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Abstract
We consider Z-valued p-SOS-models with nearest neighbor interactions of the form
|ωv − ωw|p , and finite-spin ferromagnetic models on regular trees. This includes the clas-
sical SOS-model, the discrete Gaussian model and the Potts model. We exhibit a family
of extremal inhomogeneous (i.e. tree automorphism non-invariant) Gibbs measures arising
as low temperature perturbations of ground states (local energy minimizers), which have a
sparse enough set of broken bonds together with uniformly bounded increments along them.
These low temperature states in general do not possess any symmetries of the tree. This
generalises the results of Gandolfo et al. (J. Stat. Phys. 148:999–1005, 2012) about the Ising
model, and shows that the latter behaviour is robust. We treat three different types of exten-
sions: non-compact state space gradient models, models without spin-symmetry, and models
in small random fields. We give a detailed construction and full proofs of the extremality of
the low-temperature states in the set of all Gibbs measures, analysing excess energies relative
to the ground states, convergence of low-temperature expansions, and properties of cutsets.

Keywords Gibbs measures · Models on trees · Disordered systems · Gradient interactions ·
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1 Introduction

Amongst probability measures on lattice spin systems, Gibbs states on trees have special
properties, widely studied for almost fifty years by now, see e.g. [1–6].

In the early nineties, Blekher andGanikhodgaev [7], following a strategy already proposed
byHiguchi in the late seventies [4], show that the Isingmodel (in zero external field, on regular
trees) possesses uncountably many interface states, which are extremal and non translation
invariant, as soon as T < Tc.

In 2008, Rozikov and Rakhmatullaev [8] exhibit non-translation invariant measures cor-
responding to subgroups in the group representation of the Cayley tree, the so-called “weakly
periodic” Gibbs measures. These states can be thought of generalizations of Dobrushin states
from [9, 10], but with many interfaces, possibly countably infinitely many. In 2011, Akin et
al. build other non-translation invariant measures [11].

In 2012, Gandolfo et al. [12], exhibit a rich family of extremal inhomogeneous (i.e. tree
automorphism non-invariant) Gibbs measures arising as low temperature perturbations of
ground states (local energy minimizers), which have a sparse enough set of broken bonds,
see also [13]. These low temperature states in general do not possess any symmetries of the
tree.

The aim of the present paper is to show that the latter behaviour is robust. We prove it to
hold in three different types of extensions of the Ising model:

– Non-compact state space gradient models.
– Models without spin-symmetry.
– Models in small random fields.

The main objective is to study integer-valued gradient models, but we also derive similar
results for general finite-alphabet spin models of ferromagnetic type, including the Potts
model.

Gradient models belong to a very active field of research, also widely studied in the
literature, either on lattices to model effective interfaces, see e.g. [14–24] or more specifically
on trees [25–28].

In [26],Henning andKülske prove, for very general classes of gradient interactions, assum-
ing strong enough coupling, that there exist homogeneous Gibbs states which are strongly
localised around one given height. The method of proof is analytic in character and based on
finding fixed points of a suitable non-linear operator in a l p(Z)-sequence space of so-called
boundary laws, starting from the description of Zachary [3], see also [29, 30]. Strong coupling
of the interactions allows to prove that the relevant operator is a contraction. A variant of that
contraction method is used to prove the existence of a different type of consistent measures,
namely delocalized gradient Gibbs measures (with unbounded height-fluctuations), still in
strong coupling regimes. Interestingly, coexistence of delocalized and localized states for the
same interaction parameters is possible. Using dynamical systems ideas with an analysis of
the unstable manifold around the free state, special types of inhomogenous gradient states
are constructed, which still possess some rotation invariance, see [27].

The present work first treats general p-SOS models, with nearest neighbor interactions,
where the interaction along an edge (v,w) of the tree is of the form β|ωv −ωw|p , with a fixed
interaction exponent p ∈ (0,∞), and sufficiently large inverse temperature β ∈ (0,∞). The
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cases p = 1 (the classical SOS-model) and p = 2 (discrete Gaussian, DGFF) are the most
popular choices, see e.g. [31–33] and references therein.

Our approach to inhomogeneous states is completely independent from the latter two
results [26, 27], based on the boundary law formalism. Instead of it, we rigorously develop
low-temperature expansions around a suitable class of ground states generalising the ones
initially introduced in [12] in the case of the Ising model. These ground states do not possess
any symmetries as rotation invariance in general.

More precisely, in this enlarged framework, we generalise the definition of contours (or
low temperature excitations), including increment sizes (which were not needed for Ising)
and give a new proof of the control on the excess energy created by a low temperature
excitation above a given non-homogeneous configuration. When this configuration has a
sparse set of broken bonds, together with bounded increments, the excess energy control
allows to conclude that it is a stable local ground state provided the degree of the tree is large
enough. We provide rigorous proofs of:

– Tightness and convergence of finite volume measures with boundary conditions given
by these non-hommogenous configurations.

– Extremality of the low temperature states, derived from cluster expansion and cutset
properties.

– The stability of the excess-energy control under the addition of small local field terms,
which provides the extension of our results to models in small random fields.

Note that our contours have empty interior, a tree-specific property which provides more
control in Peierls-type estimates and low-temperature expansions, also around inhomoge-
neous ground states. This allows to prove more refined results than on the lattice, where
versions of Pirogov–Sinai theory would be necessary to treat situations without symmetry in
spin space, even when there is spatial homogeneity, see e.g. Chapter 7 of [34]. This particu-
larity allows us to prove the stability of these inhomogeneous ground states, and existence of
well-defined infinite volume limits with the required decorrelation properties, by combining
statistical mechanics technics (as cluster expansions) with probabilistic methods (cutsets,
Fourier transforms, etc.).

The paper is organised as follows. In Sect. 2, we state our results on the stability of some
ground states at low temperature. We first treat general p-SOS models (Theorem 1), and
afterwards come to general finite-alphabet models, including the Potts model (Theorem 2).

In Sect. 3 we provide the definition of contours, as well as the proof of their excess energy
estimate (Lemma 1).

In Sect. 4, we consider these contours as polymers to perform cluster expansions within
the framework of Bovier–Zahradník [35] and study the low-temperature states. We use the
estimates they provide in addition to the convergence of the expansions to prove Theorems 1
and 2. We get an exponential control of the polymer weights (Proposition 3), convergence
of finite-dimensional marginals via Fourier transforms (Lemma 3), quantitative tightness in
the unbounded spins case (Sect. 4.1.2), DLR-property of the limiting measures (Sect. 4.1.3),
identifiability of the different low-temperatures phases obtained from sparse ground states
(Sect. 4.1.3). Finally, in Sect. 4.1.4, we derive cutset properties as well as correlation decay
for events of polymer type, that eventually lead to extremality.

In Sect. 5 we describe applications of our theory to existence of extremal states for inho-
mogeneous locally perturbed models. This includes the random field Potts model, and the
p-SOS model in random fields and in random media.
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2 Definitions andMain Results

Let T d = (V , E) denote the Cayley tree of order d , on which any vertex i ∈ V has exactly
d + 1 neighbors. To any vertex i ∈ V , we attach a spin, which is a random variable σi
taking values in �0. The spin space �0 we consider will be either the discrete set Zq =
{0, . . . , q − 1}, for q ∈ {2, 3, . . .}, or the unbounded countable set Z, equipped with a
product σ -algebra E = P(�0). We are interested in probability measures on the product
space (�,F) = (�V

0 , E⊗V ). For any subset � ⊂ V we define ω� = (ωv)v∈�. For any
subset W ⊂ V we denote by FW the sigma algebra generated by the variables (σi )i∈W . If
� ⊂ V is a finite subset, we write � � V .

