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Abstract

We study the L∞-approximation problem for weighted Banach spaces of smooth
d-variate functions, where d can be arbitrarily large. We consider the worst case
error for algorithms that use finitely many pieces of information from different classes.
Adaptive algorithms are also allowed. For a scale of Banach spaces we prove necessary
and sufficient conditions for tractability in the case of product weights. Furthermore,
we show the equivalence of weak tractability with the fact that the problem does not
suffer from the curse of dimensionality.

1 Introduction

The so-called curse of dimensionality can often be observed for multivariate approximation
problems. That is, the minimal number of information operations needed to compute an
ε-approximation of a d-variate problem depends exponentially on the dimension d. The
phrase curse of dimensionality was already coined by Bellman in 1957. Since the late 1980’s
there has been a considerable interest in finding optimal algorithms, also concerning the
optimal dependence on d and a theory called information-based complexity (IBC) has been
created, see, e.g., [10]. Since there are different ways to measure the lack of exponential
behavior, several kinds of tractability were introduced. A brief history of the studies of
multivariate problems, as well as general tractability results and many concrete examples
can be found in, e.g., [5, 6, 8].
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In this paper we especially consider the L∞-approximation problem defined on some
Banach spaces Fd of real-valued d-variate functions. In Section 2 we formulate the problem
exactly and recall usual error definitions, as well as notions of tractability. Afterwards, in
Section 3, we illustrate the hardness of the problem with an example studied by Novak and
Woźniakowski [7] and show how weighted spaces can help to improve this negative result.
Thereby, we especially concentrate on so-called product weights. While there exists a well-
developed concept to handle problems defined on Hilbert spaces, we need an essentially
new approach to conclude results in the general Banach space setting. These new ideas
are presented in Section 4. Using this technique we prove a lower error bound for a very
small class of functions, i.e. we consider the space Pγd of d-variate polynomials of degree
at most one in each coordinate, equipped with some weighted norm. In Section 5 we recall
a known result of Kuo, Wasilkowski and Woźniakowski [3] about upper error bounds on
a certain weighted reproducing kernel Hilbert space Hγ

d . Next, in Section 6, we prove the
three main theorems of this paper. That is, we show necessary and sufficient conditions for
several kinds of tractability for a whole scale of weighted Banach function spaces Fγd , where
Pγd ↪→ Fγd ↪→ Hγ

d , in terms of the weights γ. In particular, we provide a characterization
of weak tractability and the curse of dimensionality. It is shown that for these kinds of
tractability results we can restrict ourselves to linear non-adaptive algorithms. We illustrate
our results by applying them to selected examples and discuss a typical case of product
weights. Finally, in Section 7, we add some remarks about possible extensions of the result to
other domains. In addition, we briefly consider the Lp-approximation problem for 1 ≤ p <∞
and correct a small mistake stated in [7].

2 The approximation problem

We investigate tractability properties of the approximation problem defined on some Banach
spaces Fd of bounded functions f : [0, 1]d → R. We want to minimize the worst case error

ewor(An,d;Fd) = sup
f∈B(Fd)

∥∥f − An,d(f) |L∞([0, 1]d)
∥∥

with respect to all algorithms An,d ∈ An that use n pieces of information in d dimensions
from a certain class Λ. Here B(Fd) = {f ∈ Fd | ‖f | Fd‖ ≤ 1} denotes the unit ball of Fd.
Hence, we study the n-th minimal error

e(n, d;Fd) = inf
An,d∈An

ewor(An,d;Fd)

of L∞-approximation on Fd. An algorithm An,d ∈ An is modeled as a mapping φ : Rn →
L∞([0, 1]d) and a function N : Fd → Rn such that An,d = φ ◦ N . In detail, the information
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map N is given by

N(f) = (L1(f), L2(f), . . . , Ln(f)) , f ∈ Fd, (1)

where Lj ∈ Λ. Here we distinguish certain classes of information operations Λ. In one case
we assume that we can compute arbitrary continuous linear functionals. Then Λ = Λall

coincides with F∗d , the dual space of Fd. Often only function evaluations are permitted, i.e.
Lj(f) = f

(
t(j)
)

for a certain fixed t(j) ∈ [0, 1]d. In this case Λ = Λstd is called standard
information. If function evaluation is continuous for all t ∈ [0, 1]d we have Λstd ⊂ Λall. If Lj
depends continuously on f but is not necessarily linear the class is denoted by Λcont. Note
that in this case also N is continuous and we obviously have Λall ⊂ Λcont.

