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Abstract. We consider diffraction at random point scatterers on general discrete point sets
in R

ν , restricted to a finite volume. We allow for random amplitudes and random dislocations
of the scatterers. We investigate the speed of convergence of the random scattering measures
applied to an observable towards its mean, when the finite volume tends to infinity. We give
an explicit universal large deviation upper bound that is exponential in the number of scat-
terers. The rate is given in terms of a universal function that depends on the point set only
through the minimal distance between points, and on the observable only through a suitable
Sobolev-norm. Our proof uses a cluster expansion and also provides a central limit theorem.

1. Introduction and setup

The study of the diffraction theory of ‘ordered point sets’ is a classical subject to
physicists: Crystals produce sharp diffraction images, with bright spots known as
Bragg peaks. It is known since the eighties (and mathematically well-understood by
now) that this is also true for quasi-crystals ([Hof95b]). These possess long-range
order but no translation symmetry and show geometrically intriguing diffraction
patterns.

The study of these patterns is an important tool for science and technology to
identify the structure of an unknown material with spatial regularity. The basic idea
for this is simple: An incoming (say x-ray) beam is scattered by a particle more or
less uniformly in all directions. The scattered beams add together in a constructive
way only in particular directions, depending on the geometry of the underlying
array of particles. Usually one is looking at the scattering image from far away (at
infinity); then the problem reduces to the study of the Fourier transform of the auto-
correlation measure of the scatterers. Of course, sharp behavior of the scattering
image occurs only in the limit of an infinite system of scatterers, much in analogy
to the sharpness of phase transitions in statistical mechanics.
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So far, the problem is a purely geometric one. What changes, if one is add-
ing randomness (either disorder of the scattering amplitudes or temperature) to the
picture? This is a physically important probabilistic question. It is reasonable to
expect that there should be a well-defined limit of the diffraction image when the
number of scatterers tends to infinity, under natural assumptions. What assump-
tions exactly do we need mathematically? Do sample fluctuations matter? Do we
have control over corrections to the infinite-volume behavior when the number of
scatterers is finite? There have been few mathematical papers about the first two
questions (see however [BaaMoo98], [BaaHoe00], [Hof95a]), and no results at all
about the finite-volume behavior.

Suppose at first one chooses the scatterers according to some translation-erg-
odic distribution while keeping the positions fixed on a perfect crystal. Then the
scattering images will converge to their disorder-averages in a distributional sense,
by soft ergodicity arguments. This is true for almost any realization of the scatterers,
using the ergodic theorem. Note however that these arguments do not provide any
control over the finite-volume corrections of the observed scattering image.

When one gives up translation invariance of the underlying structure or the dis-
tribution, there are not very many mathematical results in the literature. Ergodicity
arguments are not available any more and one must resort to explicit methods. Sub-
jecting the sites of a quasicrystal to i.i.d. dislocations (modelling thermal motion)
leads to an infinite-volume picture that is well-known from crystals: The intensity
of the sharp peaks is reduced by a Debye-Waller factor with a diffuse background
appearing. It is however not difficult to rigorously justify this kind of law-of-large-
numbers result when no control over the speed of convergence is required (see
[Hof95a]). For mathematical results about the scattering at random tilings in the
infinite-volume limit we refer the reader to the recent review article of [BaaHoe00].
This paper provides a number of interesting and pedagogical examples and can also
serve as a good introduction to mathematical scattering theory.

In the present paper we provide a contribution to the diffraction theory of ran-
dom scatterers on general point sets by answering the question:

How large is the probability for a deviation of the scattering image of a finite portion
of scatterers from its sample average?

This is the probabilistically natural question for self-averaging and corresponds to
the experimentalist’s question ‘Is my system large enough?’. In this paper we do
not assume a lattice structure, quasiperiodic structure or any symmetry of the set
or of the distribution. For our results we only assume a minimal distance between
the points of the reference point set. In particular all of our results hold for lattices
or quasi-crystals. The answer then immediately leads to results about convergence
of the scattering images for almost every realization, when it is combined with
information about the behavior of the mean. This implies that various assumptions
used in the literature are in fact unnecessary.

We consider two types of randomness: A) We choose the scattering amplitudes
according to a random distribution while keeping their locations fixed or B) sub-
ject them to i.i.d. dislocations around their sites. (The latter is a crude model for
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thermal motion although more realistically the dislocations should have a [non-in-
dependent] Gibbsian structure.) We can treat both types in a unified way. In order to
investigate the selfaveraging properties in a physically meaningful way, we adopt
the following point of view. Fix an observable, modelling the counter used in an
experiment, and look at the result of the corresponding measurement. Then esti-
mate the probability distribution of the resulting quantity (which is random w.r.t.
sample fluctuations) in any finite volume. This provides much more information
than the mere statement of the convergence of the scattering measures in the sense
of distributions, for almost every realization of the scatterers, as it is conventionally
done ([BaaMoo98], [BaaHoe00], [Hof95a], [D93], [EnMi92]).

We note that for a typical observable (e.g. Gaussian test function) the resulting
expression will involve all autocorrelation coefficients of the array of scatterers and
therefore does not trivially decompose into independent parts, even for scatterers
that behave independently. In the language of statistical mechanics, the observ-
able produces an interacting system! Treating the autocorrelation coefficients as
individual random variables without using their dependence would suffice for a
mere convergence result, but would lead to very bad large-deviation estimates. To
deal with this interaction it will therefore be appropriate to employ (high-temper-
ature) expansion methods from statistical mechanics, as will become clear soon.
This shows the usefulness of such methods to give sharp explicit results, even
in situations that do not a priori smell like dependent spin systems and Gibbs-
measures. So, it would be nice if the paper could also serve as a motivation for
probabilists and mathematical physicists who are sceptical about the use of expan-
sions to take a closer look. Moreover the expansion method gives a central limit
theorem as a by-product; this would not follows from a different (concentration
inequality) approach to be investigated in a separate paper [K02]. We restrict our-
selves to the situation of independent scatterers to keep the technicalities down. To
generalize the method to the case of weakly coupled scatterers is possible, but it
would complicate the theorems, and make the general idea less transparent. future
paper.

In this setup we will provide general upper bounds on the probability that the
measurement in finite volume deviates from its mean, and even provide explicit
numerical values of the constants appearing. These estimates are universal in the
sense that they depend only: 1) on the minimal distance between sites, but not on
details of the point set; and 2) on the concentration of the observable, measured in
a suitable Sobolev-norm of its Fourier-transform, but not on any more details. The
fact that the estimate depends on the point set only through the minimal distance
is important because one might want to be able to interpret the diffraction images
without knowing beforehand the geometrical structure of the point set, while having
some physical a priori-estimate on the minimal distance.

Computing the average of a scattering image is simple and seeing whether it
converges or not reduces to the knowledge of the autocorrelation structure already
needed to understand the deterministic image of the point-set (see Appendix A).

