.
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When we change the basis for a vector space V , the matrix of a linear transformation of V
changes via conjugation by the change of basis matrix. We have proved the following: if H is
a subgroup of GLn(k) then H stabilises an m-dimensional subspace W of kn if and only if H
is GLn(k)-conjugate to a subgroup of P , and H stabilises both an m-dimensional subspace
and a complement to that subspace if and only if H is GLn(k)-conjugate to a subgroup of
L. This gives a purely intrinsic description of complete reducibility in terms of subgroups of
GLn(k), without involving the vector space kn. It is this idea that we want to generalise.

1.1. Review of algebraic groups.

Some notation: Let k be an algebraically closed field. Let X be an affine variety over k.
We write k[X] for the co-ordinate ring of X, and if X is irreducible then we write k(X) for
the function field of X. Given x ∈ X, we denote the tangent space to X at x by TxX. Given
a morphism φ : X → Y of affine varieties, we denote by dxφ : TxX → Tφ(x)Y the derivative
of φ at x.

We recall the derivative criterion for separability. Let φ : X → Y be a dominant morphism
of irreducible affine varieties. The comorphism φ∗ : k[Y ]→ k[X] is injective, so it gives rise
to an embedding of k(Y ) in k(X). We say that φ is separable if k(X)/k(Y ) is a separable
field extension. If x ∈ X such that x and φ(x) are smooth points and dxφ is surjective then
φ is separable. Conversely, if φ is separable then there is a nonempty open subset U of X
such that for all x ∈ U , x and φ(x) are smooth points and dxφ is surjective.

Algebraic groups: By “algebraic group” we mean “linear algebraic group”. and let SLn(k)
be the group of n×n matrices of determinant 1 with entries from k. An algebraic group is a
closed subgroup of SLn(k) for some n: that is, a subgroup of SLn(k) that is the zero set of a
set of polynomials in the matrix entries. For instance, the special orthogonal group SOn(k) is
the subgroup of SLn(k) given by the condition AAT = I, and this condition can be expressed
as n2 polynomial equations in the n2 matrix entries of A. Note that GLn(k) can be viewed
as a closed subgroup of SLn+1(k); it follows easily that a subgroup of GLn(k) that is the zero
set of a set of polynomials in the matrix entries is an algebraic group. Moreover, SLn(k)
itself is given—as a subset of Mn(k), the set of all n× n matrices over k—by the condition
det(A) = 1, which can be expressed in terms of polynomial equations in the matrix entries.
The additive group (k,+) and the multiplicative group (k∗, ·) of the field are algebraic.

An equivalent definition (but not obviously so!): An algebraic group is an affine vari-
ety with a group structure such that group multiplication and inversion are morphisms of
varieties.

The Zariski topology, subgroups and homomorphisms: An algebraic group H is an
affine variety, so it carries the Zariski topology. We denote the co-ordinate ring of H by
k[H]. As H acts transitively on itself by left multiplication, it is smooth, so its irreducible
components and connected components coincide and these components all have the same
dimension. We denote by H0 the unique connected component that contains the identity.
By a subgroup of H we mean a closed subgroup unless otherwise stated; such a subgroup is
an algebraic group in its own right. If N is a normal subgroup of H then H/N is also an
algebraic group (this takes some work to prove). A homomorphism of algebraic groups is
assumed to be a morphism of varieties. If φ : H1 → H2 is a homomorphism of algebraic groups
then φ(H1) is closed in H2. An epimorphism of algebraic groups with finite kernel is called
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an isogeny. A product of two algebraic groups is an algebraic group. By a representation1

of H we mean a homomorphism ρ from H to GLn(k) for some n ∈ N (or, equivalently, to
GL(V ) for some finite-dimensional vector space V over k). We often write g · v for ρ(g)(v).
We define irreducibility and complete reducibility of representations in the usual way.

The Lie algebra: As for Lie groups, we can associate to an algebraic group H a Lie
algebra h over k; h is the tangent space T1(H) at the identity. The action of H on itself by
conjugation gives rise to a representation Ad: H → GL(h), called the adjoint representation.
For instance, we can identify the Lie algebra gln(k) of GLn(k) with Mn(k) (with Lie bracket
given by [A,B] := AB−BA), and we have g·A = gAg−1 for g ∈ GLn(k) and A ∈Mn(k). The
Lie algebra sln(k) of SLn(k) is the subalgebra of Mn(k) consisting of the traceless matrices,
and the adjoint action is also given by conjugation.

The close correspondence between Lie groups and their Lie algebras can falter for algebraic
groups. For instance, if char(k) = p > 0 and p divides n then the centre Z(SLn(k)) is finite,
but the Lie algebra centre z(sln(k)) is 1-dimensional because scalar multiples of the identity
matrix are traceless. In the language of representations, z(sln(k)) is an Ad-stable subspace
of sln(k); it is in fact easy to show that sln(k) is not completely reducible. In contrast, sln(k)
is completely reducible if p does not divide n.

Unipotent and semisimple elements: Let i : H → GLn(k) be an embedding of algebraic
groups (at least one such i exists for any given H, by definition!) We say that h ∈ H is
unipotent if i(h) is conjugate to an upper unitriangular matrix (upper triangular with 1s on
the diagonal), and we say that h is semisimple if i(h) is conjugate to a diagonal matrix (i.e.,
is diagonalisable). This does not depend on the choice of embedding i. There exist unique
hs, hu ∈ H such that hs is semisimple, hu is unipotent, h = hshu and hs and hu commute
(this is the Jordan decomposition of h). Uniqueness implies that if M ≤ H and h belongs
to M then hs and hu also belong to M . If φ : H1 → H2 is a homomorphism of algebraic
groups and h ∈ H1 then φ(hs) = φ(h)s and φ(hu) = φ(h)u. The group H is unipotent if every
element of H is unipotent. (Warning: A semisimple group is not a group consisting only
of semisimple elements.) Subgroups and quotients of unipotent groups are unipotent, and
conversely, if 1 → N → H → Q → 1 is a short exact sequence of algebraic groups then H
is unipotent if N and Q are (these facts follow easily from the Jordan decomposition). In
characteristic 0, every nontrivial unipotent element has infinite order, every element of finite
order is semisimple and every unipotent subgroup is connected. In characteristic p > 0, an
element is unipotent if and only if its order is a power of p, and an element of finite order is
semisimple if and only if its order is coprime to p.

The unipotent radical and reductive groups: The unipotent radical Ru(H) of H is
the unique largest connected normal unipotent subgroup of H. We say that H is reductive
if Ru(H) = 1 (this is one of the most important and most useless definitions in the theory
of algebraic groups!). In general, H/Ru(H) is reductive. Since Ru(H) = Ru(H

0), H is
reductive if and only if H0 is reductive.

Maximal tori and Borel subgroups: A torus is an algebraic group that is isomorphic
to (k∗)m for some m. Any algebraic group contains a maximal torus T , and T is unique up
to conjugacy. We define the rank of H to be the dimension of a maximal torus of H. A

1Often these are called rational representations in the literature: the adjective “rational” serves to em-
phasise that ρ is a morphism of varieties.
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quotient of a torus is a torus. A Borel subgroup B of H is a maximal connected solvable
subgroup of H; these are also unique up to conjugacy. (It is clear from the definitions that
a conjugate of a maximal torus is a maximal torus, and a conjugate of a Borel subgroup is
a Borel subgroup.) For instance, if H = SLn(k) then the subgroup Dn = Dn(k) of diagonal
matrices is a maximal torus, and the subgroup Bn = Bn(k) of upper triangular matrices is
a Borel subgroup; Ru(Bn) is Un = Un(k), the subgroup of upper unitriangular matrices.

Characters and weights: Let X(H) denote the set of homomorphisms χ : H → k∗; we
call elements of X(H) characters. The set X(H) is an abelian group under pointwise mul-
tiplication. We use additive notation for X(H). The homomorphisms from k∗ to k∗ are
precisely the maps of the form a 7→ an for some n ∈ Z, so X(k∗) ∼= Z. More generally, if S
is a torus of dimension m then X(S) is a free abelian group on m generators.

Now let ρ : H → GL(V ) be a representation and let S be a torus of G. We say that
0 6= v ∈ V is a weight vector of V if there is a function χ : S → k∗ such that h · v = χ(h)v
for all h ∈ S. The function χ is uniquely determined by v and χ is a character of S; we call
χ a weight of V with respect to S. We define ΦS(V ) to be the set of weights. If χ ∈ ΦS(V )
then the set Vχ := {v ∈ V | h · v = χ(h)v for all h ∈ S} is a subspace of V , called the weight

space corresponding to χ. We have V =
⊕

χ∈ΦS(V )

Vχ—this follows from the classical result

that commuting diagonalisable matrices can be simultaneously diagonalised. So, given any

v ∈ V , we have a unique decomposition v =
∑

χ∈ΦS(V )

vχ, where each vχ ∈ Vχ. We define

suppS(v) = {χ ∈ ΦS(V ) | vχ 6= 0}, and we call this set the support of v (with respect to S):

so we have v =
∑

suppS(V )

vχ.

The notion of a cocharacter will be crucial for us. We discuss cocharacters in Section 3.

Linearly reductive groups: An algebraic group is linearly reductive if every representation
of it is completely reducible. The above argument shows that any torus is linearly reductive.
More generally, any algebraic group consisting of semisimple elements is linearly reductive.