We introduce an interaction potential � and consider equilibrium states to be Gibbs
measures built with the DLR framework, see e.g. [5]: they are the probability measures μ

consistent with the Gibbsian specification γ � in the sense that a version of their conditional
probabilities w.r.t. the outside of any finite set � of the tree is given by the corresponding
element of the Gibbs specification γ �

� , that is

∀� � V , ∀ω� ∈ ��, μ[σ� = ω� | F�c ](·) = γ �
� (ω� | ·), μ − a.s.

where the elements of the Gibbs specification γ � = γ �(β) are the probability kernels
γ �
� from ��c to F� defined for all finite � as

γ �
� (ω� | τ�c ) = 1

Z τ
�

e−βH�(ω�τ�c ).

The partition function Z τ
� is the usual normalization constant for a fixed boundary con-

dition τ , at finite volume �, and the Hamiltonian H�
� with boundary condition τ is there

provided by H�(ω�τ�c ) = ∑
A∩��=∅ �A(ω�τ�c ) where ω�τ�c denotes the concatenation

of ω� and τ�c . We sometimes shortly write H for the Hamiltonian with free boundary
conditions:

H(ω) = H f
�(ω) :=

∑

A⊂�

�A(ω�). (2.1)

The ferromagnetic potentials we consider are nearest-neighbor potentials and will be
generically denoted by �. Pairs {i, j} ∈ E of nearest-neighbors are written i ∼ j .

In the case where �0 is unbounded, we consider p-SOS models, where the potential is
given for any p > 0 by

�i j (ω) = |ωi − ω j |p for all i ∼ j (2.2)

and 0 otherwise, where | · | is the absolute value.
In the case where �0 = Zq , we consider any nearest neighbor model of the form

�i j (ω) =
q−1∑

k,
=0

uk,
1ωi=k,ω j=
 where ∀k, 
 ∈ Zq , uk,
 ≥ 0 and uk,k = 0. (2.3)

The latter includes the q-state Potts model, for which

�i j (ω) = 1ωi �=ω j . (2.4)
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Fig. 1 Ground state configurations with dmax = 1 (same colors denote same spin values, dashed lines denote
broken bonds): (Left) for the 3-Potts model. The above configurations are ground states for d ≥ 4 (see the
proof of Corollary 2). (Right) for the SOS model, with p = 1, M = 3. The above configuration is a ground
state for d ≥ 8 (see the proof of Corollary 1) (Color figure online)

For a given set of edges D ⊂ E , and a given vertex v ∈ V we define dD(v) to be the
number of bonds in D which are incident to v. Then, we define the number:

dD = max
v∈V dD(v).

2.1 p-SOSModels

Existence of phase transitions on trees with homogeneous phases holds for very general
interactions at low-temperature [26, 27]. However, we investigate here the low-temperature
stability of non translation-invariant (inhomogeneous) ground states, defined as followsbelow
(see an example in Fig. 1), and show how they are related to infinite-volume Gibbs measures.

Our first main result reads then:

Theorem 1 Let p > 0 and consider the p-SOSmodels (2.2) on theCayley tree of degree d. Let
dmax, M ∈ N0, where dmax ≤ d. Define G0 = G0(dmax, d, M) to be the set of configurations
ω0 ∈ Z

V which satisfy the following sparsity requirement on the set of broken edges and
have uniformly bounded spin increments along them:

1. The set of broken edges D := {{v,w} ∈ E : ω0
v �= ω0

w} is such that dD ≤ dmax.
2. All increments are uniformly bounded by M: maxv∼w |ω0

v − ω0
w| ≤ M.

Then, for each interaction exponent p > 0, each maximal increment size M ∈ N0, and
each maximal internal degree dmax ∈ N0 there is a minimal degree d(p, M, dmax) such that
for all degrees d ≥ d(p, M, dmax) the following holds:

There exists a finite β0 = β0(d, p, dmax, M) such that for all β ≥ β0 for the p-SOS model
on the regular tree of degree d, there is a family of Gibbs measures (μω0

β )ω0∈G0 with the
properties

(1) ω0 �= τ 0 implies μω0

β �= μτ 0

β .
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(2) The measures μω0

β are extremal in the set of all Gibbs measures.

(3) μω0

β concentrates around ω0 in the sense that there exist two positive constants c,C such
that for any v ∈ V and for all increments k ∈ Z,

μω0

β (σv − ω0
v = k) ≤ Ce−cβ|k|p . (2.5)

Remark Further properties will be derived in the explicit construction, see below. Moreover,
the assumptions 1 and 2 of Theorem 1 can be replaced by the more general assumption (3.4)
below which mixes geometric sparsity and boundedness of heights.

2.2 Finite-Spin Ferromagnetic Models

Wehave an analogous theorem in the situationoffinite-alphabetmodels (2.3)with generalized
ferromagnetic interactions � ≥ 0 in the following sense.

Theorem 2 Let q ∈ N0 and consider the q-spin model (2.3) on the Cayley tree of degree
d. Let dmax ∈ N0, with dmax ≤ d. Put u := mink �=
uk,
 and U := maxk,
 uk,
. Define
G0
q = G0

q (dmax, d) to be the set of configurations ω0 ∈ Z
V whose set of broken bonds

D = {{v,w} ∈ E : ω0
v �= ω0

w} is such that dD ≤ dmax.
Then, under the following geometric sparsity condition on the set of broken bonds

(d − 1)u > dmax(U + u) (2.6)

there exists a finite β0 = β0(d, q, u,U , dmax) > 0 such that for all β ≥ β0 there is a family
of Gibbs measures (μω0

β )ω0∈G0 with the following properties:

1. ω0 �= τ 0 implies μω0

β �= μτ 0

β .

2. The measures μω0

β are extremal in the set of all Gibbs measures.

3. μω0

β concentrates around ω0 in the sense that there exist two positive constants c,C such
that for any vertex v ∈ V ,

μω0

β (σv = ω0
v) ≥ 1 − Ce−cβ . (2.7)

Remark In the case of the Potts model (2.4), we have u = U = 1 and thus the spar-
sity assumption (2.6) on dmax becomes 2dmax < d − 1 which coincides with the sparsity
requirement for the Ising model given in [12]. See Fig. 1 for an example.

3 Excess Energy for Sparse Ground States

In this section, we derive useful lower bounds on excess energies in our models, which are
the starting point of the low-temperature expansions and extensions. Similar estimates were
obtained for the Ising model in [12] using induction over the size of the contours. Here
we follow a different non-inductive approach which provides useful bounds in the case of
unbounded spins.

Let us start with the introduction of contours as labelled contours, namely as pairs of
supports γ and spin configurations ωγ on these supports.

Definition 1 Let ω0 ∈ �V
0 be a fixed reference configuration. A contour for the general

spin configuration ω ∈ �V
0 relative to ω0 is a pair γ̄ = (γ, ωγ ) where the support
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Fig. 2 A contour γ̄ = (γ, ωγ )

relative to the ground state ω0 of
Fig. 1. The configuration ω0 is
depicted by full circles. The
support γ consists of three sites
surrounded by a dotted line. The
configuration ωγ is depicted by
open circles

γ = {v ∈ V : ωv �= ω0
v} is a connected component of the set of incorrect points for ω

(with respect to ω0), and ωγ = (ωv)v∈γ . See Fig. 2.

The contour definition above generalizes the one of [12] for the Ising model, in the sense
that it also encodes the spin configuration on the support. This definition facilitates to relate
probabilities of the occurrence of given local patterns to suitable contour sums. Due to their
tree-nature, our contours always have no interior components of their complement, which
allows to avoid symmetry requirements or spin-flip considerations in applying Peierls-type
arguments and expansions.