Let us now define the models and state our results more precisely. We discuss the
scattering image at infinity that is created by single-scattering at (a finite collection
of) the point-scatterers described by the following random measures.
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Model A: Disordered scattering amplitudes, fixed positions

We look at the complex random measure (‘random Dirac comb’) given by

ρ�(η) =
∑

x∈�

ηxδx (1.1)

where δx denotes the Dirac-measure at the site x. The point set �⊂R
ν is assumed

to be countable. Here ηx are random, possibly complex scattering amplitudes, in-
dependent between the sites x ∈ �. They are assumed to be bounded.

Model B: Randomly dislocated scatterers

Here we look at the scattering image of the random measure given by

ρ�(ω) =
∑

x∈�

δx+ωx (1.2)

where ωx are random dislocations taking values in R
ν , independent over the sites

x ∈ �. They are assumed to be bounded, too.
Fix any finite volume �r⊂�. Then, the object that contains all information about

the scattering image of the points in �r is the finite-volume scattering measure which
is the Fourier-transform of the corresponding finite-volume autocorrelation mea-
sure. (For a summary of the basic notions of mathematical scattering theory, see
Appendix A and, for more details, e.g. Chapter II of [BaaHoe00].) Here, for Model
A the autocorrelation measure in the finite volume �r is given by

γ η
r := 1

|�r |
∑

y∈�r−�r

δy

∑

x∈�r :
x−y∈�r

ηxη
∗
x−y (1.3)

where the star denotes complex conjugate and the y-sum is over all difference
vectors in �r . Since we allow �r to be any finite set, we have chosen the natural
normalization by the number of points (in contrast to [BaaHoe00]). This leads to
simpler formulas in our theorems. For Model B we put

γ ω
r := 1

|�r |
∑

x,x′∈�r

δx−x′+ωx−ωx′ (1.4)

for the finite-volume autocorrelation measure. Suppose now a measurement on
the scattered intensity is performed that is described by an observable ϕ(k) in
Fourier-space, modelling the counter. Usually it is assumed to be a real Schwartz
function. The corresponding result of the measurement is then given by γ̂

η
r (ϕ) ≡∫

γ̂
η
r (k)ϕ(k)dk. Here the Fourier-transform of a tempered distribution γ is defined

by duality, γ̂ (ϕ) = γ (ϕ̂), where ϕ̂ denotes the Fourier-integral of the Schwartz-
function ϕ over R

ν . (For a quick reminder of the explanation for this and some
comments, see Appendix A. For more expository details, see [BaaHoe00].) The
sample average of the measurement is

∫
µ(dη)γ̂

η
r (ϕ). This object has the correct
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normalization (by the total number of scatterers) to be able to converge to a well-
defined limit, as it does of course for non-random scatterers on a lattice. (We remark
that this average won’t converge [e.g. for i.i.d. scatterers] along any sequence of
volumes �r , but e.g. an increasing sequence of balls or cubes works for crystals
and quasi-crystals.)

Main result for Model A

Let us formulate the bound in the simplest form, which is suitable for the compu-
tation of explicit numbers bounding the probability of a large deviation. It makes
explicit the uniformity of the large deviation upper-bound in the set � (other than
through the minimal distance between points in �), the form of the distribution
(other than through uniform bounds on the magnitude of the scatterers), and the ob-
servable ϕ (other than through a Sobolev-norm). We also provide a different version
of the large deviation estimate in Chapter 4 under the name ‘Addition to Theorem 1’.
It is slightly sharper in certain cases but less useful for direct application. In Chapter
4 we also give a corresponding Central Limit Theorem.

Now, to state the theorem we define the following Sobolev-norm involving in-
tegrals of derivatives up to the order of the dimension ν, where we also introduce
a scaling factor a/2. For a function g : R

ν → C we put

‖g‖ν,a := 1

|B1|
ν∑

k=0

1

k!

1

(a/2)ν−k

∫

Rν

‖dkg(y)‖dy (1.5)

Here |B1| denotes the volume of the ν-dimensional unit ball. The symbol dkg(y) :
(Rν)k → R

ν denotes the k-th differential of g at the point y and ‖dkg(y)‖ :=
sup|v1|=...|vk |=1 |dkg(y)[v1, . . . , vk]| is the usual norm of a k-multilinear mapping,
at any fixed point y, where |v| denotes the Euclidean norm.

Then we have

Theorem 1. Suppose that �r⊂R
ν is any finite set and denote the minimal dis-

tance between its points by a. Assume that η = (ηx)x∈� are (possibly complex)
random variables, independent, but not necessarily identically distributed. Denote
their distribution by µ. Suppose the uniform bounds |µ (ηx) | ≤ M < ∞ and
|ηx − µ(ηx)| ≤ B < ∞, for all x ∈ �r , for µ-a.e. realization.

Then the corresponding random scattering image γ̂
η
r (ϕ) in the finite volume �r

obeys the universal large deviation estimate

µ

(∣∣∣∣γ̂
η
r (ϕ) −

∫
µ(dη)γ̂ η

r (ϕ)

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−|�r | × J

( ε

K‖ϕ̂‖ν,a

))

(1.6)

for any ε > 0, for any function ϕ : R
ν �→ R, s.t. its Fourier-transform has finite

norm ‖ϕ̂‖ν,a .
Here K = 2MB + B2, and J is a nonnegative, convex, strictly monotone

function that is independent of the form of the distribution µ and the set �.
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Remark. The universal function J : [0, ∞) → [0, ∞) in the theorem has the form

J (ε̄) =





16
27D2

((
1 + 3

4Dε̄
) 3

2 − 1 − 9
8Dε̄

)
, if ε ≤ d(4 + 3Dd)

d (ε̄ − d (2 + dD)) , else
(1.7)

where the numerical constants can be chosen d = 0.0525, and D = 4.54 · 103.
Note the asymptotics J (ε̄) ∼ ε̄2

8 for ε̄ ↓ 0 and J (ε̄) ∼ dε̄ for ε̄ ↑ ∞.
A structural and practical virtue of the form of the large-deviation estimate of

Theorem 1 lies in the fact that its dependence on the observable ϕ is formulated
entirely in terms of the continuum-object ‖ϕ̂‖ν,a . All details of the set �r have
disappeared! This Sobolev-norm can be computed (at least numerically) with little
effort, and so one may easily derive explicit numbers.

Remark. Note the natural fact that the bound is scale-invariant in the following way:
Suppose the counter is modelled by a probability density ϕσ (k) = σ−νϕ1(k/σ )

in Fourier-space with variance (‘precision of measurement’) σ 2. (Think e.g. of a
Gaussian!) Then, by scaling we have ‖ϕ̂σ ‖ν,a = ‖ϕ̂1‖ν,aσ . So we have ‖ϕ̂σ ‖ν,a ∼
(aσ )−ν

∫
Rν |ϕ̂1(y)|dy with σ ↓ 0, when a is fixed (under the condition that the

higher derivatives are integrable). This immediately controls the deterioration of
our large deviation estimate when we make σ smaller to increase the precision of
measurement of the scattering image. (Without loss of generality we could have
chosen our length-scale in such a way that a = 1 from the beginning, so that the
general statement is regained by rescaling the observable in k-space. We believe
however that the present form of the theorem is more intuitive.)