Parabolic subgroups and Levi subgroups: Let H be connected and reductive. A
parabolic subgroup of H is a subgroup P of H that contains a Borel subgroup of H (such
a subgroup is automatically closed); in particular, H is a parabolic subgroup of H. A Levi
subgroup of P is a maximal reductive subgroup L of P . Levi subgroups of P exist; they are
not unique, but they are unique up to Ru(P )-conjugacy (it is clear that a P -conjugate of a
Levi subgroup of P is a Levi subgroup of P ). Moreover, P is isomorphic to the semidirect
product L n Ru(P ); we denote by cL the canonical projection from P to L ∼= P/Ru(P ).
Parabolic subgroups and their Levi subgroups are connected. We have CH(P ) = Z(H) and
NH(P ) = P (here CH(·) and NH(·) denote the centraliser and normaliser, respectively), and
CH(L)0 = Z(L)0 is a torus. (In particular, Z(H)0 is a torus as H is a parabolic subgroup
of H with unique Levi subgroup H.) Any conjugate of a parabolic subgroup is a parabolic
subgroup, and H has only finitely many conjugacy classes of parabolic subgroups. If P1 and
P2 are parabolic subgroups of H then P1 ∩ P2 contains a maximal torus of H. Later we will
give another characterisation of parabolic subgroups and Levi subgroups. We abuse notation
and speak of Levi subgroups of H; by this we mean Levi subgroups of parabolic subgroups
of H.
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For example, let H = SLn(k) (the description for GLn(k) is completely analogous). Fix
n = (n1, . . . , nr) ∈ Nr such that n1 + · · · · · · + nr = n. The subgroup Pn of block upper
triangular matrices with diagonal block sizes n1, . . . , nr down the leading diagonal is a par-
abolic subgroup of SLn(k); conversely, any parabolic subgroup of SLn(k) is conjugate to one
of these. The subgroup Ln of block diagonal matrices with diagonal block sizes n1, . . . , nr
down the leading diagonal is a Levi subgroup of P . The subgroup Un of block upper uni-
triangular matrices with diagonal block sizes n1, . . . , nr down the leading diagonal is the
unipotent radical of P . Two extreme cases: if r = n and n1 = · · · = nr = 1 then Pn is the
Borel subgroup Bn, Ln is the maximal torus Dn and Un is Un, while if r = 1 and n1 = n
then Pn = Ln = SLn(k) and Un = 1.

A proper parabolic subgroup P of H is never reductive. One can often, however, prove
results by induction on dim(H), by passing from H to a Levi subgroup L of a proper parabolic
subgroup P of H. In general, H can have very complicated connected reductive subgroups,
but Levi subgroups of H are well-behaved: for instance, they always contain a maximal torus
of H.

Simple groups and semisimple groups: An algebraic groupH is simple if it is infinite and
connected and has no infinite proper normal subgroups. In this case, any normal subgroup
of H is central, Z(H) is finite and H/Z(H) is simple as an abstract group. (For instance,
SLn(k) is simple if n ≥ 2—note that SL1(k) is the trivial group!) An algebraic group is
semisimple if it is connected and reductive and has finite centre. Up to isogeny, a semisimple
group is a finite product of simple groups, and a connected reductive group is a finite product
of simple groups with a central torus; the simple groups that appear in this factorisation
are called the simple components. If H is connected and reductive then Z(H) consists of
semisimple elements and is a finite extension of a torus; moreover, the commutator subgroup
[H,H] is semisimple and has the same simple components as H.

The structure theory of reductive groups: A connected reductive group is completely
determined by specifying the dimension of the torus Z(H)0 and some combinatorial informa-
tion called the root datum. The root datum is completely determined (at least for semisimple
groups) by a Dynkin diagram and some extra information which is closely analogous to the
fundamental group of a Lie group. A semisimple group is simple if and only if the cor-
responding Dynkin diagram is irreducible. There are four infinite families of irreducible
Dynkin diagrams, yielding the simple groups of classical type: type An (which corresponds
to SLn+1(k) up to isogeny), Bn for n ≥ 2 (the special orthogonal group SO2n+1(k)1), Cn
for n ≥ 3 (the symplectic group Sp2n(k)) and Dn for n ≥ 4 (the special orthogonal group
SO2n(k)2). There are also five so-called exceptional irreducible Dynkin diagrams: G2, F4,
E6, E7 and E8; the corresponding groups are said to be of exceptional type.

Good and bad primes: If char(k) = 0 then algebraic groups are well-behaved in many
important ways. The general philosophy is that an algebraic group is well-behaved if p :=
char(k) is “large enough”. In particular, if H is connected and reductive then one can define
the notion of a good prime using the combinatorics of the root system. A prime is bad if it
is not good. Here is the list of bad primes in each case: 2 is bad for simple groups of all
types except An; 3 is bad for types G2, F4, E6, E7 and E8, and 5 is bad for type E8. All
primes are good for type An, but we say p is very good for type X if either X 6= An and p is

2For p > 2; there are some subtleties over a field of characteristic 2.
6



good for type X, or X = An and p does not divide n+ 1. The prime p is good (very good)
for a reductive group H if it is good (very good) for every simple component of H. In our
example above of Z(SLn(k)) and z(sln(k)), SLn(k) is well-behaved as long as char(k) = 0 or
char(k) is very good for SLn(k).

What I left out: There is a huge gap in the above summary: we have not discussed roots
and related topics (the Weyl group, root systems, the root datum). If you want to learn more
about this elegant and powerful structure theory, I urge you to read the books of Humphreys
[13], Borel [9] or Springer [27]. For instance, the parabolic subgroups containing a fixed Borel
subgroup have a combinatorial characterisation in terms of roots.

2. G-complete reducibility

2.1. Definition and examples. We make the following assumption for convenience.

Assumption 2.1. From now on, we assume G is a connected reductive group unless
otherwise stated.

One can, however, extend the definition of G-complete reducibility to subgroups of non-
connected reductive groups [3, Sec. 6]. See Section 6.1 below for a very brief discussion.

Definition 2.2. Let H be a subgroup of G. Then H is G-completely reducible (G-cr) if for
any parabolic subgroup P of G that contains H, there is a Levi subgroup L of P such that
L contains H. We say that H is G-irreducible (G-ir) if H is not contained in any proper
parabolic subgroup of G. It is immediate that if H is G-ir then H is G-cr (why?).

Here is a useful observation. Since any two Levi subgroups of a parabolic subgroup P are
Ru(P )-conjugate, a subgroup H of G is G-cr if and only if the following holds: for any
parabolic subgroup P of G that contains H and for any Levi subgroup L of P , H is Ru(P )-
conjugate to a subgroup of L.

Example 2.3. Here is a criterion for G-complete reducibility when G = GLn(k) or SLn(k):

(∗) If H ≤ G then H is G-cr if and only if the inclusion i : H → G is a completely reducible
representation.

We see that our definition of G-complete reducibility coincides with the usual notion of com-
plete reducibility from representation theory when G = GLn(k) or SLn(k). The representa-
tion theory of algebraic groups now gives us lots of examples of G-cr subgroups and non-G-cr
subgroups of general linear and special linear groups. For instance, the adjoint representa-
tion ρ of SL2(k) on its Lie algebra sl2(k) is completely reducible—in fact, irreducible—if
char(k) 6= 2, while if char(k) = 2 then ρ is not completely reducible. It follows that Im(ρ) is
GL3(k)-ir if char(k) 6= 2 and is not GL3(k)-cr if char(k) = 2.

Recall the description of parabolic subgroups and Levi subgroups of G in terms of block
upper triangular and block diagonal subgroups. One can prove (∗) using an argument similar
to that in Example 1.1. There is one subtlety, though. In Example 1.1, we showed that if
H ≤ GLn(k) is completely reducible in the sense of representation theory and H ≤ P then
H is GLn(k)-conjugate to a subgroup of L. To show that H is GLn(k)-cr, we need to prove
that H is Ru(P )-conjugate to a subgroup of L.

We claim this is the case in the setting of Example 1.1, when P is the stabiliser of
a single subspace W . To see this, note we can choose the new basis to have the form
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f1, . . . , fm, fm+1, . . . , fn, where fm+1, . . . , fn span an H-stable subspace, fi = ei for 1 ≤ i ≤
m, and for m + 1 ≤ i ≤ n each fi is of the form ei plus some linear combination of the ej
for 1 ≤ j ≤ m. The change of basis matrix is then block upper triangular with an m ×m
identity block followed by an (n−m)×(n−m) identity block down the leading diagonal, and
such a matrix belongs to Ru(P ). In general, P will be the stabiliser of a flag of subspaces
and a slightly more complicated argument is needed, but the idea is the same.

Example 2.4. Let U be a nontrivial unipotent subgroup of G. The following construction
is due to Borel-Tits. Define N1 = NG(U), U1 = URu(N1) and then define Nm and Um
inductively by Nm+1 = NG(Um) and Um+1 = UmRu(Nm+1). Then U ≤ U1 ≤ U2 ≤ · · · , and
one can show that this sequence eventually stabilises (exercise), so the sequence N1, N2, . . .
eventually stabilises. Let P(U) be the eventual stable value of the latter sequence. It can
be shown that P(U) is a parabolic subgroup of G and U ≤ Ru(P(U)) [13, 30.3] (this is not
so easy). We see that U is not contained in any Levi subgroup of P(U), since every Levi
subgroup of P(U) has trivial intersection with Ru(P(U)). It follows that U is not G-cr. We
say that the parabolic subgroup P(U) is a witness that U is not G-cr.

The parabolic subgroup P(U) is canonical in the following sense: if φ ∈ Aut(G) and
φ(U) = U then φ(P(U)) = P(U) (this is clear from the construction). In particular, NG(U)
normalises P(U), so NG(U) ≤ P(U). We conclude that if H ≤ G and H has a nontrivial
normal subgroup U then H is not G-cr, because P(U) is a witness that H is not G-cr.

Corollary: a G-cr subgroup of G must be reductive.

Example 2.5. We say that an algebraic group H is linearly reductive if every representation
of H is completely reducible. It can be shown using the cohomological ideas mentioned in
Section 2.2 that if H is a linearly reductive subgroup of G then H is G-cr. If H is linearly
reductive then it is reductive. The converse is also true in characteristic 0: H is reductive
if and only if it is linearly reductive. In particular, any finite group is linearly reductive in
characteristic 0. In characteristic p > 0, however, H is linearly reductive if and only if H0

is a torus and H/H0 has order coprime to char(k) (equivalently: H is linearly reductive if
and only if every element of H is semisimple); in particular, if H is finite then H is linearly
reductive if and only if |H| is coprime to p.

Example 2.5 says that G-complete reducibility is less interesting in characteristic 0: a
subgroup H of G is G-cr if and only if it is reductive. For this reason, we make the following
assumption to simplify the exposition:

Assumption 2.6. From now on, we assume that p := char(k) is positive.

Almost everything said below, however, also holds in characteristic 0 with suitable modifi-
cations.

