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Abstract. We study Gibbs properties of the fuzzy Potts model in the mean
field case (i.e. on a complete graph) and on trees. For the mean field case, a
complete characterization of the set of temperatures for which non-Gibbsianness
happens is given. The results for trees are somewhat less explicit, but we do
show for general trees that non-Gibbsianness of the fuzzy Potts model happens
exactly for those temperatures where the underlying Potts model has multiple
Gibbs measures.
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1. Introduction

It used to be taken for granted that simple transformations of Gibbs mea-
sures are themselves Gibbsian. A few counterexamples were found in the 70’s
and 80’s [14, 29], but these were usually referred to as being somehow excep-
tional or pathological. In the seminal paper from 1993 by van Enter, Fernández
and Sokal [8], further examples were found, and a systematic study of Gibbsian-
ness vs. non-Gibbsianness of large classes of transformed or projected versions
of Gibbs systems began; see [5–7, 10–12, 18–20, 26] for some of the subsequent
work in this area.
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In particular, Gibbs properties of the so-called fuzzy Potts model were stud-
ied in [18, 26]. Like almost all work in the study of Gibbsianness vs. non-
Gibbsianness, these papers focused on the case where the underlying lattice
is Zd. There are a few exceptions: Häggström [16] and Le Ny [23, 24] stud-
ied these issues for certain models living on trees, and Külske [21] considered
analogous questions for models living on a complete graph, also known as the
Curie – Weiss or mean field case. In this paper, we shall continue in these direc-
tions by studying Gibbs properties of the fuzzy Potts model on trees and in the
mean field setup.

The fuzzy Potts model arises, loosely speaking, from the standard q-state
Potts model by looking at it with a pair of glasses that prevents from distinguish-
ing some of the spin values; see Section 2 for precise definitions. This makes the
fuzzy Potts model one of the most basic examples of a hidden Markov random
field [22], and it has also turned out to be useful in the study of percolation-
theoretic properties of the underlying Potts model [3, 17]. Maes and Vande
Velde [26] speculated that Gibbsianness of the fuzzy Potts model on Zd might
hold precisely in the Gibbs uniqueness regime (i.e., above the critical tempera-
ture) of the underlying Potts model, but this was shown in [18] not to be the
case: non-Gibbsianness of the fuzzy Potts model happens also for some param-
eter values where the underlying Potts model has a unique Gibbs measure. In
the following result, which is our main result for trees, we see that the desired
equivalence between on one hand Gibbsianness of the fuzzy Potts model and
on the other hand Gibbs uniqueness of the underlying Potts model does hold
when Zd is replaced by a tree.

Theorem 1.1. Consider the q-state Potts model on a tree Γ at inverse tem-

perature β, and let s and r1, . . . , rs be positive integers with 1 < s < q and
∑s

i=1 ri = q. The set G of Gibbs measures for this Potts model contains an ele-

ment whose corresponding fuzzy Potts measure with spin partition (r1, . . . , rs)
is non-Gibbsian, if and only if |G| > ∞.

Here | · | denotes cardinality, while the remaining notation and terminology
will be explained in later sections. Our proof of the non-Gibbsianness part of
Theorem 1.1 will proceed by showing that conditional probabilities in certain
fuzzy Potts measures lack the continuity properties needed for Gibbsianness.
We shall even see that the set of discontinuities has positive measure, so that
not only Gibbsianness but also so-called almost sure Gibbsianness fails.

We move on to the mean-field fuzzy Potts model, which lives on a complete
graph on N vertices and for which we consider asymptotics as N → ∞. Here
the situation is quite different. Before we state our main result a few general
remarks are in order. First of all one has to be careful to find the right way
of asking for “Gibbssianness” vs. “non-Gibbsianness” for mean-field models. It
must be asked in an appropriate sense if we want to see non-trivial behavior
that reflects the lattice-phenomenon in a natural way. We remind the reader
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that the Gibbs measures of simple mean-field models usually converge weakly to
(linear combinations of) product measures. A (non-trivial) linear combination
of product measures is non-Gibbsian and has each spin configuration as a point
of discontinuity when we are looking at it in the product topology [9]. So the
problem of finding non-Gibbsianness in mean-field models would always have
a trivial (negative) answer as soon as there is a phase transition, and a trivial
(positive) answer as soon as there is no phase transition, independently of the
model. We stress that this is a very different phenomenon than the one hap-
pening for the fuzzy Potts model on the tree described above. However, if we
don’t want to stop at this point but want to see something meaningful we must
proceed differently. As it was argued in [21] non-Gibbsianness for mean-field

models should be understood as discontinuity of conditional probabilities as a

function of the conditioning, but the notion of continuity must not be taken with
respect to product topology. More precisely, we need to perform the following
limiting procedure.

1. Take the conditioning of the conditional probabilities of the finite volume
Gibbs-measures while staying in finite volume. Due to permutation invari-
ance, these conditional probabilities are automatically volume-dependent
functions of the empirical average over all the spins in the conditioning.

2. Show that the large volume-limit for these functions exists, and look at
their continuity properties.

When these limiting conditional probabilities are discontinuous, we have
found an analogue of “non-Gibbsian” behavior in the mean-field model. When
they are continuous, the mean-field model behaves in a “Gibbsian” way. In
the case of non-Gibbsian behavior we can carry the analogue between mean-
field and lattice to the notion of “almost sure Gibbsianness” (that is familiar
on the lattice). For the mean-field model we look at the size of the set of
the discontinuity points in the large volume-limit, with respect to the limiting
measure on the empirical distribution. If the discontinuity points get measure
zero, we have found the mean-field analogue of “almost sure Gibbsian” behavior.

An analysis of this sort was carried out in [21] for the decimation trans-
formation of the Ising ferromagnet, and examples of joint measures in random
systems including the random field Ising model. For the models we were looking
at we saw a surprising analogy between mean-field and lattice results.

We are now ready to state our main result for the mean-field version of the
fuzzy Potts model in short form. Precise definitions and more details will be
given in Section 5.

Theorem 1.2. Consider the q-state mean-field Potts model at inverse tem-

perature β, and let s and r1, . . . , rs be positive integers with 1 < s < q and
∑s

i=1 ri = q. Consider the limiting conditional probabilities of the correspond-

ing fuzzy Potts model with spin partition (r1, . . . , rs).
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(i) Suppose that ri ≤ 2 for all i = 1, . . . , s. Then the limiting conditional

probabilities are continuous functions of the empirical mean of the condi-

tioning, for all β ≥ 0.

Assume that ri ≥ 3 for some i and put r∗ := min{r ≥ 3, r = ri for some i =
1, . . . , s}. Denote by βc(r) the inverse critical temperature of the r-state Potts

model. Then the following holds.

(ii) The limiting conditional probabilities are continuous for all β < βc(r∗).

(iii) The limiting conditional probabilities are discontinuous for all β ≥ βc(r∗).

(iv) The set of discontinuity points has zero measure in the infinite volume

limit in all cases.

Thus, we have a rather complete picture for the limiting behavior of the
model on complete graphs. Note that from (iii) follows in particular that there
is an interesting range of temperatures βc(r∗) ≤ β < βc(q) when the underlying
Potts model shows no phase transition but the fuzzy model is non-Gibbsian.
(It is well-known that βc(q) is increasing with q.) As mentioned above, the
existence of such a region was shown on the lattice in [18]; in the present mean-
field model the lower endpoint of the interval is moreover proved to be βc(r∗)
(which is only a conjecture on the lattice). For such a non-Gibbsianness to occur
in mean-field we need however that there is at least one fuzzy class containing
three or more spin-values. This is due to the fact that the discontinuity of the
limiting conditional probabilities is related to a first order transition within one
fuzzy class, and such a transition exists if and only if there are at least three
spin values.