Note moreover that for each ω for which γ̄ is a contour we must have ω∂γ = ω0
∂γ , i.e.

the spin configuration must take the values of the ground state in the outer boundary of the
contour support. For background on contour methods on trees, see also [36].

3.1 Stable Inhomogeneous Ground States for the p-SOSModels

Consider the homogeneous p-SOS-models defined in (2.2), for d ≥ 2.

Definition 2 We say that a configuration ω0 ∈ � is stable with stability constant c > 0 if for
all configurations ω ∈ � differing from ω0 at finitely many sites, the excess energy relative
to ω0 satisfies the lower bound

H(ω) − H(ω0) ≥ c
∑

v

|ωv − ω0
v |p. (3.1)

In particular, all stable configurations are ground states in the usual sense that finite volume
perturbations raise the energy.

This notion will allow to perform the large-β expansions around stable ω0 of Sect. 4, as
we will see. To formulate the lemma on the excess energy and develop a viable criterion on
the type of ground states which are stable, consider a pair of configurations (ω, ω0) which
differ on a contour γ̄ . The following notations are useful. Describe the geometric part γ of
a contour to be a finite subtree rooted at the origin 0. We think of it embedded into the full
tree which we describe as rooted tree which has d + 1 offspring at the origin, but offspring
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d at all other sites. By homogeneity of the tree and of the potential, there is no loss in doing
so. We write w ← v if w is a child (or offspring) of v on the full tree relative to the chosen
root. We write kv for the number of children of v in the contour γ . For v �= 0 we have
kv ∈ {0, 1, . . . , d}, while k0 ∈ {0, . . . , d + 1}.

Now we present the lemma on the excess energy of a spin configuration ω relative to a
general ground state ω0 ∈ Z

V .

Lemma 1 Let p ∈ (0,∞), ω0 ∈ Z
V , and ω = ωγ ω0

γ c such that γ̄ = (γ, ωγ ) is a contour

with respect to the fixed configuration ω0.
Then the excess energy satisfies

H(ω) − H(ω0) =
∑

v∈γ,w←v

(
|ωv − ωw|p − |ω0

v − ω0
w|p

)

≥ (dc2p − 1)
∑

v∈γ

|ωv − ω0
v |p − (cp + 1)

∑

v∈γ,w←v

|ω0
v − ω0

w|p
(3.2)

where cp = min{21−p, 1}.
Corollary 1 For each interaction exponent p > 0, each maximal increment size M ∈ N0, and
each maximal internal degree dmax ∈ N0 there is a minimal degree d(p, M, dmax) such that
for all d ≥ d(p, M, dmax) all configurations ω0 ∈ G0(dmax, M) are stable ground states.

Proof of Corollary 1 By Lemma 1,

H(ω) − H(ω0) ≥ (dc2p − 1 − (cp + 1)dmaxM
p)

∑

v∈γ

|ωv − ω0
v |p. (3.3)

Thus by taking d(p, M, dmax) = 1+ �c−2
p + (c−1

p + c−2
p )dmaxMp�, this implies stability

with the constant c := dc2p − 1 − (cp + 1)dmaxMp > 0. ��

Remark We may also work with a more general mixed sparsity requirement on ω0 of the
form

(dc2p − 1) > (cp + 1) sup
v

∑

w∼v

|ω0
v − ω0

w|p (3.4)

which follows from the right hand side of (3.2), and which will provide good bounds to
ensure convergence of the cluster expansion, when multiplied with a sufficiently large β, see
below.

Remark In the particular case of ground state increments bounded in modulus by M = 1,
and sparse set of broken bonds with dD = 1, we get the minimial degree of d(p, 1, 1) = 4,
as for the Ising model in [12], for all p ≤ 1. For the discrete Gaussian (2-SOS model) we
get d(2, 1, 1) = 11.

Proof Let us write

sv := ωv − ω0
v

for the deviation of the spin from the ground state. As γ is the support of the contour we
have sv �= 0 for v ∈ γ and sw = 0 for w /∈ γ . Note that

inf
s∈R

(|s + t |p + |s|p) = cp|t |p (3.5)
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where, by scaling cp = infs∈R(|s + 1|p + |s|p).
For the standard SOS-modelwith p = 1 this becomes the triangle inequality. The infimum

in the formula of cp is achieved either at 0 or −1/2 and hence cp = min{21−p, 1}. Using
this twice we obtain

|ωv − ωw|p = |sv − sw + (ω0
v − ω0

w)|p
≥ cp|sv + (ω0

v − ω0
w)|p − |sw|p

≥ c2p|sv|p − cp|ω0
v − ω0

w|p − |sw|p.
(3.6)

We have
∑

v∈γ,w←v

(
c2p|sv|p − |sw|p

)

= (d + 1)c2p|s0|p + (dc2p − 1)
∑

v∈γ \0
|sv|p ≥ (dc2p − 1)

∑

v∈γ

|sv|p.
(3.7)

From this the claim follows. ��

3.2 Stable Inhomogeneous Ground States for Finite-State Models

In the case of finite-state ferromagnetic models defined in (2.3), the boundedness of
increments is automatic, and the notion of stability becomes the following.

Definition 3 In our finite-state cases with potentials (2.3) we say that a configurationω0 ∈ �

is stable with stability constant c > 0 if for all ω ∈ � which differ at most at finitely many
sites from ω0, we have the lower bound

H(ω) − H(ω0) ≥ c
∑

v

1ωv �=ω0
v
. (3.8)

We then have the following analogue of Lemma 1.

Lemma 2 Consider the finite-state models (2.3). Let γ̄ = (ωγ , γ ) be a contour relative to the
fixed ground state ω0. Denote ω = (ωγ ω0

γ c ) the corresponding excited spin configuration.
Then the excess energy satisfies

H(ω) − H(ω0) =
∑

v∈γ,w←v

(
�(ωv, ωw) − �(ω0

v, ω
0
w)

)

≥ (d − 1)u|γ | −
∑

v∈γ,w←v

(
�(ω0

v, ω
0
w) + u1ω0

v �=ω0
w

)

≥ ((d − 1)u − dD(U + u))|γ |.

(3.9)

Proof As γ is the support of the contour we have ωv �= ω0
v for v ∈ γ and ωw = ω0

w for
w /∈ γ .

First, realize that

�(ωv, ωw) ≥ u1ωv �=ω0
v
− u1ωw �=ω0

w
− u1ω0

v �=ω0
w
. (3.10)

To see this write the inequality in the equivalent form

�(ωv, ωw) + u1ω0
v �=ω0

w
+ u1ωv=ω0

v
≥ u1ωw=ω0

w
. (3.11)
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The inequality trivially holds when the r.h.s. equals zero, so let us assume ωw = ω0
w . In the

subcase ωv = ω0
v the inequality obviously holds. In the subcase ωv �= ω0

v it is impossible
that the two first terms on the l.h.s. reach zero at the same time. This proves the claim (3.10).

Hence we have

∑

v∈γ,w←v

(
1ωv �=ω0

v
− 1ωw �=ω0

w

)

= (d + 1)1ω0 �=ω0
0
+ (d − 1)

∑

v∈γ \0
1ωv �=ω0

v
≥ (d − 1)|γ |.

(3.12)

From the last two inequalities the claim (3.9) follows. ��

Corollary 2 For each interaction constants u,U, and each maximal internal degree dmax ∈
N0 there is a minimal degree d(u,U , dmax) such that for all d ≥ d(u,U , dmax), all
configurations ω0 ∈ G0

q (dmax, d) are stable ground states.