2.2. Some history. The notion of G-complete reducibility was first introduced by Serre
[25]. He gave an interpretation of G-complete reducibility in terms of spherical buildings;
we briefly recall this now. We define the spherical building X(G) of G to be the simplicial
complex whose simplices are the parabolic subgroups of G, ordered by reverse inclusion. We
identify X(G) with its geometric realisation. The group G acts on X(G) by conjugation.
Let H ≤ G; then the fixed-point set X(G)H is a subcomplex of X(G), consisting of all the
parabolic subgroups of G that contain H. Serre showed that H is G-cr if and only if X(G)H
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is not contractible in the usual sense of topology (see [25, Thm. 2]). He also proved the
following result using building-theoretic methods [24, Prop. 3.2].

Proposition 2.7. Let L be a Levi subgroup of G and let H ≤ L. Then H is G-cr if and
only if H is L-cr.

Liebeck and Seitz studied the subgroup structure of simple groups G of exceptional type
[16]. They proved that if p > 7 then every connected reductive subgroup of G is G-cr. A
key tool in their proof was nonabelian cohomology. Let P be a proper parabolic subgroup
of G (where G is an arbitrary connected reductive group once again), with unipotent radical
V , and let L be a Levi subgroup of P . Let H ≤ P . Then H acts on V via the rule
h · v = cL(h)vcL(h)−1, and we can form the nonabelian 1-cohomology H1(H,V ) of H with
coefficients in V . If H1(H,V ) vanishes then H is V -conjugate to a subgroup of L. See the
exercises for further details. By a result of Richardson, H1(H,V ) is trivial if H is linearly
reductive, so we deduce that linearly reductive subgroups of G are always G-cr.

The group V has a filtration V = V0 ⊃ V1 ⊃ · · · ⊃ Vr = 1 by H-stable normal subgroups
such that each quotient Vi/Vi+1 is a vector space and the induced action of H on Vi/Vi+1 is
linear. Liebeck and Seitz used the abelian cohomology theory of reductive groups to study
the 1-cohomology H1(H,Vi/Vi+1) of each layer Vi/Vi+1 and prove that H1(H,V ) vanishes
when G is simple and of exceptional type, H is connected and reductive and p > 7.

David Stewart and others have used cohomological techniques to study the subgroup
structure of simple groups G in all characteristics. If p is small then H1(H, V ) need not
vanish, so G can admit connected reductive subgroups that are not G-cr.

2.3. Further results and constructions.

Proposition 2.8. Let G1 and G2 be connected reductive groups, and let H be a subgroup of
G1 ×G2. Let πi : G1 ×G2 → Gi be the canonical projection. Then H is (G1 ×G2)-cr if and
only if π1(H) is G1-cr and π2(H) is G2-cr.

Proof. Standard structure theory for reductive groups implies that the parabolic subgroups
of G1×G2 are precisely the subgroups of the form P1×P2, where Pi is a parabolic subgroup
of Gi for each i, and the Levi subgroups of P1 × P2 are precisely the subgroups of the
form L1 × L2, where Li is a Levi subgroup of Pi for each i. The result now follows easily
(exercise). �

Remark 2.9. By a similar argument, we can prove the following: if φ : G1 → G2 is an isogeny
of connected reductive groups and H ≤ G1 then H is G1-cr if and only if φ(H) is G2-cr. For
the structure theory implies that if P ≤ G1 then P is a parabolic subgroup of G1 if and only
if φ(P ) is a parabolic subgroup of G2, and in this case φ−1(φ(P )) = P . Likewise, if L ≤ G1

then L is a parabolic subgroup of G1 if and only if φ(L) is a parabolic subgroup of G2, and
in this case φ−1(φ(L)) = L.

It is natural to ask the following question.

Question 2.10. Let M be a connected subgroup of G and let H ≤ M . Is it true that H is
M-cr if and only if H is G-cr?

The answer is yes if M is a Levi subgroup of G, by Proposition 2.7. In general, the
answer is no. For example, fusion problems can arise: if P is a parabolic subgroup of M
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with Levi subgroup L and H ≤ P then H might be G-conjugate to a subgroup of L, but
not M -conjugate to a subgroup of L. For a simple counter-example to Question 2.10 in one
direction, just take M to be non-G-cr and H to be M : then H is not G-cr but H is trivially
M -cr. Counter-examples in the other direction are harder to find. The first example below
is due to Bate-Martin-Röhrle-Tange [7, Sec. 7]; the second to Liebeck [3, Ex. 3.45].

Example 2.11. Let p = 2 and let G be a simple group of type G2. Let M be the short
root subgroup of type A1 × A1. Then M has a subgroup H ∼= S3 such that H is G-cr but
not M -cr. (Uchiyama has found similar examples for G simple of type E6, E7 and E8 in
characteristic 2 [29], [30].)

Example 2.12. Suppose p = 2. Let m ≥ 2 be even. The symplectic group M := Sp2m

is a subgroup of G := SL2m, and K := Spm × Spm is a subgroup of Sp2m. Let H be Spm
diagonally embedded in Spm × Spm. We have a chain of inclusions

H ≤ K ≤M ≤ G.

It can be shown that H is K-cr—this follows from Proposition 2.8—and G-cr, but not M -cr:
so we have a counter-example to both directions of Question 2.10!

We finish this section with an application to finite subgroups of G. If F is a finite group
and p does not divide |F | then G has only finitely many conjugacy classes of subgroups
isomorphic to F , by Maschke’s Theorem (see [26]). This fails in general: for instance,
SL2(k) has infinitely many conjugacy classes of subgroups isomorphic to Cp × Cp, where Cp
is the cyclic group of order p (exercise). But we have the following result [18, Thm. 1.2],
[3, Cor. 3.8], which is based on work of E.B. Vinberg [32]. The proof involves ideas from
geometric invariant theory, and is difficult.

Theorem 2.13. Let F be a finite group. Then G has only finitely many conjugacy classes
of G-cr subgroups that are isomorphic to F .

3. Geometric invariant theory

Let H be an algebraic group and let X be an affine variety. An action of H on X is a
function H ×X → X which is a left action of the abstract group H on the set X and is also
a morphism of varieties. We call X an H-variety. Given x ∈ X, we denote the stabiliser of x
by Hx and the orbit of x by H · x. Every stabiliser Hx is a closed subgroup of H. We define
the orbit map κx : H → H · x by κx(h) = h · x. The closure H · x is a union of H-orbits,
H · x is an open subset of H · x, and every orbit contained in H · x\H · x has dimension less
than that of H · x. It follows that orbits of minimal dimension are closed. In particular, if
every orbit has the same dimension then all the orbits are closed.

An H-module is a finite-dimensional vector space V on which H acts linearly (so the action
of H comes from a rational representation ρ : H → GL(V )). It is convenient to be able to
reduce from arbitrary H-varieties to the special case of H-modules. It turns out that any H-
module X can be embedded H-equivariantly inside an H-module. To see this, observe that
H acts on the co-ordinate ring k[X] by k-algebra automorphisms: (h ·f)(x) := f(h−1 ·x). In
particular, this action is k-linear. One can show that any finite subset of k[X] is contained
in a finite-dimensional H-stable subspace W of k[X]. Then W is an H-module, the dual
space V := W ∗ is also an H-module, and there is a canonical H-equivariant map from X to
V (exercise). If W is large enough in an appropriate sense then this map is an embedding.
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Geometric invariant theory (GIT) is the study of this set-up (see [20, Ch. 3] for a good
introduction). A fundamental question is the following: if X is an H-variety, does there exist
a “reasonable” quotient variety? We can answer this question when the group concerned is
reductive.

Theorem 3.1. Let X be a G-variety. There exist an affine variety X//G and a G-invariant
morphism πX : X → X//G which satisfies the following universal mapping property: if
ψ : X → Y is a G-invariant morphism of varieties then there is a unique morphism ψG : X//G→
Y such that ψ = ψG ◦ πX .

The quotient variety X//G is—by definition—the affine variety whose co-ordinate ring is
k[X]G, the ring of invariants for the G-action on k[X]; it is a deep theorem that k[X]G is a
finitely generated k-algebra. The map πX comes from the inclusion of k[X]G in k[X].

Example 3.2. All of the above holds for nonconnected reductive groups as well. We tem-
porarily suspend our assumption that G is connected and look at a simple example where
G is finite. Suppose p 6= 2. Let X = k and let G = C2 = 〈g | g2 = 1〉, acting on X by
g · x = −x. Now k[X] is the polynomial ring k[T ], and G acts on k[T ] by g · T = −T
(and g · b = b for b ∈ k). It is clear that k[T ]G = k[T 2], which is also a polynomial ring
in one indeterminate, so X//G ∼= k. The map πG : X → X//G comes from the inclusion of
k[T 2] = k[X]G in k[T ] = k[X]. So πG : k → k is given by πG(b) = b2.

In Example 3.2, X//G is a set-theoretic quotient of X. Unfortunately, this is false in
general: for if z ∈ X//G and π−1

X (z) consists of a single orbit G · x then G · x must be closed,
since {z} is closed and morphisms of varieties are continuous. Hence if G · x is not closed
then G ·x cannot be a fibre of πX . This is not an issue in Example 3.2 as all the orbits there
are closed, but the next example illustrates what can go wrong.

Example 3.3. Let X = kn and let G = k∗ acting on X by scalar multiplication in the usual
way. Then the only closed orbit is {0}, so X//G consists of just a single point.

It is crucial, therefore, to know which orbits are closed. The celebrated Hilbert-Mumford
Theorem gives a criterion for this in terms of cocharacters. We need some preparation. Let
x ∈ X. One can show that G ·x is locally closed (that is, is open in its closure). This means
that G ·x has the structure of a (possibly non-affine) variety. The orbit map κx : G→ G ·x is
a morphism, so G · x is irreducible as G is assumed to be connected. In particular, it makes
sense to speak of dim(G · x). It is straightforward to show that G · x is a union of orbits,
each of strictly smaller dimension than G · x.

Definition 3.4. A cocharacter (or 1-parameter subgroup) of G is a homomorphism λ : k∗ →
G.