Controlling the size of the set of discontinuities is a more subtle task, but
we manage in Theorem 1.2 (iv) to provide the complete answer in the mean-
field case: almost sure Gibbsianness holds regardless of the choice of parameter
values.

The rest of the paper is organized as follows. In Section 2 we define the
models. In Section 3 we briefly explain why, in the case of the fuzzy Potts model
on trees and on Zd, Gibbsianness is the same thing as so-called quasilocality.
Our main results for trees are stated and proved in Section 4, whereas those in
the mean field setup are treated in Section 5. We mention that Section 5 can
be read independently of Sections 3 and 4.

2. The models

In this section we give the definitions (following [18]) of the Potts model and
the fuzzy Potts model, first on finite graphs, and then on infinite graphs. The
results in Section 2.3 concerning infinite-volume limits of the Potts model date
back to Aizenman et al. [1]; see also [13] for a detailed account of these results.
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2.1. Potts in finite volume

For a positive integer q, the q-state Potts model on a finite graph G = (V, E)
is a random assignment of {1, . . . , q}-valued spins to the vertices of G. The Gibbs
measure πG

q,β for the q-state Potts model on G at inverse temperature β ≥ 0,

is the probability measure πG
q,β on {1, . . . , q}V which to each ξ ∈ {1, . . . , q}V

assigns probability

πG
q,β(ξ) =

1

ZG
q,β

exp
(

2β
∑

〈x,y〉∈E

I{ξ(x)=ξ(y)}

)

. (2.1)

Here 〈x, y〉 denotes the edge connecting x, y ∈ V , IA is the indicator function of
the event A, and ZG

q,β is a normalizing constant.

2.2. Fuzzy Potts in finite volume

Next, let s and r1, . . . , rs be positive integers such that
∑s

i=1 ri = q. The
fuzzy Potts model on G with these parameters arises by taking the q-state Potts
model on G, and then identifying the first r1 Potts states with a single fuzzy
spin value 1, the next r2 of the states with fuzzy spin value 2, and so on. A more
precise definition is as follows. Fix q, β and (r1, . . . , rs) as above. Let X be a
{1, . . . , q}V -valued random object distributed according to the Gibbs measure
πG

q,β . Then take Y to be the {1 . . . , s}V -valued random object obtained from X
by setting

Y (x) =



















1 if X(x) ∈ {1, . . . , r1},
2 if X(x) ∈ {r1 + 1, . . . , r1 + r2},
...

...
s if X(x) ∈ {q − rs + 1, . . . , q}

(2.2)

for each x ∈ V . We write µG
q,β,(r1,...,rs)

for the probability measure on {1, . . . , s}V

which describes the distribution of Y , and call it the fuzzy Potts measure with
parameters q, β, and (r1, . . . , rs). We call (r1, . . . , rs) the spin partition for this
fuzzy Potts model.

Of course, µG
q,β,(r1,...,rs)

is uninteresting for s = 1, whereas for s = q it just
reproduces the ordinary Potts model. We therefore require that 1 < s < q, and
consequently that q ≥ 3.

2.3. Potts in infinite volume

Now let G = (V, E) be infinite and locally finite. For W ⊂ V , we define its
boundary ∂W as

∂W = {x ∈ V \ W : ∃y ∈ W such that 〈x, y〉 ∈ E}.
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A probability measure π on {1, . . . , q}V is said to be a Gibbs measure for the
q-state Potts model on G at inverse temperature β, if it admits conditional
probabilities such that for all finite W ⊂ V , all ξ ∈ {1, . . . , q}W and all η ∈
{1, . . . , q}V \W we have

π
(

X(W ) = ξ | X(V \ W ) = η
)

=
1

ZW,η
q,β

exp
(

2β
(

∑

〈x,y〉∈E
x,y∈W

I{ξ(x)=ξ(y)} +
∑

〈x,y〉∈E
x∈W,y∈∂W

I{ξ(x)=η(y)}

))

,

(2.3)

where the normalizing constant ZW,η
q,β depends on η but not on ξ. Note that the

corresponding relation holds in the finite graph case where π is defined by (2.1).
The basic examples of Gibbs measures for the Potts model are constructed

as follows. Let Λ = {Λn}
∞
n=1 denote a sequence of subsets of V , which is an

exhaustion of V in the sense that (i) each Λn is finite, (ii) Λ1 ⊂ Λ2 ⊂ · · · , and
(iii)

⋃∞
n=1 Λn = V . Let Gn denote the graph whose vertex set is Λn ∪ ∂Λn, and

whose edge set consists of pairs of vertices in Λn ∪ ∂Λn at distance 1 from each
other. It is well-known that the Gibbs measures πGn

q,β converge to a probability

measure on {1, . . . , q}V which is a Gibbs measure for the Potts model on G with
the given parameters. Convergence takes place in the sense that probabilities
of cylinder sets converge. The limiting probability measure on {1, . . . , q}V is

denoted πG,0
q,β , and is called the Gibbs measure (for the Potts model on G with

the given parameters) with free boundary condition. Other Gibbs measures are

those with so-called spin i boundary condition, denoted πG,i
q,β , for i = 1, . . . q.

These are obtained by conditioning πGn

q,β on taking spin value i all over ∂Λn and
then taking limits as n → ∞. The existence of these limits, and the fact that
each of the measures πG,0

q,β , . . . , πG,q
q,β is independent of the particular choice of

exhaustion {Λn}
∞
n=1, follows from the work of Aizenman et al. [1].

The Gibbs measures πG,0
q,β , πG,1

q,β , . . . πG,q
q,β may or may not coincide depending

on G and on the parameter values. It is a fundamental result from [1] that
the occurrence of more than one distinct Gibbs measure is (for fixed G and q)
increasing in β. Hence, there exists a critical value βc = βc(G, q) ∈ (0,∞),
such that for β < βc, there is only one Gibbs measure (so that in particular

πG,0
q,β = · · · = πG,q

q,β ), whereas for β > βc, there are multiple Gibbs measures

(and moreover the measures πG,0
q,β , . . . , πG,q

q,β are all different). The critical value
may be ∞ if the graph is “too small” or 0 if the graph is “too large” (requiring
unbounded degree and more than that) but in many interesting cases there
is a nontrivial critical value βc ∈ (0,∞), such as for cubic lattices in d ≥ 2
dimensions and regular trees of degree at least 3. Yet another important result
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from [1] is that nonuniqueness of Gibbs measures is equivalent to having

πG,1
q,β (spin 1 at x) >

1

q
(2.4)

for some x ∈ V , and that if G is connected, then this is in turn equivalent to
having (2.4) for every x ∈ V . (For symmetry reasons, we have

πG,0
q,β (spin 1 at x) =

1

q
(2.5)

for every x ∈ V . Whenever we are in the uniqueness regime of the parameter
space, we then of course have (2.5) with πG,0

q,β replaced by any of the other Gibbs

measures πG,i
q,β .)

2.4. Fuzzy Potts in infinite volume

Given the Gibbs measures πG,0
q,β , πG,1

q,β , . . . , πG,q
q,β , we define fuzzy Potts mea-

sures as in the case of finite graphs. More precisely, for q, β, and (r1, . . . , rs)

as above, and i ∈ {0, . . . , q}, we define the fuzzy Potts measure µG,i
q,β,(r1,...,rs)

to be the distribution of the {1, . . . , s}V -valued random object Y obtained by

first picking X ∈ {1, . . . , q}V according to the Gibbs measure πG,i
q,β , and then

constructing Y from X as in (2.2).

