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Abstract. We study Gibbsian models of unbounded integer-valued spins on
trees which possess a symmetry under height-shift. We develop a theory relating
boundary laws to gradient Gibbs measures, which applies also in cases where
the corresponding Gibbs measures do not exist. Our results extend the classical
theory of Zachary [43] beyond the case of normalizable boundary laws, which
implies existence of Gibbs measures, to periodic boundary laws. We provide a
construction for classes of tree-automorphism invariant gradient Gibbs measures
in terms of mixtures of pinned measures, whose marginals to infinite paths on the
tree are random walks in a q-periodic environment. Here the mixture measure
is the invariant measure of a finite state Markov chain which arises as a mod-q
fuzzy transform, and which governs the correlation decay.

The construction applies for example to SOS-models and discrete Gaussian
models and delivers a large number of gradient Gibbs measures. We also discuss
relations of certain gradient Gibbs measures to Potts and Ising models.
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1. Introduction

There is renewed interest in the study of spin models on trees. A tree
will in our context be a graph with countable vertex set which has no loops.
On each vertex there is attached a random variable (spin) with values in a
given local state space Ω0. Tree models are intrinsically interesting, and show
phase transition behavior with sometimes greater richness than lattice models.
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Branching Brownian motion and related processes indexed by trees appear in
the study of spin-glasses, see [3] and references therein.

Another interest comes indirectly from models which are indexed by random
graphs. Often one considers random graphs which may contain loops but which
at least locally look like trees with large probability [11–13,23,33]. If one wants
to understand those models on graphs one needs a safe understanding of the
tree model first.

There are interesting and hard questions which are open about spin models
on regular trees, even if the local spin space Ω0 is finite. An example of such a
question is the understanding of so-called reconstruction transitions, including
the determination of the reconstruction thresholds in terms of model parameters,
see [18,25,26,28,34,35,41]. The problem is equivalent to decide whether a given
Gibbs state is extremal in the simplex of all Gibbs states. It is even more
delicate to describe its extremal decomposition [40]. See also [2] for a recent
work on the Ising model in a non-homogeneous field.

1.1. Known theory: boundary laws, tree-indexed Markov chains for
finite-state space models

We restrict ourselves in the present paper mostly to regular trees and con-
sider mainly infinite-volume states which possess all symmetries of the underly-
ing tree graph. There is a very clear and complete presentation of the theory for
finite spin space models which is presented in the textbook by Georgii, Chapter
12 [22]. A key notion here is that of a boundary law or entrance law which is
a non-normalized distribution on the local spin space satisfying a certain non-
linear fixed point equation which depends on the interaction potential Φ as a
parameter and is obtained via a tree recursion (2.11). The theory asserts that
those Gibbs measures which are also tree-indexed Markov chains (or, equiv-
alently splitting Gibbs measures, for definitions see below) are in one-to-one
correspondence with boundary laws, and it gives the finite-volume marginals in
terms of the boundary laws. Given the interaction potential Φ of the model,
a boundary law l and the transition matrix P of the Markov chain can be
computed from each other. This we symbolically depict as

P ↔Φ l.

Also there is a theorem saying that extremal Gibbs measures are always Markov
chains, while there may be Markov chain Gibbs measures which are non-extremal
in the set of all Gibbs measures. This theory extends from finite to countable
state space models, but it does so only under the further assumption of nor-
malizability of the boundary law (see [43], formula 3.5). We also refer to the
examples in Chapter 8 of [36], which are constructed under this normalization
assumption.
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How can we think of such states? In this regime the marginals to infinite
paths on the tree of the Gibbs measure are random walks which are localized in
the height-direction, and have an invariant probability measure which is com-
putable in terms of the boundary law.

What happens to non-normalizable boundary law solutions was not system-
atically investigated.

1.2. Known theory: Gradient models on lattices

Models with non-compact spin-space (with main examples R,Z) which are
invariant under a joint height-shift of all values of the spin-variables are well-
known in statistical mechanics, under the names interface models or gradient
models, see e.g. [1,4–6,8–10,16,20,21]. In the important case that there is only
a nearest neighbor pair interaction, this is then given via a potential function
U acting on differences of the spins at neighboring sites.

Due to the non-compactness of the local spin-space, existence of Gibbs mea-
sures in the infinite volume is not to be taken for granted, and it may happen
or may not happen, depending on the nature of the graph, in the lattice case
its dimension, and parameters (inverse temperature, coupling strength, pinning
forces) of the model. A proper infinite-volume Gibbs measure exists iff the inter-
face in infinite volume is stable. An important example where a Gibbs measure
in the infinite volume does not exist is provided by the lattice version of the
Gaussian free field in dimension d = 2, see [19], and its distribution-valued
relative in continuous space [39]. The common way out to have a translation-
invariant infinite-volume measure also in important cases when the infinite-
volume Gibbs measure does not exist, is to divide out the translational degree
of freedom in the height-direction and consider the gradient Gibbs measures
(GGMs). A simple example is the pinning of a one-dimensional nearest neighbor
ordinary random walk, conditioned to height zero in the origin. The increments
are independent, and the measure on the increments is shift-invariant.

For lattice models there is a theory proving existence and uniqueness of
GGMs with a fixed tilt (which applies in particular for flat horizontal interfaces)
under the assumption of uniformly strictly convex potentials in dimensions d =
2 developed by Funaki and Spohn [21]. (See however Remark 4.4 of [20] on
existence for non-convex potentials.) This has an extension to random models [8,
9] in dimensions d ≥ 3, while for d = 2 such random gradient states cannot exist
[16] since they are locally destabilized by the influence of quenched randomness.

1.3. Our question: How can gradient Gibbs measures on trees be
constructed via boundary laws?

Are there states in the non-localized regime and can they be constructed
via boundary laws? It is the purpose of this paper to bring together the notion
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of boundary law and GGM for a tree model, and provide expressions for finite-
volume marginals in terms of the boundary law. This generalizes the theory of
Zachary [43,44]. Assume the local state space to be the integers, suppose we are
in particular given a height-periodic boundary law with period q. The question
appears naturally:

Does such a non-normalizable boundary law (to which Zachary’s theory can
not apply) also correspond to a suitably constructed infinite-volume state?

1.4. Outline of our results

The answer has to be given in several steps. The short answer is yes, but the
state has to be seen as a gradient state. The route to the construction and to the
proof is to apply a useful mod-q fuzzy transform, construct pinned measures,
and average appropriately over the fuzzy chain. These steps will be described
in more detail below. However, to give first an intuitive idea about the gradient
states which will appear from this construction, let us look at their projections
to an infinite path on the tree. These are (mixtures) of the increments of
random walk paths. The increments are in general not independent, but they are
given by a transition matrix which depends on the initial height in a q-periodic
way. This transition matrix depends on the boundary law. So, for a one-
dimensional restriction on the tree, the paths look like random walks in a height-
periodic environment. The mixture measure has to be chosen very specifically
to recover translation-invariance and the gradient Gibbs property. Clearly, for
such measures a Gibbs measure can not exist, since the absolute heights of the
walks have no invariant probability distribution, only their increments.

The paper is organized as follows. In Chapter 2 we give the general set-up of
our model and the basic definitions. GGMs are obtained as the measures which
satisfy the DLR equation w.r.t. the so-called gradient specification. In the case
of lattice models the gradient specification (γ′)Λ⊂⊂V is usually simply defined
as the restriction of the regular local Gibbs specification (γΛ)Λ⊂⊂V to the naive
outer sigma-algebra which is generated by the height-shift invariant events that
only depend on the increments (or the gradient) outside of Λ. If we want to
define gradient specifications in an analogous way, there is one peculiarity for
tree graphs which must be treated properly for the theory to work: For trees
the naive outer sigma-algebra must be replaced by a strictly finer outer sigma-
algebra which also retains the relative height information on the boundary of
Λ together with the gradient configuration outside of Λ. Indeed, since trees do
not possess any loops the height differences between vertices outside finite sets
Λ can in general not be recovered by the increments outside Λ alone (as it is
the case for lattices) and the two sigma-algebras are different.

In Chapter 3 we define measures on the space of gradient configurations via
q-periodic boundary laws by pinning a class label s ∈ Zq at some vertex. The
existence of these measures is proven by showing applicability of Kolmogorov’s
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extension theorem, where it turns out that the definition of a boundary law is
tailor-made to guarantee the necessary consistency condition. We then show
that these measures, which we call pinned gradient measures, have a useful
representation using transition matrices with an additional internal parameter.
This representation is analogous to but much more general than in the case of a
finite state space, due to the added internal degree of freedom provided by the
layer variable.

In Chapter 4 we give a construction of gradient Gibbs measures by mixing
the pinned gradient measures over the mod-q fuzzy classes to recover both, the
full gradient property and tree-homogeneity. Theorem 4.1 describes how this is
done. The mixing measure α (appearing in the outmost integral) is the invariant
measure of the q-state Markov chain which is naturally associated via a mod-q
fuzzy transform of the model.

In Chapter 5 we give examples of GGMs that are constructed via q-periodic
boundary laws. This involves a discussion on the relation between gradient
models and the Potts and Ising model, exhibiting rich classes of GGMs with
phase transitions. Furthermore it is shown how the associated q-state fuzzy
Markov chain governs the correlation decay.

1.5. Comments and relation to work on preservation or loss of the
Gibbs property under transformations

Let us add some words comparing our present work (where we use the specific
mod-q fuzzy transformation to fuzzy spins as a tool to construct a GGM on
gradient variables) to related but different work where the behavior of Gibbs
measures under different fuzzy transformations (or local coarse-grainings) was
investigated. The integer-valued SOS model (on the lattice) was investigated
by van Enter and Shlosman in [17] under the transformation which mapped a
local spin to the sign field. In this situation non-Gibbsian measures were found,
but with measure zero discontinuity points. The fuzzy Potts model on the tree
was investigated in [24] and again non-Gibbsian measures were proved to occur
when the starting Gibbs measure was not the free Gibbs measure. In [29] on
the other hand, a fuzzy transformation to an Ising model which was adapted to
the structure of the Gibbs measures was proved to be a Gibbs measure again.