We denote by Y (G) the set of cocharacters. There is a close analogy with X(G), but note
that pointwise multiplication does not in general give a well-defined binary operation on
Y (G). If T is a maximal torus of G, however, then Y (T )—the set of cocharacters whose
image lies in T—is a free abelian group under pointwise multiplication; if T ∼= (k∗)m then
Y (T ) has rank m. We use additive notation for Y (T ): in particular, if λ ∈ Y (T ) and n ∈ Z
then nλ denotes the cocharacter given by (nλ)(a) = λ(a)n. If λ ∈ Y (G) then Im(λ) is a
torus, so λ ∈ Y (T ) for some maximal torus T of G. There is an action of G on Y (G) given
by (g · λ)(a) = gλ(a)g−1; if λ belongs to Y (T ) then g · λ belongs to Y (gTg−1).
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There is a natural nondegenerate bilinear pairing between Y (T ) and X(T ), defined as
follows. If λ ∈ Y (T ) and χ ∈ X(T ) then χ ◦ λ is an endomorphism of k∗, so is of the form
a 7→ an for some n ∈ Z; we set 〈λ, χ〉 = n. Given g ∈ G and χ ∈ X(gTg−1), we define
g · χ ∈ X(T ) by (g · χ)(t) = χ(gtg−1). A straightforward calculation shows that

(3.5) 〈λ, g · χ〉 = 〈g · λ, χ〉

for every λ ∈ Y (T ), g ∈ G and χ ∈ X(gTg−1).
We now introduce the notion of limits.

Definition 3.6. Let f : k∗ → X be a morphism of varieties. We say that lima→0 f(a) exists

if f extends to a morphism f̂ : k → X. If the limit exists, we set lima→0 f(a) = f̂(0). Note

that f̂ , if it exists, is unique, because k∗ is dense in k.

Remark 3.7. The following results follow easily from the definition of limit and the universal
mapping property for products.

(a) If f : k∗ → X and h : X → Y are morphisms of varieties and x := lima→0 f(a) exists then
lima→0(h ◦ f)(a) exists, and lima→0(h ◦ f)(a) = h(x).

(b) If f1 : k∗ → X1 and f2 : k∗ → X2 are morphisms then lima→0(f1 × f2)(a) exists if and
only if x1 := lima→0 f1(a) and x2 := lima→0 f2(a) exists, and in this case lima→0(f1×f2)(a) =
(x1, x2).

Example 3.8. Let n ∈ Z. Define f : k∗ → k by f(a) = an. If n > 0 then the morphism

f̂ : k → k given by f(a) = an is an extension of f , so lima→0 f(a) exists and equals 0n = 0.
Likewise, if n = 0 then lima→0 f(a) exists and equals 1 (as usual, we interpret a0 as 1
for any a). On the other hand, if n < 0 then lima→0 f(a) does not exist. For suppose
otherwise. Define h : k∗ → k by h(a) = a−n. Then fh is the constant function 1, so
lima→0(fh)(a) = 1. Since multiplication is a morphism from k to k, Remark 3.7 implies that
lima→0(fh)(a) = (lima→0 f(a)) (lima→0 h(a)). But (lima→0 h(a)) = 0 as −n > 0, so we get a
contradiction.

Here is our main application. Let X be a G-variety, let x ∈ X and let λ ∈ Y (G). We want
to know when lima→0 λ(a) ·x exists (here we take f(a) = λ(a) ·x). Note that lima→0 λ(a) ·x,
if it exists, belongs to G · x (easy exercise).

Example 3.9. Let X = GL2(k) and let G = GL2(k) acting by conjugation on X (so:

g · x = gxg−1). Define λ ∈ Y (G) by λ(a) =

(
a 0
0 a−1

)
. Let x1 =

(
1 1
0 1

)
. Then

λ(a) · x1 = λ(a)x1λ(a)−1 =

(
a 0
0 a−1

)(
1 1
0 1

)(
a−1 0
0 a

)
=

(
1 a2

0 1

)
,

so lima→0 λ(a) · x1 =

(
1 0
0 1

)
= I as lima→0 a

2 = 0. It follows that πX(x1) = πX(I): so

G · x1 “disappears” (or, rather, coalesces with the closed orbit G · I) in the quotient variety
X//G. We see that X//G is not a set-theoretic quotient; this illustrates the problem discussed
above.
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Now let x2 =

(
1 0
1 1

)
. Then

λ(a) · x2 = λ(a)x2λ(a)−1 =

(
a 0
0 a−1

)(
1 0
1 1

)(
a−1 0
0 a

)
=

(
1 0
a−2 1

)
,

so lima→0 λ(a) · x2 does not exist as lima→0 a
−2 does not exist. In fact, although the above

calculation does not show this, we have πX(x2) = πX(I) (why?).

More generally, if x =

(
b c
d e

)
then λ(a) · x =

(
b a2c

a−2d e

)
, so lima→0 λ(a) · x exists

if and only if x ∈ B2, and lima→0 λ(a) · x = x if and only if x ∈ D2.

Example 3.10. Let X = GLn(k) and let G = GLn(k) acting by conjugation on X. Define
λ ∈ Y (G) by λ(a) = diag(ar1 , . . . , ar1 , ar2 , . . . , ar2 , . . . , art , . . . , art). Here “diag” denotes
the diagonal matrix with the specified entries, t is a positive integer, the ri are integers
satisfying r1 > r2 > · · · > rt, and each term ari appears mi times, where (m1, . . . ,mt) := m
is a t-tuple of positive integers such that m1 + · · · + mt = n. A calculation like the one in
Example 3.9 shows that if x ∈ GLn(k) then lima→0 λ(a) · x exists if and only if x ∈ Pm, and
lima→0 λ(a) · x = x if and only if x ∈ Lm.

Example 3.11. We now give the characterisation of parabolic subgroups and their Levi
subgroups promised earlier. Let λ ∈ Y (G). Set

Pλ =
{
g ∈ G

∣∣∣lim
a→0

λ(a)gλ(a)−1 exists
}

and set Lλ = CG(Im(λ)). It can be shown that Pλ is a parabolic subgroup of G and Lλ
is a Levi subgroup of Pλ. Moreover, if P is a parabolic subgroup of G and L is a Levi
subgroup of P then there exists λ ∈ Y (G) such that P = Pλ and L = Lλ. For any
n ∈ N, Pnλ = Pλ and Lnλ = Lλ. Define cλ : Pλ → G by cλ(g) = lima→0 λ(a)gλ(a)−1; then
cλ(Pλ) ≤ Lλ and cλ(g) = cLλ(g) for all g ∈ Pλ. In particular, Lλ = {g ∈ Pλ | cλ(g) = g} and
Ru(Pλ) = {g ∈ Pλ | cλ(g) = 1}.

Suppose M is a connected reductive subgroup of G and λ ∈ Y (M). We write Pλ(M) for
the set {m ∈ M | lima→0 λ(a)mλ(a)−1 exists}: that is, Pλ(M) is the parabolic subgroup
constructed above, but for M . Likewise we write Lλ(M) for CM(Im(λ)). It follows from the
previous paragraph that Pλ(M) = Pλ∩M , Lλ(M) = Lλ∩M and Ru(Pλ(M)) = Ru(Pλ)∩M .
For brevity, we write just Pλ and Lλ instead of Pλ(G) and Lλ(G).

The next result follows easily from Remark 3.7.

Lemma 3.12. Let X be a G-variety, let x ∈ X and let λ ∈ Y (G) such that x′ := lima→0 λ(a)·
x exists. Then for any g ∈ Pλ, lima→0 λ(a) · (g · x) exists and equals cλ(g) · x′.

Example 3.13. It’s easier to see what’s going on with limits when X is a G-module. Let
V be a G-module and let λ ∈ Y (G). Choose a maximal torus T of G such that λ ∈ Y (T ).
If χ ∈ ΦT (V ) and 0 6= v ∈ Vχ then

λ(a) · v = χ(λ(a))v = anv,

where n := 〈λ, χ〉. Hence lima→0 λ(a) · v exists if and only if n ≥ 0. If n > 0 then the limit
is 0, while if n = 0 then the limit is v.
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Now let v be an arbitrary element of V . We have v =
∑

χ∈suppT (v) vχ. It follows from the

discussion above that lima→0 λ(a) · v exists if and only if 〈λ, χ〉 ≥ 0 for all χ ∈ suppT (v),
and in this case v′ := lima→0 λ(a) · v is given by v′ =

∑
χ∈F vχ, where F = {χ ∈ suppT (v) |

〈λ, χ〉 = 0}.
Here is a useful consequence. If v′ := lima→0 λ(a) · v exists then v′ is fixed by Im(λ). In

particular, lima→0 λ(a) · v = v if and only if Im(λ) fixes v. The same is true for points in an
arbitrary G-variety X, since we can embed X G-equivariantly in a G-module.

We can now state the Hilbert-Mumford Theorem. It says that in order to check whether
a G-orbit is closed, it is sufficient to check whether the orbits S · x are closed for all 1-
dimensional subtori S of G.

Theorem 3.14. Let S be a G-variety and let x ∈ X. Then there exists λ ∈ Y (G) such that
x′ := lima→0 λ(a) · x exists and G · x′ is closed.

Remark 3.15. If G · x is already closed then we can just take λ = 0 and x′ = x. Otherwise,
λ is nontrivial and x′ does not lie in G · x. It follows that S · x is not closed and x′ ∈ S · x,
where S is the torus Im(λ).

We can extract from the Hilbert-Mumford Theorem a useful criterion for an orbit to be
closed: G · x is closed if and only if for all λ ∈ Y (G) such that x′ := lima→0 λ(a) · x exists,
x′ belongs to G · x.

What can we say if lima→0 λ(a) · x exists but still lies in G · x? The following preliminary
result is standard.

Lemma 3.16. Let V , λ and T be as in Example 3.13. Let χ ∈ ΦT (V ), let v ∈ Vχ and
let g ∈ Pλ (resp. g ∈ Ru(Pλ)). Then for all χ′ ∈ suppT (g · v − v), 〈λ, χ′〉 ≥ 〈λ, χ〉 (resp.
〈λ, χ′〉 > 〈λ, χ〉).

Theorem 3.17. Let X be a G-variety and let x ∈ X. Let λ ∈ Y (G) and suppose x′ :=
lima→0 λ(a) · x exists and x′ ∈ G · x. Then x′ ∈ Ru(Pλ) · x.