3. Gibbsianness and quasilocality

When S is a finite set, G = (V, E) is an infinite locally finite graph, and µ is
a probability measure on SV , it is well known (see, e.g., [8, Thm. 2.12]) that µ
is Gibbsian if and only if it satisfies the properties of quasilocality and uniform
nonnullness. The latter property means that µ admits conditional probabilities
such that

min
s∈S

inf
η∈SV \{x}

µ(X(x) = s | X(V \ {x}) = η) > 0

for each x ∈ V . Uniformly nonnullness holds in the Potts model, and it is easy
to see that this property is inherited by the fuzzy Potts model; see [18, Lem. 4.5].
Hence, the problem of determining whether the fuzzy Potts model with given
parameter values is Gibbsian is reduced to that of whether it is quasilocal.
Quasilocality is defined as follows, where (as in Section 2) Λ = {Λn}

∞
n=1 is an

exhaustion of V (the definition does not depend on the particular choice of Λ).

Definition 3.1. Let S be a finite set and let G = (V, E) be an infinite locally
finite graph. A probability measure µ on SV is said to be quasilocal if it admits
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conditional probabilities such that for all finite W ⊂ V and all ξ ∈ SW we have

lim
n→∞

sup
η,η′∈SV \W

η(Λn\W )=η′(Λn\W )

∣

∣µ
(

X(W ) = ξ | X(V \ W ) = η
)

− µ
(

X(W ) = ξ | X(V \ W ) = η′
)
∣

∣ = 0. (3.1)

Because of the asserted equivalence between Gibbsianness and quasilocality
for the fuzzy Potts model, we shall in the following focus entirely on quasilo-
cality. In Section 4 on trees, this means studying the property in Definition 3.1
verbatim, whereas in Section 5 we need to adapt the definition of quasilocality
somewhat (following [21]), as hinted in Section 1.

4. The fuzzy Potts model on trees

4.1. Trees: definitions

A tree Γ is a connected graph without cycles. In addition to these properties,
we assume that Γ is locally finite, and we denote its vertex set and edge set by
VΓ and EΓ, respectively. Pick an arbitrary vertex ρ ∈ VΓ and call it the root of
Γ. For x, y ∈ VΓ, let dist(x, y) denote the graph-theoretic distance between x
and y in Γ. If x and y share an edge and dist(y, ρ) = dist(x, ρ) +1, then we call
y a child of x, and x is the parent of y. More generally, if x is on the unique
self-avoiding path from ρ to y, then y is called a descendant of x, and x is an
ancestor of y. Each vertex x except for the root has exactly one parent, denoted
parent(x) while the number of children may vary. If two vertices x and y have
the same parent, then we call them siblings.

An important example is when, for some d ≥ 2, the root has d + 1 children
and all others have d children; this is referred to as the regular tree with degree
d. See, e.g., [28] for a variety of other interesting examples of trees.

For n = 0, 1, . . ., let Γn = (VΓn
, EΓn

) be the subgraph (subtree) of Γ given
by

VΓn
= {x ∈ VΓ : dist(x, ρ) ≤ n}

and

EΓn
= {e ∈ EΓ : both endpoints of e are in VΓn

},

and note that {VΓn
}∞n=1 is an exhaustion of VΓ. For x ∈ Γ, let Γ(x) denote the

induced subtree of Γ whose vertex set consists of x and all its descendants. In
other words, Γ(x) = (VΓ(x)

, EΓ(x)
) with

VΓ(x)
= {y ∈ VΓ : x is an ancestor of y}



Gibbs properties of the fuzzy Potts model 485

and

EΓ(x)
= {e ∈ EΓ : both endpoints of e are in VΓ(x)

}.

Finally, for x ∈ Γ and n ≥ dist(x, ρ), define the subtree Γ(x,n) = (VΓ(x,n)
, EΓ(x,n)

)
by setting

VΓ(x,n)
= VΓ(x)

∩ VΓn

and

EΓ(x,n)
= EΓ(x)

∩ EΓn
.

4.2. Proofs

The key results for proving Theorem 1.1 are the following two propositions.

Proposition 4.1. Let Γ be a tree, and fix the parameter values q, β, s and

(r1, . . . rs) with 1 < s < q for the Potts model and the fuzzy Potts model on Γ.

Then the fuzzy Potts measure µG,0
q,β,(r1,...,rs)

corresponding to the Gibbs measure

with free boundary condition, is quasilocal.

Proposition 4.2. Let Γ be a tree, and fix the parameter values q, β, s and

(r1, . . . rs) with 1 < s < q and r1 > 1 for the Potts model and the fuzzy Potts

model on Γ. Suppose that πG,1
q,β 6= πG,0

q,β . Then µG,1
q,β,(r1,...,rs)

is nonquasilocal.

Proof of Theorem 1.1 from Propositions 4.1 and 4.2. Since s < q, we must have
ri > 1 for some i ∈ {1, . . . , s}, and there is no loss of generality in assuming

that r1 > 1. If |G| > 1, then πG,1
q,β 6= πG,0

q,β due to (2.4) and (2.5). Hence, using

Proposition 4.2, µG,1
q,β,(r1,...,rs) is nonquasilocal and therefore non-Gibbsian, and

the ‘if’ part of the theorem is established. For the ‘only if’ part, note that if
|G| = 1, then G = {πG,0

q,β }, so that µG,0
q,β,(r1,...,rs) is the only fuzzy Potts measure,

which by Proposition 4.1 is quasilocal and therefore Gibbsian. 2

It remains to prove Propositions 4.1 and 4.2. To this end, we need to intro-
duce the notion of a tree-indexed Markov chain on Γ, and its relation to Gibbs
measures for the Potts model on Γ. This relation is well-known for regular trees
(see for instance [2,30,31]), while the extension to general trees seems to be less
well-studied.

Let (x0, x1, . . .) be an enumeration of VΓ such that the root ρ comes first
(x0 = ρ), then all vertices in VΓ1 \ {ρ}, then all vertices in VΓ2 \ VΓ1 , and
so on. Fix q, let ν be a probability measure on {1, . . . , q} (which will play
the role of an initial distribution), and let P = (Pij)i,j∈{1,...,q} be a transition
matrix. Let X be the {1, . . . , q}VΓ -valued random spin configuration obtained
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as follows. First pick X(x0) ∈ {1, . . . , q} according to ν. Then, inductively,
once X(x0), . . . , X(xn) have been determined, pick X(xn+1) ∈ {1, . . . , q} with
distribution (Pi1, . . . , Piq) where i = X(parent(xn+1)). For obvious reasons, X
is called a tree-indexed Markov chain on Γ.

There is sometimes reason to consider inhomogeneous tree-indexed Markov
chains, where the transition matrix P is allowed to depend on where in the
tree we are: for every x ∈ VΓ \ {ρ}, we then have a transition matrix P x =
(P x

ij)i,j∈{1,...,q}, and X is generated as above with X(x) chosen according to the
distribution (P x

i1, . . . , P
x
iq) where i = X(parent(x)).

It is readily checked that a (possibly inhomogeneous) tree-indexed Markov
chain X is also a Markov random field on Γ, meaning that for any finite W ⊂ VΓ,
the conditional distribution of X(W ) given X(VΓ \ W ) depends on X(VΓ \ W )
only via X(∂W ). Hence the supremum in (3.1) becomes 0 for all n large enough
so that Λn contains W ∩ ∂W , so that we have the following lemma.

Lemma 4.1. The distribution of any homogeneous or inhomogeneous tree-

indexed Markov chain on Γ is quasilocal.

Fix β ≥ 0, and consider the tree-indexed Markov chain given by ν =
(1/q, . . . , 1/q) and transition matrix P = (Pij)i,j∈{1,...,q} given by

Pij =











e2β

e2β + q − 1
if i = j,

1
e2β + q − 1

otherwise.
(4.1)

Let X ∈ {1, . . . , q}VΓ be given by this particular tree-indexed Markov chain.
By directly checking (2.1), we see that X(Λn) has distribution πΓn

q,β . By taking

limits as n → ∞ and considering the construction of πG,0
q,β in Section 2.3, we see

that X is distributed according to the Gibbs measure πΓ,0
q,β for the Potts model

on Γ with free boundary condition.