Summarizing, our present result has to be seen as a variation on the theme
Gibbs goes to Gibbs. As important structural novelty note that the coarse-
grained variables don’t appear as a direct image of the gradient variables, but
they are related via a coupling measure (see Appendix 6.1). The construction
of a tree-invariant gradient Gibbs measure by mixing pinned measures relies
heavily on their relation given in terms of boundary laws. To appreciate this
better we invite the reader also to consult Appendix 6.2 for a one-dimensional
example of a non-Gibbsian gradient measure appearing by mixing of pinned
measures not related via boundary laws.
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2. The set-up and definitions

Let T = (V,E) be a locally finite connected tree with vertex set V and edge
set E. An unoriented bond b ∈ E between two vertices x, y ∈ V is denoted by
b = {x, y}. For the oriented edge going from x to y we write 〈x, y〉 and we call

the set of all oriented edges ~E. For a subset A ⊂ V let E(A) denote all the
unoriented bonds connecting vertices in A, i.e. E(A) = {{x, y} ∈ E | x, y ∈ A}.
Two vertices x, y are called nearest neighbors, which we denote by x ∼ y, if
there exists an edge b = {x, y} ∈ E. As T has no loops there is a natural graph
distance: For all vertices x, y ∈ V , there exists a unique self-avoiding path

x = x0 ∼ x1 ∼ . . . ∼ xn = y

in V such that {xk−1, xk} ∈ E for all 1 ≤ k ≤ n and xk 6= xj for all k, j ∈
{0, 1, . . . , n} with k 6= j. Let d(x, y) be the number of bonds of this unique
self-avoiding path from x to y, i.e. d(x, y) = n. If Λ is a finite subset of vertices
we write Λ ⊂⊂ V and define its outer boundary as

∂Λ := {x /∈ Λ : d(x, y) = 1 for some y ∈ Λ}.
Let a random field (φx)x∈V of integer-valued random spin variables on the

measurable space (Ω,F) = (ZV ,P(Z)V ) be given in its canonical form, i.e. φx :
ZV → Z is defined by φx(ω) = ω(x) = ωx, the projection onto the coordinate
x ∈ V . Unlike in the Ising or Potts model, for instance, the state space of
this random field is unbounded. A configuration ω ∈ ZV can be interpreted as
a random realization of heights, labeled by the vertices of the tree graph (see
Figure 1). For any sub-volume Λ ⊂ V we let φΛ : Ω→ ZΛ denote the projection
onto the coordinates in Λ and define FΛ = σ({φy | y ∈ Λ}) = P(Z)Λ to be the
sigma-algebra which is generated by the height variables with sites in Λ.

For ω = (ω(x))x∈V and b = 〈v, w〉 ∈ ~E the height difference along the
edge b is given by ∇ωb = ωw − ωv and we also call ∇ω the gradient field of
ω. The gradient spin variables are now defined by η〈x,y〉 = φy − φx for each

〈x, y〉 ∈ ~E, and we define the projection mappings similarly as before for the
height variables. Let us denote the state space of the gradient configurations by

Ω∇ = ZV /Z = Z~E which becomes a measurable space with the sigma-algebra

F∇ = σ({ηb | b ∈ ~E}) = P(Z)
~E . This is the space of all the possible gradient

fields that can be prescribed by some height configuration ω ∈ ZV , and trivially
every gradient field ζ ∈ Ω∇ gives a height configuration ωζ,ωx for a fixed value
of ωx, x ∈ V by

ωζ,ωx
y = ωx +

∑
b∈Γ(x,y)

ζb, (2.1)

where Γ(x, y) is the unique self-avoiding path from x to y. We note that due to
the absence of loops, there is no plaquette condition, which is known for lattices
to hold.
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Figure 1. An example of a random height field over the vertices along the path
{v0, v1, . . . , v5} ⊂ V .
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Let some symmetric nearest-neighbor gradient interaction potential Ub : Z→
R be given for every b = {x, y} ∈ E, i.e.

Ub(m) = Ub(−m)

for all m ∈ Z.
To shorten our notation we sometimes write ωb = {ωx, ωy} ∈ Z2 for edges

b = {x, y} ∈ E. Note that for all finite Λ ⊂⊂ V and any ω ∈ Ω, the quantity

HU
Λ (ω) =

∑
b∩Λ6=∅

Ub(∇ωb) (2.2)

exists and is finite. HU
Λ is called the Hamiltonian in the finite volume Λ for U .

Definition 2.1. The local Gibbsian specification corresponding to the Hamilto-
nian HU is defined as the family of probability kernels (γΛ)Λ⊂⊂V from (Ω,FΛc)
to (Ω,F) by

γΛ(A | ω̃) = Z−1
Λ (ω̃)

∫
A

exp
(
−
∑
b⊂Λ

Ub(∇ωb)−
∑

i∈Λ,j∈Λc:i∼j
U{i,j}(ωi − ω̃j)

)
dωΛ

(2.3)

for all A ∈ F , where ZΛ(ω̃) denotes a normalization constant (or partition
function) that turns the last expression into a probability measure for ω̃ ∈ Ω.
Here dωΛ denotes counting measure on ΩΛ = ZΛ.

We define a family of functions (Qb)b∈E with Qb : Z0 → (0,∞) s.t.

Qb(m) = exp (−Ub(m)) (2.4)

for all m ∈ Z. This family plays the role of transfer operators. Hence the
Gibbsian specification admits the representation

γΛ(A | ω̃) = Z−1
Λ (ω̃)

∫
A

∏
b⊂Λ

Qb(∇ωb)
∏

x∈Λ,y∈Λc:x∼y
Qxy(ωx − ω̃y) dωΛ. (2.5)

To have the partition functions finite, we assume throughout this paper that
Qb ∈ l1(Z) for every b ∈ E.

The reader may think of the concrete examples of the form U(m) = β|m|α
with α and β being positive constants, where the most popular cases are the
SOS model obtained for α = 1 [37], and the so-called discrete Gaussian obtained
for α = 2 [39].

Note that the Hamiltonian HU
Λ changes only by a configuration-independent

constant under the joint height-shift φx(ω) → φx(ω) + c of all spin variables
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x y

Λ = {x, y}

Λ

Figure 2. For the binary tree the complement of the finite set Λ ⊂⊂ V consists
of four infinite disconnected subtrees. Hence the relative boundary height is not
recovered by the gradient information among edges contained in these infinite
subtrees. The complement of the finite set Λ ⊂⊂ Z2 consists however of exactly
one connected subgraph.

φx(ω), x ∈ V for the same constant c ∈ R, which holds true for any fixed
configuration ω ∈ ZV . Using this invariance under the height shifts we can
lift the probability kernels γΛ to kernels γ′Λ on gradient configurations, as we
will explain later on. First a warning is in order: On tree graphs the gradient
specifications differ from those on lattices in more than one dimension since the
complement of any finite set Λ ⊂⊂ V is disconnected (see Figure 2). Therefore
the knowledge of a gradient configuration along the edges connecting vertices
outside of Λ is not sufficient to reconstruct a boundary condition modulo overall
height-shift.

Definition 2.2. Let Λ ⊂ V . For any two infinite-volume gradient configu-
rations ρ, ζ ∈ Ω∇ we write ρ ∼∂Λ ζ, if there exist two height configurations
ϕ,ψ ∈ Ω s.t. ∇ϕ = ρ, ∇ψ = ζ and ϕ∂Λ = ψ∂Λ.
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We note that ρ ∼∂Λ ζ if and only if∑
b∈Γ(x,y)

ρb =
∑

b∈Γ(x,y)

ζb

for any vertices x, y ∈ ∂Λ, where Γ(x, y) ⊂ ~E denotes the unique self-avoiding
path from x to y. Suppose that Λ is any fixed finite subtree. Then the above
property can be decided when we know both gradient configurations η, ζ for
the edges with sites on Λ ∪ ∂Λ, that is on the inside. Indeed, this allows us to
reconstruct the relative heights at the sites on ∂Λ in both configurations.

For ζ ∈ Ω∇, we define a map ζ 7→ [ζ]∂Λ with values in the equivalence classes
w.r.t. the relation introduced in Definition 2.2, that is taking values in Z∂Λ/Z.
Observe that this map is then measurable w.r.t. the sigma-algebra which is
generated by the gradient variables inside Λ∪∂Λ, i.e. σ((ηb)b⊂(Λ∪∂Λ)). However
it is not measurable w.r.t. the naive outer sigma-algebra F∇Λc , where we put
F∇W c := σ((ηb)b∩W=∅) for any (possibly infinite) subset W ⊂ V . This would
only be the case for any graphs with the property that after subtraction of any
finite subvolume the graph is still connected, like it is the case for lattices in
more than one dimension (see Figure 2).

Therefore, for the desired kernels γ′Λ on the gradient space the sigma-algebras
to be considered need to keep this information, and be larger than just the
product sigma-algebras over the gradient variables with bonds in the outside.

Definition 2.3. Let Λ ⊂⊂ V be any finite subvolume. Then the gradient
sigma-algebra outside Λ is defined to be

T ∇Λ = σ((ηb)b∩Λ=∅, [η]∂Λ) ⊂ F∇.

Remark 2.1. We note that Λ2 ⊃ Λ1 implies T ∇Λ2
⊂ T ∇Λ1

. This is true since the in-
formation from the boundary condition in the smaller volume Λ1 supplemented
with information from the annulus Λ2\Λ1 allows to recover the information of
the boundary condition in the larger volume.

Remark 2.2. Observe that F∇Λc is strictly smaller than T ∇Λ . This is quite unusual
compared to the Gibbsian setup for lattice spin systems, and gradient systems
(in two or more dimensions).