Proof. (Sketch): We can embed X G-equivariantly inside a G-module, so without loss we
can assume X is a G-module. Choose a maximal torus T such that λ ∈ Y (T ). First we
show that x′ ∈ Pλ · x. The set PλRu(P−λ) contains the so-called “big cell”, which is an open
neighbourhood of 1 in G. The orbit map κx′ : G→ G · x′ is an open map, so PλRu(P−λ) · x′
contains an open neighbourhood of x′ in G · x′. Since x′ = lima→0 λ(a) · x belongs to the
closure of Im(λ)·x, there exists a ∈ k∗ such that λ(a)·x ∈ PλRu(P−λ)·x′: say, λ(a)·x = gu·x′
for some g ∈ Pλ and some u ∈ Ru(P−λ). This gives

(3.18) h · x = u · x′,

where h := g−1λ(a) ∈ Pλ. We have lima→0 λ(a) · (u · x′) = lima→0 λ(a) · (h · x) = cλ(h) · x′ by
Lemma 3.12: so lima→0 λ(a) · (u · x′) exists even though lima→0 λ(a)uλ(a)−1 does not.

Now λ and −λ fix x′, so by Lemma 3.16 (applied to −λ), suppT (u · x′ − x′) consists of
weights χ satisfying 〈−λ, χ〉 > 0. Hence 〈λ, χ〉 = −〈−λ, χ〉 < 0 for all χ ∈ suppT (u ·x′−x′).
But lima→0 λ(a) ·(u ·x′) exists, so lima→0 λ(a) ·(x′−u ·x′) exists. This forces suppT (u ·x′−x′)
to be empty, which means that u · x′ − x′ = 0. So u · x′ = x′ and x′ = h · x ∈ Pλ · x, as
required.
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To finish, we prove that x′ ∈ Ru(Pλ) · x. Write h = lv with l ∈ Lλ and v ∈ Ru(Pλ). Then
x′ = lv · x, so l−1 · x′ = v · x. Taking limits gives(

lim
a→0

λ(a)l−1λ(a)−1
)
·
(

lim
a→0

λ(a) · x′
)

=
(

lim
a→0

λ(a)vλ(a)−1
)
·
(

lim
a→0

λ(a) · x
)
,

or l−1 · x′ = x′. So x′ = v · x, and we are done. �

Open Problem: All of the above geometric invariant theory makes sense for a G-variety X
defined over an arbitrary field. Does Theorem 3.17 hold over an arbitrary field? The proof
above, which is taken from [8, Thm. 3.3], also works if the ground field is perfect.

Corollary 3.19. Let X be a G-variety, let x ∈ X and let λ ∈ Y (G). Suppose x′ :=
lima→0 λ(a) · x exists. Then x′ belongs to G · x if and only if there exists u ∈ Ru(Pλ) such
that λ fixes u · x. In this case, x′ = u · x.

Proof. Suppose x′ ∈ G · x. Then x′ = u · x for some u ∈ Ru(Pλ), by Theorem 3.17, and λ
fixes u · x = x′. Conversely, suppose u ∈ Ru(Pλ) and λ fixes u · x. Taking the limit, we get
lima→0 λ(a) · (u · x) = x′ by our usual argument. But λ fixes u · x, so this limit is equal to
u · x. Hence x′ = u · x, and we are done. �

4. A geometric criterion for G-complete reducibility

Let m ∈ N. The group G acts on the variety Gm by simultaneous conjugation:

g · (g1, . . . , gm) = (gg1g
−1, . . . , ggmg

−1)

for g ∈ G and (g1, . . . , gm) ∈ Gm. We call the orbits of this action conjugacy classes. Given
h = (h1, . . . , hm) ∈ Gm, we define G(h) to be the closure of the abstract group generated by
h1, . . . , hm. We say that a subgroup H of G is topologically finitely generated if H = G(h)
for some m ∈ N and some h ∈ Gm.

If H = G(h) then gHg−1 = G(g · h). Richardson’s fundamental insight is that one can
study subgroups of G up to G-conjugacy by studying conjugacy classes of tuples from Gm.
Since Gm is a G-variety, this allows us to apply ideas from geometric invariant theory. In
particular, we can give a geometric criterion for subgroups of G to be G-completely reducible.

Theorem 4.1. Let h ∈ Gm and let H = G(h). Then H is G-cr if and only if the conjugacy
class G · h is closed.

Proof. Write h = (h1, . . . , hm). Suppose H is G-cr. We prove that G · h is closed. Let
λ ∈ Y (G) such that h′ := lima→0 λ(a) · h exists. It is enough by the Hilbert-Mumford
Theorem to show that h′ ∈ G · h. Now lima→0(λ(a)h1λ(a)−1, . . . , λ(a)hmλ(a)−1) exists, so
lima→0 λ(a)hiλ(a)−1 exists for each 1 ≤ i ≤ m (see exercises). Hence hi ∈ Pλ for each
1 ≤ i ≤ m, which means that H ≤ Pλ. As H is G-cr, there exists u ∈ Ru(Pλ) such that
uHu−1 ≤ Lλ. This implies that uhiu

−1 ∈ Lλ = CG(Im(λ)) for each i, so λ fixes u · h, so
h′ = u · h ∈ G · h, by Corollary 3.19.

Conversely, suppose G ·h is closed. Let P be a parabolic subgroup of H such that H ≤ P .
Then P = Pλ for some λ ∈ Y (G), so lima→0 λ(a)hiλ(a)−1 exists for each 1 ≤ i ≤ m. This
implies that h′ := lima→0 λ(a) ·h exists and belongs to Lmλ . Now G ·h is closed, so h′ belongs
to G · h. By Theorem 3.17, h′ = u · h for some u ∈ Ru(Pλ). So h = u−1 · h′ ∈ (u−1Lλu)m.
But this means that H ≤ u−1Lλu, a Levi subgroup of Pλ. We conclude that H is G-cr, as
required. �
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Remark 4.2. A historical note: Richardson defined the notion of a strongly reductive subgroup
of G [22, Defn. 16.1], and proved that H = G(h) is strongly reductive if and only if G · h
is closed [22, Thm. 16.4]. Bate-Martin-Röhrle showed that a subgroup H of G is strongly
reductive if and only if it is G-cr [3, Thm. 3.1]; their proof involved manipulations of parabolic
and Levi subgroups, and did not go via the more general result Theorem 3.17.

Remark 4.3. We cannot a priori apply Theorem 4.1 to an arbitrary subgroup of G, since
not every subgroup of G is topologically finitely generated. For instance, if k is the algebraic
closure of Fp then any topologically finitely generated subgroup H = G((h1, . . . , hm)) is finite.
To see this, choose an embedding i : G → GLn(k); then i(h1), . . . , i(hm) belong to GLn(Fq)
for some sufficiently large power q of p, so they generate a finite subgroup. On the other
hand, if k is transcendental over Fp then any reductive subgroup of G is topologically finitely
generated [18, Lem. 9.2].

In practice, however, this annoying technicality does not cause us any serious problems.
One can show that any subgroup H of G contains a topologically finitely generated subgroup
H ′ such that H ′ is contained in exactly the same parabolic subgroups and Levi subgroups
as H is; so as far as G-complete reducibility is concerned, H and H ′ behave in the same
way ([3, Lem. 2.10]; see also [8, Defn. 5.4]). For other ways to deal with this problem, see
[3, Rem. 2.9] and the discussion of uniform S-instability at the start of Section 5 below. We
will gloss over this subtlety and assume below that all the subgroups of G we deal with are
topologically finitely generated.

Now and in the next section we will derive some consequences of Theorem 4.1. Here is our
first: if H = G(h) ≤ G is G-cr then CG(H) is reductive. For G · h is closed by Theorem 4.1,
so the stabiliser Gh is reductive by a standard result from GIT [21, Thm. A]; but it is clear
that Gh = CG(H). A slight refinement of this argument [3, Prop. 3.12] shows that NG(H)
is also reductive. Later we show that CG(H) and NG(H) are actually G-cr.

To state our next results, we need the notions of a separable subgroup of G and a reductive
pair. If H ≤ G then we denote by cg(H) the centraliser of H in g (that is, the fixed point
set of H in g with respect to the adjoint action). It is immediate that Lie(CG(H)) ⊆ cg(H).
If equality holds, we say that H is separable in G. The reason for the terminology is that if
H = G(h) then H is separable if and only if the orbit map κh : G→ G ·h is separable. (Here
is another equivalent condition: H is separable if and only if the scheme-theoretic centraliser
of H in G is smooth.) By a result of Herpel [11, Thm. 1.1], if p is large enough—p very
good for G will do—then every subgroup of G is separable. Any subgroup H of GLn(k)
is separable. To see this, recall that we can identify gln(k) with Mn(k), so the centraliser
of H in gln(k) is the subalgebra C := {A ∈ Mn(k) | Ah = hA for all h ∈ H}. We have
CGLn(k)(H) = C ∩GLn(k), so CGLn(k)(H) is an open subset of C and therefore has the same
dimension as C.

Let M be a connected reductive subgroup of G. We call (G,M) a reductive pair if the
M -stable subspace m = Lie(M) of g has an M -stable complement.

Proposition 4.4 ([3, Thm. 3.35]). Let M be a connected reductive subgroup of G such that
(G,M) is a reductive pair. Let H be a subgroup of M . If H is G-cr and separable in G then
H is separable in M and H is M-cr.

Proof. (Sketch:) The proof uses a beautiful geometric argument due to Richardson. We
assume H is topologically finitely generated: say, H = G(h1, . . . , hm). Since H is G-cr,
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G · (h1, . . . , hm) is a closed subset of Gm (Theorem 4.1). Now consider G · (h1, . . . , hm)∩Mm:
this is closed and is a union of certain M -conjugacy classes, one of which is M · (h1, . . . , hm).
It is enough by Theorem 4.1 to prove that M · (h1, . . . , hm) is closed.

We do this by studying the tangent space to G·(h1, . . . , hm)∩Mm at the point (h1, . . . , hm).
Given g ∈ G, define Rg : G → G by Rg(g

′) = g′g. We may identify the tangent space TgG
with T1G = g via the derivative dgRg−1 . Hence we may identify T(h1,...,hm)G

m with gm. By
the separability assumption on H and the derivative criterion for separability, the tangent
space T(h1,...,hm)(G · (h1, . . . , hm)) is given by

(4.5) T(h1,...,hm)(G · (h1, . . . , hm)) = {(x− h1 · x, . . . , x− hm · x) | x ∈ g} ⊆ gm

(where the · denotes the adjoint action of G on g). Likewise,

(4.6) T(h1,...,hm)(M · (h1, . . . , hm)) = {(x− h1 · x, . . . , x− hm · x) | x ∈ m} ⊆ gm.

