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1 Metastates in random spin models

Consider a lattice spin model with a quenched random Hamiltonian, such as
the Edwards-Anderson spinglass or a random field Ising model. The metas-
tate is a concept to capture the asymptotic volume-dependence of the Gibbs
states of such a system in the phase transition regime when several Gibbs
states are available. It is a probability distribution on the infinite-volume
Gibbs states of the system that, intuitively speaking, describes the likeli-
hood of finding a disordered system in a particular Gibbs measure when one
choses a large volume from a sequence of volumes at random. The metastate
of a system may be non-degenerate for boundary conditions which do not
preselect the Gibbs state that is (approximately) realized in a large volume,
so that several Gibbs measures may arise as subsequence limits.

Disordered systems. To start with, suppose we are given an Ising system
(for simplicity) on the lattice Zd with quenched randomness. We denote
the variable describing the quenched randomness by η. It will be chosen
according to a probability distribution denoted by P(dη) and kept fixed (or
”quenched”) in the course of the analysis. A disordered spin model is usually
defined by prescribing a Hamiltonian Hη(σ), for each realization of η, which
associates to an infinite volume spin configuration σ = (σi)i∈Zd (with σi
taking values plus or minus one) a formal energy. (Such a Hamiltonian will
typically be given in terms of an interaction potential Φη which collects all
interaction terms in the Hamiltonian and should be considered the more basic
object from a mathematical point of view.)

Fixing a boundary condition σ̄, one may now define the finite-volume
Gibbs states µσ̄Λ[η](dσ) in the finite volume Λ ⊂ Zd in the usual way, namely
by restricting the terms of the Hamiltonian to the volume Λ, including the
couplings over the boundary to the boundary condition. These measures
are conveniently interpreted as probability measures on the whole infinite-
volume configurations of the system, where the configuration is fixed to be
σ̄ outside of Λ. The collection of these measures, for all volumes Λ and
all boundary conditions σ̄ forms a (random) Gibbs specification. Generally
speaking, measures on infinite volume spin configurations σ are also referred
to as the states.

As it is a fundamental task in statistical mechanics to describe the large-
volume behavior of a system, we are interested in describing these finite-
volume Gibbs measures along a sequence of cubes Λn, centered at the origin,
of sidelength 2n+1, as n tends to infinity. While it is common for translation-
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invariant systems to have convergence of the finite-volume states themselves
when a particular boundary condition is fixed, for disordered systems the
situation may be more complicated and convergence on the levels of states
does not hold. Indeed, when several Gibbs measures are available, it might
be that a system finds itself (approximately) in one of these states for one
volume, and (approximately) in another Gibbs measure for another volume,
which one being dependent on the choice of the underlying randomness in
the Hamiltonian Hη.

The Newman-Stein metastate. To account for disordered systems where
the boundary condition does not preselect in an obvious way the Gibbs mea-
sure Newman and Stein proposed the following to capture the asymptotic
volume dependence. In all of the following the boundary condition σ̄ will be
fixed and dropped in the notation.

Look at a sequence of finite-volume Gibbs measures µn[η] in the volumes
Λn. Look at the empiral average

κN [η] :=
1

N

N∑
n=1

δµn[η]

taken along the trajectory µn[η], where δ is the Dirac measure. Intuitively
it means to look at the frequency of occurrence of states along a volume
sequence (”histogramm”). The limit

κ[η] := lim
N↑∞

κN [η]

is called an Newman-Stein metastate or empirical metastate, if it exists for
P-almost every realization η. It is a probability measure on the Gibbs mea-
sures of the system that depends on the particular realization of the disorder
variables η.

To make sense of such a convergence, appropriate notions of convergence
(topologies) have to be chosen. In accordance with the Gibbs theory for non-
random systems this is done such that convergence has to be checked locally,
be it on the level of spin configurations, on the level of states (measures on
spin configurations), or on the level of metastates (measures on states).

This empirical mean along a trajectory of volumes is in analogy to the
construction of invariant measures for dynamical systems. Now the role of
the time is taken by the label n in a given sequence of volumes Λn, and the
role of the state variable of the dynamical system is taken by the probability
measures µn[η].
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There are general existence results about the convergence for P-a.e. η that
follow from compactness arguments but these are only for sparse enough sub-
sequences of n’s and N ’s. Naturally, one would like to speak of the Newman-
Stein metastate, but it has not been proved in general that different subse-
quences necessary yield the same object.

The Aizenman-Wehr (or conditional) metastate. Aizenman and Wehr [1]
provided a different way to an η-dependent probability measure on the Gibbs
states of a system that describes the large-volume asymptotics. They sug-
gested to look at the probability distribution of the pair of the finite-volume
Gibbs measure and the disorder variable (µn[η], η) under the governing mea-
sure of the disorder variable, P(dη). Suppose that a limit exists for this
random pair in the sense of weak convergence. Let us call the resulting lim-
iting distribution K(dµ, dη). Of this limit we may take now a conditional
distribution, obtained by conditioning on the disorder variable η, and this
provides us with a measure on the first variable, which we call κAW[η](dµ).
The resulting object is called Aizenman-Wehr or conditional metastate.