Remark. The norm appearing is finite in particular for the commonly used
Schwartz-test-functions. So our result in particular implies convergence-statements
in the sense of tempered distributions. Suppose we are given an increasing sequence
of volumes �r . Then we immediately obtain the strong law of large numbers as a
consequence of Theorem 1, saying that the centered autocorrelation measure ap-
plied to a test function ϕ whose Fourier transform has finite norm converges to
zero, for P-a.e. η. This follows trivially by summing the exponential bound (1.6)
over the volumes using the Borel-Cantelli Lemma.

Remark. The fact that the dependence on the observable ϕ, on the point-set � and
on the distribution µ can be expressed in terms of the handy quantity K‖ϕ̂‖ν,a is not
a priori obvious. The occurrence of the norm however is not difficult to understand.
It can be motivated by noting that 4(K‖ϕ̂‖ν,a)

2/|�r | is an upper bound for the
µ-expectation of the square of the modulus inside the probability on the l.h.s. of
(1.6). (This is seen using the independence of the scatterers by Fourier-transform,
and substituting the norm-estimate of Proposition 3.) Believing in the corresponding
Gaussian behavior, the small ε̄-behavior given in (1.7) should follow. An essential
part of the actual proof consists in estimating all the higher moments contained
in the Laplace-transform in terms of powers of K‖ϕ̂‖ν,a . One can not expect a
large deviation principle [which would in particular mean the existence of the lim-
it − limr

1
|�r | log µ (| . . . | ≥ ε)] without any assumptions on the set � other than
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minimal distance. In fact, without further assumptions on �, the Laplace-transform
won’t converge.

Main result for Model B

For the Model B of random dislocations the result is quite analogous. Here, how-
ever the Sobolev-norm of the variation of the Fourier-transform of the observable
appears. Again, there will be a sharper version of this result in Chapter 4 that is
called ‘Addition to Theorem 2’, and a Central Limit Theorem.

Theorem 2. Suppose again that �r⊂R
ν is any finite set and denote the minimal

distance between its points by a.
Suppose that the dislocations ω = (ωx)x∈�r have independent, not necessarily

identical distribution µ, such that |ωx | ≤ δ < a/4, for all x ∈ �r , µ-a.s.
Then the finite-volume scattering image γ̂ ω

r (ϕ) obeys the universal large devi-
ation estimate

µ

(∣∣∣∣γ̂
ω
r (ϕ) −

∫
µ(dω)γ̂ ω

r (ϕ)

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−|�r | × J̃

( ε

4δ ‖dϕ̂‖ν,a−4δ

))

(1.8)

The function J̃ has the same form as the function J from Theorem 1 (see (1.7)), but
with the slightly better constant D̃ = 4.38 · 103

(≤ D
)

instead of D, and the same
constant d.

The norm which appears here has the obvious meaning obtained by extending
the previous definition (1.5) that was given for functions to linear functionals. It
equals ‖dg‖ν,a = 1

|B1|
∑ν

k=0
1
k!

1
(a/2)ν−k

∫
Rν ‖dk+1g(y)‖dy.

Remark. The restriction δ < a/4 is only for simplicity. The more general statement
of the Addition to Theorem 2 given in Section 4 stays true for any finite δ, when the
minimal distance of the unperturbed set stays strictly positive.

The reader who is familiar with Gibbs measures for classical particles in R
d will

be reminded by the condition δ < a/4 of hard-core interaction potentials. In fact,
it is known that such hard-core systems share a substantial amount of the general
structure with spin systems on the lattice (Gibbsian theory, variational principle, see
Appendix B of [I79]). However, in the present context the dislocations are assumed
to be independent from the beginning, and the minimal distance condition of the
perturbed set is used to apply a norm-estimate (given in Proposition 4) to obtain
the handy formula (1.8). The fact that the estimate involves the Sobolev-norm of
the derivative of ϕ rather than the Sobolev-norm of ϕ itself is due to the fact that
γ ω
r (α) is non-random when the function α is a constant.

Remark. Note again the scale-invariance of the estimate, where of course the spatial
distance δ must be rescaled, too:As for ModelA, take a rescaled observable ϕσ (k) =
σ−νϕ1(k/σ ) in Fourier-space. Then we have δ ‖dϕ̂σ ‖ν,a−4δ = δσ ‖dϕ̂1‖ν,aσ−4δσ .
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So, assuming that the higher derivatives are integrable, the quantity appearing in
the large deviation estimate behaves like

δ ‖dϕ̂σ ‖ν,a−4δ ∼ δ(a−4δ)−νσ−(ν+1)

∫

Rν

‖dϕ̂1(y)‖dy with σ ↓ 0 and a, δ fixed.

We conclude this introduction with an outline of the rest of the paper along with
some ideas of the proof. In Chapter 2 we derive bounds on the Laplace transform
of the centered random scattering measures, applied to some observable ϕ. To do
so we look at this quantity as a (possibly complex) Hamiltonian of a spin-system.
Here the random variables modelling the scatterers (resp. their dislocations) play
the role of spins. The Laplace-transform then becomes a partition function. We
can treat it by high-temperature expansion methods from statistical mechanics, un-
der the assumption that the interaction be small. The smallness of the interaction
of the spin-system we need for the expansion will be guaranteed by smallness of
the Fourier-transform ϕ̂ in a suitable norm. From the point of view of the expan-
sion it is natural to introduce discrete �-dependent norms, so that we can control
the terms of the expansion with constants that are independent of the structure of
�. The resulting bounds for the Laplace-transforms including the computation of
numerical constants are provided in Proposition 1 for Model A. In Chapter 3 the
work of Chapter 2 is adapted to treat Model B. In Chapter 4 we state the sharp-
ened results of the ‘Additions to Theorems 1 and 2’and the Central Limit Theorem,
along with their proofs. They follow immediately from the norm-estimates on the
Laplace-transform.

In Appendix A we recall the basic notions of scattering theory for point scat-
terers. In Appendix B we give estimates on our discrete �-dependent norms in
terms of Sobolev-norms that depend on � only through the minimal distance. This
input is needed to show the uniformity in � and the nice bounds given in Theorems
1 and 2.

2. Norm bounds on moment generating function

In this chapter we use an expansion to derive bounds on the Laplace transform of
the random variable in question. We will look at this random variable as a Ham-
iltonian of a spin system. We will formulate the bounds obtained in this chapter
in terms of a suitable discrete norm that is close to what is needed for the proof
of convergence, and compute numerical constants. These constants are obtained
employing the known Kotecky-Preiss estimates for abstract polymer models. The
result of this is found in Proposition 1.