Proof of Corollary 2 Take

d(u,U , dmax) = 2 + �dmax(u +U )/u�

Then indeed

(d − 1)u − dmax(u +U ) =: c > 0

which by Lemma 2 implies stability with the constant c. Note that d(u,U , dmax) does not
depend on q . ��

4 Properties of Low-Temperature States

Low temperature expansions on trees have unusual properties, as compared to similar
expansions on lattices.

First, there is the lack of limiting free energies, which is another way of saying that
boundary terms are not smaller than volume terms. In particular, this provocates the failure
of variational principles for Gibbs measures on trees (see e.g. [37], also [38], Remarks 3.11,
for a valid “inner” variational principle).

Next, on trees the complement of a support of a contours is never a connected set, and there
are never interior connected components. This facilitates the extension of Peierls argument
to not necessarily symmetric frameworks, as we discuss in Sect. 4.1.2.

All of this requires care in proper handling when it comes to more subtle properties, see
e.g. the decorrelation property (4.43) for unbounded support sets, which we use to prove
extremality, after having properly introduced specific cutsets to take care of possibly atypical
tail-events of unbounded support. We thus need to be precise to ensure convergence in
particular in the case of unbounded spinmodels, and especially aswedonot havehomogeneity
of our ground states.
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4.1 p-SOSModels: Proof of Theorem 1

4.1.1 Convergence Proof for the Partition Function

We now turn to the proof of convergence of cluster expansion in the case of the p-SOSmodel,
assuming, for η > 0 sufficiently large, the lower bound of the form

β(H(ω) − H(ω0)) ≥ η
∑

v∈γ

|ωv − ω0
v |p (4.1)

with γ̄ = (ωγ , γ ) a contour relative to the fixed ground state ω0 and ω = (ωγ ω0
γ c ) the

corresponding excited spin configuration. This bound is given by the excess energy Lemma 1.
We start with a polymer partition function representation of the spin partition function in

a finite volume � with boundary condition equal to ω0, which reads

Zω0

� =
∑

n∈N

∑

γ̄1,...,γ̄n

n∏

i=1

ρ(γ̄i ) (4.2)

where the sum is over pairwise compatible polymers γ̄ with activities

ρ(γ̄ ) = e−β(Hγ∪∂γ (ωγ∪∂γ )−Hγ∪∂γ (ω0
γ∪∂γ ))

given in terms of the excess energy.
In our case the pairwise compatibility relation γ̄1 ∼ γ̄2 is equivalent to the separation of

their supports, i.e. dist(γ1, γ2) ≥ 2. Recall that, by definition, the spin configuration on the
complement of the union of the supports of the polymers ∪n

i=1γi necessarily coincides with
the ground state ω0. The aim of the cluster expansion is to write

log Zω0

� =
∑

I

wI (4.3)

as an analytic function in the complex variables ρ(γ̄ ) for γ̄ ∈ P� where P� denotes the set
of polymers in the finite volume � for the given fixed ground state, and (wI )I∈N

P�
0

are the

expansion terms. For fixed multi-index I , wI is proportional to
∏

γ̄∈P�

ρ(γ̄ )I (γ̄ ).

We have the following quantitative convergence criterion.

Proposition 3 For each degree d ≥ 2 and interaction exponent p ∈ (0,∞) there is a finite
constant η0(d, p) such that for all η ≥ η0(d, p) the cluster expansion converges for all
polymer activities in the polydisk

|ρ(γ̄ )| ≤ exp

⎛

⎝−η
∑

v∈γ

|ωv − ω0
v |p

⎞

⎠ (4.4)

for all γ̄ .

Remark 1 Note that we have an infinite polymer family even in finite volume as there are
infinitely many possible height configurations or contours γ̄ with the same geometric support
γ .
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Proof We use thus the convergence criterion for the logarithm of the partition function of
abstract polymer models of Bovier–Zahradník ([35], Theorem 1, p. 768).

We choose the generalized volume function a which depends also on the heights on the
contour support given by

a(γ̄ ) = A
∑

v∈γ

|ωv − ω0
v |p (4.5)

where A > 0 can be chosen to our convenience, see below.
We are guaranteed of the convergence of the cluster expansion if the following two

conditions hold, for suitable choices of A > 0, δ ∈ (0, 1) which will be made below.
Condition 1. For any polymer γ̄

|ρ(γ̄ )|ea(γ̄ ) ≤ δ. (4.6)

Condition 2. For any polymer θ̄

∑

γ̄ �θ̄

|ρ(γ̄ )|ea(γ̄ ) ≤ 1

L(δ)
a(θ̄) (4.7)

with L(δ) = − log(1− δ)/δ. Here the sum is over incompatible polymers γ̄ � θ̄ . In our case
incompatibility means that γ and θ have graph distance less or equal than 1.

Under these two conditions, Theorem 1 of Bovier–Zahradník [35] provides moreover the
quantitative estimate

∑

I�θ̄

|wI | ≤ L(δ)|ρ(θ̄)|ea(θ̄)

≤ L(δ) exp
(−(η − A)

∑

v∈θ

|ωv − ω0
v |p

) (4.8)

where the sum I is over those multi-indices I which carry at least power one for polymer
θ̄ , and wI are the corresponding terms in the expansion of the logarithm of the partition
function.

To treat our infinite family of contours with the Bovier–Zahradník convergence criteria for
models of finite polymer families [35], we may first use truncation of the height variables in
modulus. We then treat the truncated models uniformly at fixed truncation, see in particular
the uniformity of the relevant estimate (4.8) below in the truncation. In the final step one uses
dominated convergence to remove the truncation.

Now, the first condition (4.6) is satisfied for eA ≤ δeη.
To treat the second condition (4.7) is the more serious requirement. We bound the sum

over incompatible polymers as
∑

γ̄ �θ̄

|ρ(γ̄ )|ea(γ̄ ) ≤
∑

v∈θ∪∂θ

∑

γ̄ ,γ�v

|ρ(γ̄ )|ea(γ̄ )

≤
∑

v∈θ∪∂θ

∑

γ̄ ,γ�v

exp
(−(η − A)

∑

w∈γ

|ωw − ω0
w|p)

(4.9)

Note that, while the contour activities on the l.h.s are in general not tree-automorphism
invariant, we have used the invariant bounds (4.4) for them to obtain the expression on the
r.h.s. The bounds are invariant as they suppress the activity in terms of the local deviation
from the ground state |ωw − ω0

w|p with the same site-independent prefactor. To bound the
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last sum from above, we decompose it into a sum over the geometric parts of the contour
with fixed volume |γ | = l and, conditional on that, the sum over the height-configurations
ωv �= ω0

v . This provides
∑

γ̄ ,γ�v

exp
(−(η − A)

∑

w∈γ

|ωw − ω0
w|p)

=
∞∑

l=1

( ∑

s∈Z\0
e−|s|p(η−A))

)l
#{γ : γ � 0, |γ | = l.}

(4.10)

The geometric entropy bound of Lemma 6 of [12] (formulated there for the Ising model,
but valid in general as it is a purely combinatoric statement) provides the estimate

#{γ : γ � 0, |γ | = l} ≤ (d + 1)2(l−1) (4.11)

in terms of the number of bonds l−1 of a subtree with l vertices. Using the bound |θ ∪∂θ | ≤
(d + 2)|θ | with equality for a singleton θ , we see that the second condition (4.7) is implied
if we have

(d + 2)
∞∑

l=1

( ∑

s∈Z\0
e−|s|p(η−A))

)l
(d + 1)2(l−1) ≤ A

L(δ)
. (4.12)

This is equivalent to

∞∑

l=1

(
(d + 1)2

∑

s∈Z\0
e−|s|p(η−A))

)l ≤ (d + 1)2

(d + 2)

A

L(δ)
. (4.13)

Let us fix A = 1 and δ = 1
2 . Then we see that we may chose indeed η0(d, p) < ∞ such

that for all η ≥ η0(d, p) the inner series with summation over s on the l.h.s. becomes small
enough to ensure the validity of the desired inequality. Enlarging η0(d, p) if necessary we
can achieve that also the first condition holds, and this finishes the proof of Proposition 3. ��

We now prove the existence of the infinite volume measure. Although getting it from
convergent cluster expansions can be considered to be familiar on the lattice, the use of low
temperature expansions on the tree is less standard and requires a careful treatment we present
now.