Furthermore, we distinguish between adaptive and non-adaptive algorithms. The latter
case is described above in formula (1), where Lj does not depend on the previously computed
values L1(f), . . . , Lj−1(f). In contrast, we also discuss algorithms of the form An,d = φ ◦N
with

N(f) = (L1(f), L2(f ; y1), . . . , Ln(f ; y1, . . . , yn−1)) , f ∈ Fd, (2)

where y1 = L1(f) and yj = Lj(f ; y1, . . . , yj−1) for j = 2, 3, . . . , n. If N is adaptive we restrict
ourselves to the case where Lj depends linearly on f , i.e. Lj( · ; y1, . . . , yj−1) ∈ Λall.

In all cases of information maps, the mapping φ can be chosen arbitrarily and is not
necessarily linear or continuous. The smallest class of algorithms under consideration is the
class of linear, non-adaptive algorithms of the form

(An,df)(x) =
n∑
j=1

Lj(f) · gj(x), x ∈ [0, 1]d,

with some gj ∈ L∞ and Lj ∈ Λall or even Lj ∈ Λstd. We denote the class of all such algorithms
byAlin

n . On the other hand, the most general classes consist of algorithms An,d = φ◦N , where
φ is arbitrary and N either uses non-adaptive continuous or adaptive linear information. We
denote the respective classes by Acont

n and Aadapt
n .

The minimal number of information operations needed to achieve an error smaller than
a given ε > 0,

n(ε, d;Fd) = min {n ∈ N0 | e(n, d;Fd) ≤ ε} ,

is called information complexity.
If for a given problem, like the L∞-approximation (with respect to a given class of al-

gorithms) considered here, n(ε, d;Fd) increases exponentially in the dimension d we say the
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problem suffers from the curse of dimensionality. That is, there exist constants c > 0 and
C > 1 such that for at least one ε > 0 we have

n(ε, d;Fd) ≥ c · Cd,

for infinitely many d ∈ N. More generally, if the information complexity depends exponen-
tially on d or ε−1 we call the problem intractable. Otherwise we have weak tractability, which
can be expressed by

lim
ε−1+d→∞

ln (n(ε, d;Fd))
ε−1 + d

= 0.

We want to stress the point that weak tractability implies the absence of the curse of dimen-
sionality, but in general the converse is not true. Since there are many ways to measure the
lack of exponential dependence we later distinguish between different types of tractability.
The most important type is polynomial tractability. We say that the problem is polynomially
tractable if there exist constants c, p, q > 0 such that

n(ε, d;Fd) ≤ c · ε−p · d q for all d ∈ N, ε > 0.

If this inequality holds with q = 0, the problem is called strongly polynomially tractable. For
more specific definitions and relations between these classes of tractability see, e.g., [6].

3 The concept of weighted spaces

In [7] it is shown that the approximation problem defined on C∞([0, 1]d) is intractable.
In fact, Novak and Woźniakowski considered the linear space of all real-valued infinitely
differentiable functions f defined on the unit cube [0, 1]d in d dimensions for which the norm

‖f | Fd‖ = sup
α∈Nd0

‖Dαf‖∞

of f ∈ Fd is finite. Here ‖·‖∞ denotes the usual sup-norm over [0, 1]d and Dα = ∂|α|

∂x
α1
1 ...∂x

αd
d

,

where |α| =
∑d

j=1 αj denotes the length of the multi-index α ∈ Nd
0.

The initial error of this problem is given by e(0, d;Fd) = 1, the norm of the embedding
Fd ↪→ L∞, since A0,d ≡ 0 is a valid choice of an algorithm which does not use any information
of f . This means that the problem is well-scaled. In detail, Theorem 1 in [7] yields that for
L∞-approximation defined on Fd we have

e(n, d;Fd) = 1 for all n = 0, 1, . . . , 2bd/2c − 1.
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Therefore, for all d ∈ N and ε ∈ (0, 1),

n(ε, d;Fd) ≥ 2bd/2c.

Hence, the problem suffers from the curse of dimensionality; in particular it is intractable.
One possibility to avoid this exponential dependence on d, i.e. to break the curse, is to

shrink the function space Fd. A closer look at the norm yields that for f ∈ B(Fd) we have

‖Dαf‖∞ ≤ 1 for all α ∈ Nd
0. (3)

Hence, every derivative is equally important. In order to shrink the space, for each α ∈ Nd
0

we replace the right-hand side of inequality (3) by a weight 0 ≤ γα ≤ 1. For α with |α| = 1
this means that we control the importance of every single variable. So, the norm in the
weighted space is now given by

‖f | Fγd ‖ = sup
α∈N0

1

γα
‖Dαf‖∞ ,

where we demand Dαf to be equal to zero if γα = 0.
The idea to introduce weights directly into the norm of the function space appeared

for the first time in a paper of Sloan and Woźniakowski in 1998, see [9]. They studied
the integration problem defined over some Sobolev Hilbert space, equipped with so-called
product weights, to explain the overwhelming success of QMC integration rules. Thenceforth,
weighted problems attracted a lot of attention. For example it turned out that tractability of
approximation of linear operators between Hilbert spaces can be fully characterized in terms
of the weights and singular values of the linear operators if we use information operations
from the class Λall.