Proof of Proposition 4.1. Construct X ∈ {1, . . . , q}VΓ sequentially as above,
with ν = (1/q, . . . , 1/q) and P given by (4.1), and let Y ∈ {1, . . . , r}VΓ from X as
in (2.2). Then the conditional distribution of Y (xn+1) given X(x0), . . . , X(xn)
such that X(parent(xn+1)) = i and Y (parent(xn+1)) = k), is given by

P(Y (xn+1) = l | · · ·) =











e2β + rk − 1
e2β + q − 1

if l = k,

rk

e2β + q − 1
otherwise,

(4.2)

which follows by summing over the possible values of X(xn+1).
Note that the right-hand side of (4.2) depends on X(x0), . . . , X(xn) only

through Y (parent(xn+1)). It follows that Y is a tree-indexed Markov chain
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with state space {1, . . . , s}, initial distribution (r1/q, . . . , rs/q) and transition
matrix P = (Pkl)k,l∈{1,...,s} given by

Pkl =











e2β + rl − 1
e2β + q − 1

if l = k

rl

e2β + q − 1
otherwise.

(4.3)

Quasilocality of Y now follows from Lemma 4.1. 2

For the proof of Proposition 4.2, we need to consider the tree-indexed Markov
chain on Γ corresponding to the Gibbs measure πΓ,1

q,β with the “all 1” boundary

condition. This is a bit more complicated than the case of πΓ,0
q,β due to the lack

of full symmetry among the spin values.

For x ∈ VΓ, consider the Gibbs measure π
Γ(x),1

q,β , and in particular the prob-

ability π
Γ(x),1

q,β (spin 1 at x), which we denote by ax. (Note that ax is in general

distinct from πΓ,1
q,β (spin 1 at x), because it fails to take into account, e.g., the

possible influence from parent(x) on x.) For symmetry reasons, the π
Γ(x),1

q,β -
distribution of the spin at x is

(

ax,
1 − ax

q − 1
,
1 − ax

q − 1
, . . . ,

1 − ax

q − 1

)

.

Also define

bx =
ax

(1 − ax)/(q − 1)
=

π
Γ(x),1

q,β (spin 1 at x)

π
Γ(x),1

q,β (spin 2 at x)
. (4.4)

The constants {bx}x∈VΓ satisfy the following recursion.

Lemma 4.2. Suppose x ∈ VΓ is a vertex with k children y1, . . . , yk. We then

have

bx =

∏k
i=1(e

2βbyi
+ q − 1)

∏k
i=1(e

2β + byi
+ q − 2)

. (4.5)

Proof. For n large enough so that x ∈ VΛn
, define, as a finite-volume analogue

of (4.4),

bx,n =
π

Γ(x,n),1

q,β (spin 1 at x)

π
Γ(x,n),1

q,β (spin 2 at x)
,

where π
Γ(x,n),1

q,β is the finite-volume Gibbs measure for Γ(x,n) with spin 1 bound-
ary condition on those vertices sitting furthest away from x in Γ(x,n), i.e., those
at distance n from ρ in Γ. By the construction of Gibbs measures in Section 2.3,
we have

lim
n→∞

bx,n = bx. (4.6)
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Imagine now the modified graph Γ∗
(x,n) obtained from Γ(x,n) by removing all

edges incident to x. In other words, Γ∗
(x,n) is a disconnected graph with an

isolated vertex x together with k connected components isomorphic to

Γ(y1,n), . . . , Γ(yk,n).

When picking X ∈ {1, . . . , q}
VΓ∗

(x,n) according to π
Γ∗

(x,n),1

q,β , the spin configura-
tions on different connected components obviously become independent. In
particular, if we only consider the spins (X(x), X(y1), . . . , X(yk)), then we
can note that these spins become independent, with X(x) having distribution
(1/q, . . . , 1/q), and X(yi) having distribution

( byi,n

byi,n + q − 1
,

1

byi,n + q − 1
, . . . ,

1

byi,n + q − 1

)

.

If we now reinsert the edges between x and y1, . . . , yk, thus recovering Γ(x,n),

then the π
Γ(x,n),1

q,β -distribution of (X(x), X(y1), . . . , X(yk)) becomes the same as

the corresponding π
Γ∗

(x,n),1

q,β -distribution above except that each configuration

ξ ∈ {1, . . . , q}{x,y1,...,yk} is reweighted by a factor exp(2β
∑k

i=1 I{ξ(yi)=ξ(x)}).
Hence

π
Γ(x,n),1

q,β

(

(X(x), X(y1), . . . , X(yk))=ξ
)

=
1

Z

k
∏

i=1

(

exp(2βI{ξ(yi)=ξ(x)})b
I{ξ(yi)=1}

yi,n

)

for some normalizing constant Z. By integrating out X(y1), . . . , X(yk), we get

bx,n =

∏k
i=1(e

2βbyi,n + q − 1)
∏k

i=1(e
2β + byi,n + q − 2)

.

Sending n → ∞ in this expression, and using (4.6) k + 1 times (substituting x
with itself and with y1, . . . , yk), we obtain (4.5), as desired. 2

Note that the above proof yields that given X(x) = 1, the spins X(y1), . . . ,
X(yk) become conditionally independent, with X(yi) having distribution

( byi
e2β

byi
e2β + q − 1

,
1

byi
e2β + q − 1

, . . . ,
1

byi
e2β + q − 1

)

.

Likewise, for l 6= 1, conditioning on X(x) = l makes X(y1), . . . , X(yk) condition-
ally independent with X(yi) taking value 1 with probability byi

/(byi
+e2β+q−2),

value l with probability e2β/(byi
+e2β+q−2), and other values with probabilities

1/(byi
+ e2β + q − 2).

By iterating the above argument, we arrive at the following tree-indexed
Markov chain description of the Gibbs measure πΓ,1

q,β .
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Lemma 4.3. Suppose that the random spin configuration X ∈ {1, . . . , q}VΓ is

obtained as an inhomogeneous tree-indexed Markov chain with initial distribu-

tion

ν =
( bρ

bρ + q − 1
,

1

bρ + q − 1
. . . ,

1

bρ + q − 1

)

and transition matrices P x = (P x
ij)i,j∈{1,...,q} given by

P x
ij =































































bxe2β

bxe2β + q − 1
if i = j = 1,

1
bxe2β + q − 1

if i = 1, j 6= 1,

bx

bx + e2β + q − 2
if i 6= 1, j = 1,

e2β

bx + e2β + q − 2
if i = j 6= 1,

1
bx + e2β + q − 2

otherwise.

Then X has distribution πΓ,1
q,β .

A crucial difference now compared to the Gibbs measure πΓ,0
q,β with free

boundary condition is that if any bx 6= 1, then there is not enough state-
symmetry in the tree-indexed Markov chain in Lemma 4.3 to make the cor-
responding fuzzy Potts model a tree-indexed Markov chain. This will soon
become clear.

A key lemma for proving nonquasilocality in the fuzzy Potts model is the
following

Lemma 4.4. If πΓ,1
q,β 6= πΓ,0

q,β , then there exist two siblings y1, y2 ∈ VΓ such that

byi
> 1 for both i = 1 and i = 2.