Now, let us use the short notation

Xr(α) ≡ |�r |
(
γ η
r (α) − µ

(
γ η
r (α)

))
(2.1)

for the nonnormalized centered autocorrelation measure applied to the function
α : R

ν → C. This is the random variable in question. To derive bounds on its
Laplace-transform and control the terms higher than second order in α we need a
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suitable norm. It turns out that the appropriate norm is the discrete l1-type norm

‖α‖� := sup
x∈�

∑

z∈�

|α(x − z)| (2.2)

Of course, for � = aZ
d this is just an l1-norm, for general � it is slightly more

complicated. The result of this chapter is then the following.

Proposition 1. Suppose that the scatterers ηx have independent, not necessari-
ly identical distributions. Denote their joint distribution by µ and assume that
|µ (ηx) | ≤ M < ∞ and |ηx − µ(ηx)| ≤ B < ∞ for all x ∈ �, µ-a.s.

Then there are universal constants d > 0, and D < ∞, independent of the set
� and the distribution µ (for given K), such that, whenever α : R

ν → C is such
that |α(x)| = |α(−x)| for all x ∈ �, and K‖α‖� ≤ d, we have the estimate

∣∣∣∣log µ
(
eXr(α)

)
− 1

2
µ
(
Xr(α)2

)∣∣∣∣ ≤ |�r |D × (K‖α‖�)3 (2.3)

with K := 2MB + B2.
The values of the constants can be chosen d = 0.0525, and D = 4.54 · 103.

Remark. Note that the quadratic term in α under the modulus may not have a limit
when r ↑ ∞, for general sets �, even in the i.i.d. case. Much less need the higher
moments of Xr(α) possess a limit. The essential point is however that all higher
order terms in α are estimated uniformly in the set �. This uniformity follows from
the cluster expansion error bounds and some explicit work.

Proof. We interpret Xr(α) as the (negative) Hamiltonian of a spin-system with
spin-variables ηx , x ∈ �r and open boundary conditions. It is then most intuitive
from the point of view of statistical mechanics to write it in the form

Xr(α) =
∑

{x,z}⊂�r
x �=z

Ux,z +
∑

x∈�r

Vx (2.4)

with the single-site potential

Vx = α(0)
(
|ηx |2 − µ

(
|ηx |2

))
(2.5)

and the pair potential

Ux,y = α(x − y)
(
ηxη

∗
y − µ(ηxη

∗
y)
)

+ α(y − x)
(
ηyη

∗
x − µ(ηyη

∗
x)
)

(2.6)

for x �= y. Note that when α is the Fourier-transform of a real function, the pair
potential is real. In general we allow it to be complex. Note that the potentials V and
U are linear in the function α. Note that in general the interaction will act between
all pairs of scatterers ηx . We look at the logarithm of the Laplace transform of
Xr(α). In the language of statistical mechanics the Laplace transform is a partition
function and its logarithm is a free energy. We want to compute this free energy to
quadratic order in the strength of the interaction and control the remainder term. If
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we restrict ourselves to sufficiently ‘small’ α this will allow us to perform a cluster
expansion, as we will see. This corresponds to ‘small inverse temperature’. Such
an expansion is in principle well-known in statistical mechanics, but we have to be
careful about the precise assumptions we need on α and keep track of the constants
appearing. It turns out that all we need for the control is the quantity K‖α‖� .

Let us start. We note that

‖Vx‖∞ ≤ |α(0)|B2, ‖Ux,y‖∞ ≤ 2K|α(x − y)| (2.7)

Then we put µ[V ](·) := µ( · e
∑

x∈�r
Vx )/µ(e

∑
x∈�r

Vx ) to separate the single-site
contributions and write

µ
(
eXr(α)

)
/µ(e

∑
x∈�r

Vx ) = µ[V ]




∏

{x,z}⊂�r

(
eUx,z − 1 + 1

)




=
∑

T ⊂Br

µ




∏

{x,z}∈T

(
eUx,z − 1

)


 (2.8)

The set Br describes the set of edges on the complete graph with vertices �r . We
write T = P1 ∪ · · · ∪ Pn for the unique decomposition into connected components
and call the Pi’s polymers. A polymer P is thus of the form P = {{x1, z1}, {x2, z2},
. . . , {xk, zk}} and will be considered as a connected graph. There is the obvious no-
tion of pairwise compatibility: P1, P2 are compatible iff they don’t have any sites
in common. So we write the last expression as a sum over pairwise compatible
families of polymers with polymer-activities that depend on α.

µ
(
eXr(α)

)
=
∏

x∈�r

µ
(
eVx

)
×

∑

(P1,...,Pn)c

n∏

i=1

ρPi
(α) (2.9)

Here the polymer activity of a polymer is given by

ρP ≡ ρP (α) = µ[V ]




∏

{x,z}∈P

(eUx,z − 1)



 (2.10)

This is the general formulation of a polymer partition function in an abstract poly-
mer model. We want to perform the corresponding cluster-expansion for the log-
arithm of it. This is nothing but the Taylor-expansion when the polymer-activities
are treated as independent (complex) variables ρP .

After this is done, we expand the activities ρP to quadratic order as functions
of α. Expanding the exponential in powers of α gives the following. Let us write

gl(s) = ∑∞
i=l

si

i! for the remainder term of the Taylor-series of the exponential and
use that |gl(s)| ≤ gl(|s|).

For a general polymer we have the bound

|ρP (α)| ≤
∏

{x,z}∈P

g1
(
ux,z

)
(2.11)
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with the abbreviation

ux,z := ‖Ux,z‖∞ (2.12)

using the uniform bound on the scatterers.
This is the bound we use to prove convergence of the expansion. We apply (a

slight extension of) Proposition A.1 that can be found in [K01]. It says

Proposition A.1 of [K01]. Suppose that
∑

(P1,...,Pn)c

∏n
i=1 ρPi

is a polymer parti-
tion function, where: ‘Polymers’P are graphs on a set �r having at least one edge.
Two polymers are called compatible if they have disjoint vertex sets. The sum is
over pairwise compatible families of polymers. Assume that the (possibly complex)
activities ρP satisfy the bounds

|ρP | ≤ e−∑b∈P τb where λ := sup
x∈�r

∑

y∈�r :y �=x

e−τx,y ≤ λ∗ ≈ 0.110909 (2.13)

for some function τb = τx,y ≥ 0 on the set of edges on �r , where the above b-sum
is over all edges of the graph P .

Then, the cluster expansion converges, i.e. the Taylor-series of the logarithm of
the partition function has the representation

log
∑

(P1,...,Pn)c

n∏

i=1

ρPi
=
∑

C
�C (2.14)

where the sum is over indecomposable subsets C⊂P . ‘Indecomposable’means that
there do not exist nonempty C1 and C2 s.t. the pairs P1, P2 are always compatible
for P1 ∈ C1, P2 ∈ C2. The weight �C = ∑′

I :I∈NP cI

∏
P∈P ρ

IP

P is the sum over all
monomials in the Taylor-expansion corresponding to multi-indices I with IP ≥ 1
for all P ∈ C and cI is the corresponding combinatorial factor, depending only on
the incompatibility relation.