It follows from the derivative criterion for separability that H is separable in M . Now
G ·(h1, . . . , hm)∩Mm is a closed subvariety of Gm as G ·(h1, . . . , hm) is closed, and Eqn. (4.6)
shows that the orbits M ·y for y ∈ G·(h1, . . . , hm)∩Mm all have the same dimension (namely,
dim(M)− dim(CM(H))). It follows that M · y is closed for every y ∈ G · (h1, . . . , hm)∩Mm,
as required. �

Example 4.7 ([2, Ex. 5.7]). Let M = SL2(k) or PGL2(k) and suppose p = 2. Let H =
NM(T ), where T is a maximal torus of M ; it is straightforward to show that H is not
separable in M . Proposition 4.4 implies that there does not exist an embedding of M in
G = GLn(k) for any n such that (G,M) is a reductive pair (recall that any subgroup of
GLn(k) is separable).

Remark 4.8. We note one further consequence of the arguments in the proof of Proposi-
tion 4.4. A short calculation using our assumption that (G,M) is a reductive pair, together
with Eqns. (4.5) and (4.6), shows that

T(h1,...,hm)(G · (h1, . . . , hm) ∩Mm) = T(h1,...,hm)(M · (h1, . . . , hm)),

which implies that M · (h1, . . . , hm) is an open subset of G · (h1, . . . , hm) ∩ Mm. But we
saw above that M · (h1, . . . , hm) is also a closed subset of G · (h1, . . . , hm) ∩Mm, so M ·
(h1, . . . , hm) must be a union of irreducible components of G · (h1, . . . , hm)∩Mm. It follows
that G · (h1, . . . , hm) ∩Mm is a finite union of M -conjugacy classes.

This property can fail without the hypotheses of Proposition 4.4. Let G and M be as in
Example 2.11; then (G,M) is a reductive pair. Recall that there is a subgroup H of M such
that H is G-cr but not M -cr. A related construction yields a pair (m1,m2) ∈M2 such that

G · (m1,m2) ∩M2 is an infinite union of M -conjugacy classes. Set Ĥ := G(m1,m2). We

deduce from the discussion above that neither H nor Ĥ is separable in G; one can check this
by explicit calculation [7, Sec. 7].

Corollary 4.9 ([3, Ex. 3.37]). Let G be a simple group of exceptional type, and suppose p is
good for G. Let H be a subgroup of G such that H acts semisimply on g. Then H is G-cr.

Proof. We apply Proposition 4.4 to the inclusion H ≤ G ≤ GL(g). Define a symmetric
bilinear form B on Lie(GL(g)) = End(g) by B(X, Y ) = trace(XY ). It is easily checked that
B is nondegenerate and GL(g)-invariant. The hypothesis on p implies that the restriction of
B to g is a nonzero multiple of the Killing form on g. Let d be the orthogonal complement to
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g in End(g) with respect to B: then dim(d) + dim(g) = dim(End(g)) as B is nondegenerate,
and d ∩ g = 0 as the Killing form on g is nondegenerate. It follows that d is a G-stable
complement to g in End(g), so (GL(g), G) is a reductive pair.

Now H is GL(g)-cr as H acts semisimply on g. Since any subgroup of GL(g) is separable
(see exercises), it follows from Proposition 4.4 that H is G-cr. �

There is a similar result for simple groups of classical type.
The next result shows we get the same outcome under slightly different hypotheses.

Proposition 4.10 ([3, Thm. 3.46]). Suppose H is a separable subgroup of G and H acts
semisimply on g. Then H is G-cr.

Proof. To simplify notation, we assume that the adjoint representation of G yields an em-
bedding of G in GL(g); then we can regard H as a subgroup of GL(g). We can assume
that H = G(h) for some tuple h. Suppose H is not G-cr. By Theorem 4.1, we can
choose λ ∈ Y (G) such that h′ := lima→0 λ(a) · h exists and does not belong to G · h.
Set H ′ = G(h′). Since h′ belongs to G · h but not to G ·h, we have dim(G ·h′) < dim(G ·h),
which implies that dim(Gh′) > dim(Gh). Now Gh′ = CG(H ′) and Gh = CG(H), so we get
dim(CG(H ′)) > dim(CG(H)). As H is separable in G, we deduce that

(4.11) dim(cg(H
′)) ≥ dim(CG(H ′)) > dim(CG(H)) = dim(cg(H)).

By hypothesis, H is GL(g)-cr. It follows from Theorem 4.1—this time applied to GL(g)—
that GL(g) ·h is closed, so h′ is GL(g)-conjugate to h. Hence H and H ′ are GL(g)-conjugate.
Now cg(H) (resp., cg(H

′)) is precisely the fixed-point space of H (resp., H ′) in g, so we must
have dim(cg(H)) = dim(cg(H

′)). But this contradicts (4.11). We deduce that H must be
G-cr after all. �

Open Problem: Does Proposition 4.10 hold without the separability hypothesis on H?
See [7, Sec. 4] for further discussion.

5. Optimal destabilising parabolic subgroups

The parabolic subgroup P(U) that we obtained from the Borel-Tits construction has
special properties: it is a witness that U is not G-cr and it contains NG(U). In this section
we establish the existence of parabolic subgroups with similar properties in a wider context.

Theorem 5.1. Let H be a subgroup of G such that H is not G-cr. Then there is a parabolic
subgroup Popt(H) of G such that Popt(H) is a witness that H is not G-cr and NG(H) ≤
Popt(H).

In fact, Popt(H) is stabilised by any automorphism of G that stabilises H.
There may exist several parabolic subgroups of G with the desired properties, but we

have a particular construction in mind. The “opt” subscript is short for “optimal”—we find
Popt(H) by optimising a convex real-valued function on the space of cocharacters of G. We
call Popt(H) the optimal destabilising parabolic subgroup for H.

Theorem 5.1 is a special case of a more general theorem from GIT which we call the Hilbert-
Mumford-Kempf-Hesselink-Rousseau Theorem (cf. [14], [12], [23]). Given a G-variety X and
a point x ∈ X such that G · x is not closed, we can construct an optimal destabilising
cocharacter λopt(x) such that x′ := lima→0λopt(x)(a) · x exists and G · x′ is closed. Then
x′ 6∈ G · x; roughly speaking, we can think of λopt(x) as the cocharacter that takes x outside
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the orbit G ·x and into the closed orbit G ·x′ “as quickly as possible”. The cocharacter λopt(x)

is unique up to Ru(Pλopt(x))-conjugacy (modulo a normalisation condition which we discuss
below); hence the parabolic subgroup Popt(x) := Pλopt(x) is uniquely determined. Moreover,
the construction is natural in an appropriate sense: for any g ∈ G, Popt(g ·x) = gPopt(x)g−1.
In particular, Gx normalises Popt(x), so Gx ≤ Popt(x).

Theorem 5.1 is a consequence of this construction. For suppose H ≤ G is not G-cr. We
assume as usual that H = G(h) for some tuple h ∈ Gm. By Theorem 4.1, G · h is not
closed. We can associate to h the optimal destabilising parabolic subgroup Popt(h) from
the Hilbert-Mumford-Kempf-Hesselink-Rousseau Theorem, and we set Popt(H) := Popt(h).
Then Gh = CG(H) is contained in Popt(H).

There is one problem: we do not know whether Popt(H) is dependent on the choice of h.
In particular, if g ∈ G normalises H but does not centralise H then conjugation by g takes
the generating tuple h to a different generating tuple, so we cannot conclude a priori that
g normalises Popt(H). One can overcome this difficulty using Hesselink’s notion of “uniform
S-instability”: rather than applying a cocharacter λ to the single point h, we apply it to
the entire set Hm. One can construct an optimal destabilising cocharacter and parabolic
subgroup as before; if g ∈ G normalises H then g stabilises Hm, and it follows that g
normalises Popt(H). This gives NG(H) ≤ Popt(H), as required. See [8, Sec. 5.2] for details.
We will ignore this issue and just concentrate on the simpler version of the construction.

5.1. The construction. Now we explain how to obtain the cocharacter λopt(x) described
in the Hilbert-Mumford-Kempf-Hesselink-Rousseau Theorem, following the treatment of
Kempf [14]. We restrict ourselves to a special case which still illustrates the main ideas.
Let V be a G-module. Let us consider unstable points in V : that is, points v ∈ V such that
the origin 0 belongs to G · v. Fix an unstable point 0 6= v ∈ V ; we will explain how to define
λopt(v). By the Hilbert-Mumford Theorem, lima→0 λ(a) · v = 0 for some λ ∈ Y (G). Choose
a maximal torus T of G such that λ ∈ Y (T ). Then 〈λ, χ〉 > 0 for all χ ∈ suppT (v) by
Example 3.13. Write suppT (v) = {χ1, . . . , χt}. Then v can be written as a sum of nonzero
weight vectors v1, . . . , vt corresponding to the weights χ1, . . . , χt, respectively, and we have

(5.2) λ(a) · v = λ(a) · (v1 + · · ·+ vt) = an1v1 + · · ·+ antvt

for all a ∈ k∗, where ni := 〈λ, χi〉 > 0 for 1 ≤ i ≤ t. Intuitively, the speed at which λ(a) · v
approaches 0 is determined by the smallest of the ni.

This motivates the following definition.

Definition 5.3. Let V , v, T and χ1, . . . , χt be as above. Define µv,T : Y (T )→ Z by

(5.4) µv,T (λ) = min
1≤i≤t

ψi(λ),

where ψi : Y (T )→ Z is given by ψi(λ) = 〈λ, χi〉.
We see that lima→0 λ(a) · v exists if and only if µv,T (λ) ≥ 0, and lima→0 λ(a) · v = 0 if and

only if µv,T (λ) > 0. Given g ∈ G, we have

(5.5) µg·v,gTg−1(g · λ) = µv,T (λ)

(exercise).