Proof. It follows from the assumption πΓ,1
q,β 6= πΓ,0

q,β using (2.4) that aρ > 1/q, so
that

bρ > 1. (4.7)

Furthermore, (2.4) and (2.5) imply that ax ≥ 1/q for all x ∈ VΓ, whence bx ≥ 1
for all x ∈ VΓ. Note also that 1 is a fixed point of the recursion (4.5), in the
sense that if all children y1, . . . , yk satisfy byi

= 1, then bx = 1.
Hence, ρ must have at least one child x with bx > 1. By iterating this

argument we see that for any n, it must have at least one descendant x at
distance n such that bx > 1. Fix n and such a vertex x with bx > 1 at distance n
from ρ. Write (z0, z1, . . . , zn) for the vertices on the self-avoiding path from x to
ρ (so that in particular z0 = x and zn = ρ). Next, note that the recursion (4.5)
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has the property that if one of the children yi has by1 > 1, then bx > 0 as well.
Since bz0 > 1, it follows that bzi

> 1 for i = 1, . . . , n.
Suppose now for contradiction that the assertion of the lemma is false, i.e.,

that there are no two siblings y1, y2 ∈ VΓ for which by1 > 1 and by2 > 1. Then
none of the vertices z0, . . . , zn−1 has a sibling y with by > 1. The recursion (4.5)
along the path (z0, z1, . . . , zn) then turns into a simple one-dimensional dynam-
ical system on the space [1,∞) given by bzi+1 = f(bzi

) where

f(b) =
e2βb + q − 1

e2β + b + q − 2
.

This dynamical system is contractive with a unique fixed point at b = 1, so
that — if we just keep iterating beyond the nth iteration — for any initial value
bz0 ∈ [1,∞) we obtain

lim
n→∞

bzn
= 1. (4.8)

Since f is increasing and bounded by e2β, we get that bz1 is bounded by e2β and,
therefore, that the convergence in (4.8) is in fact uniform in the initial value bz0 .
Thus we can, for any ε > 0, find an n which guarantees that bzn

< 1 + ε. Thus,
bρ < 1+ ε for any ε > 0, whence bρ = 1. But this contradicts (4.7), so the proof
is complete. 2

Proof of Proposition 4.2. By Lemma 4.4, Γ has at least one vertex which has
(at least) two children y1 and y2 that both have byi

> 1. The choice of root ρ

for the tree does not influence the Gibbs measure πΓ,1
q,β , and therefore we may

assume that ρ has two such children y1 and y2. We shall for simplicity first
prove the proposition under the assumption that

ρ has no other children, (4.9)

and in the end show how to remove this assumption.
We shall have a look at the conditional distribution of the fuzzy spin Y (ρ)

at the root, given that its neighbors (i.e., its children) take value

Y (y1) = Y (y2) = 1. (4.10)

By summing over all X ∈ {1, . . . , q}{ρ,y1,y2} such that (4.10) holds, and using
Lemma 4.3, we obtain

P
(

Y (ρ) = 1 | Y (y1) = Y (y2) = 1
)

P
(

Y (ρ) 6= 1 | Y (y1) = Y (y2) = 1
) (4.11)

=

bρ

bρ + q − 1

∏2
i=1

byi
e2β + r1 − 1

byi
e2β + q − 1

+
r1 − 1

bρ + q − 1

∏2
i=1

byi
+ e2β + r1 − 2

byi
+ e2β + q − 2

q − r1

bρ + q − 1

∏2
i=1

byi
+ r1 − 1

byi
+ e2β + q − 2
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=

∏2
i=1(byi

e2β + r1 − 1) + (r1 − 1)
∏2

i=1(byi
+ e2β + r1 − 2)

(q − r1)
∏2

i=1(byi
+ r1 − 1)

,

where in the last line we have used (4.5) to express bρ in terms of the byi
’s.

Now pick an n, and consider conditioning further on some

ηn ∈ {1, . . . , s}VΓn+1
\{ρ}

such that ηn(y1)=ηn(y2) = 1. The conditional probability P(Y (ρ)=1 | Y (y1)=
Y (y2) = 1) is a convex combination of terms P(Y (ρ) = 1 | Y (VΓn+1 \ {ρ}) = ηn)

for such ηn’s. We can therefore find a particular ηn ∈ {1, . . . , s}Λn+1\{ρ} such
that

P
(

Y (ρ) = 1 | Y (VΓn+1 \ {ρ}) = ηn

)

P
(

Y (ρ) 6= 1 | Y (VΓn+1 \ {ρ}) = ηn

)

≥

∏2
i=1(byi

e2β + r1 − 1) + (r1 − 1)
∏2

i=1(byi
+ e2β + r1 − 2)

(q − r1)
∏2

i=1(byi
+ r1 − 1)

. (4.12)

Fix such an ηn. Next, construct another configuration η′
n ∈ {1, . . . , s}VΓn+1

\{ρ}

by taking

η′
n(x) =

{

ηn(x) for x ∈ VΓn
\ {ρ},

(

ηn(parent(x)) + 1
)

mod s for x ∈ VΓn+1 \ VΓn
.

The crucial aspects of this choice of η′
n is that (a) ηn = η′

n on VΓn
and (b)

each x in the remotest layer VΓn+1 \ VΓn
of Γn+1 has a fuzzy spin value which

is different from its parent. It is readily checked that property (b) implies
that the conditional distribution of Y (VΓn−1) given Y (VΓn+1 \ VΓn−1)η

′
n(VΓn+1 \

VΓn−1) becomes the same as if the underlying Gibbs measure had been not πΓ,1
q,β

but rather the finite-volume Gibbs measure π
Γn+1

q,β (cf. [18, Lem. 9.2]). Hence
the conditional distribution of Y (ρ) given that Y (VΓn+1 \ {ρ}) = η′

n) can be
calculated from the tree-indexed Markov chain corresponding to free boundary
condition, i.e., the one defined in (4.3). We get

P
(

Y (ρ) = 1 | Y (VΓn+1 \ {ρ}) = η′
n

)

P
(

Y (ρ) 6= 1 | Y (VΓn+1 \ {ρ}) = η′
n

) =
(e2β + r1 − 1)2

(q − r1)r1
. (4.13)

Note that the right-hand sides of (4.12) and (4.13) do not depend on n. We
now make the following crucial claim.

Claim. If by1 > 1 and by2 > 1, then the right-hand side of (4.12) is
strictly greater than the right-hand side of (4.13).
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To prove the claim, define

a =
by1by2 + r1 − 1

(by1 + r1 − 1)(by2 + r1 − 1)

and note that a can be rewritten as

a =
by1by2 + r1 − 1

(by1 + r1 − 1)(by2 + r1 − 1)

=
1

r1

r1

(by1 + r1 − 1)
+

by2

(by2 + r1 − 1)

(by1 − 1)

(by1 + r1 − 1)
.

Assuming that by1 > 1 and by2 > 1, we get that

by2

by2 + r1 − 1
>

1

r1

and that
by1 − 1

by1 + r1 − 1
> 0,

whence

a >
1

r1

r1

(by1 + r1 − 1)
+

1

r1

(by1 − 1)

(by1 + r1 − 1)
=

1

r1
.

Next, an elementary but tedious calculation shows that the right-hand side of
(4.12) can be rewritten as

a(e4β + r1 − 1) + (1 − a)(2e2β + r1 − 2)

q − r1
. (4.14)

Analogously, the right-hand side of (4.13) can be rewritten as

(1/r1)(e
4β + r1 − 1) + (1 − 1/r1)(2e2β + r1 − 2)

q − r1
. (4.15)

Now, using (4.14) and the observation that

e4β + r1 − 1 > 2e2β + r1 − 2,

we get that the expression in (4.14) is strictly greater than that in (4.15), and
the claim is proved.

Hence the difference between the left-hand sides of (4.12) and (4.13) is
bounded away from 0 uniformly in n. The denominators of the left-hand sides
are bounded away from 0 uniformly in n due to uniform nonnullness of the fuzzy
Potts model (see Section 3). Hence

P
(

Y (ρ) = 1 | Y (VΓn+1 \ {ρ}) = ηn

)

− P
(

Y (ρ) = 1 | Y (VΓn+1 \ {ρ}) = η′
n

)
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is bounded away from 0 uniformly in n. By plugging in these ηn and η′
n in (3.1),

we get, since ηn = η′
n on VΓn

, that quasilocality of Y fails. This proves the
proposition modulo the assumption (4.9).