Moreover, we have the decay-estimate of the form

∑

C:C icp P

|�C |
(

λ∗

λ

)|C|
≤ a∗|P |, where a∗ ≈ 0.633 (2.15)

for any fixed P . Here the sum is over all clusters incompatible with P , i.e. contain-
ing at least one polymer incompatible with P and we have put |C| = ∑

P∈C |P |
where |P | is the number of bonds of the polymer P .

The proof is the same as that provided in [K01]. Only there the result was formu-
lated for a translation-invariant setting, and applied as a technical tool in a different
situation. (It relies on the general Kotecky-Preiss estimate [KP86]. A simpler proof
of this kind of result is given in [BoZa00].)

We note that in our case λ is estimated from above by

λ ≤ λ(α) := sup
x∈�

∑

y∈�:y �=x

g1
(
ux,y

) ≤ g1 (u) (2.16)
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where we have put

u := sup
x∈�

∑

y∈�:y �=x

ux,y (2.17)

The second inequality of (2.16) follows from the positivity of the Taylor coefficients
of g1. This estimate explains the occurrence of the norm ‖ · ‖� . Such an estimate
will be used over and over below.

To compute the logarithm of the Laplace transform up to quadratic order in
α we need only keep clusters with at most two bonds. We get from the general
estimate on cluster sums provided by (2.15) the bound

∣∣∣∣∣∣∣∣
log µ

(
eXr(α)

)
−
∑

x∈�r

log µ
(
eVx

)

−
∑

P :|P |=1,2

�{P } −
∑

{P1,P2}:|P1|=|P2 |=1,P1 �=P2
X(P1)∩X(P2)�=∅

�{P1,P2}

∣∣∣∣∣∣∣∣

≤ a∗|�r |
(

g1(u)

λ∗

)3

for u ≤ log(1 + λ∗) (2.18)

The hard part of the Taylor-expansion is now done by the general estimate. It re-
mains to do some less elegant but elementary work: We still need to expand the three
sums appearing under the modulus on the l.h.s. up to quadratic order in α, estimate
the remainder terms and verify that they can be estimated in terms of the norms we
have introduced. The quadratic order term obviously produces 1

2µ
(
Xr(α)2

)
.

Now, the first sum is trivially estimated. Let us define the function l(x) =
− log(1 − x) − x = ∑

k=2 xk/k. We have

∣∣∣∣log µ
(
eVx

)
− 1

2
µ
(
V 2

x

)∣∣∣∣ = ∣∣log (1 + µ(g2(Vx))) − µ(g2(Vx)) + µ(g3(Vx))
∣∣

≤ l(g2(v)) + g3(v) (2.19)

with

v := sup
x∈�

‖Vx‖∞ (2.20)

Here we used that µ(Vx) = 0.
Let us come to the cluster sums. The cluster weights are obtained by com-

paring Taylor-coefficients (or by the inclusion-exclusion formula). One always
has for single-polymer clusters appearing in the second sum under the modulus
of (2.18) that �{P } = log(1 + ρP ). For these clusters we will write �{P } =
(log(1 + ρP ) − ρP ) + ρP . Using µ(Ux,y) = 0 we see that the activity of the sin-
gle-bond polymer P = {x, y} is in fact of quadratic order in α. [This is better
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than the application of the bound (2.11) which holds for all polymers would show.]
Indeed,

|ρP (α)| =
∣∣∣∣
µ(Ux,yg1(Vx + Vy))

µ(eVx+Vy )
+ µ[V ](g2(Ux,y))

∣∣∣∣
≤ ux,yg1 (2v) e2v + g2

(
ux,y

)
(2.21)

Therefore, log(1 + ρP ) − ρP is of fourth order, for both |P | = 1, 2. Thus we
need to expand ρP up to second order and control the third order error terms for
both |P | = 1, 2. Finally the �{P1,P2}-term is of fourth order, too. To control its
magnitude it is convenient to use again Proposition A.1 using the improved bound
(2.21).

Now, let us give some more details on the estimation of the error terms. To es-
timate the difference between the cluster weights appearing under the second sum
in (2.18) and the corresponding activities we use

∣∣�{P } − ρP

∣∣ ≤ l (|ρP |) to get

∣∣∣∣∣∣

∑

P :|P |=1,2

(
�{P } − ρP

)
∣∣∣∣∣∣
≤
∑

{x,y}
x �=y

l
(
ux,yg1 (2v) e2v + g2

(
ux,y

))

+
∑

y∈�r

∑

x,z∈�r
x �=y,z �=y,x �=z

l
(
g1(ux,y)g1(uy,z)

)
(2.22)

Using the fact that all the functions appearing have positive Taylor coefficients we
may estimate the r.h.s. by

|�r |
(

1

2
l
(
ug1 (2v) e2v + g2 (u)

)
+ l
(
g1(u)2

))
(2.23)

Next we need the error terms for the quadratic approximation on the polymer
weights. Keeping the second order terms and using similar arguments as before we
get for the single-bond polymer
∣∣∣∣ρP (α) − µ

(
Ux,y(Vx + Vy)

)− 1

2
µ
(
U2

x,y

)∣∣∣∣ ≤ ux,y

[
2vg1 (2v) + g2 (2v) e2v

]

+1

2
u2

x,yg1 (2v) (1 + e2v) + g3
(
ux,y

)
(2.24)

For a double-bond polymer P = {{x, y}, {y, z}} we get in a similar fashion
∣∣ρP (α) − µ

(
Ux,yUy,z

)∣∣ ≤ ux,yg2(uy,z) + uy,zg2(ux,y) + g2(ux,y)g2(uy,z)

+ (ux,y + uy,z)
[
2vg1 (2v) + g2 (2v) e2v

]

+ 1

2
ux,yuy,zg1(3v)(1 + e3v) (2.25)

Summing over the polymer and using the positivity of the Taylor coefficients of
l, g1, g2 we obtain
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∣∣∣∣∣∣

∑

x∈�r

log µ
(
eVx

)
+

∑

P :|P |=1,2

ρ{P } − 1

2
µ
(
Xr(α)2

)
∣∣∣∣∣∣

≤ |�r |
(

l(g2(v)) + g3(v) + 1

2
u
[
2vg1 (2v) + g2 (2v) e2v

]

+1

4
u2g1 (2v) (1 + e2v) + 1

2
g3 (u) + 2ug2(u) + g2(u)2

+2u
[
2vg1 (2v) + g2 (2v) e2v

]
+ 1

2
u2g1(3v)(1 + e3v)

)
(2.26)

Let us finally treat the last cluster sum under the modulus on the l.h.s. of (2.18)
involving two single-bond polymers. For a pair of incompatible polymers P1, P2
one always has by the inclusion-exclusion formula that �{P1,P2} = log(1 + ρP1 +
ρP2) − log(1 + ρP1) − log(1 + ρP2). The easiest way to treat this term here is
by application of Proposition A.1 to the restricted polymer system that contains
only single-bond polymers. We can use the improved second order bound (2.21).
Denoting by �′

