H. Franzen

Ruhr-Universität Bochum

Übungen zur Linearen Algebra I —Blatt 9—

Aufgabe* 1. Seien U_1, U_2, U_3 Unterräume eines K-Vektorraums V.

- (i) Genau dann ist $U_1 \cup U_2$ ein Unterraum von V, wenn $U_1 \subseteq U_2$ ist oder $U_2 \subseteq U_1$ gilt.
- (ii) Stets gilt $(U_1 \cap U_2) + (U_1 \cap U_3) \subseteq U_1 \cap (U_2 + U_3)$.
- (iii) Gib ein Beispiel mit $U_1 \cap (U_2 + U_3) \not\subseteq (U_1 \cap U_2) + (U_1 \cap U_3)$.
- (iv) Falls $U_2 \subseteq U_1$, so gilt: $U_1 \cap (U_2 + U_3) = (U_1 \cap U_2) + (U_1 \cap U_3) = U_2 + (U_1 \cap U_3)$.

Aufgabe* 2. Sei G eine endliche Gruppe mit Verknüpfung * und neutralem Element e. Es gelte x * x = e für jedes $x \in G$. Zeige, daß es eine natürliche Zahl n mit $|G| = 2^n$ gibt.

Hinweise: Zeige zuerst, daß G abelsch ist. Definiere dann eine $\mathbb{Z}/2\mathbb{Z}$ -Vektorraumstruktur auf G und argumentiere mit dem Basisexistenzsatz.

Aufgabe 3. In \mathbb{R}^4 seien

$$U_1 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} \right\rangle, \qquad U_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \middle| \begin{array}{cccc} x_1 & +3x_2 & -x_3 & = 0 \\ x_1 & -x_4 & = 0 \end{array} \right\}.$$

Berechne Basen von U_2 , $U_1 \cap U_2$ und $U_1 + U_2$.

Aufgabe 4. Sei V ein endlich-dimensionaler K-Vektorraum. Für einen Unterraum U von V nennt man $\operatorname{codim}_V(U) := \dim V - \dim U$ die Codimension von U in V. Seien U_1, \ldots, U_r Unterräume von V. Zeige, daß

$$\operatorname{codim}_V(U_1 \cap \ldots \cap U_r) \leq \operatorname{codim}_V(U_1) + \ldots + \operatorname{codim}_V(U_r)$$

ist.

Aufgabe 5. Im \mathbb{R}^5 seien folgende Vektoren gegeben:

$$v_{1} = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, v_{2} = \begin{pmatrix} 0 \\ 1 \\ 4 \\ -1 \\ 2 \end{pmatrix}, v_{3} = \begin{pmatrix} 4 \\ 3 \\ 9 \\ -2 \\ 2 \end{pmatrix}, v_{4} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_{5} = \begin{pmatrix} 0 \\ -2 \\ -8 \\ 2 \\ -4 \end{pmatrix},$$

Wähle alle möglichen Basen von $U = \langle v_1, \dots, v_5 \rangle$ aus den Vektoren v_1, \dots, v_5 aus und stelle die jeweils übrigen Vektoren als Linearkombination der Basisvektoren dar.

Aufgabe 6. Sei V ein K-Vektorraum und seien U_1, U_2 zwei Unterräume von V. Zeige, daß folgende Aussagen äquivalent sind:

- (i) $U_1 \cap U_2 = \{0\}.$
- (ii) Jedes $v \in U_1 + U_2$ läßt sich auf eindeutige Weise als $v = u_1 + u_2$ mit $u_1 \in U_1$ und $u_2 \in U_2$
- (iii) Je zwei von Null verschiedene Vektoren $u_1 \in U_1$ und $u_2 \in U_2$ sind linear unabhängig.

Frohe Weihnachten und gutes Jahr 2017!

Abgabe am Montag, den 08.01.2017, um 10 Uhr. Einwurf in die Zettelkästen auf Ebene NA 02.

Aufgaben mit * müssen abgegeben werden und sind für die Bonuspunkte relevant. Diese Aufgaben werden mit maximal 4 Punkten bewertet.