4.1.2 Finite-Dimensional Convergence and Tightness

In the convergence regime of Proposition 3 for the expansion around stable ω0, we also have
the associated finite-dimensional convergence of the finite-volume Gibbs measures.

Lemma 3 Let W denote a finite subvolume of the vertex set of the infinite tree V . Then

lim
�↑V μω0

� (σW − ω0
W ∈ ·) (4.14)

exists as a weak limit.

Proof To prove Lemma 3 we will show pointwise convergence of the Fourier-transform, and
tightness of the measures.
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Fourier transform. Consider the Fourier transform for t ∈ R
W in finite volume �

μω0

� (ei〈σ−ω0,t〉W ) (4.15)

with the notation 〈a, b〉W = ∑
v∈W avbv . Define t-dependent complex activities

ρt (γ̄ ) = ρ(γ̄ )ei〈σ−ω0,t〉W∩γ .

We have |ρt (γ̄ )| = ρ(γ̄ ). Then

μω0

� (ei〈σ−ω0,t〉W ) =
∑

n
∑�

γ̄1,...,γ̄n

∏n
i=1 ρt (γ̄i )

∑
n
∑�

γ̄1,...,γ̄n

∏n
i=1 ρ(γ̄i )

= exp
( �∑

I∩W �=∅
(wt

I − wI )
)

(4.16)

where wt are the cluster weights corresponding to the t-dependent activities, and the upper
index � in our notation

∑� indicates that the sums correspond to the family of polymers
with supports inside the finite volume �.

Then, by the Bovier–Zahradník bound (4.8) there is absolute convergence of the cluster
sums:

sup
�

�∑

I∩W �=∅
(|wt

I | + |wI |) ≤
∑

v∈W

∑

I�v

(|wt
I | + |wI |)

≤ |W | · 2L(δ) ·
∑

s∈Z\0
e(−η+A)|s|p ≤ |W |C

and therefore the limit � ↑ V exists, pointwise in any t ∈ R
W .

Quantitative tightness estimate via contour-estimate. We start with the following upper
bound. For any deviation s �= 0 we have for the finite-volume fixed-site marginal

μω0

� (σv = ω0
v + s) =

�∑

γ̄ :γ�v,σv=ω0
v+s

ρ(γ̄ ) ·
∑

n
∑�

γ̄1,...,γ̄n∼γ̄

∏n
i=1 ρ(γ̄i )

∑
n
∑�

γ̄1,...,γ̄n

∏n
i=1 ρ(γ̄i )

. (4.17)

Now, on trees, as already underlined, contours have no interior and so we extend the
Peierls argument to our non-symmetric cases by bounding the fraction of polymer partition
functions above by 1. We arrive thus at the upper bound

μω0

� (σv = ω0
v + s) ≤

∑

γ̄ :γ�v,σv=ω0
v+s

ρ(γ̄ ) (4.18)

where we extended the sum in � to involve all polymers in V . The last sum is bounded by

e−|s|pη
∞∑

l=1

#{γ � v : |γ | = l}
( ∑

r∈Z\0
e−|r |pη)l−1

≤ e−|s|pηC(η, d, p)

(4.19)

where

C(η, d, p) :=
∞∑

m=0

(
(d + 1)2

∑

r∈Z\0
e−|r |pη)m ↓ 1 (4.20)
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as η ↑ ∞ for fixed d, p, and is in particular finite for η sufficiently large.
This provides tightness of the single-site marginals of the familyμω0

� as one gets a uniform
estimate in � of the form

μω0

� (|σv − ω0
v | ≥ N ) ≤ 2C(η, d, p)

∑

s≥N

e−|s|pη. (4.21)

Consequently we get for the marginals in finite volume W

μω0

� (max
v∈W |σv − ω0

v | ≥ N ) ≤ 2|W |C(η, d, p)
∑

s≥N

e−|s|pη. (4.22)

This is the desired tightness of the finite-volume marginals

lim
N↑∞ sup

�

μω0

� (max
v∈W |σv − ω0

v | ≥ N ) = 0. (4.23)

Using the Lévy-continuity theorem we obtain the existence of the pointwise limit of the
characteristic functions and the tightness the weak convergence of the finite-dimensional
marginals of μω0

� .
Alternatively we could have concluded the convergence of the marginals on W without

tightness from the Lévy continuity theorem by proving instead continuity of the limit of
the Fourier transform in t = 0 which can be seen from the uniform convergence of the
cluster-sums.

This concludes the proof of Lemma 3. ��

4.1.3 DLR-Property and Identifiability of Family of Measures

Note that the limiting finite-dimensional marginals indexed by W of Lemma 3 provide a
family of consistent measures in the sense of Kolmogorov’s extension theorem, and hence
define an infinite-volume measure μω0

, for each of the corresponding sparse ground states
ω0. Let us see that μω0

is also a Gibbs measure, in the usual DLR sense [5], using again the
convergence of finite-dimensional marginals, and consistency of the kernels.

DLR-property of limiting measures. Note first that for any cofinal1 sequence (�n)n , any
ω� ∈ �� for � � V we have for n sufficiently large that

∫

μω0

�n
(dω̃∂�)γ�(σ� = ω�|ω̃∂�) = μω0

�n
(σ� = ω�). (4.24)

But from the convergence of finite-dimensional marginals, the spatial Markov property of
the kernel follows, and after performing the large n-limit,

∫

μω0
(dω̃∂�)γ�(σ� = ω�|ω̃∂�) = μω0

(σ� = ω�) (4.25)

which is the DLR-equation (see e.g. [5]).
Identifiability of states from the set of sparse ground states. We show now that we have

μω0 �= μτ 0 when ω0 �= τ 0 and both are from the set of stable ground states obeying (3.4).
To see this consider v such that ω0

v �= τ 0v and compute

μω0
(σv = ω0

v) ≥ 1 − 2C(η, d, p)
∑

s≥1

e−|s|pη
(4.26)

1 See [5]. A subset S0 of an index set S directed by inclusion is called cofinal if each � ∈ S is contained in
some � ∈ S0.
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(which is close to 1 by (4.20)). Compare to

μτ 0(σv = ω0
v) ≤ C(η, d, p)e−|τ 0v −ω0

v |pη (4.27)

which is close to zero, and hence both probabilities are different for η sufficiently large:
one can identify different states for different low-temperatures excitations of different sparse
ground states.

4.1.4 Extremality via Cutsets and Decorrelation

Cutset property. Fix a ground state ω0. LetU ⊂ W be two finite nested volumes. We say that
there is an (U ,W )-cutset (w.r.t ω0)in the configuration ω if every path from U to infinity
has a site v ∈ W \U for which ωv = ω0

v .
First we prove that there are always cutsets around arbitrary large volumes in sufficiently

large annuli, with μω0
-probability arbitrarily close to one:

Lemma 4 Let v be an arbitrary vertex and B(r , v) ⊂ V the ball of radius r and center v on
the tree w.r.t. to the graph distance.