It remains to remove the assumption (4.9). To do this, suppose that ρ has
k − 2 additional children y3, . . . , yk. We can then extend the configurations η
and η′ that we condition on above, to y3, . . . , yk and their descendants, as fol-
lows. We insist that they take value 1 at y3, . . . , yk, and that they take some
value other than 1 at all children of y3, . . . , yk (they may otherwise be arbitrary
on the further descendants of y3, . . . , yk). Easy modifications of the calculations
above show that (4.12) and (4.13) hold as before, with the modification that
both right-hand sides are multiplied by

(e2β + r1 − 1

r1

)k−2

.

Since this factor is the same in (4.12) and (4.13), the rest of the proof goes
through as before. 2

Remark 4.1. Since the event conditioned on in (4.11) has positive measure, it
is easy to extract from the above proof that the set of discontinuities of the
conditional probability P

(

Y (ρ) = 1 | Y (VΓ \ {ρ}) = η
)

as a function of ρ, has

positive measure under µG,1
q,β,(r1,...,rs)

. Hence, so-called almost sure quasilocality

and almost sure Gibbsianness fails in general for the fuzzy Potts model on trees,
in contrast to the Zd case (see [26]) and the mean-field case (Theorem 1.2 (iv)).
This contrast between the fuzzy Potts model on Zd and on trees is analogous to
the corresponding almost sure Gibbsianness issue for the random-cluster model;
see [16].

4.3. Discussion

What concrete information can we extract from Theorem 1.1? Let βc =
βc(Γ, q) denote, as in Section 2.3, the critical value for the q-state Potts model
on the tree Γ. For q ≥ 3, we then have from Theorem 1.1 that β < βc implies
that any corresponding fuzzy Potts measure is Gibbsian, while β > βc yields
existence of corresponding fuzzy Potts measures that are non-Gibbsian.

It remains to specify the critical value βc(Γ, q). If we know the critical
value pc(Γ, q) of the corresponding random-cluster model, then we can calculate
βc = −(1/2) log(1 − pc) (see, e.g., [13]). For the case when Γ is a regular tree,
the critical value pc(Γ, q) can be characterized in terms of the solutions of a
certain algebraic equation given in [15, p. 235].

For general trees the situation is more complicated. For a variety of stochas-
tic models on trees, critical values can be calculated in terms of a natural
quantity known as the branching number of the tree, denoted br(Γ); see for
instance [28]. Lyons [25] calculated βc(Γ, q) in terms of br(Γ) for the case q = 2.
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In contrast, and perhaps somewhat surprisingly, the critical values βc(Γ, q) for
larger q do not admit a characterization in terms of br(Γ); this was shown by
Pemantle and Steif [27]. Bounds for βc(Γ, q) that only depend on br(Γ) and
on q can, however, be obtained using the standard comparison techniques for
the random-cluster model reviewed in [13].

5. The fuzzy Potts model on complete graphs

In this section we treat the case of complete graphs. We start with precise
definitions of the model and a detailed explanation of the limiting process for
the conditional probabilities that was sketched in the introduction. The proofs
are essentially self-contained but use some standard knowledge (whose main
reference is [4]) on the infinite volume limit of the empirical distribution of the
order parameter in the mean-field Potts model.

5.1. Mean-field Potts in finite volume N

For a positive integer q, the Gibbs measure πN
q,β for the q-state Potts model

on the complete graph with N vertices at inverse temperature β ≥ 0, is the
probability measure on {1, . . . , q}N which to each ξ ∈ {1, . . . , q}N assigns prob-
ability

πN
q,β(ξ) =

1

ZN
q,β

exp
( β

N

∑

1≤x 6=y≤N

I{ξ(x)=ξ(y)}

)

. (5.1)

Here ZN
q,β is the normalizing constant. Note that this definition slightly deviates

from the definition (2.1) by the factor 1/N appearing in the exponential. Such
a convention is appropriate because, clearly, the interaction must be chosen
depending on the size of the graph in a mean-field model. This definition of the
finite volume Gibbs-measures is standard in the literature; see e.g. [4].

5.2. Mean-field fuzzy Potts in finite volume N

The mean-field fuzzy Potts measure in finite volume N is then defined in
the same way as it is defined on every graph. To be explicit, fix q, β and the
spin-partition (r1, . . . , rs) as above. Let X be the {1, . . . , q}N -valued random
object distributed according to the mean field finite volume Gibbs measure πN

q,β .

Take Y to be the {1 . . . , s}N -valued random object obtained from X by the site-
wise application of the spin-partitioning as in (2.2). Then µN

q,β,(r1,...,rs) is the

probability measure on {1, . . . , s}N which describes the distribution of Y .
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5.3. Gibbsianness vs. non-Gibbsianness for mean-field models: con-
tinuity vs. discontinuity of limiting conditional probabilities

We start with some general remarks about mean-field models to explain
the appropriate analogue of non-Gibbsianness in more detail than we did in
the introduction. To begin with, the following lemma makes explicit that we
can always describe the single-site conditional probabilities of the finite volume
Gibbs measures of a mean-field model in terms of a single-site kernel from the
empirical distribution vector of the conditioning to the single-site state space.
It is the infinite volume limit of this kernel that shall then be considered in the
analysis of the model.

So, suppose that S is a finite set (local spin space) and for any N we are
given an exchangeable (that is permutation-invariant) measure µN on SN . This
permutation invariance is certainly true for the mean-field Potts model. More-
over it carries over trivially to the fuzzy Potts model. This is clear since the
distribution of the latter is simply obtained by an application of the same map
to the spin variable at each site.

In a general context, denote by P = {(pi)i∈S , 0 ≤ pi ≤ 1,
∑

i∈S pi = 1} the
space of probability vectors on the set S. We use the obvious short notation
xc = {1, . . . , N} \ {x}.

Lemma 5.1. For each N there is a probability kernel QN : S × P → [0, 1]
from P to the single-site state space S such that the single-site conditional

expectations at any site x can be written in the form

µN
(

X(x) = i | X(xc) = η
)

= QN
(

i | (nj)j∈S

)

. (5.2)

Here nj = (N − 1)−1#
(

1 ≤ y ≤ N, y 6= x, η(x) = j
)

is the fraction of sites for

which the spin-values of the conditioning are in the state j ∈ S.

Proof. By exchangeability it is clear that the right hand side of (5.2) depends
on the sets {1 ≤ y ≤ N, y 6= x, η(y) = j}, for all j ∈ S, only through their
size. Equivalently we may express this dependence in terms of the empirical
distribution (nj)j∈S . 2

In turn, the knowledge of the kernel QN uniquely determines the mea-
sure µN . This is clear since the knowledge of all one-site conditional probabilities
of finitely many random variables uniquely determines the joint distribution. So
we may as well consider the QN s as the basic objects and regard them as the
starting point of the definition of a mean field model. This is of course only
meaningful if the QN s are related to each other in a meaningful way.

Let us turn now to the concrete case of the mean-field Potts model to point
out two very simple observations that shall serve as a motivation of our further
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investigation. In this case we have directly from the definition (5.1) the explicit
formula

QN
q,β(i | (nj)1≤j≤q) =

exp(β(1 − 1/N)ni)
∑q

j=1 exp(β(1 − 1/N)nj)
. (5.3)

We note the following.

(i) QN
q,β converges to Q∞

q,β = exp(βni)/
∑q

j=1 exp(βnj) when N tends to in-
finity. Indeed, the trivial 1/N -factor appearing in (5.3) could of course
even be removed by a harmless redefinition of the model that would lead
to the same infinite volume behavior of the Gibbs measures, making all
QN

q,β identical.

(ii) The limiting kernel Q∞
q,β is a continuous function of the probability vector

(nj)1≤j≤q , as a function on Rq.

The existence of the infinite volume limit (i) is a minimal ingredient for the
definition of a mean-field model. Assuming this we can talk about limiting or
“infinite volume” conditional probabities. Then, continuous dependence of the

limiting conditional probability as it is stated in (ii) is the obvious analogue to
the continuous dependence of the conditional expectation of a lattice model on
the conditioning with respect to product topology.