Let us have a closer look at product weights. Assume that for every d ∈ N there exists
an ordered and bounded sequence

1 ≥ γd,1 ≥ γd,2 ≥ . . . ≥ γd,d ≥ 0.

Then for d ∈ N, the product weight sequence γ = (γα)α∈Nd0
is given by

γα =
d∏
j=1

(γd,j)
αj , α ∈ Nd

0. (4)

Note that the dependence of xj on f is now controlled by the so-called generator weight γd,j.
Since γd,j = 0 for some j ∈ {1, . . . , d} implies that f does not depend on xj, . . . , xd we
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assume that γd,d > 0 in the rest of the paper. Moreover, the ordering of γd,j is without
loss of generality. Later on we will see that tractability of our problem will only depend on
summability properties of the generator weights.

Among other things, it turns out that for the L∞-approximation problem defined on the
Banach space with the norm given above and generator weights γd,j ≡ γj = Θ

(
j−β
)

we have

• intractability for β = 0,

• weak tractability but no polynomial tractability for 0 < β < 1,

• strong polynomial tractability if 1 < β.

Moreover, we prove that for β = 1 the problem is not strongly polynomially tractable.

4 Lower bounds

First, we want to describe the main ideas used in the Hilbert space setting. Hence, for a
moment, consider the problem of L2-approximation with respect to linear algorithms defined
on a reproducing kernel Hilbert space H(Kd) of functions f : [0, 1]d → R. Let

Wd : H(Kd)→ H(Kd), Wd(g) =

∫
[0,1]d

g(x)Kd(·, x) dx.

We assume that Wd is compact. Then the worst case error is fully characterized by the spec-
trum of Wd that is also a self-adjoint, and non-negative definite operator. Let {(λd,j, ηd,j) | j ∈
N} denote a complete orthonormal system of eigenpairs of Wd, indexed according to the non-
increasing order of the eigenvalues, i.e.

Wd(ηd,j) = λd,j ηd,j and 〈ηd,i, ηd,j〉H(Kd) = δij with λd,j ≥ λd,j+1 ≥ 0.

For λd,n > 0, it is well known that the algorithm

A∗n,d(f) =
n∑
j=1

〈f, η̃d,j〉L2 · η̃d,j, where η̃d,j =
ηd,j√
λd,j

is optimal. Then the n-th minimal error is given by

e(n, d;H(Kd)) = ewor(A∗n,d;H(Kd)) =
√
λd,n+1.
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For more details see, e.g., [4] and [6], as well as the references in there. For a comprehensive
introduction to reproducing kernel Hilbert spaces see, for instance, Chapter 1 in the book of
Wahba [11].

In the general Banach space setting this approach obviously doesn’t work. Our tech-
nique is based on the ideas of Werschulz and Woźniakowski [12], as well as Novak and
Woźniakowski [7]. Among other things it uses a result from Banach space theory and non-
linear functional analysis, namely, the theorem of Borsuk-Ulam. The proof of the following
proposition can be found in Chapter 1.4.2, [1].

Proposition 1 (Borsuk-Ulam). Let V be a linear normed space over R with dimV = m
and, moreover, let N : V → Rn be a continuous mapping for n < m. Then there exists an
element f ∗ ∈ V with ‖f ∗ |V ‖ = 1 such that N(f ∗) = N(−f ∗).

The main tool to conclude lower bounds in the Banach space setting now reads as follows.

Lemma 1. Assume that F and G are linear normed spaces such that F ⊆ G. Furthermore,
suppose that V ⊆ F is a linear subspace of dimension m and there exists a constant a > 0
such that

‖f |F‖ ≤ 1

a
‖f |G‖ for all f ∈ V. (5)

Then for every n < m and every An ∈ Acont
n ∪ Aadapt

n

ewor(An;F ) = sup
f∈B(F )

‖f − An(f) |G‖ ≥ a.

Proof. For An ∈ Acont
n the assertion is a simple conclusion of Proposition 1 and can be found

in [7]. On the other hand, if An ∈ Aadapt
n the proof can be obtained by arguments from linear

algebra, which are indicated in the proof of Theorem 3.1 in [12]. In any case we exclusively
use norm properties from the space G, no additional structure of G is used. Therefore, this
tool is available for any kind of approximation problem, not only for L∞-approximation.