Due to the tree nature, the usual plaquette condition for gradient configu-
rations (saying that walking around circles on the graph we arrive at the same
initial height) is empty for configurations inside a given volume. However, this
does not make our specification trivial, as the relative-height constraint remains
on the boundary of the volume.

The gradient specification we define will be the restriction of the previously
defined Gibbs specification to the smaller sigma-algebra F∇ ⊂ F . Let B ∈ F∇
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a height-shift invariant set. Note that the Gibbsian probability γΛ(B | ·) is
measurable w.r.t. T ∇Λ , but not w.r.t. the smaller sigma-algebra generated by
the gradient variables outside of Λ which does not contain the relative-height
information on the boundary.

Definition 2.4. The gradient Gibbs specification is defined as the family of
probability kernels (γ′Λ)Λ⊂⊂V from (Ω∇, T ∇Λ ) to (Ω∇,F∇) such that∫

F (ρ)γ′Λ(dρ | ζ) =

∫
F (∇ϕ)γΛ(dϕ | ω) (2.6)

for all bounded F∇-measurable functions F , where ω ∈ Ω is any height config-
uration with ∇ω = ζ.

A more explicit writing goes like this, using the tree property. Let αQΛ∪∂Λ

denote the product specification on the bonds b inside Λ ∪ ∂Λ given by the
transfer operator Qb(·), i.e.

αQΛ∪∂Λ(ρΛ∪∂Λ) = Z−1
Λ (ρ)

∏
b∩Λ6=∅

Qb(ρb) (2.7)

where ZΛ(ρ) is a normalizing constant. Then the l.h.s. of (2.6) is given by

γ′Λ(F | ζ) =

∑
ρΛ∪∂Λ

αQΛ∪∂Λ(ρΛ∪∂Λ)F (ρΛ∪∂ΛζΛc)1[ρ]∂Λ=[ζ]∂Λ∑
ρΛ∪∂Λ

αQΛ∪∂Λ(ρΛ∪∂Λ)1[ρ]∂Λ=[ζ]∂Λ

. (2.8)

In the concatenation ηΛ∪∂ΛζΛc the subscripts denote that gradient configura-
tions should be taken with both endpoints of edges on the indicated sets of
sites.

Using the outer sigma-algebra T ∇Λ , this is now a proper and consistent family
of probability kernels, i.e.

γ′Λ(A | ζ) = 1A(ζ) (2.9)

for every A ∈ T ∇Λ and γ′∆γ
′
Λ = γ′∆ for any finite volumes Λ,∆ ⊂ V with Λ ⊂ ∆.

The proof is similar to the situation of regular local Gibbs specifications [22,
Proposition 2.5].

Let Cb(Ω∇) be the set of bounded functions on Ω∇. Gradient Gibbs measures
will now be defined in the usual way by having its conditional probabilities
outside finite regions prescribed by the gradient Gibbs specification:

Definition 2.5. A measure ν ∈ M1(Ω∇) is called a gradient Gibbs measure
(GGM ) if it satisfies the DLR equation∫

ν(dζ)F (ζ) =

∫
ν(dζ)

∫
γ′Λ(dζ̃ | ζ)F (ζ̃) (2.10)

for every finite Λ ⊂ V and for all F ∈ Cb(Ω∇). The set of gradient Gibbs
measures will be denoted by G∇(γ) or G∇(Q).
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z2

z3

y x
lz1x

lz2x

lz3x

lxy

Figure 3. For the boundary law l the value of lxy(ωx) along the oriented edge
〈x, y〉 can be recursively determined by the values of {lzix}i=1,2,3 along the
oriented edges pointing towards x via equation (2.11).

The advantage of gradient Gibbs measures is that they may exist, even in
situations where a proper Gibbs measure does not. An example for this is the
massless discrete Gaussian free field on the lattice Zd in dimensions d ≤ 2. Let
B(n) be the box of width n and ψ any boundary condition along its boundary.
Then it can be shown that the variance of the height variable at 0 under the
finite-volume Gibbs measure γB(n)(· | ψ) goes to ∞ for n → ∞. The field is
said to delocalize [42].

In the following we will work towards a representation of gradient Gibbs
measures via the notion of so-called boundary laws [7, 22,43]:

Definition 2.6. A family of vectors {lxy}〈x,y〉∈~E with lxy ∈ (0,∞)Z is called a

boundary law for the transfer operators {Qb}b∈E if for each 〈x, y〉 ∈ ~E there
exists a constant cxy > 0 such that the consistency equation

lxy(ωx) = cxy
∏

z∈∂x\{y}

∑
ψz∈Z

Qzx(ωx − ψz)lzx(ψz) (2.11)

holds for every ωx ∈ Z (see Figure 3). A boundary law is called to be q-periodic

if lxy(ωx + q) = lxy(ωx) for every oriented edge 〈x, y〉 ∈ ~E and each ωx ∈ Z.

For periodic boundary laws all appearing sums are finite, under our as-
sumption Q ∈ l1(Z). Note that while the transfer operators {Qb}b∈E possess
reflection symmetry in spin space, i.e. Qb(ωb) = Qb(−ωb), this is not necessarily
the case for the class of boundary laws.

3. Construction of gradient measures via periodic boundary laws

We want to remind the reader of the definition of a tree-indexed Markov
chain for tree-indexed Gibbs measures. To formulate this we need some more
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x y

Figure 4. The set of oriented edges (−∞, xy).

notation. For any vertex w ∈ V the set of the directed edges pointing away
from w is given by

~Ew = {〈x, y〉 ∈ ~E : d(w, y) = d(w, x) + 1}.

This set can be interpreted as the “future” of the vertex w. Furthermore we
define the “past” of any oriented edge 〈x, y〉 ∈ ~E by

(−∞, xy) = {w ∈ V | 〈x, y〉 ∈ ~Ew},

see Figure 4.

Definition 3.1. Let Ω0 be the local state space and Ω = ΩV0 . A measure
µ ∈M1(Ω) is called a tree-indexed Markov chain if

µ(φy = ωy | F(−∞,xy)) = µ(φy = ωy | F{x}) (3.1)

µ-a.s. for any 〈x, y〉 ∈ ~E and any ωy ∈ Ω0.

For finite local state spaces Ω0 it is well known that every Gibbs measure
w.r.t. a specification of the form (2.3) which is a Markov chain corresponds
to a boundary law, which is unique up to a positive pre-factor [22, Theorem
12.12]. Conversely, every boundary law {lxy}〈x,y〉∈~E with l〈x,y〉 ∈ (0,∞)Ω0 for

each 〈x, y〉 ∈ ~E defines a unique Markov chain µ ∈ M1(Ω) in the set of Gibbs
measures via the equation

µ(φΛ∪∂Λ = ωΛ∪∂Λ) = Z̄−1
Λ

∏
y∈∂Λ

lyyΛ
(ωy)

∏
b∩Λ6=∅

Qb(ωb). (3.2)

Here Z̄Λ is a normalizing constant and Λ ⊂ V is any finite connected set. Note
that if Λ ⊂ V is a connected set and y ∈ ∂Λ, then Λ ∩ ∂y consists of a unique
element which is denoted here by yΛ.
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For countable local state spaces a similar result can be obtained under the
additional assumption that the boundary law is normalizable [43, Theorem 3.2],
i.e. ∑

ωx∈Z

( ∏
z∈∂x

∑
ψz∈Z

Qzx(ωx − ψz)lzx(ψz)
)
<∞ (3.3)

for each x ∈ V . Note that this condition is needed since it guarantees that
Z̄{i} < ∞ for every i ∈ V and hence by consistency (2.11) that Z̄Λ < ∞ for
every finite connected sub-volume Λ ⊂ V . However, this assumption rules out
many interesting cases like e.g. periodic boundary laws.

Definition 3.2. Let the mod-q fuzzy map Tq : Z → Zq be given by Tq(i) =
i mod q, where Zq = {0, . . . , q − 1} for n ∈ N.

For any connected sub-volume A ⊂ V let Ω∇A denote the set of gradient con-

figurations on A, i.e. Ω∇A = Z~E(A), where ~E(A) are the directed edges connecting
the vertices in A. Now we define gradient measures in the infinite volume which
are associated to a boundary law by pinning the spin at a given site w ∈ V
to take values in a given class (or layer). More precisely we have the following
theorem.

We define a family of marginal measures in some analogy to the boundary
law representation (3.2) of [22, Theorem 12.12], but supplemented with internal
information about layers.

Theorem 3.1. Let a vertex w ∈ Λ, where Λ ⊂ V is any finite connected set,
and a class label s ∈ Zq be given. Then any q-periodic boundary law {lxy}〈x,y〉∈~E
for {Qb}b∈E defines a consistent family of probability measures on the gradient
space Ω∇ by

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ)

= cΛ(w, s)
∏
y∈∂Λ

lyyΛ

(
ϕ′y(s, ζ)

) ∏
b∩Λ6=∅

Qb(ζb), (3.4)

where ζΛ∪∂Λ ∈ Z~E(Λ∪∂Λ). Here

ϕ′y(s, ζ) = Tq

(
s+

∑
b∈Γ(w,y)

ζb

)
denotes the class in Zq obtained by walking from class s at the site w ∈ Λ along
the unique path Γ(w, y) to the boundary site y whose class is determined by the
gradient configuration ζ. Since the boundary law is a class function, expression
(3.4) is well-defined, where cΛ(w, s) is a normalization factor that turns νw,s

into a probability measure on Z~E(Λ∪∂Λ).
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u1

u2

u3

zΛ z

A

Λ

Λ ∪ ∂Λ

Figure 5. The boundary law property guarantees the consistency of the family
of marginals given by equation (3.4).

Proof. The distributions in (3.4) are consistent if∑
ζA∈Ω∇

A

c∆(w, s)
∏
y∈∂∆

lyyΛ
(ϕ′y(s, ζ))

∏
b∩∆ 6=∅

Qb(ζb)

= cΛ(w, s)
∏
y∈∂Λ

lyyΛ
(ϕ′y(s, ζ))

∏
b∩Λ6=∅

Qb(ζb),

(3.5)

whenever Λ,∆ ⊂ V are any finite connected sets with

Λ ⊂ ∆, A = (∆ ∪ ∂∆) \ (Λ ∪ ∂Λ) and ζ ∈ (Λ ∪ ∂Λ)∇.