In fact, we can show that the value of µv,T (λ) doesn’t depend on the choice of T . To see
this, recall that the decomposition of V into weight spaces works for any torus S of G, not
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just for a maximal torus. In particular, it works for S = Im(λ). If ζ is a weight of V with
respect to S then Vζ is T -stable, so it splits into a direct sum of weight spaces Vχ for V with
respect to T , and we have 〈λ, ζ〉 = 〈λ, χ〉 for every χ that appears in this sum. The assertion
now follows.

We define µv : Y (G) → Z by µv(λ) = µv,T (λ), where T is any maximal torus of G such
that λ ∈ Y (T ). We call µv the numerical function associated to v.

Lemma 5.6. Let V and v be as above, let λ ∈ Y (G) and let u ∈ Ru(Pλ). Then µv(λ) =
µv(u · λ).

Proof. By (5.5), µv(u · λ) = µu−1·v(λ), so it’s enough to show that µu−1·v(λ) = µv(λ). Fix
a maximal torus T of G such that λ ∈ Y (T ); we show that µu−1·v,T (λ) = µv,T (λ). Let
n = µv,T (λ); then there exists at least one χ̃ ∈ suppT (v) such that 〈λ, χ̃〉 = n, and 〈λ, χ〉 ≥ n
for all χ ∈ suppT (v). Lemma 3.16 implies that u−1 · v = v + w for some w ∈ V such that
〈λ, χ′〉 > n for all χ′ ∈ suppT (w). It follows that µu−1·v,T (λ) = µv,T (λ), as required. �

It is convenient below to work with real vector spaces rather than Z-modules. We may
regard Y (T ) as an integer lattice inside the real vector space YR(T ) := Y (T )⊗ZR. Just as we
can form Y (G) by glueing together the pieces Y (T ), we can form a space YR(G) by glueing
together the pieces YR(T ). (This construction is not entirely straightforward—cf. [5, Sec.
2]—but we omit the details.) We may regard Y (G) as a subset of YR(G), and the G-action
on Y (G) extends to a G-action on YR(G) in a natural way. We can extend the functions
ψi from Definition 5.3 to R-linear functions ψi : YR(T ) → R. This allows us to extend µv,T
to a function from YR(T ) to R via (5.4), and one can show we get a well-defined function
µv : YR(G)→ R (note that YR(G) is the union of all the YR(T )).

We need one more ingredient before we prove the existence of λopt(x). If we multiply λ
in (5.2) by a positive integer m then the integers ni are replaced by mni. To make sense
of the intuitive idea that λopt is the cocharacter that “takes v to 0 as fast as possible”, we
need some way to measure the size of λ. We do this by means of a length function: this is a
G-invariant function || · || : YR(G)→ R, λ 7→ ||λ||, such that the restriction of || · || to each vector
space YR(T ) is the norm arising from a nondegenerate symmetric Z-valued bilinear form on
Y (T ). (So ||λ|| ≥ 0 for all λ ∈ YR(G), with equality if and only if λ = 0, and ||cλ|| = c||λ|| for
all λ ∈ YR(G) and all c ∈ R+.) Below we fix, once and for all, a choice of length function.

We define fv : YR(G)\{0} → R by

(5.7) fv(λ) =
µv(λ)

||λ||
.

If T is a maximal torus of G then we denote by fv,T the restriction of fv to YR(T )\{0}. It
follows from Lemma 5.6 and the conjugation-invariance of || · || that

(5.8) fv(u · λ) = fv(λ) for all λ ∈ Y (G)\{0} and all u ∈ Ru(Pλ).

We have

(5.9) fv,T (cλ) = fv,T (λ)

for any λ ∈ YR(T )\{0} and any c ∈ R+—the factors of c that appear in the numerator and
the denominator of (5.7) cancel each other out.
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Lemma 5.10. Fix a maximal torus T of G. There exists λT ∈ Y (T )\{0} such that fv,T—as
a function on YR(T )—attains its maximum value CT at λT . Moreover, λT is unique subject
to the condition that ||λT || is minimal.

The uniqueness condition needs a word of explanation. The proof below shows that the set

{λ ∈ YR(T )\{0} | fv,T (λ) = CT}
is a ray R: that is, it has the form {cλ1 | c ∈ R+} for some 0 6= λ1 ∈ YR(T ). The proof also
shows that R contains at least one element of Y (T ). As Y (T ) is a lattice in YR(T ), there is
a unique element λT ∈ Y (T ) of R that is closest to the origin.

Proof. For simplicity, we assume t = 1 in (5.4): so fv,T has the form fv,T (λ) =
ψ(λ)

||λ||
for

some linear function ψ : YR(T ) → R. Let S be the unit sphere in YR(T ) (with respect to
|| · ||). Then fv,T |S is a continuous function on the compact set S, so it attains a maximum
value CT—say, at λ1 ∈ S—and (5.9) implies that CT is the maximum value attained by fv,T
on the whole of YR(T )\{0}. Suppose fv,T (λ2) = fv,T (λ1) for some λ2 ∈ S with λ2 6= λ1.
Choose any c ∈ (0, 1); set λ3 = cλ1 + (1− c)λ2. Then ψ(λ1) = ψ(λ2) = CT , so ψ(λ3) = CT
by linearity of ψ; but ||λ3|| < 1 since S is convex. This gives fv,T (λ3) > CT , a contradiction.
We deduce that the set of points in YR(T )\{0} where fv,T attains its maximum value CT is
precisely the ray R through λ1.

Because || · || and the linear functions ψi are defined over Z in a suitable sense, it can be
shown that R contains a point from Y (T ); we omit the details. The uniqueness of λT now
follows from the paragraph before the proof. �

We can now state and prove our main theorem.

Theorem 5.11. The function fv attains its maximum value C at some λopt = λopt(v) ∈
Y (G). Moreover, λopt is unique up to Ru(Pλopt)-conjugacy, subject to the condition that
||λopt|| is minimal.

Proof. One can show that the set {CT | T is a maximal torus of G} is finite (this is not
difficult but we omit the details); let C be the largest of the CT . Clearly C is the maximum
value of fv, and it is attained at some 0 6= λopt ∈ Y (G) of minimum length. Let T1 and T2

be maximal tori of G and let λ1 := λT1 ∈ Y (T1) and λ2 := λT2 ∈ Y (T2) be the cocharacters
provided by Lemma 5.10. Set P1 = Pλ1 and P2 = Pλ2 . Suppose fv(λ1) = fv(λ2) = C. It is
enough to prove that λ2 ∈ Ru(P1) · λ1.

Recall from Section 1.1 that P1 ∩ P2 contains a maximal torus T of G; clearly T is also
a maximal torus of both P1 and P2. As the maximal tori T1 and T of P1 are conjugate, we
have g1 · λ1 ∈ Y (T ) for some g1 ∈ P1. But λ1 is fixed by Lλ1 (a Levi subgroup of P1), so
u1 · λ1 ∈ Y (T ) for some u1 ∈ Ru(P1). Now fv(u1 · λ1) = fv(λ1) = C by (5.8). It follows that
C = CT and u1 · λ1 = cλT for some c ∈ R+, where λT is as in Lemma 5.10. Minimality of
λ1 and λT implies that c = 1, so u1 · λ1 = λT .

By the same argument, u2 · λ2 = λT for some u2 ∈ Ru(P2). But then P1 = PλT = P2, so
Ru(P1) = Ru(P2) and we get λ2 = u−1

2 u1 · λ1 ∈ Ru(P1) · λ1. This completes the proof. �

Remark 5.12. The constructions described above are well-behaved under conjugation by G:
cf. (5.5). It follows that Popt(g · v) = gPopt(v)g−1 for any g ∈ G. We leave the details to the
reader.
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5.2. Applications to G-complete reducibility. We spend the rest of this section deriving
some consequences of Theorem 5.1 for G-complete reducibility.

Theorem 5.13 ([3, Thm. 3.10]). Let H ≤ G be G-cr and let N be a normal subgroup of H.
Then N is G-cr.

Proof. Suppose N is not G-cr. Then Popt(N) is a witness that N is not G-cr, and H ≤
NG(N) ≤ Popt(N). Since N is not contained in any Levi subgroup of Popt(N), the larger
group H cannot be, either. But this contradicts our assumption that H is G-cr. We conclude
that N is G-cr after all. �

Remark 5.14. Let G = GLn(k), and suppose i : H → GLn(k) is a completely reducible
embedding. Clifford’s Theorem says that the restriction of i to a normal subgroup N of H is
completely reducible. Translating this into the language of G-complete reducibility, we see
that if H is a GLn(k)-cr subgroup of GLn(k) then any normal subgroup of H is GLn(k)-cr.
So Theorem 5.13 extends Clifford’s Theorem to arbitrary G.

Proposition 5.15. Let H be a G-cr subgroup of G. Then CG(H) and NG(H) are G-cr.

Proof. For simplicity, we prove that CG(H)0 and NG(H)0 are G-cr under the assumption
that H is connected; the proof for CG(H) and NG(H) for general H is completely analogous,
but requires the formalism of G-complete reducibility for nonconnected reductive groups.
Recall from the discussion after Remark 4.3 that NG(H)0 is reductive. Let P be a parabolic
subgroup of G that contains NG(H)0. Then NG(H)0 contains H, so P contains H, so some
Levi subgroup L of P contains H, as H is G-cr. We can write P = Pλ and L = Lλ for some
λ ∈ Y (G). Now λ centralises H, so λ is a cocharacter of NG(H)0. We have Pλ(NG(H)0) =
Pλ ∩NG(H)0 = NG(H)0 since NG(H)0 ≤ Pλ. But then Lλ(NG(H)0) = NG(H)0 (recall that
a connected reductive group is a Levi subgroup of itself). So NG(H)0 ≤ Lλ.

This shows that NG(H)0 is G-cr. It follows from Theorem 5.13 that CG(H)0 is G-cr, since
CG(H)0 is normal in NG(H)0. �

Corollary 5.16. Let H ≤ G. Then H is G-cr if and only if NG(H) is G-cr.

Proof. This follows from Proposition 5.15 and Theorem 5.13. �

Proposition 5.17. Let S be a G-cr subgroup of G and let H ≤ CG(S) such that H is
CG(S)-cr. Then H is G-cr.