So, properties (i) and (ii) are the analogues of a proper Gibbsian structure
for mean-field models. “Non-Gibbsianness” may then manifest itself by the
failure of (ii) at certain points of discontinuity. The reader may find a number
of examples of this in [21]. After these introductory remarks we will show in the
following that discontinuities in fact occur for the mean-field fuzzy Potts model,
for certain values of the parameters, and discuss them in detail.

5.4. Conditional probabilities for fuzzy Potts in finite volume

Let us use the following notation for the single-site probability kernel that
describes the conditional probabilities of the fuzzy model.

µN
q,β,(r1,...,rs)(Y (x) = k | Y (xc) = η) =: QN

q,β,(r1,...,rs)
(k | (nl)1≤l≤s), (5.4)

where nl = (N − 1)−1#(1 ≤ y ≤ N, y 6= x, η(x) = l), for l = 1, . . . , s is the
empirical distribution of fuzzy spin-values in the conditioning.

Now, it is not difficult to derive an explicit expression in terms of expecta-
tions with respect to ordinary mean-field Potts measures, having the number of
states given by the sizes of the classes rl. Clearly, the infinite volume analysis
relies on this result.
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Proposition 5.1. For each finite N we have the representation

QN
q,β,(r1,...,rs)

(k | (nl)1≤l≤s) =
rkA(βk, rk, Nk)

∑s
l=1 rlA(βl, rl, Nl)

, (5.5)

where

A(β̃, r, M) ≡ πM
r,β̃

(

exp
( β̃

M

M
∑

x=1

IX(x)=1

))

,

Nk = (N − 1)nk

and

βk =
βNk

N
= β

(

1 −
1

N

)

nk.

Remark 5.1. In particular we have A(β̃, r = 1, N) = eβ̃ . From this we see
immediately that the case of the original Potts model is recovered by setting all
rl equal to one.

Proof of Proposition 5.1. To compute the left hand side of (5.5) we may choose
x = 1 and write

µN
q,β,(r1,...,rs)

(

Y (1) = k | Y ([2, N ]) = η([2, N ])
)

=
1

Norm. (η([2, N ]))

∑

ξ(1) 7→k

∑

ξ([2,N ]) 7→η([2,N ])

πN
q,β

(

ξ(1), ξ([2, N ])
)

.

Here we are summing over Potts configurations ξ that are mapped to the
fuzzy Potts configuration (k, η) by means of the definition of the fuzzy model
given in (2.2). The normalization has to be chosen such that summing over
k = 1, . . . , s yields one, for each fixed η([2, N ]). The partition function appear-
ing in the Gibbs-average on the right hand side only gives a constant that can
be absorbed in the normalization, and so we need only consider

∑

ξ(1) 7→k

∑

ξ([2,N ]) 7→η([2,N ])

exp
( β

N

∑

1≤x 6=y≤N

I{ξ(x)=ξ(y)}

)

=
∑

ξ(1) 7→k

∑

ξ([2,N ]) 7→η([2,N ])

exp
( β

N

∑

2≤y≤N

I{ξ(1)=ξ(y)}

)

× exp
( β

N

∑

2≤x 6=y≤N

I{ξ(x)=ξ(y)}

)

.

For fixed η([2, N ]) we denote Λl := #{x ∈ {2, . . . , N} : η(x) = l}. Then the
sum in the last exponential decomposes over these sets, and we can rewrite the
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right hand side of the last equation in the form

∑

ξ(1) 7→k

∑

ξ([2,N ]) 7→η([2,N ])

exp
( βk

Nk

∑

z∈Λk

I{ξ(z)=ξ(1)}

)

×
s

∏

l=1

exp
( βl

Nl

∑

x<y,x,y∈Λl

I{ξ(x)=ξ(y)}

)

.

Next we divide the last line by the product of partition functions which is
obtained by omitting the first exponential and the first sum. This only yields
another η([2, N ])-dependent constant. Using cancellations for the terms with
l 6= k we see in this way that

µN
q,β,(r1,...,rs)

(

Y (1) = k | Y ([2, N ]) = η([2, N ])
)

=
1

Norm. (η([2, N ]))

∑

ξ(1) 7→k

πNk

k,βk

(

exp
( βk

Nk

Nk
∑

z=1

I{X(z)=1}

))

,

which concludes the proof. 2

5.5. Continuity vs. discontinuity of limiting conditional probabilities
for fuzzy Potts

In this subsection we will derive an explicit formula for the limiting condi-
tional probabilities of the fuzzy model. From this parts (i), (ii), (iii) of Theo-
rem 1.2 follow.

We can build on well-known results about the limiting behavior of the empir-
ical distribution of the mean-field Potts model. The main point is that it exhibits
a first-order phase transition at a finite inverse critical temperature βc(q), for
all q ≥ 3. For the special case q = 2 (Ising model) there is only a second order
phase transition. The following pieces of information about the mean-field Potts
model can be found in [4, Theorems 2.1. and 2.3]. To get a first impression of
the model, the reader is advised to begin by focusing on the case β 6= βc(q), i.e.
off the critical temperature.

Theorem 5.1 (Ellis, Wang). Assume that q ≥ 3, and define

βc(q) :=
2(q − 1)

q − 2
log(q − 1).
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Then we have the weak limit

lim
N↑∞

πN
q,β

( 1

N

N
∑

x=1

(I{X(x)=1}, . . . , I{X(x)=q}) ∈ ·
)

(5.6)

=



















































δ1/q(1,1,...,1), if β < βc(q),

1

q

q
∑

ν=1

δu(β,q) eν+(1−u(β,q))/q(1,1,...,1), if β > βc(q),

λ0(q)δ1/q(1,1,...,1)

+
1 − λ0(q)

q

q
∑

ν=1

δu(βc(q),q) eν+(1−u(βc(q),q))/q(1,1,...,1) if β = βc(q),

where ei is the unit vector in the ith coordinate direction of Rq.

The quantity u(β, q) is well defined for β ≥ βc(q). It is the largest solution

of the mean field equation

u =
1 − e−βu

1 + (q − 1)e−βu
(5.7)

and obeys the following properties: It is strictly increasing in β, and we have

u(q, βc(q)) = (q − 2)(q − 1)−1. The constant appearing at the critical point

obeys the strict inequality 0 < λ0(q) < 1.

Some comments are in order. Obviously, u(β, q) plays the role of an order
parameter. Now, for β > βc(q) the system is in a symmetric linear combination
of ν-like states. The limiting empirical distribution becomes the equidistribution
on the possible spin values for β < βc(q). It jumps at the critical point for q ≥ 3.
At the critical point itself there is a non-trivial linear combination between both
types of measures.

To feel comfortable with the mean-field equation (5.7) the reader may note
that it is obtained from the equations ni = exp(βni)/

∑q
j=1 exp(βnj) for i =

1, . . . , q with the following ansatz: Denote by i the index with the largest nj.
Assume that nj is independent of j, for j 6= i, and put u = ni − nj for some
j 6= i.

Let us mention that the results of Theorem 5.1 can be obtained by a Gaussian
transformation and saddle point estimates on the resulting integrals (all of which
is omitted here). At the critical point a little care is needed: To obtain the proper
value of the constant λ0(q) a Gaussian approximation around the minima and
estimates showing positive curvature are needed.

The well-known case of the mean field Ising model q = 2 can be recovered
from the theorem by taking the formal limit q ↓ 2 in the explicit formula for βc(q)
and noting that u(q, βc(q)) = 0. So (5.6) describes a second order transition in
that case.
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The following explicit formula for the limiting conditional probabilities of
the fuzzy model now follows easily from our finite volume representation of
the conditional probabilities given in Proposition 5.1 and the known limiting
statement of Theorem 5.1.