We show that this is the case for any ∆ := Λ∪{z}, where z ∈ ∂Λ (see Figure 5).
The claim then follows by induction.

We have A = ∂z \ {zΛ}. From the definition of a boundary law we obtain∑
ζA∈Ω∇

A

c∆(w, s)
∏
y∈∂∆

lyyΛ

(
ϕ′y(s, ζ)

) ∏
b∩∆ 6=∅

Qb(ζb)

= c∆(w, s)
∏

y∈∂Λ\{z}

lyyΛ

(
ϕ′y(s, ζ)

) ∏
b∩Λ6=∅

Qb(ζb)

×
(∏
u∈A

∑
ζuz∈Z

luz (ϕ′u(s, ζ))Quz(ζuz)
)

= c∆(w, s)
1

czzΛ

∏
y∈∂Λ

lyyΛ

(
ϕ′y(s, ζ)

) ∏
b∩Λ6=∅

Qb(ζb). (3.6)
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The second equality holds as l is a q-periodic boundary law:∏
u∈A

∑
ζuz∈Z

luz
(
ϕ′y(s, ζ)

)
Quz(ζuz)

=
∏
u∈A

∑
ζuz∈Z

luz

(
Tq

(
s+

∑
b∈Γ(w,u)

ζb

))
Quz(ζuz)

=
∏
u∈A

∑
ζuz∈Z

luz

(
s+

∑
b∈Γ(w,u)

ζb

)
Quz(ζuz)

=
∏
u∈A

∑
j∈Z

luz(j)Quz

(
s+

∑
b∈Γ(w,z)

ζb − j
)

=
1

czzΛ
lzzΛ

(
s+

∑
b∈Γ(w,z)

ζb

)
=

1

czzΛ
lzzΛ

(
Tq

(
s+

∑
b∈Γ(w,z)

ζb

))
.

(3.7)

The last expression in (3.6) equals the right-hand side of (3.5) up to a factor
of c∆(w, s)/(czzΛ · cΛ(w, s)). Summing over ζΛ∪∂Λ shows that this factor is 1.
Hence the distributions in (3.4) are consistent and from Kolmogorov’s extension
theorem follows that there exists a unique probability measure on the space of
the gradient configurations Ω∇ with these exact marginals. 2

Definition 3.3. We call the measure νw,s with the marginals given by (3.4) a
pinned gradient measure on the space of gradients Ω∇.

Remark 3.1. We will show later that these pinned gradient measures possess a
gradient Gibbs property, however not for all volumes. Also, these measures will
not be homogeneous w.r.t. tree automorphisms, in the same way as a Markov
chain which is started in a fixed configuration achieves its homogeneity in time
only asymptotically, for large times. Indeed, if we look at a local observable
far away from the pinning site w the pinning configuration s ∈ Zq will be
forgotten by the ergodic theorem for usual one-dimensional Markov chains, and
the measure looks like an average over different pinning configurations.

Given a boundary law {lxy}〈x,y〉∈~E we define an associated transition matrix

by

Px,y(ωx, ωy) =
Qyx(ωy − ωx)lyx(ωy)∑

ωy∈ZQyx(ωy − ωx)lyx(ωy)
.

If the boundary law has period q, then, taking into account this periodicity we
can introduce the associated transition matrices P̄xy : Zq × Z 7→ [0, 1] in the
following way:

Px,y(ωx, ωy) =: P̄x,y(Tq(ωx), ωy − ωx).
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In this notation P̄x,y(Tq(i), j−i) denotes the probability to see an height increase
of j − i along the edge 〈x, y〉 given the class Tq(i) in the vertex x. How these
matrices can now be used to describe the pinned gradient measures is stated in
the next theorem.

Theorem 3.2. Any pinned gradient measure νw,s, which is constructed via a
boundary law as in (3.4) allows a representation of the form

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) =
∏

〈x,y〉∈~Ew:x,y∈Λ∪∂Λ

P̄x,y

(
Tq

(
s+

∑
b∈Γ(w,x)

ζb

)
; ζ〈x,y〉

)
,

(3.8)

where Λ ⊂ V is any finite connected set and ζΛ∪∂Λ ∈ Z~E(Λ∪∂Λ).

Proof. We fix any oriented bond 〈u, v〉 ∈ ~E, any increments c, d ∈ Z and ω ∈ Ω∇.
Let Λ ⊂ V be any finite connected set s.t. u ∈ Λ ⊂ (−∞, 〈u, v〉), where

(−∞, 〈u, v〉) := {k ∈ V : 〈u, v〉 ∈ ~Ek}

represents the ”past” of the oriented edge 〈u, v〉. We set ∆ = Λ ∪ ∂Λ \ {v}.
From the representation we obtained in (3.4) follows

νw,s(η〈u,v〉 = c | η∆ = ω∆)

νw,s(η〈u,v〉 = d | η∆ = ω∆)
=
lvu(ϕ′v(s, ω, c))Qvu(c)

lvu(ϕ′v(s, ω, d))Qvu(d)
, (3.9)

where ϕ′v(s, ω, c) = Tq(s+
∑
b∈Γ(w,u) ωb + c).

Summing over c ∈ Z gives us

νw,s(η〈u,v〉 = d | η∆ = ω∆) =
lvu(Tq(s+

∑
b∈Γ(w,u) ωb + d))Qvu(d)∑

c∈Z lvu(Tq(s+
∑
b∈Γ(w,u) ωb + c))Qvu(c)

=
lvu(s+

∑
b∈Γ(w,u) ωb + d)Qvu(d)∑

c∈Z lvu(s+
∑
b∈Γ(z,u) ωb + c)Qvu(c)

= Pu,v

(
s+

∑
b∈Γ(w,u)

ωb, s+
∑

b∈Γ(w,u)

ωb + d
)

= P̄u,v

(
Tq

(
s+

∑
b∈Γ(w,u)

ωb

)
, d
)
. (3.10)

Conditioning inductively from the inside to the outside then proves the claim:
In the first step let Λ = {w}. Furthermore, let v1, . . . , vk be the children of w
and e1, . . . , ek the oriented bonds connecting them to w, i.e. ei = 〈vi, w〉 for
i = 1, . . . , k. From the representation (3.4) follows

νw,s(ηe1,...,ek = ζ1, . . . , ζk) = ce1,...,ek(w, s)

k∏
i=1

lei(ϕ
′
vi(s, ζi))Qei(ζi).
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As

ce1,...,ek(w, s) =

( k∏
i=1

∑
ζi∈Z

lei(ϕ
′
v(s, ζi))Qei(ζi)

)−1

,

we find that

νw,s(ηe1,...,ek = ζ1, . . . , ζk) =

k∏
i=1

P̄w,vi (Tq(s), ζi) .

The induction step has been shown in (3.10). 2

Remark 3.2. The measure νw,s is in itself not a Markov chain on the set of
gradient configurations. To see this let {t, u} be the last bond in the path
Γ(w, u). Then it is seen from the statement of Theorem 3.2 that νw,s(η〈u,v〉 =
d | η∆ = ω∆) depends on {ωb}b∈Γ(w,u) and not simply on ω{t,u}. This is clear
as the knowledge of the width of the last step from some vertices t to u does
not determine which layer one has reached in u. This information can only
be recovered by the complete information about the spin increments along the
unique path Γ(w, u). On the other hand, the measure νw,s resembles a Markov
chain, but it has an additional internal degree of freedom in a finite space that
needs to be memorized.

4. Tree homogeneity by mixing over fuzzy classes

For finite local state spaces Ω0 every Markov chain µ ∈ M1(ΩV0 ) can be
written in the following way: Let (Px,y)〈x,y〉∈~E be the transition probabilities of

µ and let αw be the marginal distribution of µ at some vertex w ∈ V . Then

µ(φΛ = ϕΛ) = αw(ϕw)
∏

〈x,y〉∈~Ew:x,y∈Λ

Px,y(ϕx, ϕy)

for every finite connected set Λ and each ϕΛ ∈ ΩΛ
0 (see [22, Formula 12.4]). If the

transition matrices Px,y are homogeneous, i.e. independent of the bond, and α is
the invariant distribution, then the measure µ will possess all tree-symmetries,
i.e. µ is invariant under all graph automorphisms of V .

What is an equivalent of this in our case of gradient measures, and how do
we get tree-symmetries? As we will see in the following, if we pin at a vertex
w ∈ V and average over the fuzzy classes s ∈ Zq according to the suitable
measure, which is in fact the invariant distribution of the fuzzy transform, we
get full tree-invariance.

Let us assume that Qb = Q for all b ∈ E. Until now T could have been
any locally finite tree. From now on we will restrict ourselves to the case of the
d-regular Cayley tree, i.e. |∂x| = d+ 1 for every x ∈ V .
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We call a vector l ∈ (0,∞)Z a (spatially homogeneous) boundary law if there
exists a constant c > 0 such that the consistency equation

l(i) = c
(∑
j∈Z

Q(i− j)l(j)
)d

(4.1)

is satisfied for every i ∈ Z.
Note that by assumption l(i) = 1 for every i ∈ Z is always a solution. Given

such a homogeneous boundary law l we get for the associated transition matrix

P (i, j) =
Q(i− j)l(j)∑
k∈ZQ(i− k)l(k)

.

We recall that P̄ : Zq × Z 7→ [0, 1] is then given by

P (i, j) =: P̄ (Tq(i), j − i).

Furthermore, let the fuzzy transform TqP : Zq × Zq → [0, 1] be defined by

TqP (̄i, j̄) =
∑

j:Tq(j)=j̄

P (̄i, j) =: P ′(̄i, j̄) (4.2)

for all layers ī, j̄ ∈ Zq.