We leave the proof as an exercise (but replacing CG(S) with CG(S)0 to avoid problems
with non-connected groups).

Remark 5.18. It can be shown that if S is linearly reductive then the converse to Proposi-
tion 5.17 also holds [3, Cor. 3.21]: so in this case, H is G-cr if and only if H is CG(S)-cr
(and likewise for CG(S)0). This is false if S is not linearly reductive, as we will see shortly.
In fact, one can show that H is CG(S)-cr if and only if HS is G-cr [4, Prop. 3.9].

We mention a useful corollary in the linearly reductive case [3, Ex. 3.23]. The group
SOn(k) sits inside SLn(k). Suppose p 6= 2 and let H be a subgroup of SOn(k). Then H is
SOn(k)-cr if and only if H is SLn(k)-cr. To see this, observe that SOn(k) is the fixed point
set of the involution φ ∈ Aut(SLn(k)) given by φ(A) = (AT )−1. The result now follows
from (the non-connected version of) the previous paragraph applied to the (non-connected)
reductive group G := SnSLn(k), where S := 〈φ〉—note that S is linearly reductive as p 6= 2
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and CG(S)0 = SOn(k). By a similar argument, if p 6= 2 and H is a subgroup of Sp2n(k) then
H is Sp2n(k)-cr if and only if H is SL2n(k)-cr.

We finish the section by considering the following question. Suppose H1 and H2 are
commuting G-cr subgroups of G. Is the product H1H2 also G-cr? The answer is yes for
G = SLn(k) and G = GLn(k), by an argument of Tange [4, Lem. 4.5]. (Surprisingly, the
following question seems to be open: if G = SLn(k) or G = GLn(k) and H1 and H2 are
G-cr subgroups such that H1 normalises H2, must H1H2 also be G-cr?) It follows from
Remark 5.18 that the answer is yes for G = SOn(k) and G = Sp2n(k) if p 6= 2. Using
this fact together with detailed information due to Liebeck and Seitz about the subgroup
structure of simple groups of exceptional type, Bate-Martin-Röhrle proved the following
result.

Proposition 5.19 ([4, Thm. 1.3]). Let G be connected and suppose p is good for G or p > 3.
Let H1 and H2 be connected G-cr subgroups of G such that H1 and H2 commute. Then H1H2

is G-cr.

But the answer to the question is no in general. Liebeck has given an example with p = 2
and G = Sp8(k) [4, 5.3]; he found connected reductive subgroups H1 and H2 of G such that
H1H2 is not G-cr. By Remark 5.18, H1 is not CG(H2)-cr and H2 is not CG(H1)-cr. This
gives a counter-example to the converse of Proposition 5.17.

6. Other topics

We briefly discuss some other topics related toG-complete reducibility and its applications.

6.1. Non-connected G. Even if we are interested mainly in G-complete reducibility for
connected reductive groups, we have seen in Section 5.2 that we must sometimes deal with
non-connected ones. The basic idea is simple. Let G be a non-connected reductive group.
Given λ ∈ Y (G), we define

Pλ =
{
g ∈ G

∣∣∣lim
a→0

λ(a)gλ(a)−1 exists
}
,

just as before, and we call Pλ a Richardson parabolic subgroup (or R-parabolic subgroup for
short). We define Lλ = CG(Im(λ)) as before, and we call Lλ a Richardson Levi subgroup
(or R-Levi subgroup for short). Now we define a subgroup H of G to be G-completely
reducible just as in Definition 2.2, but replacing parabolic subgroups and Levi subgroups
with R-parabolic subgroups and R-Levi subgroups, respectively. See [3, Sec. 6] for details.

One technical point: R-parabolic subgroups are not always self-normalising. But this does
not cause any serious problems, because of the following result.

Proposition 6.1 ([18, Prop. 5.4(a)]). If P is any parabolic subgroup of G0 then NG(P ) is
an R-parabolic subgroup of G.

6.2. Non-algebraically closed fields. In this section we take k to be an arbitrary field of
characteristic p > 0, with algebraic closure k. We take the point of view adopted in Borel’s
book [9]: we regard a variety X defined over k (a k-variety) as a k-variety together with a
choice of k-structure. If Y is a closed subvariety of X then we call Y a k-subvariety of X if
Y is defined over k.
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Let G be a connected reductive group defined over k and let H be a k-subgroup of G. We
say that H is G-cr over k if whenever H is contained in a k-parabolic subgroup P of G, H
is contained in a k-Levi subgroup L of P . If G = GLn(k) or SLn(k) then we have the same
characterisation as before: H is G-completely reducible over k if and only if the inclusion of
H in G is a completely reducible representation (over k).

If k′/k is an algebraic field extension then we can extend scalars and regard H as a k′-
subgroup of the connected reductive k′-group G, and we can ask whether H is G-cr over k′.
In particular, we can ask whether H is G-cr over k: this is equivalent to saying that H is
G-cr in our original sense. If k is perfect then the theory of G-complete reducibility over k
is similar to the algebraically closed case: for instance, one can show that H is G-cr over k
if and only if it is G-cr [3, Thm. 5.8]. The theory is much more complicated, however, if k is
not perfect. On Exercise Sheet 3 we give an example of a subgroup H such that H is G-cr
over k but not G-cr. An example with H G-cr but not G-cr over k is given in [7, Ex. 7.22];
this is closely related to Example 2.11.

We have already mentioned an open problem for non-algebraically closed fields in connec-
tion with Theorem 3.17. Here is another.

Open Problem: Suppose H is G-cr over k. Must CG(H) be G-cr over k?

One complication here is that CG(H) need not even be defined over k, so the problem has
to be formulated carefully. See [31] for further discussion.

6.3. Külshammer’s question. Let F be a finite group with Sylow p-subgroup Fp. Külshammer
asked the following question [15, Sec. 2].

Question 6.2. Fix a homomorphism σ : Fp → G. Is it true that there are only finitely many
conjugacy classes of homomorphisms ρ : F → G such that ρ|Fp is conjugate to σ?

Külshammer himself showed the answer is yes if G = GLn(k) or SLn(k) using simple
representation-theoretic ideas. Slodowy showed the answer is yes if p is good for G [26,
I.5, Thm. 3]. The answer in general, however, is no: there is a counter-example—closely
related (yet again!) to Example 2.11—with p = 2 and G simple of type G2 [6]. This counter-
example can be interpreted in terms of the non-abelian cohomology discussed in Section 2.2.
Uchiyama has similar examples [30, Sec. 6].

Open Problem: All known counter-examples to Question 6.2—including one of Cram in-
volving a non-reductive group G—are for p = 2. Is there a counter-example with p odd?

The connection withG-complete reducibility is as follows: since there are—by Theorem 2.13—
only finitely many conjugacy classes of homomorphisms ρ : F → G with G-cr image, a
counter-example to Question 6.2 must involve non-G-cr subgroups of G.

6.4. Finite groups of Lie type. We give an application of G-complete reducibility to
simple groups of Lie type. Suppose G is a simple (algebraic) group of adjoint type. Let
σ : G → G be a Frobenius map; then the fixed point subgroup Gσ is a finite group of Lie
type. We have the following result.

Proposition 6.3 ([17, Prop. 2.2]). Let F be a finite σ-stable subgroup of G. Then at least
one of the following holds:

(a) F is G-cr;
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(b) F is contained in a σ-stable proper parabolic subgroup of G.

For if (a) does not hold then F ≤ Popt(F ), which is a proper parabolic subgroup of G. The
idea is to show that Popt(F ) is σ-stable (there are some complications when (G, p) = (B2, 2),
(F4, 2) or (G2, 3)).

Proposition 6.3 yields a bound on the number of maximal subgroups of simple groups of
Lie type:

Theorem 6.4. Let N,R ∈ N be positive integers, and let Γ be an almost simple group whose
socle is a finite simple group of Lie type of rank at most R. Then the number of conjugacy
classes of maximal subgroups of order at most N in Γ is bounded by a function f(N,R) of
N and R only.

An important ingredient in the proof is the following observation. If F is a finite group
of order N then of course the number n = n(F, σ) of Gσ-conjugacy classes of embeddings
ρ : F → Gσ is finite, since Gσ is finite. If we consider embeddings ρ such that ρ(F ) is G-cr,
however, then Theorem 2.13 together with Lang’s Theorem shows there is a bound for n
that does not depend on σ.

6.5. Geometric invariant theory. As we have seen, geometric invariant theory is an im-
portant tool for proving results about G-complete reducibility. Now we give some results
from geometric invariant theory which can be proved using ideas from G-complete reducibil-
ity.

We start by giving a rigidity result for G-cr subgroups.

Proposition 6.5 ([19, Lem. 4.1]). The group G has only countably many conjugacy classes
of G-cr subgroups.

Suppose we are given a conjugation-stable family F of subgroups of G that is parametrised
algebraically: for instance, if X is a G-variety then we can take F to be the family of
stabilisers Gx as x varies over the points of X. Suppose moreover that every H ∈ F is G-cr.
Then F contains only finitely many conjugacy classes of subgroups. The proof has a model-
theoretic flavour. Since F is parametrised algebraically, it is given by first-order conditions, so
without loss we can extend scalars and assume the algebraically closed field k is uncountable.
Then F has to contain either only finitely many, or uncountably many, conjugacy classes
of subgroups, essentially because a variety over k is either finite or uncountable. But by
Proposition 6.5, F can contain at most countably many conjugacy classes of subgroups, so
it contains only finitely many.

Corollary 6.6 ([19, Cor. 1.5]). Let X be a quasi-projective G-variety, and suppose X has
an open dense set U1 such that Gx is G-cr for all x ∈ U1. Then X has an open dense subset
U2 such that the stabilisers Gx for x ∈ U2 are all conjugate to each other.

Corollary 6.6 fails without the assumption that the Gx are G-cr: see [19, Ex. 8.3].
We finish with one further GIT-theoretic result. Let X be a G-variety and let H be a

G-cr subgroup of X. Then the fixed point set XH is stabilised by NG(H), and the inclusion
XH ⊆ X gives rise to a morphism ψ : XH//NG(H) → X//G of quotient varieties (note that
NG(H) is reductive, by Section 4).

Proposition 6.7 ([1, Thm. 1.1]). The morphism ψ is finite.
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