C the corresponding cluster weights we thus have from (2.15) that

∑

C:C icp P

|�′
C |
(

λ∗

λ′

)|C|
≤ a∗|P | (2.27)

with the same a∗ ≈ 0.633 and

λ′ := sup
x∈�

∑

y∈�:y �=x

|ρ{x,y}| ≤ ug1 (2v) e2v + g2 (u) (2.28)

So we get

∑

{P1,P2}:|P1|=|P2 |=1,P1 �=P2
X(P1)∩X(P2) �=∅

|�{P1,P2}| ≤ a∗

(λ∗)2 |�r |
(
ug1 (2v) e2v + g2 (u)

)2
(2.29)

Collecting terms we arrive at the final estimate
∣∣∣∣log µ

(
eXr(α)

)
− 1

2
µ
(
Xr(α)2

)∣∣∣∣ ≤ |�r |h(u, v) (2.30)

with

h(u, v) = a∗

(λ∗)3 g1(u)3 + l(g2(v)) + g3(v)

+ 1

2
u
[
2vg1 (2v) + g2 (2v) e2v

]
+ 1

4
u2g1 (2v) (1 + e2v) + 1

2
g3 (u)

+ 2ug2(u) + g2(u)2 + 2u
[
2vg1 (2v) + g2 (2v) e2v

]

+ 1

2
u2g1(3v)(1 + e3v) + 1

2
l
(
ug1 (2v) e2v + g2 (u)

)
+ l
(
g1(u)2

)

+ a∗

(λ∗)2

(
ug1 (2v) e2v + g2 (u)

)2
(2.31)
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Now we use that u ≤ 2K‖α‖� and v ≤ K‖α‖� . So, K‖α‖� ≤ 1
2 log(1 + λ∗) =:

d ≈ 0.05258 implies that the cluster expansion is convergent. We get for these
K‖α‖� the third order norm-estimate on the higher terms in the form

h(u, v) ≤ h (2K‖α‖�, K‖α‖�) ≤ D(K‖α‖�)3 (2.32)

with D := supx:0≤x≤d
h(2x,x)

x3 = h(2d,d)

d3 . This is clear by the positivity of the Tay-
lor-coefficients of h(x). It is then a trivial matter to compute the constant D given in
the claim of the proposition numerically. We get D ≤, ≈ 4352 + 63 + 124 ≤ 4540
where the first number gives a bound on the first term, the last number a bound on
the last term, and the middle number a bound on the remaining terms of (2.31). This
shows that the error term coming from the estimation of the higher order terms in the
cluster expansion that depends on u alone provides by far the main contribution. ��
Remark. Of course one cannot expect the series to converge without any smallness
assumptions on ‖α‖� . In fact, for � = Z

ν with ν ≥ 2 and α(x) = J1|x|=1 we
are back to the usual ferromagnetic nearest-neighbor Ising-model, and the series is
known to diverge for large J due to the existence of a phase transition.

3. Random dislocations

It is not too difficult to go through the proof given in the previous section to ac-
commodate the case of Model B of random dislocations. There are some changes,
however. First of all, we need a different norm estimating the variation of the (Fou-
rier transform of) the observable w.r.t. variations up to the magnitude δ. We define
the semi-norm

‖α‖�,δ := sup
x∈�

∑

y∈�
y �=x

sup
z,z′∈Rν

|z|,|z′|≤2δ

∣∣α(x − y + z) − α(x − y + z′)
∣∣ (3.1)

Note that this seminorm vanishes on constant functions. We denote

Yr(α) ≡ |�r |
(
γ ω
r (α) − µ

(
γ ω
r (α)

))
(3.2)

for the nonnormalized centered autocorrelation measure applied to the function α.
Then we have a norm-estimate on the Laplace-transform that is analogous to

Proposition 1. The result is the following

Proposition 2. Suppose that the dislocations ω = (ωx)x∈� have independent, not
necessarily identical distribution µ, such that |ωx | ≤ δ < ∞, for all x ∈ �, µ-a.s.

Then there are universal constants d > 0, and D̃ < ∞, independent of the set
� and the distribution µ, such that, whenever α : R

ν → C is small enough such
that ‖α‖�,δ ≤ d and |α(x)| = |α(−x)| for all x, we have the estimate

∣∣∣∣log µ
(
eYr (α)

)
− 1

2
µ (Yr(α))2

∣∣∣∣ ≤ |�r | D̃ ‖α‖3
�,δ (3.3)

The values of the constants can be chosen d = 0.0525 (same as in Proposition 1),
and D̃ = 4.38 · 103

(≤ D
)
.
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Proof. We follow the lines of the proof given in the previous section. Our ‘Hamil-
tonian’ now becomes

Yr(α) =
∑

{x,z}⊂�r
x �=z

Ux,z (3.4)

with the pair potential

Ux,y = α
(
x − y + ωx − ωy

)− µ
(
α
(
x − y + ωx − ωy

))

+α
(
y − x + ωy − ωx

)− µ
(
α
(
y − x + ωy − ωx

))
(3.5)

for x �= y. Note that there is no single-site potential this time, since the correspond-
ing expression vanishes for x = y. We note that

‖Ux,y‖∞ ≤ 2 sup
z,z′∈Rν

|z|,|z′|≤2δ

∣∣α(x − y + z) − α(x − y + z′)
∣∣ (3.6)

So we have

u′ := sup
x∈�

∑

y∈�:y �=x

ux,y ≤ 2‖α‖�,δ (3.7)

Now the steps of the proof of Proposition 1 stay true, leading to formula (2.30) with
v = 0.

∣∣∣∣log µ
(
eYr (α)

)
− 1

2
µ
(
Yr(α)2

)∣∣∣∣ ≤ |�r |h(u′, v = 0) (3.8)

with the function h given in (2.31). The constant d stays the same and for the con-
stant D̃ we get the better value D̃ = h(2d,0)

d3 ≤≈ 4352 + 10 + 12 ≤ 4380. This
shows that we get essentially the same constant as that of Proposition 1 and the
diagonal terms didn’t do much harm. ��

4. More bounds, CLT, and final proofs

In this chapter we state the more detailed versions of Theorems 1 and 2, along with
their proofs and also provide the Central Limit Theorem. In particular the results
will still contain the discrete �-dependent norms (2.2) resp. (3.1). We have pre-
ferred here to write the estimates in terms of the autocorrelation-measure applied
to a function (rather than its Fourier-transform). We will use here the notations from
Chapter 2 for Model A and Chapter 3 for Model B.