Then, for any radius r and ε > 0 there exists a finite radius R > r such there is a
(
B(r , v), B(R, v)

)
-cutset with μω0

-probability at least 1 − ε.

Proof Define Nv to be the (N0 ∪ {∞})-valued random variable which gives the size of a
contour containing v. Clearly, in finite volume with boundary condition ω0, its value is
bounded by the size of the finite volume. Let us now derive an exponential bound on the tail
which is uniform in the volume, and also holds in infinite volume.

To do so, look at the exponential moment generating function, which we will do first in
finite volume �. Rewrite in terms of polymer partition functions for t > 0 and estimate

μω0

� (etNv ) = μω0

� (Nv = 0) +
�∑

γ̄ :γ�v

ρ(γ̄ )et |γ |
∑

n
∑�

γ̄1,...,γ̄n∼γ̄

∏n
i=1 ρ(γ̄i )

∑
n
∑�

γ̄1,...,γ̄n

∏n
i=1 ρ(γ̄i )

≤ 1 +
�∑

γ̄ :γ�v

ρ(γ̄ )et |γ |.

(4.28)

The last line follows, as all the terms inside the polymer partition function in the numerator
are contained in the polymer partition function in the denominator. Decomposing the contour
sum in the last line over contours of size l and using the entropy estimate as above, the r.h.s.
of the last display is bounded above by

1 +
∞∑

l=1

(d + 1)2(l−1)
( ∑

r∈Z\0
e−|r |pη)l−1

etl =: L(t). (4.29)

L(t0) is clearly finite for any choice of t0 such that the geometric l-sum converges, i.e. s.t.

∞∑

l=1

(d + 1)2
∑

r∈Z\0
e−|r |pηet0 < 1. (4.30)

Assuming such a choice for t0, we deduce by the Markov inequality the uniform exponential
upper bound on the size-distribution of the contour containing v:

μω0

� (Nv ≥ N ) ≤ L(t0)e
−Nt0 (4.31)

123



Extremal Inhomogeneous Gibbs States... Page 17 of 26 71

which extends also to the infinite-volume measure.
We may use this exponential bound on the contour size distribution to control the non-

existence event of a cutset in an annulus. To see this, consider contours anchored at the
boundary of the inner volume B(r , v) and note

μω0
(there is no cutset in B(R, v)\B(r , v))

≤ μω0
(there is site w ∈ ∂B(r , v) : Nw ≥ R − r)

≤ |∂B(r , v)|L(t0)e
−(R−r)t0

(4.32)

This can be made smaller than ε by chosing R large enough, which proves Lemma 4. ��
Correlation decay for events of polymer type. We start with correlation bounds for events

which can be nicely expressed in terms of contours and polymer partition functions. We say
that a local event A ∈ FW is of polymer-type with supporting set W , if ω ∈ A implies that
ωv = ω0

v for all sites v in the inner boundary ofW . Of course not every local event is of such
a type, for example the event {ωv = ω0

v + 1} is not of this form.

Lemma 5 (Decay of polymer correlations) For any local events A ∈ FW and B ∈ FU of
polymer-type we have

|μω0
(A ∩ B) − μω0

(A)μω0
(B)| ≤ φ

(|W |, d(W ,U )
)

with a decay function of the form φ(|W |, r) ≤ exp(C |W |e−cr ) − 1, for C, c > 0.

Remark Note that the estimate is uniform in the size of one of the volumes, which is here
chosen to be |U |.
Proof The proof of the lemma follows by expressing the events A, B in question as unions
over events formulated in terms of two finite polymer families, one of the families with
supports inside of W , the other one in U respectively.

Let us write for short μ for the infinite-volume measure μω0 . We have for the probability
of a single contour a the expression

μ(a) = ρ(a) exp

(

−
∑

I�a

wI

)

.

The similar expression for a family of contours reads

μ(a1, . . . , al) =
l∏

i=1

ρ(ai ) exp

⎛

⎝−
∑

I :∃i∈{1,...,l}:I�ai

wI

⎞

⎠ .

This gives for the correlation between two families of contours with disjoint supports

μ(a1, . . . , al , b1, . . . , bm) − μ(a1, . . . , al)μ(b1, . . . , bm)

=
l∏

i=1

ρ(ai )
l∏

j=1

ρ(bi )
(
exp

⎛

⎝−
∑

I :∃c∈{a1,...,al ,b1,...,bm }:I�c

wI

⎞

⎠

− exp

⎛

⎝−
∑

I :∃i∈{1,...,l}:I�ai

wI

⎞

⎠ exp

⎛

⎝−
∑

I :∃ j∈{1,...,m}:I�bi

wI

⎞

⎠
)

(4.33)
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which can be rewritten as

μ(a1, . . . , al)μ(b1, . . . , bm)
(
exp(−

∑

I :∃c∈{a1,...,al ,b1,...,bm }:I�c

wI

+
∑

I :∃i∈{1,...,l}:I�ai

wI +
∑

I :∃ j∈{1,...,m}:I�bi

wI ) − 1
)

(4.34)

= μ(a1, . . . , al)μ(b1, . . . , bm)
(
exp

⎛

⎝+
∑

I :∃(i, j)∈{1,...,
}×{1,...,m}:I�{ai ,b j }
wI

⎞

⎠ − 1
)
(4.35)

This means that only clusters I are surviving which connect the supporting sets W and
U , which are controlled by the number of anchoring points in |W | and the cluster expansion
estimates. By (4.8), the argument of the above exponential term is indeed bounded by

∑

w∈W

∑

γ�w:|γ |≥d(W ,U )

∑

I�γ

wI (4.36)

≤ L(δ)|W |
∞∑


=d(W ,U )

(d + 1)2(
−1)

⎛

⎝
∑

r∈Z\0
e(−η+A)|r |p

⎞

⎠




(4.37)

≤ |W |C(δ, d)e−c(d,η)d(W ,U ). (4.38)

This delivers the existence of the decay function φ with the promised property such that

μ(a1, . . . , al , b1, . . . , bm) − μ(a1, . . . , al)μ(b1, . . . , bm)

≤ μ(a1, . . . , al)μ(b1, . . . , bm)φ(|W |, d(W ,U )).
(4.39)

Finally note that the estimate survives the summation over all possible different families of
contours inside W ,U (which form the decomposition of the events A, B), as the prefactors
sum up at most to 1. Indeed, let A = AW × �Wc

0 ∈ FW and B = BU × �Uc

0 ∈ FU , then

|μ(A ∩ B) − μ(A)μ(B)| = |
∑

ωW∈AW

∑

ηU∈BU
μ(ωWηU ) − μ(ωW )μ(ηU )| (4.40)

≤
∑

ωW∈AW

∑

ηU∈BU
μ(ωW )μ(ηU )φ(|W |, d(W ,U )) (4.41)

≤ φ(|W |, d(W ,U )). (4.42)

This proves Lemma 5. ��
Extremality via decorrelation of general events via cutsets. We turn to the proof of

extremality of the above constructedmeasuresμω0 . By [Proposition 7.9] of [5], it is equivalent
to show the following

Proposition 4 For any fixed A ∈ F , and cofinal volume sequence (�n)n∈N the decorrelation
property holds

lim
n→∞ sup

B∈F�c
n

|μω0
(A ∩ B) − μω0

(A)μω0
(B)| = 0. (4.43)
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Remark 2 Indeed, from (4.43) the tail-triviality of μ = μω0
follows by taking A = B to be a

tail-event. This is an allowed choice in the above limit statement, which delivers the desired
formula μ(A) = μ(A)2.