In the following we use Lemma 1 to conclude a lower bound for the approximation error
for the space

Pγd = span

{
pi : [0, 1]d → R, pi(x) =

d∏
j=1

(xj)
ij | i = (i1, . . . , id) ∈ {0, 1}d

}
of all real-valued d-variate polynomials of degree at most one in each coordinate direction,
defined on the unit cube [0, 1]d. We equip this linear space with the weighted norm

‖f | Pγd ‖ = max
α∈{0,1}d

1

γα
‖Dαf‖∞ , f ∈ Pγd ,

where γ is the product weight sequence described as in Section 3.
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Theorem 1. Let e(n, d;Pγd ) be the n-th minimal error of L∞-approximation on Pγd with
respect to the class Acont

n ∪ Aadapt
n of all algorithms described in Section 2. Then

e(n, d;Pγd ) ≥ 1 for all n < 2s,

and some integer s ∈ [0, d] with

s >
1

3
·

(
d∑
j=1

γd,j − 2

)
. (6)

Proof. The proof of the lower error bound consists of several steps. At first, we construct a
partition of the set {1, . . . , d} into s+1 parts which we will need later and with s satisfying (6).
In a second step, we define a special linear subspace V ⊆ Pγd with dimV = 2s. Step 3 then
shows that V satisfies the assumptions of Lemma 1. The proof is completed in Step 4.

Step 1. For k ∈ {0, . . . , d}, we define inductively m0 = 0 and

mk = inf

{
t ∈ N |mk−1 < t ≤ d, with 2 ≤

t∑
j=mk−1+1

γd,j

}
with the usual convention inf ∅ =∞. Note that the infimum coincides with the minimum in
the finite case, since then mk ∈ N. Moreover, we set

s = max {k ∈ {0, . . . , d} |mk <∞} .

We denote Ik = {mk−1 + 1,mk−1 + 2, . . . ,mk} for k = 1, . . . , s. Thus, this gives a uniquely
defined disjoint partition of the set

{1, . . . , d} =

(
s⋃

k=1

Ik

)
∪ {ms + 1, . . . , d},

and mk denotes the last element of the block Ik. For all k = 1, . . . , s, we conclude

2 ≤
∑
j∈Ik

γd,j < 2 + γd,mk < 3.

Finally, summation of these inequalities gives

d∑
j=1

γd,j <

s∑
k=1

∑
j∈Ik

γd,j + 2 < 3s+ 2,
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and (6) follows immediately.
If s = 0 we can stop at this point since the initial error is 1 as the norm of the embedding

Pγd ↪→ L∞ and the remaining assertion is trivial. Hence, from now on we can assume that
s > 0 and ms ≥ 1.

Step 2. To apply Lemma 1 we have to construct a linear subspace V of F = Pγd such
that the condition (5) holds for G = L∞([0, 1]d) and a = 1. First, we restrict ourselves to
the set

F̃ = {f ∈ F | f depends only on x1, . . . , xms} .

By a simple isometric isomorphism we can interpret F̃ as the space Pγms .
We are ready to construct a suitable space V using the partition from Step 1. We define V

as the span of all functions gi : X = [0, 1]ms → R, i = (i1, . . . , is) ∈ {0, 1}s, of the form

gi(x) =
s∏

k=1

(∑
j∈Ik

γd,j · xj

)ik

, x ∈ X.

Obviously, V is a linear subspace of Pγms and with the interpretation above also a linear
subspace of F . Moreover, it is easy to see that we have by construction∥∥g | Pγms∥∥ = ‖g |F‖ and ‖g |L∞(X)‖ =

∥∥g |L∞([0, 1]d)
∥∥ for g ∈ V.

Finally, we note that dimV = #{0, 1}s = 2s. It remains to show that this subspace is the
right choice to prove the claim using Lemma 1.

Step 3. The proof of the needed condition (5),∥∥g | Pγms∥∥ ≤ ‖g |L∞(X)‖ for all g ∈ V,

is a little bit technical. Due to the special structure of the functions g ∈ V , the left hand
side reduces to max {γ−1α ‖Dαg |L∞(X)‖ |α ∈M}, where the maximum is taken over the
set

M =

{
α ∈ {0, 1}ms |

∑
j∈Ik

αj ≤ 1 for all k = 1, . . . , s

}
.

This is simply because for α /∈M we have Dαg ≡ 0 and the inequality is trivial. To simplify
the notation let us define

T : {0, 1}ms → Ns
0, α 7→ T (α) = σ = (σ1, . . . , σs), where σk =

∑
j∈Ik

αj for k = 1, . . . , s.
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Note that T (M) = {0, 1}s. Moreover, for every g =
∑

i∈{0,1}s aigi(·) ∈ V define the function

hg : Z =
s×

k=1

[
0,
∑
j∈Ik

γd,j

]
→ R, hg(z) =

∑
i∈{0,1}s

ai

s∏
k=1

zikk .

Hence, hg(z) = g(x) under the transformation x 7→ z such that

zk =
∑
j∈Ik

γd,jxj for every k = 1, . . . , s and every x ∈ X.