Theorem 4.1. Let Λ ⊂ V be any finite connected set and let w ∈ Λ be any
vertex. Let α(l) ∈ M1(Zq) denote the unique invariant distribution for the
fuzzy transform TqP

l of the transition matrix P l corresponding to the q-periodic
homogeneous boundary law l. Then the measure ν ∈ M1(Ω∇) with marginals
given by

ν(ηΛ = ζΛ) =
∑
ϕ′

w∈Zq

α(l)(ϕ′w)
∏

〈x,y〉∈
−→
Ew:x,y∈Λ

P̄x,y

(
Tq

(
ϕ′w +

∑
b∈Γ(w,x)

ζb

)
, ζ〈x,y〉

)
(4.3)

defines a (spatially) homogeneous GGM.

Remark 4.1. The gradient measures we constructed are non-trivial linear com-
binations of gradient measures which are non-homogeneous w.r.t. tree automor-
phisms but obtained with an “initial condition” at a singled out site w. They are
averaged quenched measures of tree-indexed Markov chains in periodic environ-
ment (what probabilists often would call “annealed measures”). To get spatial
homogeneity the average α over the environment is chosen in the following way:

If we choose an initial fuzzy configuration ϕ′w at the site w according to α,
then the variables Tq

(
ϕ′w +

∑
b∈Γ(w,x) ζb

)
have the very same distribution α.

Hence this mixing measure α must be the invariant distribution for the fuzzy
transform.
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Proof. The proof consists of considering the non-normalized measure

(i, j) 7→ l(i)Q(i− j)l(j), (4.4)

with i, j ∈ Z. In a situation of finite local state spaces that would be a measure
which is normalizable to a probability measure. In our situation this may be
the case, for rapidly decaying l(i)’s, but in interesting cases, and in particular
for height-periodic boundary laws, this is certainly not the case. Nevertheless,
by dividing out the height-period q we obtain all desired objects, namely all
relevant single-site probability measures and transition kernels in terms of simple
expressions.

The invariant distribution of the fuzzy transition matrix (4.2) is given by

α(̄i) =
l(̄i)

∑
j∈ZQ(̄i− j)l(j)∑

k̄∈Zq
l(k̄)

∑
j∈ZQ(k̄ − j)l(j) (4.5)

for ī ∈ Zq. It is readily verified that α is indeed invariant under the application
of P ′. From this we have that reversibility for α and P̄ in the following form
holds:

α(̄i)P̄ (̄i, j − i) =
l(i)Q(i− j)l(j)∑

k̄∈Zq
l(k̄)

∑
m∈ZQ(k −m)l(m)

= α(j̄)P̄ (j̄, i− j),
(4.6)

where i, j are any integers such that

Tq(i) = ī, Tq(j) = j̄.

The formula describes an interplay (a reversibility) of invariant distribution on
layers and layer-dependent transition matrix.

The spatial homogeneity of the layer-averaged pinned gradient measures as
given in (4.3) can now be seen as follows:

For a volume consisting of two neighboring sites, the spatial homogeneity is
just the previous reversibility formula (4.6).

For general finite subtrees Λ we use induction over the number of sites, with
hypothesis: The r.h.s. of (4.3) yields the same expression for all pinning sites
w ∈ Λ. Consider now a larger volume Λ′ = Λ ∪ {v}, where v is a site adjacent
to Λ. To see that ν(ηΛ′ = ζΛ′) can be written in the form of a r.h.s. of (4.3)
with also the pinning site v allowed we argue as follows. First use the induction
hypothesis to write ν(ηΛ′ = ζΛ′) in terms of the pinning site vΛ (which we
recall is the unique neighbor of v such that vΛ ∈ Λ). Next use the reversibility



Gradient Gibbs measures 573

equation (4.6) to switch the pinning site to v:

ν(ηΛ′ = ζΛ′)

=
∑

ϕ′
vΛ
∈Zq

α(l)(ϕ′vΛ
)

∏
〈x,y〉∈~EvΛ

:x,y∈Λ

P̄x,y

(
Tq

(
ϕ′vΛ

+
∑

b∈Γ(vΛ,x)

ζb

)
, ζ〈x,y〉

)
=

∑
ϕ′

vΛ
∈Zq

∏
〈x,y〉∈~EvΛ

:x,y∈Λ\〈vΛ,v〉

P̄x,y

(
Tq

(
ϕ′vΛ

+
∑

b∈Γ(vΛ,x)

ζb

)
, ζ〈x,y〉

)
× α(l)(ϕ′vΛ

)× P̄vΛ,v

(
Tq(ϕ

′
vΛ

), ζ〈vΛ,v〉
)

=
∑
ϕ′

v∈Zq

∏
〈x,y〉∈~EvΛ

:x,y∈Λ\〈vΛ,v〉

P̄x,y

(
Tq

(
ϕ′v +

∑
b∈Γ(v,x)

ζb

)
, ζ〈x,y〉

)
× α(l)(ϕ′v + ζ〈v,vΛ〉)× P̄vΛ,v

(
Tq(ϕ

′
v + ζ〈vΛ,v〉), ζ〈vΛ,v〉

)︸ ︷︷ ︸
=α(l)(ϕ′

v)×P̄v,vΛ

(
Tq(ϕ′

v),ζ〈v,vΛ〉

)
=
∑
ϕ′

v∈Zq

α(l)(ϕ′v)
∏

〈x,y〉∈~Ev :x,y∈Λ

P̄x,y

(
Tq

(
ϕ′v +

∑
b∈Γ(v,x)

ζb

)
, ζ〈x,y〉

)
. (4.7)

It remains to prove that ν is indeed a gradient Gibbs measure in the sense
that it satisfies the DLR equation w.r.t. the gradient specification, i.e.

ν(· | TΛ) = γ′Λ (4.8)

ν-almost surely for all finite sub-volumes Λ ⊂ V . At first, consider the pinned
gradient measures νw,s. As has been noted before these measures are no gradient
Gibbs measures, but they do have a restricted gradient property which holds for
conditional probabilities in volumes away from the pinning site. More precisely:
Let ζ, ω ∈ Ω∇ be any two gradient configurations, Λ,∆ ⊂ V any finite connected
sets with Λ ⊂ ∆ and w ∈ (∆ ∪ ∂∆) \ Λ. Then by using representation (3.4) we
see that

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

νw,s(ηΛ∪∂Λ = ωΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

=
( ∏
b∩Λ6=∅

Qb(ζb)

Qb(ωb)

)
1{[ζ]∂Λ=[ω]∂Λ},

(4.9)

where we have used cancellations of the boundary law terms due to combined
information of relative height information [ω]∂Λ and layer information due to
the pinning to layer s at site w outside of Λ (see Figure 6). (Note that this
cancellation of boundary law terms can not be used for pinning vertices w inside
of Λ.)
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u
w

ω〈w,u〉

vΛ

v

lvvΛ

Λ

∆ ∪ ∂∆

[ω∂Λ]

Figure 6. For pinned layer at vertex w ∈ (∆ ∪ ∂∆) \ Λ the relative height
information [ω∂Λ] along with the gradient configuration ω〈w,u〉 allows to recover
the layer at any vertex v ∈ ∂Λ. Therefore the boundary law lvvΛ does not
depend on the gradient configuration inside Λ.

Summing over ζΛ∪∂Λ yields

νw,s(ηΛ∪∂Λ = ωΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

=

∏
b∩Λ6=∅Qb(ωb)∑

ζΛ∪∂Λ

(∏
b∩Λ6=∅Qb(ζb)

)
1{[ζ]∂Λ=[ω]∂Λ}

= γ′Λ(ωΛ∪∂Λ | [ω]∂Λ, ω(∆∪∂∆)\Λ).

(4.10)

Clearly

νw,s(ηΛ∪∂Λ = ρΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

= γ′Λ(ρΛ∪∂Λ | [ω]∂Λ, ω(∆∪∂∆)\Λ) = 0
(4.11)

for any ρ ∈ Ω∇ with [ρ]∂Λ 6= [ω]∂Λ and hence the restricted gradient Gibbs
property holds.

This property is now sufficient to prove that the spatially homogeneous gra-
dient measure ν is indeed a GGM: Under the same assumptions as before we
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have

ν(ηΛ∪∂Λ = ρΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

=
∑
s∈Zq

α(s)νw,s(ηΛ∪∂Λ = ρΛ∪∂Λ | [η]∂Λ = [ω]∂Λ, η(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

=
∑
s∈Zq

α(s)γ′Λ(ρΛ∪∂Λ | [ω]∂Λ, ω(∆∪∂∆)\Λ)

= γ′Λ(ρΛ∪∂Λ | [ω]∂Λ, ω(∆∪∂∆)\Λ), (4.12)

where we have switched the pinning vertex w to some vertex outside Λ in the
second step and then used the restricted gradient Gibbs property. Hence, the
measure ν meets the DLR equation (4.8) and therefore ν ∈ G∇(γ). 2

Remark 4.2. These GGMs also have a different representation which does not
make explicit use of the invariant distribution α of the fuzzy transition matrix
P ′. Let Λ ⊂ V be any finite connected sub-volume and w ∈ Λ some pinning
vertex. Then the measures given by (4.3) can be written as

ν(ηΛ∪Λ = ζΛ∪∂Λ) = cΛ
∑
k∈Zq

( ∏
y∈∂Λ

lyyΛ

(
k +

∑
b∈Γ(w,y)

ζb

) ∏
b∩Λ6=∅

Qb(ζb)
)
. (4.13)

Indeed, for a single-site volume Λ = {w} representation (4.3) of the GGM gives
us

ν(ηw∪∂w = ζw∪∂w)

=
∑
k∈Zq

α(k)c(w, k)
∏
y∈∂i

lyw(k + ζyw)Qyw(ζyw)

=
∑
k∈Zq

(
l(k)

∑
j∈ZQ(k − j)l(j)∑

m∈Zq
l(m)

∑
j∈ZQ(m− j)l(j)

(
1∑

j∈ZQ(k − j)l(j)

)d+1

×
∏
y∈∂i

lyw(k + ζyw)Qyw(ζyw)

)
= cw

∑
k∈Zq

∏
y∈∂w

lyw(k + ζyw)Qyw(ζyw),

(4.14)

where cw > 0 is a normalizing constant. In the second step we have used that
l is a boundary law and hence l(k)/(

∑
j∈ZQ(k − j)l(j))d is a constant. For

larger sub-volumes Λ the statement follows from a simple induction argument
by using again the consistency property of boundary laws (2.11).