Theorem 5.2. We have

lim
N↑∞

QN
q,β,(r1,...,rs)(k | (nl)1≤l≤s) =

C(βnk, rk)
∑s

l=1 C(βnl, rl)
,

whenever nk 6= βc(rk)/β for all k with rk ≥ 3. Here

C(β̃, r) = exp
( β̃

r

)

×







r, if β̃ < βc(r),

exp
( β̃(r − 1)u(β̃, r)

r

)

+ (r − 1) exp
(

−
β̃u(β̃, r)

r

)

, if β̃ > βc(r).

Proof of Theorem 5.2. Let β̃ 6= βc(q). By Theorem 5.1 we have

lim
M↑∞

rA(β̃, r, M) = C(β̃, r).

2

Remark 5.2. Obviously this gives the right answer for β = 0 or in the case of the
original Potts model (letting all rl be equal to one). We see however that the
limiting form of the conditional expectations has a nontrivial form in general.
This expression has jumps for nl = βc(rl)/β whenever rl ≥ 3. (For matters
of simplicity we state the result only outside these critical values.) Indeed, for
r ≥ 2 we have

C(βc(r) ∓ 0, r) = (r − 1)(2(r−1))/(r(r−2)) ×

{

r,

r(r − 1)(r−2)/r,

which jumps for r ≥ 3. (For r = 2 this expression has to be interpreted as the
limit of the right hand side with r ↓ 2.)

The reader should notice the following. First of all we have shown the
pointwise existence of the limit

(nl)1≤l≤s 7→ lim
N↑∞

QN
q,β,(r1,...,rs)(k | (nl)1≤l≤s).

The notion of “continuity of limiting conditional probabilities” that was intro-
duced in Theorem 1.2 has the precise meaning of continuity of the right hand
side as a function on the closed set P of s-dimensional probability vectors with
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respect to the ordinary Euclidean topology. From the explicit limiting formula
given in the theorem and the well-known knowledge of the jumps of the order
parameter the proof of the first three parts of our main Theorem 1.2 is now
immediate.

Proof of Theorem 1.2 (i)–(iii). The points of discontinuity are precisely given
by the values nk = βc(rk)/β for those k with rk ≥ 3 for which βc(rk)/β <1. So
(i) is immediate. To see (ii) and (iii) we use that βc(r) is an increasing function
of r. 2

5.6. Typicality of continuity points — “almost sure Gibbsianness”

What can be said about the measure of the discontinuity points? We will
answer this question now and prove the remaining part (iv) of Theorem 1.2. To
start with, from Theorem 5.1 follows trivially by “contraction” that the typical
values of the order parameter in the fuzzy model are as follows. (Recall that el

is the unit vector in the lth coordinate direction of Rs.)

Corollary 5.1. We have

lim
N↑∞

µN
q,β,(r1,...,rs)

( 1

N

N
∑

x=1

(I{Y (x)=1}, . . . , I{Y (x)=s}) ∈ ·
)

=















































δ1/q(r1,r2,...,rs) if β < βc(q),

λ0(q)δ1/q(r1,r2,...,rs)

+

s
∑

l=1

(1 − λ0(q))rl

q
δu(β,q)el+(1−u(β,q))/q(r1,r2,...,rs) if β = βc(q),

s
∑

l=1

rl

q
δu(β,q)el+(1−u(β,q))/q(r1,r2,...,rs) if β > βc(q).

In other words, the values for the fuzzy densities nl that occur with non-zero
probability are: The values rl/q in the high-temperature regime (including the
critical point) and the two values

n+(β, q, rl) ≡ u(q, β) +
1 − u(q, β)

q
rl

and

n−(β, q, rl) ≡
1 − u(q, β)

q
rl

(

≤ n+
l (β, q, rl)

)

in the low temperature regime (including the critical point).
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Now, the non-trivial question is: Can it happen that these values coincide
with the points of discontinuity of the limiting conditional probability, for certain
choices of the parameter?

The following proposition tells us that this can never be the case, and so
the points of discontinuity are always atypical. This immediately proves (iv)
of Theorem 1.2. As we will see the proof of the proposition is elementary but
slightly tricky; it makes use of specific properties of the solution of the mean-
field equation. In that sense it is the most difficult part of our analysis of the
mean field fuzzy Potts model.

Proposition 5.2. Assume that q > r ≥ 2.

(i) For the high-temperature range β ≤ βc(q) we have

r

q
<

βc(r)

β
.

(ii) For the low-temperature range β ≥ βc(q) we have that

n−(β, q, r) <
βc(r)

β
< n+(β, q, r).

Remark 5.3. (i) says that the typical density of each fuzzy class is too small to
create a first order transition. The left inequality of (ii) says that the typical
density of a fuzzy class not containing the predominant spin-value of the un-
derlying Potts model is always too small to create a first order transition. The
corresponding conditional Potts model is always in a high-temperature state.
The right inequality of (ii) says that the typical density of the fuzzy class that
contains the predominant spin-value of the underlying Potts model is always
too big to create a first order transition. The corresponding conditional Potts
model is always in a low-temperature state.

Proof. The claim (i) follows from that fact that

r

q
<

βc(r)

βc(q)

for all q > r. This in turn is implied by the fact that βc(q)/q is decreasing in
q. It is obvious that this holds for large enough q, by the explicit expression for
βc(q). It is elementary to verify that it holds in fact for any q ≥ 2.

Next we prove (ii). We show first the right inequality which is equivalent to

u(q, β) >
q

q − r

βc(r)

β
−

r

q − r
.
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By Theorem 5.1 the order parameter u(q, β) is an increasing function in β. The
right hand side is decreasing in β. So it suffices to prove the inequality for
β = βc(q). Using

u(q, βc(q)) =
q − 2

q − 1

this can be put equivalently as

βc(r) < βc(q)
(

1 −
q − r

q(q − 1)

)

. (5.8)

We will use now the elementary property that

βc(q) < q, for all real q > 2. (5.9)

This implies also that βc(q) is concave because

β′′
c (q) =

−2q(q − 2) + 4(q − 1) log(q − 1)

(q − 2)3(q − 1)

and the denominator is negative, by the last inequality.
In order to show (5.8) we note, by concavity that

βc(r) ≤ βc(q) + β′
c(q)(r − q) (5.10)

and show that the right hand side of (5.10) is strictly bounded from above by
the right hand side of (5.8). But the latter statement is equivalent to

β′
c(q) > βc(q)

1

q(q − 1)
.

Computing the logarithmic derivative β′
c(q)/βc(q) we see that this is equiva-

lent to
1

q − 1
−

1

q − 2
+

1

(q − 1) log(q − 1)
>

1

q(q − 1)
.

This inequality in turn reduces after trivial computation to the statement (5.9)
and this concludes the proof of the right inequality of (i).

Let us come to the proof of the left inequality of (ii). The claim says

1 − u(q, β)

q
r <

βc(r)

β
.

Using the mean-field equation we may write

1 − u(q, β) =
q

e+βu(q,β) + q − 1
.
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So the claim is equivalent to

β
r

βc(r)
< e+βu(q,β) + q − 1.

Now, the left hand side is increasing as a function of r, for r ≥ 2. So the claim
follows from

β
q − 1

βc(q − 1)
< e+βu(q,β) + q − 1

for all q ≥ 3. Next we use again that the order parameter u(q, β) is an increasing
function of β. Thus the last inequality follows if we can show

βc(q)
q − 1

βc(q − 1)
< exp(+βc(q)u(q, βc(q))) + q − 1.

We have
exp(+βc(q)u(q, βc(q) + 0)) = (q − 1)2

from the explicit expressions and so the last inequality is equivalent to

βc(q)

βc(q − 1)
< q.

It is elementary to verify from the explicit expression for βc(q) that this actually
holds for all q ≥ 3. 2
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[18] O. Häggström (2003) Is the fuzzy Potts model Gibbsian? Ann. Inst.
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