The span W of all functions h : Z → R with this structure also is a linear space. Furthermore,
easy calculus yields

(Dα
xg) (x) =

(
ms∏
j=1

(γd,j)
αj

)(
DT (α)
z hg

)
(z) for all g ∈ V, α ∈M and x ∈ X. (7)

Here the x and z inDα
x andD

T (α)
z indicate differentiation with respect to x and z, respectively.

Since the mapping x 7→ z is surjective we obtain ‖Dαg |L∞(X)‖ = γα
∥∥DT (α)hg |L∞(Z)

∥∥ by
the form of γ given by (4). Hence,

max
α∈M

1

γα
‖Dαg |L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg |L∞(Z)‖ .

Note that (7) with α = 0 yields ‖g |L∞(X)‖ = ‖hg |L∞(Z)‖. Therefore, the claim reduces
to

max
σ∈{0,1}s

‖Dσhg |L∞(Z)‖ ≤ ‖hg |L∞(Z)‖ for every g ∈ V.

We show this estimate for every h ∈ W , i.e.,

‖Dσh |L∞(Z)‖ ≤ ‖h |L∞(Z)‖ for all σ ∈ {0, 1}s. (8)

We start with the special case of one derivative, i.e. σ = ek for a certain k ∈ {1, . . . , s}. Since
h is affine in each coordinate we can represent it as h(z) = a(zk) · zk + b(zk) with functions a
and b which only depend on zk = (z1, . . . , zk−1, zk+1, . . . , zs). Thus, we have Dekh(z) = a(zk)
and need to show that

∣∣a(zk)
∣∣ ≤ max

{∣∣b(zk)∣∣ , ∣∣∣∣∣a(zk) ·
∑
j∈Ik

γd,j + b(zk)

∣∣∣∣∣
}
. (9)
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This is obviously true for every z ∈ Z with a(zk) = 0. For a(zk) 6= 0 we can divide by
∣∣a(zk)

∣∣
to get

1 ≤ max

{
|t| ,

∣∣∣∣∣∑
j∈Ik

γd,j − t

∣∣∣∣∣
}

if we set t = −b(zk)/a(zk). The last maximum is minimal if both of its entries coincide.
This is for t = 1

2

∑
j∈Ik γd,j. Hence, we need to demand

2 ≤
∑
j∈Ik

γd,j

to conclude (9) for all admissible z ∈ Z. But this is true for every k ∈ {1, . . . , s} by definition
of the sets Ik in Step 1. This proves (8) for the special case σ = ek for all k ∈ {1, . . . , s}.

The inequality (8) also holds for every σ ∈ {0, 1}s by an easy inductive argument on the
cardinality of |σ|. Indeed, if |σ| ≥ 2 then σ = σ′ + ek with |σ′| = |σ| − 1. We now need to
estimate

∥∥Dσ′+ekh |L∞(Z)
∥∥. Since Dekh(z) = a(zk) has the same structure as the function h

itself, we have
∥∥Dσ′+ekh |L∞(Z)

∥∥ =
∥∥Dσ′a(zk) |L∞(Z)

∥∥ and the proof is completed by the
inductive step.

Step 4. For every g ∈ V we have

‖g | Pγd ‖ =
∥∥g | Pγms∥∥ = max

α∈{0,1}ms
T (α)∈{0,1}s

1

γα
‖Dαg |L∞(X)‖ = max

σ∈{0,1}s
‖Dσhg |L∞(Z)‖

≤ ‖hg |L∞(Z)‖ = ‖g |L∞(X)‖ =
∥∥g |L∞([0, 1]d)

∥∥ ,
where V is a linear subspace of F = Pγd with dimV = 2s. Therefore, Lemma 1 with a = 1
yields that the worst case error of any algorithm An,d we consider, with n < dimV pieces of
information, is bounded from below by one. That is, ewor(An,d;Pγd ) ≥ 1. We complete the
proof by taking the infimum with respect to An,d ∈ Acont

n ∪ Aadapt
n .

5 Upper bounds

The approximation problem has been studied in many different settings. We restrict ourselves
to the case of L∞-approximation defined on a special weighted anchored Sobolev Hilbert
space Hγ

d = H(Kγ
d ).

For d = 1 and γ > 0, this is the space of all absolutely continuous functions f : [0, 1]→ R
whose first derivatives belong to L2([0, 1]). The inner product in the space Hγ

1 is defined as

〈f, g〉Hγ1 = f(0)g(0) + γ−1
∫ 1

0

f ′(x)g′(x) dx, f, g ∈ Hγ
1 ,
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where the derivatives have to be understood in the weak sense. For γ = 0 the space consists
of only constant functions.

It turns out that Hγ
1 is a reproducing kernel Hilbert space H(Kγ

1 ) whose kernel is

Kγ
1 (x, y) = 1 + γmin {x, y} for x, y ∈ [0, 1].