Proof Spelling out the above general decorrelation property we are aiming at, means that for
any A ∈ F and δ > 0 there exists n0(A, δ) ∈ N such that for all n ≥ n0 we have for any
B ∈ F�c

n

|μ(A ∩ B) − μ(A)μ(B)| ≤ δ. (4.44)

To see this, we apply the semi-ring approximation theorem twice, and condition on the
presence of suitable cutsets, as follows.

Note first that by the semi-ring approximation theorem applied to the semi-ring of cylinder
events, for any ε > 0 and any event A∈ F we may choose a cylinder event Aε such that
μ(A�Aε) ≤ ε. See e.g. the book of Klenke [39], Theorem 1.65 (ii).

It is now elementary that we can choose ε > 0 small enough such that for any four events
for which μ(A�Aε) ≤ ε and μ(B�Bε) ≤ ε we always have

|μ(A; B) − μ(Aε; Bε)| ≤ δ/2 (4.45)

where μ(A; B) := μ(A ∩ B) − μ(A)μ(B). (The choice of ε = δ
8 will do for this2). Given

A ∈ F , let us fix the cylinder set Aε which is obtained in such a way. It then suffices to show
that there exists n1 = n1(Aε, δ) ∈ N such that for all n ≥ n1 for any cylinders Bε ∈ F�c

n
we

have

|μ(Aε; Bε)| ≤ δ/2. (4.46)

As the approximating cylinder events Aε, Bε may not be of polymer type as introduced above,
we can not directly apply the decay estimate of Lemma 5 for those events without further
ado. We solve this problem by the introduction of cutsets, which occur with high probability,
in the following way depicted in Fig. 3.

Fix a vertex v, and choose r1 s.t. Aε ∈ FB(r1,v). For radii r1 < R1 < r2 < R2 < r3 < R3,
consider cutset events of the type

Ci := {there is a cutset in B(Ri , v)\B(ri , v)}
for i = 1, 2, 3. Let us now construct the radii. Fix δ′ > 0, to be chosen below.

Annulus for inner cutset. By Lemma 4, choose R1 > r1 large enough such that with
probability at least 1 − δ′ there is a cutset in the annulus with r1, R1.

Decorrelation annulus. Given R1, by Lemma 5, choose r2 large enough such that
φ(|BR1 |, r2 − R1) ≤ δ/4.

Annulus formiddle cutset. Choose R2 large enough such that with probability at least 1−δ′
there is a cutset in the annulus with r2, R2. Choose n large enough such that �n ⊃ B(R2, v).

Outmost cutset. Let Bε be a cylinder set inF�c
n
. Choose r3 such that Bε ∈ FB(r3,v). Choose

R3 large enough such that with probability at least 1− δ′ there is a cutset in the annulus with
respective radii r3 and R3.

Now define the following events, as depicted on Fig. 3:

A′
ε := Aε ∩ C1, B ′

ε := Bε ∩ C2 ∩ C3.

2 Note that (A ∩ B)�(Aε ∩ Bε) ⊂ (A�Aε) ∪ (B�Bε).
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Fig. 3 The picture shows the events A′
ε and B′

ε on the binary tree where d = 2: in blue are the supports of the
cylinder events Aε (inside the ball of radius r1) and Bε (inside the ball of radius r3 and outside the box �n ).
The (larger) red dots represent sites v on the cutsets where σv = ω0

v . The decorrelation annulus (between radii
R1 and r2) is emphasized with a bold arrow (Color figure online)

The advantage of these events is that they are of polymer-type with well-separated supporting
sets, and by construction enjoy the decorrelation property

|μ(A′
ε; B ′

ε)| ≤ δ/4. (4.47)

Noting that μ(A′
ε�Aε) ≤ δ′ and μ(B ′

ε�Bε) ≤ 2δ′ by the construction of the width of the
radii for the cutsets, we now assume a choice of δ′ has been made such that

|μ(A′
ε; B ′

ε) − μ(Aε; Bε)| ≤ δ/4. (4.48)

δ′ = δ
48 will do for this. This finishes the proof of Proposition 4. ��
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4.2 Finite-Spin Models: Proof of Theorem 2

We discuss the corresponding proofs for the finite-spin models defined in (2.3). We are
assuming the lower bound of the form

β(H(ω) − H(ω0)) ≥ ζ |γ | (4.49)

with ζ > 0,which is providedbyLemma2 for the excess energywith respect to configurations
ω0 which are elements in the set of stable ground states G0

q (dD), which was defined in the
statement of Theorem 2.

The definition of labelled contours γ̄ w.r.t. a fixed stable reference ground state ω0 stays
the same, i.e. they are connected sets of incorrect points, together with the spin values on
these sets. We are again using representations in terms of polymer partition functions in
which the contours carry activities

ρ(γ̄ ) = e−β(Hγ∪∂γ (ωγ∪∂γ )−Hγ∪∂γ (ω0
γ∪∂γ ))

given in terms of the excess energy.
We first prove a convergence criterion for the low-temperature expansions, which parallels

Proposition 3, but assumes only volume-suppression for contour-activities in the following
form.

Proposition 5 For each degree d ≥ 2 and q ∈ (2,∞) there is a finite constant ζ0(d, p) such
that for all ζ ≥ ζ0(d, p) the cluster expansion converges for all complex polymer activities
in the polydisk

|ρ(γ̄ )| ≤ exp (−ζ |γ |) (4.50)

for all γ̄ .

Remark Note that the r.h.s. depends only on the volume |γ | of the labelled contour γ̄ , as
opposed to the configuration-dependent assumption in Proposition 3. Such uniformity in the
spin configuration on γ is only possible for finite-spin models.

Proof We choose the generalized volume function b for labelled contours in the application
of Theorem 1 of Bovier–Zahradník ([35], Theorem 1, p. 768), only depending on the volume
of the contour in the form

b(γ̄ ) = B|γ | (4.51)

where the prefactor B > 0 can be chosen to our convenience, see below.
Rerunning the convergence proof for the partition function as before, we see the following.

The first condition (4.6) is satisfied for eB ≤ δeζ , by the assumption (4.50). The second
condition (4.7) is now implied if we have

(d + 2)
∞∑

l=1

e−l(ζ−B)(q − 1)l(d + 1)2(l−1) ≤ B

L(δ)
. (4.52)

Note that the number of choices of spin-values per site on the contour support is q − 1,
which is responsible for its appearance on the l.h.s. of (4.52) above. We may finally choose
B = 1, δ = 1

2 to see that we satisfy both conditions by choosing ζ large enough. This proves
Proposition 5.

Having seen this, the remaining parts of the proof of the main theorem all carry over from
the p-SOS analogues. This including convergence via Fourier transform (while tightness is
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automatic), polymer decorrelation, and finally the extremality of the measures μω0
via the

general correlation decay of Proposition 4, which holds by means of the Lemma 4 on cutsets.
We finally remark that from (4.52) follows that for the q-state Potts model we have a bound
on the minimal inverse temperature β for which all low-temperature states exist, on the order
of log(q − 1).

This provides the proof of Theorem 2. ��
Remark We are not after optimality of the degree d of the tree for which our states exist. It
may be possible to extend the construction in the p-SOS and finite-spin cases to include also
trees of low degree, even the binary tree, by demanding the distance between broken bonds
in the ground state to be large. This has been outlined for the particular case of foliated states
for the Ising model on binary trees in [13]. Inspired by these states, Gandolfo et al. described
the decomposition of the free state onto uncountably many extremal states [40]. The study
of such a decomposition for the free state in our models is left for future work.