Let us start with the result for Model A. Suppose that α is a given function on
R

ν with |α(x)| = |α(−x)| for all x ∈ R
ν . Recall the definition of the discrete norm

‖α‖� given in (2.2). Recall the notation Xr(α) ≡ |�r |
(
γ

η
r (α) − µ

(
γ

η
r (α)

))
for

the nonnormalized centered autocorrelation measure applied to the function α. In
this situation the following result holds.
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Addition to Theorem 1. We have the large deviation estimate

µ
(
|Xr(α)| ≥ ε|�r |

)
≤ 2 exp

(
−|�r | × jd,D

( ε

K‖α‖�

; sr

))
(4.1)

for all ε > 0, where sr = 1
|�r |µ

(
X2

r

(
α

K‖α‖�

))
≤ 4.

Here, for fixed s ≥ 0 the function jd,D( · ; s) : [0, ∞) → [0, ∞) has the form

jd,D(ε̄; s) =
{

1
108D2

(
(12Dε̄ + s2)

3
2 − 18Dε̄s − s3

)
, if ε̄ ≤ d(s + 3Dd)

d
(
ε̄ − d

(
s
2 + dD

))
, else

(4.2)

where d > 0, D < ∞ are the same numerical constants as in Theorem 1. It is
convex, nonnegative, strictly increasing in ε̄. It is decreasing in s and in D, and
increasing in d .

Remark. The statement is stronger than the simpler one given in Theorem 1 in two
ways. First of all, the Sobolev-norm ‖ · ‖ν,a appearing therein is replaced by the
sharper norm ‖ · ‖� introduced in (2.2). This is only very minor because the Sobo-
lev-norm will be used in practical applications. Next, we have kept the normalized
variance sr . Usually sr will be of the order unity, e.g. when � is a lattice and the
scatterers are i.i.d. There can however be cases of sets �r and functions α for which
this quantity will go to zero with r ↑ ∞.

Now, putting together the two pieces of information sr ≤ 4 and ‖ · ‖� ≤ ‖ ·‖ν,a

(seeAppendix B, Proposition 3) the simplified statement of Theorem 1 immediately
follows, by the monotonicity of the function j in s.

The situation is completely analogous for Model B of random dislocations.
To formulate the corresponding statement we recall definition (3.2) for the non-
normalized autocorrelation-measure applied to α. Recall the discrete �-dependent
semi-norm (3.1). Then our result reads as follows.

Addition to Theorem 2. Suppose that δ < ∞. Then we have

µ
(
|Yr(α)| ≥ ε|�r |

)
≤ 2 exp

(
−|�r | × j

d,D̃

( ε

‖α‖�,δ

; qr

))
(4.3)

for all ε > 0, where qr = 1
|�r |µ

(
Y 2

r

(
α

‖α‖�,δ

))
. Again d > 0, D̃ < ∞ are the same

numerical constants as in Theorem 2 and the function j
d,D̃

is given in (4.2).

Remark. The statement of Theorem 2 follows from here by qr ≤ 4 and the norm
estimate given in Appendix B, Proposition 4.

Looking at the variable on the central-limit scale we get the following result.

Theorem 3. Suppose that limr↑∞ µ
(
X2

r (α)
) |�r |− 2

3 = ∞. Then the standardized

variable Xr(α)
(
µ
(
X2

r (α)
))− 1

2 converges weakly to a standard Gaussian distribu-
tion. The same statement holds for Yr replacing Xr .
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Finally we give the proofs.

Proof of the Addition to Theorem 1. Assuming the uniform estimates on the
Laplace transform provided in Proposition 1 it is a trivial matter to derive the
large deviation upper bound. Indeed, by the exponential Chebychev inequality we
have

µ
(± Xr(α) ≥ |�r |ε

)≤ inf
t :0≤t≤d

e
− ε

K‖α‖� |�r |tµ
(
e±Xr(tα/(K‖α‖�))

)

≤ exp

(
−|�r | × sup

t :0≤t≤d

(
ε

K‖α‖�

t − 1

|�r |µ
(

X2
r

(
α

K‖α‖�

))
t2

2
− Dt3

))

(4.4)

Call the function appearing in the exponent in the bound

jd,D(ε̄; s) := sup
t :0≤t≤d

(
ε̄t − st2

2
− Dt3

)
(4.5)

Observe that jd/λ,λ3D(λε̄; λ2s) = jd,D(ε̄; s). A simple computation shows then
that j has in fact the explicit form (4.2) given in the Addition to the Theorem 1.

(In the small ε-range the maximizer is t = −s+√
12Dε+s2

6D
, in the large ε-range the

maximizer is t = d .) j is convex and nonnegative. The monotonicity properties
claimed in the Addition to Theorem 1 are now immediate by formula (4.5). Finally,
it is a simple exercise to see that sr ≤ 4, using the independence of the scatterers.

��
The proof of the Addition to Theorem 2 is the same.

Proof of Theorem 3. From the bound on the error for the quadratic approximation
of the Laplace transform given in Proposition 1 follows immediately that, for all

fixed t ∈ C, we have limr↑∞ log µ

(
exp

(
tXr(α)

(
µ
(
X2

r (α)
))− 1

2

))
= t2/2,

under the assumptions of the theorem. This shows the claim. The proof for Model
B is identical. ��

Appendix A: Scattering theory for point scatterers

Let us briefly recall the basic elementary formulae of scattering theory that describe
the connection between the autocorrelation γ

η
r (resp. γ ω

r ) and the scattering image.
For notational concreteness we only consider Model A (fixed locations). (For more
on this see [Hof95b], [BaaHoe00]). Suppose a beam with wavelength λb hits the
finite collection of point-scatterers located in the finitely many points �r . Denote
by e0 ∈ R

ν the incoming direction (where |e0| = 1 is a unit vector). The modulus
of the scattering amplitude ηx gives the amplitude of the scattered wave and the
phase of ηx gives a local phase shift at the site x. Consequently the intensity of

radiation scattered elastically in the direction e is given by
∣∣∣
∑

x∈�r
ηxe

ik·x
∣∣∣
2

with

k = 2π(e − e0)/λb. To understand the l.h.s. of this formula take ηx ≡ 1 and note
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that in this case k · x is the phase difference of a beam scattered at site x relative to
that of a beam scattered at a (hypothetical) scatterer at site 0.

Multiplying the intensity by a test-function ϕ(k) (that models the sensitivity
of a counter) and normalizing by the number of scatterers then leads to the quan-
tity γ

η
r (ϕ̂) = γ̂

η
r (ϕ). Here we choose the convention ϕ̂(x) = ∫

Rν eix·kϕ(k)dx to
define the Fourier-transform of a Schwartz-function ϕ. The Fourier-transform of a
tempered distribution is then defined by duality.

So, when one is interested in the infinite-volume limit, one likes to look
([Hof95b]) at the scattering measures γ̂

η
r in the sense of (tempered) distribu-

tions and is interested in the weak limit r ↑ ∞, i.e. limr↑∞ γ̂
η
r (ϕ) where ϕ is a

Schwartz function. Then, if a limiting distribution exists at all, it can have a dis-
crete part, an absolutely continuous and a singular continuous part, the discrete part
(Bragg peaks) caused by ‘order’, the continuous parts showing diffuse scattering
caused by ‘disorder’ of the scatterers. This is in analogy to statistical mechan-
ics where sharp phase transitions occur only in the infinite volume. For sufficient
conditions for weighted Dirac combs that ensure pure point nature, see the recent
[BaaMoo01].