As mentioned in words before, we can also get the tree-automorphism in-
variant measure ν as a weak limit when we send the pinning vertex w to infinity
along any path, that is ν = limw↑∞ τwνw,s for any class s, where τw is the shift
of the pinning point.
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5. Applications

5.1. Examples of GGMs for q-periodic boundary laws with q ≤ 4

A spatially homogeneous boundary law l ∈ (0,∞)Z on the Cayley tree of
degree d has to satisfy the recursive relation equation (4.1). If l is assumed
to be q-periodic there exist positive constants a0, a1, . . . , aq−1, s.t. l(i) = ak if
i mod q = k. Note that we can always normalize a boundary law s.t. a0 = 1.
Under this assumption (4.1) reduces to

ak = c
(
akQ(0) +

q∑
m=1

(
(ak+m + ak−m)

∞∑
j=0

Q(qj +m)
))d

(5.1)

for any k ∈ Zq. In the simplest possible non-trivial case of a 2-periodic boundary
law (b.l.), i.e. l(i) = 1 for i mod 2 = 0 and l(i) = a for i mod 2 = 1 with a > 0,
the system of boundary law equations becomes

1 = c
(
Q(0) + 2

∞∑
j=1

Q(2j) + 2a

∞∑
j=0

Q(2j + 1)
)d
,

a = c
(

2

∞∑
j=0

Q(2j + 1) + a
(
Q(0) + 2

∞∑
j=1

Q(2j)
))d

.

(5.2)

Let us assume that we have a binary tree, i.e. d = 2. Introducing u =
√
a we

have

u =
u2 + 2u2

∑∞
j=1Q(2j) + 2

∑∞
j=0Q(2j + 1)

Q(0) + 2
∑∞
j=1Q(2j) + 2u2

∑∞
j=0Q(2j + 1)

. (5.3)

In the case of the SOS-model, i.e. Qβ(i, j) = e−β|i−j| with β ∈ (0,∞) being a
free parameter (inverse temperature), we are left to solve the equation

(u− 1)
(
u2 + (1− cosh(β))u+ 1

)
= 0. (5.4)

Apart from the trivial solution u1 = 1 the additional non-negative solutions

u2,3 =
cosh(β)− 1

2
±

√
cosh2(β)− 2 cosh(β)− 3

2
(5.5)

appear for cosh(β) ≥ 3. Note that the corresponding boundary laws clearly do
not meet the normalization requirement by Zachary (3.3).

A more indirect approach for a Cayley tree of arbitrary degree is described
in the following. Note that the solutions we have found correspond to Ising-type
boundary laws with some suitable interaction potential Ũ : In the regular Ising
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model with state space Ω = {−1,+1}V the b.l.’s are of the form l = (1, a), a > 0,
and the consistency equation boils down to

a =
( Q̃(−,+) + aQ̃(+,+)

Q̃(−,−) + aQ̃(+,−)

)d
, (5.6)

where
Q̃(−,−) = Q̃(+,+) = exp(−Ũ(+,+))

and
Q̃(−,+) = Q̃(+,−) = exp(−Ũ(+,−)).

Compare to [22, Formula 12.21]. The second equation of (5.2) is therefore of
Ising-type with

−Ũ(+,+) = log Q̃(+,+) = log
(
Q(0) + 2

∞∑
j=1

Q(2j)
)

= − log tanh(β) (5.7)

and

−Ũ(+,−) = log Q̃(+,−) = log
(

2

∞∑
j=0

Q(2j + 1)
)

= − log sinhβ. (5.8)

By adding a suitable constant c ∈ R to Ũ this interaction potential can be
chosen to have the usual form

Ũ(σi, σj) = −β̃σiσj + c.

Indeed, in this case

−Ũ(+,+) = − log tanh(β) = β̃ − c,
−Ũ(+,−) = − log sinh(β) = −β̃ − c,

(5.9)

which leads to

c(β) =
1

2
log

sinh2(β)

cosh(β)
, β̃(β) =

1

2
log cosh(β). (5.10)

For the Ising model on the Cayley tree of order d it is well known that the critical
value for the inverse temperature is given by β̃c,d = coth−1(d), i.e. there exist

multiple solutions to the b.l. equation if and only if β̃ > β̃c,d [32]. As β 7→ β̃(β) is

a positive and monotone increasing function for β ∈ (0,∞) with limβ→∞ β̃(β) =
∞ there is also a critical value βc,d for the existence of multiple solutions to the
gradient b.l. equations, namely βc,d = cosh−1(exp(2 coth−1(d))) = cosh−1((d+
1)/(d− 1)). For d = 2 the critical value is βc,2 = cosh−1(3), which confirms our
earlier result.
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For q = 3 the b.l.s are of the form (1, a, b), a, b > 0 and the b.l. equations for
the q-periodic gradient situation are given by

a =
(
a
(
Q(0) + 2

∞∑
j=1

Q(3j)
)

+ (1 + b)
( ∞∑
j=0

Q(3j + 1) +

∞∑
j=0

Q(3j + 2)
))d

×
(
Q(0) + 2

∞∑
j=1

Q(3j) + (a+ b)
( ∞∑
j=0

Q(3j + 1) +

∞∑
j=0

Q(3j + 2)
))−d

=
(
a
(

1 +
2

exp{3β} − 1

)
+ (1 + b)

( cosh(β/2)

sinh(3β/2)

))d
×
(

1 +
2

exp{3β} − 1
+ (a+ b)

cosh(β/2)

sinh(3β/2)

)−d
(5.11)

and

b =
(
b
(
Q(0) + 2

∞∑
j=1

Q(3j)
)

+ (1 + a)
( ∞∑
j=0

Q(3j + 1) +

∞∑
j=0

Q(3j + 2)
))d

×
(
Q(0) + 2

∞∑
j=1

Q(3j) + (a+ b)
( ∞∑
j=0

Q(3j + 1) +

∞∑
j=0

Q(3j + 2)
))−d

=
(
b
(

1 +
2

exp{3β} − 1

)
+ (1 + a)

( cosh(β/2)

sinh(3β/2)

))d
×
(

1 +
2

exp{3β} − 1
+ (a+ b)

cosh(β/2)

sinh(3β/2)

)−d
. (5.12)

For the regular Potts model with q = 3 with an interaction potential Ũ(σi, σj) =

−β̃1σi=σj
− c, c ∈ R, and boundary law l = (1, a, b) the b.l. equations are of a

similar form

a =
(aeβ̃+c + (1 + b)ec

eβ̃+c + (a+ b)ec

)d
and b =

(beβ̃+c + (1 + a)ec

eβ̃+c + (a+ b)ec

)d
. (5.13)

Hence,

eβ̃+c = 1 +
2

e3β − 1
=

cosh(3β/2)

sinh(3β/2)
, ec =

cosh(β/2)

sinh(3β/2)
, (5.14)

which gives us

β̃(β) = log
cosh(3β/2)

cosh(β/2)
= log(2 cosh(β)− 1). (5.15)

For the binary tree the critical value for the inverse temperature is known to
be β̃c,2 = log(1 + 2

√
2) [36]. As the map β 7→ β̃(β) is again non-negative and
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monotone increasing with limβ→∞ β̃(β) = ∞, there also exists a critical value
βc,2 for the existence of multiple solutions of the gradient b.l. equations, which
is given by

log(2 cosh(βc,2)− 1) = log(1 + 2
√

2)⇔ βc,2 = cosh−1(1 +
√

2). (5.16)

For q ≥ 4 however it is not difficult to see that the gradient b.l. equations
are in general no longer of Potts-type. However let l be a 4-periodic b.l. of the
particular form

l(i) =

{
1, for i mod q ∈ {0, 1},
a, for i mod q ∈ {2, 3}.

Then the gradient b.l. equations turn into

a =
( ∞∑
j=0

Q(2j + 1)+2

∞∑
j=0

Q(4j + 2)+a
(
Q(0)+

∞∑
j=0

Q(2j + 1)+2

∞∑
j=1

Q(4j)
))d

×
(
Q(0)+

∞∑
j=0

Q(2j+1)+2

∞∑
j=1

Q(4j)+a
( ∞∑
j=0

Q(2j+1)+2

∞∑
j=0

Q(4j+2)
))−d

=
( 1

2 sinhβ
+

1

sinh(2β)
+ a
(

1 +
1

2 sinhβ
+ e−2β 1

sinh(2β)

))d
×
(

1 +
1

2 sinhβ
+ e−2β 1

sinh(2β)
+ a
( 1

2 sinhβ
+

1

sinh(2β)

))−d
.

(5.17)

Again, this is now a b.l. equation of Ising type with

−Ũ(+,+) = log

(
1 +

1

sinhβ
+ e−2β 1

sinh(2β)

)
= β̃ − c (5.18)

and

−Ũ(+,−) = log

(
1

2 sinhβ
+

1

sinh(2β)

)
= −β̃ − c. (5.19)

Solving this system of equations for β̃ leads to

β̃(β) =
1

2
log (2 cosh(β)− 1) . (5.20)

It is easily seen that this map is non-negative and monotone increasing with
limβ→∞ β̃(β) =∞. Once more we make use of the known critical value for the

Ising model, i.e. β̃c,d = coth−1(d). The critical value βc,d for the existence of
multiple solutions to the gradient b.l. equations is therefore given by

1

2
log (2 cosh(βc,d)− 1) = coth−1(d),
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which means that βc,d = cosh−1(d/(d− 1)).
Note that for q ≥ 5 non-trivial boundary laws of the type

l(i) =

{
1, for i mod q ∈ {0, . . . , bq/2c}
a, for i mod q ∈ {bq/2c+ 1, . . . , q − 1}

will not exist since the b.l. equations will be over-determined in this case. How-
ever we will see in the following section how to construct models which allow
the existence of multiple q-periodic boundary laws with q ≥ 5.