For d > 1, the space Hγ
d = H(Kγ

d ) is defined as the d-fold tensor product of H(K
γd,j
1 ),

where we once again assume product weights, see (4), with

1 ≥ γd,1 ≥ γd,2 ≥ . . . ≥ γd,d ≥ 0.

Due to the product structure of γα, the corresponding reproducing kernel of Hγ
d is a weighted

Wiener sheet kernel,

Kγ
d (x, y) =

d∏
j=1

(1 + γd,j min {xj, yj}) , x, y ∈ [0, 1]d.

The associated inner product is given by

〈f, g〉Hγd =
∑

α∈{0,1}d

1

γα

∫
[0,1]|α|

∂|α|f

∂xα
(xα, 0) · ∂

|α|g

∂xα
(xα, 0) dxα, f, g ∈ Hγ

d .

Here the term (xα, a) means the d-dimensional vector with (xα, a)j = xj for all coordinates j
with αj = 1 and (xα, a)j = aj otherwise. For α = 0 we replace the integral by f(a)g(a).
Therefore, the point a = 0 ∈ [0, 1]d is sometimes called an anchor of the space.

A closer look at the respective norm justifies to refer to H(Kγ
d ) as a Sobolev space of

dominating mixed smoothness. For γd,d > 0, the space H(Kγ
d ) algebraically coincides with

the space{
f : [0, 1]d → R |Dαf ∈ L2([0, 1]d) for all α = (α1, . . . , αd) with max

j=1,...,d
αj ≤ 1

}
,

where Dαf once again denotes the weak derivative in the Sobolev sense. Equipped with the
usual norm, this space is often denoted by W

(1,...,1)
2,mix ([0, 1]d), or S1

2W ([0, 1]d), respectively. If
γd,j = 0 for some j ∈ {1, . . . , d} we obtain a proper subspace of functions that are constant
with respect to xj, . . . , xd. Therefore, we always assume γd,d > 0.

Kuo, Wasilkowski and Woźniakowski [3, 8. Example] showed
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Proposition 2. There exists a linear algorithm A∗n,d for L∞-approximation on Hγ
d such

that it uses n non-adaptively chosen linear functionals and for every τ ∈ (1/2, 1) there are
constants aτ , bτ > 0 independent of γ and d such that

ewor(A∗n,d;H
γ
d) ≤ bτ · n−(1−τ)/(2τ) ·

d∏
j=1

(
1 + aτγ

τ
d,j

)1/(2τ)
.

Furthermore, A∗n,d is close to be optimal in the class Alin
n .

6 Conclusions and applications

We now combine lower and upper bounds presented before and prove general results for
L∞-approximation on weighted Banach function spaces. More precisely, consider a sequence
of Banach spaces Fγd of functions f : [0, 1]d → R which fulfills the following simple assump-
tions:

(A1) Pγd ↪→ F
γ
d with an embedding factor C1,d ≤ 1 for all d,

(A2) Fγd ↪→ H
γ
d with an embedding factor C2,d for all d and

C2,d ≤ a · exp

(
b ·

d∑
j=1

(γd,j)
t

)

for some constants a, b ≥ 0 and a parameter t ∈ (0, 1], independent of d and γ.

By A ↪→ B with an embedding factor C, we mean that the normed linear space A is
continuously embedded in the normed linear space B and

‖f |B‖ ≤ C ‖f |A‖ for all f ∈ A.

That is, we can take C = ‖id | L(A,B)‖ as the (operator-) norm of the identity id : A→ B.
Moreover, γ is once again a product weight sequence given by formula (4). The spaces Pγd
and Hγ

d are defined in Section 4 and Section 5, respectively.
To simplify the notation for necessary and sufficient conditions of tractability, we use the

commonly known definitions of the so-called sum exponents for the weight sequence γ,

p(γ) = inf

{
κ ≥ 0 | Pκ(γ) = lim sup

d→∞

d∑
j=1

(γd,j)
κ <∞

}

13



and

q(γ) = inf

{
κ ≥ 0 | Qκ(γ) = lim sup

d→∞

∑d
j=1 (γd,j)

κ

ln(d+ 1)
<∞

}
,

with the convention that inf ∅ =∞.

Theorem 2 (Necessary conditions). Assume that (A1) holds. Consider L∞-approximation
over Fγd with respect to the class of algorithms Acont

n ∪ Aadapt
n . Then

n(ε, d;Fγd ) > exp

(
1

3
· ln 2 ·

( d∑
j=1

γd,j − 2
))

for all d ∈ N and ε ∈ (0, 1). (10)

Therefore, if the problem is

• polynomially tractable then q(γ) ≤ 1,

• strongly polynomially tractable then p(γ) ≤ 1.