Disorder-averages of diffraction measures

Our theorems give us good control over the fluctuations of the scattering measures
γ̂

η
r . The estimates are independent of the behavior of the mean, and the nature

of the limiting distribution, if it exists. To compute their disorder averages of the
scattering measures is a trivial matter. We get

Model A.
∫

µ(dη)γ̂
η
r (ϕ) = γ̂ m

r (ϕ) + 1
|�r |

∑
x∈�r

(
µ(|ηx |2) − |µ(ηx)|2

)× ϕ̂(0)

where µ(ηx) =: mx is the mean-value of the scattering amplitude and m =
(mx)x∈� . The first term describes the scattering image of a system where the
scattering amplitudes have been replaced by their means and the second term a
homogeneous diffuse background. So we see, that a.s. convergence for the aver-
aged scattering images holds if and only if the two individual terms converge. This
is true for � a crystal or quasicrystal and ηx are i.i.d., with e.g. �r being increas-
ing balls. The latter statement follows since a crystal or quasicrystal is known to
possess a natural autocorrelation function. To see how to construct an example of
independent but not identically distributed scatterers on a quasicrystal for which the
mean converges, see Paragraph 7 of [BaaMoo98]. On the other hand, it is simple
to construct examples of systems on lattices with prescribed convergence/non-con-
vergence of each of the two terms along a given sequence of volumes. This is
done by choosing the distribution of ηx’s in a non-homogeneous way; think of a
sparse sequence of increasing volumes �r and choose two different distributions
in the annuli �r+1\�r for r even resp. r odd. Still, also in these examples without
convergence of the mean, under the assumption of uniform boundedness of the
distribution, selfaveraging in the sense of Theorem 1 would hold.
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Model B.
∫

µ(dω)γ̂ ω
r (ϕ) = 1

|�r |
∑

x �=x′∈�r
µ
(
ϕ̂(x − x′ + ωx − ωx′)

)+ ϕ̂(0)

Again, one can construct artificial distributions of dislocations of scatterers on a
lattice such that this expression does not have a well-defined limit. Choose e.g.
ωx ≡ 0 for x in the annuli �r+1\�r for r even, and a non-trivial bounded law for
ωx for r odd. Still, self-averaging holds.

However, if the ωx’s are i.i.d. with single-site distribution µ we get from this∫
µ(dω)γ̂ ω

r (k) = γ̂ 0
r (k)|µ̂(k)|2 + (

1 − |µ̂(k)|2) where γ̂ 0
r (k) is the density of the

Fourier-transform of the autocorrelation with all the scatterers sitting at their sites
in �r and |µ̂(k)|2 = |µ(eiωx ·k)|2 is the famous Debye-Waller factor reducing the
intensity of the reflections.

Appendix B: Norm estimates

Finally we like to give the norm-estimates along with their proofs that are needed
to obtain the final form of the theorems as they are stated in the introduction.

Proposition 3. Suppose that �⊂R
ν and the number a is a bound on the minimal

distance between the points in �. Then we have the bound on the discrete �-norm
in terms of the a-weighted Sobolev-type norm of the form ‖g‖� ≤ ‖g‖ν,a .

Remark. By scaling one may construct examples that show one can not do with
less than the first ν derivatives, in general.

Proof. Put disjoint balls of radius a/2 around the points of �. Consider anyone
of them. And assume without loss that its center is z = 0. Write for simplicity
B ≡ Ba/2(0). Then we have |g(0)| × |B| ≤ ∫

B
|g(y) − g(0)|dy + ∫

B
|g(y)|dy.

To express the first integral on the r.h.s. as an integral of the derivatives of g

over B we use Polar coordinates
∫

�(de)
∫ a/2

0 dr rν−1
∣∣g(re) − g(0)

∣∣. We use
the one-dimensional Taylor-expansion of the function r �→ g(re) =: χe(r) of
the radial coordinate r up to order ν − 1. Expanding around the point r we get∣∣g(re) − g(0)

∣∣ ≤ ∑ν−1
k=1

rk

k! |χ(k)
e (r)| + ∫ r

0 ds sν−1

(ν−1)! |χ(ν)
e (s)|. This gives

∫
B

|g(y) −
g(0)|dy ≤ ∑ν

k=0
(a/2)k

k!

∫
�(de)

∫ a/2
0 dr rν−1|χ(k)

e (r)|. The reader should check
that also the term for k = ν can be bounded in this form (interchange the orders
of integration between s and r!) This argument only works since the power ν − 1
reappears under the integral of the remainder term. Dividing this inequality by the
volume of B, bounding the k-th directional derivatives by ‖dkg‖, and integrating
over the whole of R

ν now proves the claim. ��
For the semi-norm ‖g‖�,δ that was introduced in (3.1) (needed to control Model

B) we get the following analogous estimate.

Proposition 4. Suppose that �⊂R
ν and the number a is a bound on the minimal

distance between the points in �. Assume that ã := a − 4δ > 0. Then we have the
bound in terms of the ã-weighted Sobolev-type semi-norm

‖g‖�,δ ≤ 4δ
1

|B1|
ν∑

k=0

1

k!

1

(ã/2)ν−k

∫

Rν\Ba/2(0)

‖dk+1g(y)‖dy

(
≤ 4δ‖dg‖ν,ã

)
.
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Proof. For fixed x �= y in � and any |z|, |z′| ≤ 2δ we have |g(x − y + z)−
g(x − y + z′)| ≤ ∫ |z′−z|

0 sup|e|=1

∣∣ d
dt

g(x − y + z + te)
∣∣ dt ≤ 4δ supw∈B2δ(x−y)

sup|e|=1

∣∣ d
dt

∣∣
t=0g(w + te)

∣∣.
Using the estimate in terms of the integrals over balls in terms of derivatives

up to order of the dimension provided in the proof of Proposition 3 we get for w ∈
B2δ(x − y) the estimate

∣∣ d
dt

∣∣
t=0g(w + te)

∣∣ ≤ 1
|B1|

∑ν
k=0

1
k!

1
(ã/2)ν−k∫

Bã/2(w)
‖dk d

dt

∣∣
t=0g(u + te)‖du

Here we have used the radius ã/2 because this implies that Bã/2(w) ⊂
Ba/2(x − y), independently of w, and so we get that the r.h.s. is bounded by

1
|B1|

∑ν
k=0

1
k!

1
(ã/2)ν−k

∫
Ba/2(x−y)

‖dk+1g(u)‖du. This gives the desired estimate by
summing over y that are not equal to x, and extending the integral over all of
R

ν\Ba/2(0). ��
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