5.2. Construction of solvable models for higher values of q

In the example above we have studied the periodic gradient b.l. equations for
a specific choice of Q. We have seen that for q = 2 and q = 3 these models can
be solved rigorously as they turn into an Ising and a Potts model respectively
modulo monotone rescaling. Conversely, for higher values of q ∈ N it is always
possible to construct a transfer operator Q such that the gradient b.l. equations
for the q-periodic case are of the Potts-type:

Note that, for any allowed transfer operator Q on Z, the equation for q-
periodic boundary laws is equivalent to an equation for a clock-model (that is
a Zq-invariant model on Zq). Indeed

ai = c
(∑
j∈Z

Q(i− j)aj
)d

= c
(∑
j̄∈Zq

TqQ(i− j̄)aj̄
)d

(5.21)

for every i ∈ Zq, where TqQ : Z→ R is given by TqQ(m) =
∑
j∈ZQ(qj +m).

Note also the obvious fact that the fuzzy-transformed function m 7→ TqQ(m)
describing the transition operator of the finite-dimensional model inherits the
symmetry w.r.t. reflections of the spin-difference from the original model, i.e.
TqQ(m) = TqQ(−m). Equivalently, we can say that the transfer operator de-
scribed by TqQ is a circulant matrix with additional reflection symmetry.

Hence we see that the dimension of the set of possible TqQ’s modulo constant
is D(q) = bq/2c. In particular, D(2) = 1 and so any model on Z is mapped
to an Ising-model with an effective inverse temperature. Similarly D(3) = 1,
and so we are back to Potts-model with its own effective inverse temperature.
This allows to reduce the structure of b.l. solutions for any Z-model for periods
q = 2, 3 to the known results for the Ising model and the Potts model.

For q ≥ 4 the gradient boundary law equations (2.11) no longer necessarily
reduce to the Potts-type for any given transfer operator Q. However we can
readily construct a family of transfer operators which are mapped to the Potts
model under the fuzzy map Tq: In this case the fuzzy transfer operator m 7→
TqQ(m) should be given by

TqQ(0) =
eβ̃

eβ̃ + q − 1
and TqQ(m) =

1

eβ̃ + q − 1
(5.22)
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for any m ∈ {1, . . . , q − 1}, where β̃ > 0 is again the inverse temperature of the
model. We can now define a transfer operator which meets these equations by
simply putting

Q(m) =


eβ̃(eβ̃ + q − 1)−1 if m = 0,

0 if |m| > bq/2c,
(eβ̃ + q − 1)−1 else .

(5.23)

Since this transfer operator is no longer strictly positive on Z, it is necessary to
adjust the state space Ω accordingly, such that the local specification remains
well defined by (2.5). This can be guaranteed by setting

Ω = {ω ∈ ZV | |ωi − ωj | ≤ k · d(i, j) for all i, j ∈ V }. (5.24)

As the proofs of Theorems 3.1, 3.2 and 4.1 do not rely on the positivity of the
transfer operator, it is possible to construct GGMs as before, and furthermore,
there is an effective inverse temperature such that multiple solutions to the b.l.
equation exist. Not requiring strict positivity for all of Z makes our setup more
general than the classical Gibbsian setup, since we do not have non-nullness
for the specification. On the other hand, it is natural to incorporate also such
cases, as they incorporate the standard nearest neighbor random walk. If we
do insist on non-nullness, we can still define Q in such a way (adding suitable
exponentially decaying terms) that we recover our clock-models as inverse image
of the Potts model: Define Q(k) = e−βk for all |k| > bq/2c with β > 0, and

ϕm(β) :=
∑

j∈Z\{0}

Q(qj +m) (5.25)

for |m| ≤ bq/2c. Clearly limβ→∞ ϕm(β) = 0. Setting Q(k) = TqQ(k)−ϕk(β) for
all |k| ≤ bq/2c and choosing β large enough, the constructed transfer operator
Q will be strictly positive and is mapped to the Potts model under the fuzzy
transform.

For the q-state Potts model on a binary tree the tree-automorphism invari-
ant boundary laws are known and they form a rich class [29]. Our above remark
shows that there are gradient models which have q-periodic boundary laws cor-
responding to the Potts boundary laws. This means that there are very many
non-trivial gradient measures.

5.3. Correlation decay is governed by the fuzzy chain

We remark that extremality of gradient Gibbs measures is equivalent to tail-
triviality when we use the tail sigma-algebra T :=

⋂
Λ⊂⊂V TΛ. Note that this

sigma-algebra keeps the asymptotic relative height information (and is bigger
than the “naive” tail-algebra

⋂
Λ⊂⊂V FΛc . This can be seen by similar ar-

guments as in [22, Chapter 7.1] (using the sigma-algebra of events which are
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Figure 7. The disjoint subsets U,W are connected via the path {b1, b2, b3}.

almost surely invariant under application of all kernels γ′Λ, and showing that
this sigma-algebra is, up to µ′-nullsets, equal to the tail-events T ).

A warning is in order. One may be tempted to think that the expression of
equation (4.3) implies non-extremality of the l.h.s. in the set of GGMs, since it
defines GGMs as certain mixtures. This argument would be wrong, as the mix-
ture is made over measures which are not GGMs, and the phenomenon is more
subtle and deserves further investigation. It is well known that the extremality of
Gibbs measures is equivalent to having short-range correlations (see [22, Propo-
sition 7.9]). Even though we are not able to prove (non-)extremality of GGMs
via this criterion, we show in the following how their correlation decay is gov-
erned by the fuzzy chain. This result might be useful for future analysis.

Let Λ ⊂ V and ∆ ⊂ V be any finite connected sets with d(Λ,∆) =
inf{d(u,w) | u ∈ Λ, w ∈ ∆}. Assume d(Λ,∆) = n. Hence there exists a unique
path Γ = {b1, b2, . . . , bn} of length n connecting the two vertices u ∈ Λ and

w ∈ ∆ which realize the infimum. Furthermore let ζΛ ∈ Z~E(Λ) and ζ∆ ∈ Z~E(∆)

be any two gradient configurations on the sub-volumes Λ and ∆ respectively.
We have

ν(1ηΛ=ζΛ 1η∆=ζ∆) =
∑
s∈Zq

α(s)νu,s(1ηΛ=ζΛ)

×
∑

ζb1
,ζb2

,...,ζbn

n∏
N=1

P̄
(
Tq

(
s+

N−1∑
k=1

ζbk

)
, ζbN

)
νw,s̃(1η∆=ζ∆),

(5.26)
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where s̃ = Tq(s+
∑n
k=1 ζbk). Using the transition matrix of the fuzzy chain P ′

the r.h.s. of (5.26) can be rewritten as∑
s∈Zq

α(s)νu,s(1ηΛ=ζΛ)
∑
s̃∈Zq

(P ′)
n

(s, s̃)νw,s̃(1η∆=ζ∆). (5.27)

Hence, the covariance of 1ηΛ=ζΛ and 1η∆=ζ∆ under the GGMs of the form (4.3)
is given by∣∣ν(1ηΛ=ζΛ1η∆=ζ∆)− ν(1ηΛ=ζΛ)ν(1η∆=ζ∆)

∣∣
≤
∑
s∈Zq

α(s)νu,s(1ηΛ=ζΛ) |νu,s(1η∆=ζ∆)− ν(1η∆=ζ∆)|

≤
∑
s∈Zq

α(s)νu,s(1ηΛ=ζΛ)
(∑
s̃∈Zq

∣∣(P ′)n (s, s̃)− α(s̃)
∣∣)νw,s̃(1η∆=ζ∆)

≤ 2 ν(1ηΛ=ζΛ)
(
max
s∈Zq

||(P ′)n(s, ·)− α||TV
)(

max
s̃∈Zq

νw,s̃(1η∆=ζ∆)
)
,

(5.28)

where || · ||TV denotes the total variational distance. Note that the finite state
transition matrix P ′ ∈ M(q × q;R) always has strictly positive entries. This
is certainly true for models where the transfer operator Q is defined via an
interaction potential (2.4), and also holds for the not strictly positive transfer
operators we constructed in (5.23). Hence the fuzzy Markov chain associated
with P ′ is aperiodic and irreducible and it follows from the Convergence Theo-
rem for Markov chains [31, Theorem 4.9] that there exist constants C > 0 and
δ ∈ (0, 1) s.t. maxs∈Zq

‖ (P ′)
n

(s, ·)− α‖TV ≤ Cδn for all n ∈ N.

5.4. Ising classes. Identifiability of gradient Gibbs measures in terms
of boundary laws

In the following we will restrict ourselves to the case of Ising classes, i.e. q-
periodic boundary laws with q = 2. So far we have seen that q-periodic boundary
laws allow the construction of GGMs via equation (4.3). Note that there can be
at most 3 b.l. solutions, namely the trivial one l ≡ 1, and possibly non-trivial
ones, of the form (1, a) and (a, 1). These boundary laws favor even (respectively
odd) layers. An inspection of formula (4.13) shows that the gradient measure ν
is the same for both non-trivial boundary law solutions. More generally, for any
q the boundary laws in the orbit of a q-periodic boundary law l, generated by
the shifts j ∈ Z, that is (l(i))i∈Z 7→j (l(i+ j))i∈Z, all result in the same gradient
Gibbs measure ν.

On the other hand, the non-trivial boundary law always results in a different
gradient measure than the trivial one. To see this, let l(i) = a for i mod 2 = 1,
and l(i) = 1 for i mod 2 = 0.