5 Applications to Inhomogeneous Systems with Local Disorder Terms

5.1 Models

Let us consider our previously discussed Zq -valued or Z-valued models with homogeneous
pair interactions �, defined in (2.2) and (2.3), but under the additional influence in the
interaction of single-site terms �v : �0 → R at the sites v ∈ V . So the Hamiltonian now
takes the following form

∑

v∼w

�(ωv, ωw) +
∑

v

�v(ωv). (5.1)

It is in general spatially inhomogeneous, but the case �v = � of a homogeneous local
potential is not excluded, and already of interest. Let us highlight some prototypical special
cases.

Zq-valued Potts model in quenched random potentials, random field Ising model

As before we write the pair potential of the Potts model in the form �(ωv, ωw) = 1ωv �=ωw .
Moreover, the single-site term �v(·) is a quenched random potential on Zq , which is usually
assumed to be i.i.d. over the sites v ∈ V , according to an external probability distribution P,
and studied w.r.t. to its P-a.s. properties. The case of a deterministic single-site interaction
where �v(·) = �(·) is allowed and models the Potts model in a homogeneous vector-valued
field.

The subcase q = 2 is identical to the random field Ising model (RFIM) for spins ωv ∈
{−1, 1}, and quenched random fields ηv ∈ R, with Hamiltonian

−
∑

v∼w

ωvωw −
∑

v

ηvωv

which was already considered on the tree by Bleher et al. [41]. These authors proved in par-
ticular that for the RFIM in the low temperature (large β) regime, there is a strictly positive
maximal strength η∗(β) > 0 such that for all random field configurations η = (ηv)v∈V
with supv∈V |ηv| ≤ η∗(β) there are at least two different η-dependent Gibbs measures
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μ+[η], μ−[η]. These infinite-volume measures are obtained as weak limits of the finite-
volume measures with all-plus (all-minus) boundary conditions. In their result the actual
distribution under P plays no role.

We are aiming in this section at a broad generalization of this statement to extremal
measures μω0 [η] constructed with non-homogeneous spin-boundary conditions ω0, and the
more general model classes under discussion here.

Z-valued random field random surface models: random field p-SOS model

In this variation of the p-SOS model the Hamiltonian takes the form
∑

v∼w

|ωv − ωw|p +
∑

v

ηvωv (5.2)

with quenched random fields ηv ∈ R and spins ωv ∈ Z. Note that the local disorder term of
random-field type adds an unbounded perturbation to the Hamiltonian, even for uniformly
bounded random fields ηv . The model is well-defined for p ≥ 1, while the case p < 1
would lead to infinite partition functions for non-zero external fields. It has been recently
studied in detail on the lattice for p = 2 in [23] with a focus on the case where (ηv)v∈V are
symmetrically distributed i.i.d. quenched random variables which have mean zero and finite
variance. The authors obtained in their work upper and lower bounds on disorder-averages
of the gradient fluctuations |ωv − ωw|2 w.r.t. to the finite-volume zero-boundary condition
Gibbs measure μ0

�[η], valid for all finite boxes �. They provide boundedness of gradient
fluctuations uniformly in the box-size in d ≥ 3, and roughening of local fluctuations in d ≤ 2.

Continuous-spin versions of the model with spin values ωv ∈ R, also thereby allowing
more general pair-interactions, were studied in [22, 23].We point out that themodel (5.2) is of
gradient-type, due to the multiplicative nature of the local terms, which opens the field for the
study ofGradient Gibbs measures in the infinite volume which are defined on configurations
of heights modulo a joint height shift, with state-space Z

V /Z.

Z-valued p-SOS models in random media

Here one keeps the gradient interaction, but allows more general local interactions, so that
the Hamiltonian becomes

∑

v∼w

|ωv − ωw|p +
∑

v

ζv(ωv) (5.3)

where (ζv(k))v∈V ,k∈Z are real numbers. This model has been studied on the lattice Z
d for

p = 1 in [14] under the assumption that η = (ζv(k))v∈V ,k∈Z is a process of i.i.d. random
variables. As main result the existence of infinite-volume Gibbs measures μ0[η] obtained
with zero-boundary conditions was shown for small disorder, large inverse temperature in
lattice dimensions d ≥ 3. The proof was based on a rigorous renormalization group analysis
using multiscale cluster expansions.

Let us consider the above perturbed models on the regular tree and present two stability
theorems.

5.2 Stability Theorems

Theorem 6 Let p ≥ 1 and consider the p-SOS models (2.2) under the assumptions of
Theorem 1 formulated for the model without disorder.
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Consider now themodel in the additional presence of quenched randomfieldsη = (ηv)v∈V
with Hamiltonian (5.2). Then there is a strictly positive threshold δ∗ > 0 such that for each
η satisfying

sup
v∈V

|ηv| ≤ δ∗
(5.4)

at β sufficiently large, there is an identifiable class of extremal Gibbs measures μω0

β [η],
concentrated on the stable ground states ω0, as described in Theorem 1.

Remark Note that the case of a small homogeneous non-zero field is encluded. Note also that
δ∗ provided by the theorem depends on the parameters d, dmax, M describing the sparsity
and uniform bounds on the increments of the ground states ω0, which were discussed before.

We turn to a corresponding stability result in the remaining classes of disordered models
described above.

Theorem 7 Consider the Z-valued p-SOS models (2.2) for p > 0 under the assumptions of
Theorem 1 formulated for the model without disorder, but in the presence of additional local
perturbations of the form (5.1).

Alternatively consider the Zq -valued models under the assumptions of Theorem 2 formu-
lated for the model without disorder, but in the presence of additional local perturbations of
the form 5.2

Then, for both types of models, there is a strictly positive threshold ε∗ > 0 such that for
each choice of local potentials η = (�v(·))v∈V satisfying

sup
v∈V

sup
k,l∈�0

|�v(k) − �v(l)| ≤ ε∗
(5.5)

there is an identifiable class of extremal Gibbs measures μω0 [η], concentrated on the stable
ground states ω0, as described in Theorems 1 and 2 respectively.

5.3 Proofs via Stability of Excess Energy Estimates

To prove the last two stability theorems it turns out that we can use exactly the same contour
definitions and characterizations of ground states in spe, as for the unperturbed models.
However, in doing this we need to ensure that the expansions around the ground states ω0

which were identified in the homogeneous models, and their consequences, also stay valid
for the η-perturbed models. This leads us to the study of excess energies in the perturbed
models.

Recall for this purpose the definition of stability of a ground state ω0 with a constant
c > 0 given above in the two cases of finite or infinite local state space. We then have the
following lemma on the stability in the models perturbed by a collection of local potentials
η = (�v)v∈V .

Lemma 6 Consider Z-valued or Zq -valued models with additional local potentials of the
type (5.1). Assume that ω0 ∈ � is a ground state which is stable with a constant c > 0 for
the model with η = 0.

– If the single-site potentials obey the smallness condition

sup
v∈V

sup
k,l∈�0

|�v(k) − �v(l)| =: ε < c (5.6)

then ω0 ∈ � is a stable ground state with reduced constant c − ε > 0.
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– Consider specifically the random field random surface model (5.2) with p ≥ 1. If

sup
v∈V

|ηv| =: δ < c (5.7)

then ω0 ∈ � is a stable ground state with reduced constant c − δ > 0.

Proof The statements follow from spelling out the definitions in terms of the excess energies,
and the triangle inequality. Note for the second case, that the excess energy ofω relative toω0

in themodel (5.2) has the lower bound
∑

v(c|ωv−ω0
v |p−ε|ωv−ω0

v |) ≥ ∑
v(c−ε)|ωv−ω0

v |p .
The estimate works iff p ≥ 1, which had to be already assumed before to have a well-defined
model. This explains the restriction to the case of convex interactions in the p-SOS models
with random field disorder in the formulation of the lemma and of Theorem 6. ��

Given Lemma 6 the proof of Theorems 6 and 7 is straightforward.
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