Proof. Due to (A1), every algorithm An,d ∈ Acont
n ∪ Aadapt

n for L∞-approximation defined
on Fγd also applies to the embedded space Pγd . Furthermore, C1,d ≤ 1 implies that the unit
ball B(Pγd ) is contained in the unit ball B(Fγd ). Therefore,

ewor(An,d;Fγd ) ≥ ewor(An,d
∣∣
Pγd

;Pγd ) ≥ e(n, d;Pγd ).

From Theorem 1 we have

e(n, d;Pγd ) ≥ 1 for n < 2s,

where s = s(γ, d) ∈ [0, d] satisfies (6). Hence, for d ∈ N and ε ∈ (0, 1) we conclude

n(ε, d;Fγd ) ≥ 2s >
1

41/3
21/3

∑d
j=1 γd,j ,

as claimed in (10).
Suppose now that the problem is polynomially tractable. Then there are non-negative

constants C, p and q such that

n(ε, d;Fγd ) ≤ Cε−pd q for all d ∈ N, ε > 0.

14



Take now an arbitrarily fixed ε in (0, 1). Then (10) implies that there is a positive C̃ such
that

21/3·
∑d
j=1 γd,j ≤ C̃ · d q for all d ∈ N.

This is equivalent to the boundedness of
∑d

j=1 γd,j/ ln(d + 1), and therefore q(γ) ≤ 1, as
claimed.

Suppose that the problem is strongly polynomially tractable. Then q = 0 in the bound
above, and

∑d
j=1 γd,j is uniformly bounded in d. Hence, p(γ) ≤ 1, as claimed.

Of course, the conditions q(γ) ≤ 1 and p(γ) ≤ 1 are also necessary for polynomial and
strong polynomial tractability with respect to smaller classes of algorithms.

We next assume (A2) and show that slightly stronger conditions on the weights γ than
in Theorem 2 are sufficient for polynomial and strong polynomial tractability.

Theorem 3 (Sufficient conditions). Assume that (A2) holds with a parameter t ∈ (0, 1].
Consider L∞-approximation over Fγd with respect to the class of linear algorithms Alin

n . Then

• q(γ) < t implies that the problem is polynomially tractable,

• p(γ) < t implies that the problem is strongly polynomially tractable.

Proof. Due to (A2), the restriction of the algorithm A∗n,d in Proposition 2 from Hγ
d to Fγd

is a valid linear algorithm for L∞-approximation over Fγd . Furthermore, due to linearity of
A∗n,d for all f ∈ Hγ

d , we have∥∥f − A∗n,df |L∞([0, 1]d)
∥∥ ≤ ewor(A∗n,d;H

γ
d) · ‖f |H

γ
d‖ ≤ ewor(A∗n,d;H

γ
d) · C2,d · ‖f | Fγd ‖ .

Therefore, we can estimate the n-th minimal error by

e(n, d;Fγd ) ≤ ewor(A∗n,d
∣∣
Fγd

;Fγd ) ≤ C2,d · ewor(A∗n,d;H
γ
d)

≤ a · exp

(
b ·

d∑
j=1

(γd,j)
t

)
· bτ · n−(1−τ)/(2τ) ·

d∏
j=1

(
1 + aτγ

τ
d,j

)1/(2τ)
,

where τ is an arbitrary number from (1/2, 1). Using 1 + x ≤ ex for x ≥ 0, we have

e(n, d;Fγd ) ≤ a · bτ · n−(1−τ)/(2τ) · exp

(
b

d∑
j=1

(γd,j)
t +

aτ
2τ

d∑
j=1

(γd,j)
τ

)
.
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Choosing n such that the right-hand side is at most ε, we obtain an estimate for the infor-
mation complexity with respect to the class of linear algorithms,

n(ε, d;Fγd ) ≤ c1 · ε−2τ/(1−τ) · exp

(
c2

d∑
j=1

(γd,j)
t + c3

d∑
j=1

(γd,j)
τ

)
, (11)

where the positive constants c1, c2 and c3 only depend on τ , a and b.
Suppose that q(γ) < t. Then Qκ(γ) is finite for every κ > q(γ). Taking κ = t we obtain∑d

j=1 (γd,j)
t

ln(d+ 1)
· ln(d+ 1) ≤ (Qt(γ) + δ) · ln(d+ 1) = ln(d+ 1)Qt(γ)+δ

for every δ > 0 whenever d is larger than a certain dδ. This means that the factor

exp
(
c2
∑d

j=1(γd,j)
t
)

in (11) is polynomially dependent on d.

On the other hand, we can choose τ ∈ (max {q(γ), 1/2} , 1) such that Qτ (γ) is finite and

the factor exp
(
c3
∑d

j=1(γd,j)
τ
)

in (11) is also polynomially dependent on d. So, for this

value of τ we can rewrite (11) as

n(ε, d;Fγd ) = O
(
ε−2τ/(1−τ) · (d+ 1)c4

)
,

with c4 independent of d and ε. This means that the problem is polynomially tractable, as
claimed.