584 C. Külske and P. Schriever

Using the alternative representation (4.13), the single-bond marginal for this
measure is given by

νl(ηb = ζb) =
1

Zbl
Q(ζb)

∑
s∈Zq

l(s)l(s+ ζb), (5.29)

where Zbl is a normalizing constant. If νl and ν1 were the same measure we
would have

νl(ηb = 0)

ν1(ηb = 0)
=
Zb1

Zbl
(1 + a2)/2 = 1,

νl(ηb = 1)

ν1(ηb = 1)
=
Zb1

Zbl
a = 1.

(5.30)

which implies a = 1.
A similar identifiability statement holds for general q. More precisely, a

nontrivial boundary law given by l(i) = a 6= 1 for i mod q = 0, and l(i) = 1
else, yields a different GGM than the trivial boundary law. This is shown by a
single-bond computation analogous to (5.30).

6. Appendix

6.1. Coupling measure ν̄, Gibbsian preservation under transform of
measure

Answering a question of Aernout van Enter, let us make an additional com-
ment on the structure which has unfolded. We have frequently used projections
of the spins to different directions: On the one hand an infinite-volume spin-
configuration ω 7→Tq ω′ maps to a mod-q fuzzy spin ω′, via our fuzzy map
Tq(i) = i mod q. On the other hand, an infinite-volume spin-configuration
ω = (ωw, ζ) 7→∇ ζ also maps to a gradient configuration. The additional infor-
mation needed to recover the spin is provided by its value ωw at a pinning site
w.

Let us call an infinite-volume gradient configuration ζ and an infinite-volume
fuzzy spin configuration ω′ compatible iff there exists an infinite-volume spin-
configuration ω for which Tqω = ω′ and ∇ω = ζ. This is to say that the two
configurations have a joint lift to a proper spin configuration.

The defining function Q(m) = exp{−U(m)} of the gradient model also has
a natural mod-q-fuzzy image, namely

Q′(m) := TqQ(m) =
∑
j∈Z

Q(qj +m).

Taking a logarithm Q′ describes a renormalized Hamiltonian for a clock model
on Zq.



Gradient Gibbs measures 585

Suppose now we are on a regular tree and have found an (in height-direction)
q-periodic tree-automorphism invariant boundary law l. The definition of the
GGMs ν which are mixed over the fuzzy chain (see formula (4.3)) extends in a
natural way to a joint measure (or coupling measure) ν̄(dω′, dζ). This coupling
measure has the following properties:

1. ν̄
(
ω′and ζ are compatible

)
= 1.

2. The marginal on gradients ν̄(dζ) is a tree-automorphism invariant GGM.

3. The marginal on fuzzy spins ν̄(dω′) is a tree-automorphism invariant finite-
state Gibbs measure for Q′.

The definition of ν̄ is given by spelling out its expectation ν̄(F ) on a bounded
local observable F (ζΛ, ω

′
Λ) on gradient variables and layer variables in a finite

volume Λ. The formula says that we need to substitute the layer variables which
are obtained by pinning the layer at one site, and the gradient information ζ
and it reads

ν̄(F ) =
∑
ζΛ

∑
ϕ′

w∈Zq

α(l)(ϕ′w)
∏

〈x,y〉∈
−→
Ew:x,y∈Λ

P̄x,y

(
Tq

(
ϕ′w +

∑
b∈Γ(w,x)

ζb

)
, ζ〈x,y〉

)
× F

(
ζΛ,
(
Tq

(
ϕ′w +

∑
b∈Γ(w,x)

ζb

))
w∈Λ

)
. (6.1)

Here we have assumed that the pinning site w is in the finite volume Λ.
Then the first property follows by construction, the second is the content

of Theorem 4.1, and the last one follows using the relation between P ′ and P̄
given by (4.2).

Let us comment now on similarities and differences between earlier uses
of transformations of Gibbs measures. On the one hand, one may say that
Property 3 feels like an example of a preservation of the Gibbs property under
the map Tq, and one of the nice situations where “Gibbs goes to Gibbs”. This
is not completely true, as there is an important difference, and the situation is
slightly more complicated. While fuzzy spins ω′ ∈ Ω′ := (Zq)V have a natural
tree-invariant distribution, namely the fuzzy chain which is Gibbs for Q′, and
gradient configurations ζ ∈ Ω∇ have a tree-invariant GGM, this is not true for
the spins. Spins ω ∈ Ω do not have a natural tree-invariant measure, hence
the fuzzy chain is not the direct image of a hypothetical measure on spins, as
it usually is in studies of RG transforms when one starts from a well-defined
measure on the spins. The best one can do to relate fuzzy spins and gradients
is via the coupling measure ν̄.

In this sense the theory presented in this paper is a generalization of a con-
structive use of transformations for which Gibbs goes to Gibbs, via the coupling
described above in (6.1).
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G′MC(TqQ) ⊂ M1(Ω
′)

BLq ν̄·(BLq) ⊂ Mcp
1 (Ω′,Ω∇)

G∇(Q) ⊂ M1(Ω
∇)

BLNorm GMC(Q) ⊂ M1(Ω)

ν· : l 7→ νl
⊂ ⊂

fuzzy spins ω′

compatible (ω′, η)

gradients η

spins ω

(ω′, η) 7→ ω′

(ω′, η) 7→ η

ν̄· : l 7→ ν̄l

ν·Zac : l 7→ νl

Figure 8. The relationship between q-periodic b.l.’s and the (gradient) Gibbs
measures is displayed above the dashed line. The classical theory by Zachary for
normalizable b.l.’s is visualized below the dashed line. Note that ν·Zac : l 7→ νl

symbolizes the mapping which sends every normalizable b.l. to a tree-indexed
Markov chain which is a Gibbs measure [43]. Here all objects appearing are
assumed to be tree automorphism invariant.

In Figure 8 the main result of our paper, Theorem 4.1, is visualized as the
curved arrow. Here we have denoted the set of q-periodic tree invariant b.l.’s
by BLq, the set of Gibbs measures on the fuzzy spins which are tree-indexed
Markov chains (splitting Gibbs measures) by G′MC(TqQ), the set of tree-invariant
measures on the fuzzy spins byM1(Ω′), the set of coupling measures on (Ω∇,Ω′)
which correspond to a b.l. via (6.1) by ν̄·(BLq), the set of measures on the
set of compatible gradient and fuzzy configurations which are tree-invariant by
Mcp

1 (Ω∇,Ω′) and the set of tree-invariant measures on Ω∇ by M1(Ω∇).
Below the dashed line we have also given a visualization of the classical

theory of Zachary [43] and its correspondence to our results. Every normalizable
tree-invariant boundary law l ∈ BLNorm corresponds to a Gibbs measure which
is a Markov chain. This set of measures is denoted by GMC(Q). Conversely,
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every ν ∈ G(Q) which is also a Markov chain can be represented by a b.l. which
is unique (up to a positive pre-factor). The set of measures GMC(Q) can be
thought of as a subset of the gradient Gibbs measures G∇(Q), as any Gibbs
measure gives rise to a gradient measure, but not vice versa. Note that by the
theory of Zachary applied to finite local state space, there is also a one-to-one
correspondence between the elements of G′MC(TqQ) and BLq. All the objects we
construct above the dashed line are new. They are not contained in the theory
of Zachary, as ν·(BLq) ⊂ G∇(Q) \ GMC(Q), that is our gradient Gibbs measures
live in the delocalized regime and can not be understood as projection of Gibbs
measures to the gradient variables.

6.2. Mixtures of layer-dependent chains on the tree Z lack the Gibbs
property

It is interesting to discuss the necessity of our trees having degree d+1 ≥ 3 for
our construction by means of the following example on the integers. Answering
a question of Roberto Fernández it shows that we may construct translation-
invariant gradient measures in one dimension as non-trivial mixtures of pinned
measures appearing from layer-dependent transition probabilities, but they will
be lacking the Gibbs property.

We will consider two classes, i.e. q = 2. We build a translation-invariant
gradient measure in terms of mixtures as follows. This illustrates the first aspect
of Theorem 4.1. Let us use notation as in Theorem 3. Take two layer-dependent
Markov chains living on Z whose transition probabilities to make a step ζ ∈
{−1, 0, 1} starting from a layer of type 1 (or 0 respectively) are given by

P̄ (1, ζ) = ε11|ζ|=1 + (1− 2ε1)1|ζ|=0,

P̄ (0, ζ) = ε01|ζ|=1 + (1− 2ε0)1|ζ|=0

(6.2)

with ε1 6= ε0. We define a corresponding fuzzy chain on the state space {0, 1}
by P ′(0, 0) = 1 − 2ε0, P ′(0, 1) = 2ε0, P ′(1, 0) = 2ε1, P ′(1, 1) = 1 − 2ε1. Its
invariant distribution is given by α(1)/α(0) = ε0/ε1. It is then easy to see
that formula (6.1) defines a translation-invariant measure on fuzzy spins and
gradients. Is the marginal of this measure on the gradients a GGM for some
gradient Hamiltonian? In general mixing measures over external parameters
tends to destroy quasilocality, which has been observed in various non-trivial
scenarios, for example joint measures of random systems [27].

The answer is no, also here, for any choice of ε1 6= ε0, as the following
computation of conditional probabilities shows. We take W = L∪{b}∪R to be
a finite connected set of bonds, with reference bond b in the middle and consider
the fraction of single-bond conditional probabilities

ν(ηb = 0|ηL = 0, ηR = 0)

ν(ηb = 1|ηL = 0, ηR = 0)
=
α(1)(1− 2ε1)C |R|+|L| + α(0)(1− 2ε0)

α(1)ε1C |L| + α(0)ε0C |R|
(6.3)
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with the constant C = (1 − 2ε1)/(1 − 2ε0) which we can assume to be strictly
bigger than one without loss of generality. But this expression tends to infinity
when we send both |L| and |R| to infinity, implying that ν(ηb = 0|ηL = 0, ηR =
0)→ 1, which would be impossible for a gradient Gibbs measure.
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