Again, the existence of the limit K is guaranteed (only) for subsequences
of n’s (by a compactness argument). The independence of the limit of the
choice of the subsequence has not been proved in general, but it is very
plausible in all examples that have been studied.

The connection between both notions. In [8] it was proved that the
Aizeman-Wehr metastate coincides with the Newman-Stein metastate for
sufficiently sparse subsequences. More precisely the following holds: Take
sufficiently sparse sequences nk, k = 1, 2, . . . of the subsequence of n’s in
the construction of the Aizenman-Wehr metastate κAW[η]. Then, for suffi-
ciently sparse subsequences Nl, the corresponding Newman-Stein metastate
converges to the Aizenman-Wehr metastate. This reads in formulas:

lim
l↑∞

1

Nl

Nl∑
k=1

δµnk
[η] = κAW[η]

An example. Subsequences of n’s are really necessary to have a.s. con-
vergence, as it was observed in [5] for the Mean-Field Random Field Ising
Model. It is probably the simplest system showing nontrivial behavior of the
metastate. For more examples, see [2, 3] and the references therein. The
finite-volume Gibbs measures µn[η] in the finite volume {1, . . . , n} are given
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by

µn[η] ((σi)i=1,...,n) =
1

Zn[η]
exp

(
β

2n

∑
1≤i,j≤n

σiσj + βε
∑

1≤i≤n

ηiσi

)

where σi = ±1 are Ising spins, ηi are taken as i.i.d. variables taking the
variables plus or minus one with equal probability one half, and Zn[η] is
the disorder-dependent partition function that makes the r.h.s. a probabil-
ity measure on the σ’s. Interactions between the spins take place between
all pairs which makes the model a mean-field model. The phase diagram
of the model is well known. In particular, at low temperatures 1/β and
small ε the model is ferromagnetic, i.e. there exist two ‘pure’ phases, a fer-
romagnetic + phase µ+

∞[η] and a − phase µ−∞[η]. Now the metastate will
be non-degenerate, since in large volumes, with large probability, the system
will be approximately in one of these phases, which one, depending on the
realization η through the sign of the sum of random fields on the volume.
Moreover, it was shown in [5] that the empirical metastate does not con-
verge for a.e. realization, if one considers the sequence of volumes {1, . . . , n}
obtained by adding one site at a time step. However it does converge in
distribution (probability law): Looking at its expectation of a local function
F on the states of the system we have

lim
N↑∞

1

N

N∑
n=1

F (µn[η]) =law n∞F
(
µ+
∞[η]

)
+ (1− n∞)F

(
µ−∞[η]

)
where n∞ is a ‘fresh’ random variable, independent of η on the r.h.s., with
arcsine-distribution (that is P [n∞ < x] = 2

π
arcsin

√
x). On the other hand,

if one takes a deterministic volume sequence nk that is sufficiently sparse,
convergence of the l.h.s. takes place to the limit 1

2
F (µ+

∞[η]) + 1
2
F (µ−∞[η]),

for almost every realization of η. This expresses the picture that, choosing a
very large volume at random, we see either the plus-state or the minus state
with probability one half.

The EA spinglass. The metastate playes an important role in the debate
between Newman and Stein [9] and the Parisi school [6] whether a (suitably
interpreted) so-called Parisi-”replica-symmetry breaking” picture can hold
for the Edwards-Anderson lattice-spinglass model (see also [4, 7]). Such a
picture would involve the existence of many pure states that are organized
in a tree-like manner. On the basis of soft (non-computational) arguments
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based on translation-ergodicity as a main property Newman and Stein col-
lected strong evidence that a naively interpreted Parisi-picture cannot hold.
Considering the ground states of the model they argued as a most plausible
behavior for a ”chaotic-pair-picture”. This means that, in a given volume
only one pair of groundstates should be visible, which one however, depend-
ing on the volume.

References

[1] M. Aizenman, J. Wehr, Rounding effects of quenched randomness on first-
order phase transitions, Comm. Math. Phys. 130 no. 3, 489-528 (1990)

[2] A. Bovier, Statistical mechanics of disordered systems. A mathematical
perspective. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge (2006)
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[6] M. Mézard, G. Parisi, M. A. Virasoro, Spin glass theory and beyond,
World Scientific Lecture Notes in Physics, 9. World Scientific Publishing
Co., Inc., Teaneck, NJ (1987)

[7] C. M. Newman, D. L. Stein, Are there incongruent ground states in 2D
Edwards-Anderson spin glasses? Dedicated to Joel L. Lebowitz. Comm.
Math. Phys. 224 no. 1, 205–218 (2001)

[8] C. Newman, Topics in disordered systems. Lectures in Mathematics ETH
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