Suppose finally that p(γ) < t. Then the sums
∑d

j=1(γd,j)
t and

∑d
j=1(γd,j)

τ for τ ∈
(max {p(γ), 1/2} , 1) are both uniformly bounded in d. Therefore (11) yields strong polyno-
mial tractability, and completes the proof.

The conditions in Theorem 3 are obviously also sufficient if we consider larger classes of
algorithms. Moreover, the proof of Theorem 3 also provides explicit upper bounds for the
exponents of tractability.

We now discuss the role of assumptions (A1) and (A2). They are quite different. The
assumption (A1) is used to find a lower bound on the information complexity for the space Fγd
as long the space Pγd is continuously embedded in Fγd with an embedding factor at most one.
Such an embedding can be shown for several different classes of functions.

The assumption (A2) is used to find an upper bound on the information complexity for
the space Fγd as long as it is continuously embedded in the space Hγ

d with an embedding
factor depending exponentially on the sum of some power of the product weights. This
considerably restricts the choice of Fγd . We need this assumption in order to use the linear
algorithm A∗n,d defined on the space Hγ

d due to Kuo et al. [3] and the error bound they

16



proved. Obviously, we can replace the space Hγ
d in (A2) by some other space which contains

at least Pγd and for which we know a linear algorithm using n linear functionals whose worst
case error is polynomial in n−1 with an explicit dependence on the product weights.

We now show that the assumptions (A1) and (A2) allow us to characterize weak tractabil-
ity and the curse of dimensionality.

Theorem 4 (Weak tractability and the curse of dimensionality). Suppose that (A1)
and (A2) with a parameter t ∈ (0, 1] hold. Then for L∞-approximation defined on the
space Fγd the following statements are equivalent:

(i) The problem is weakly tractable with respect to the class Alin
n .

(ii) The problem is weakly tractable with respect to the class Acont
n ∪ Aadapt

n .

(iii) There is no curse of dimensionality for the class Alin
n .

(iv) There is no curse of dimensionality for the class Acont
n ∪ Aadapt

n .

(v) For all κ > 0 we have lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

(vi) There exists κ ∈ (0, t) such that lim
d→∞

1
d

∑d
j=1 (γd,j)

κ = 0.

Proof. We start by showing that (vi) implies (i), i.e.,

lim
ε−1+d→∞

ln (n(ε, d;Fγd ))

ε−1 + d
= 0,

where the information complexity is taken with respect to linear algorithms Alin
n . By the

arguments used in the proof of Theorem 3 we obtain estimate (11) for all ε > 0, as well as
for every d ∈ N and all τ ∈ (1/2, 1), due to assumption (A2). Clearly, for κ ∈ (0, t) as in the
hypothesis and t ∈ (0, 1] as in the embedding condition, we can find τ ∈ (1/2, 1) such that
κ < min {t, τ}. So, since γd,j ≤ 1, we can estimate both sums on the right-hand side of (11)

from above by
∑d

j=1 (γd,j)
min{t,τ} ≤

∑d
j=1 (γd,j)

κ. Thus,

ln (n(ε, d;Fγd ))

ε−1 + d
≤ ln(c1)

ε−1 + d
+

2τ

1− τ
· ln (ε−1)

ε−1 + d
+ max {c2, c3} ·

∑d
j=1 (γd,j)

κ

ε−1 + d

tends to zero when ε−1 + d approaches infinity, as claimed.
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Clearly, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and (v) ⇒ (vi). Hence, we only need to show that
(iv) ⇒ (v). From (A1) we have estimate (10). Then no curse of dimensionality implies

lim
d→∞

1

d

d∑
j=1

γd,j = 0.

Now, Jensen’s inequality yields

1

d

d∑
j=1

γd,j ≥

(
1

d

d∑
j=1

(γd,j)
κ

)1/κ

for 0 < κ ≤ 1,

since f(y) = yκ is a concave function for y > 0. Thus,

lim
d→∞

1

d

d∑
j=1

(γd,j)
κ = 0 for all 0 < κ ≤ 1.

Finally, for every κ ≥ 1 we can estimate γd,j ≥ (γd,j)
κ since γd,j ≤ 1 for j = 1, . . . , d.

Therefore, limd→∞ d
−1∑d

j=1(γd,j)
κ = 0 also holds for κ > 1, and the proof is complete.

In the last part of this section, we give some examples to illustrate the results. In the
following we only have to prove the embeddings, i.e. assumptions (A1) and (A2) from the
beginning of this section.

Example 1 (Limiting cases Pγd and Hγ
d). To begin with, we check the case Fγd = Pγd .

Then (A1) obviously holds with C1,d = 1. To prove (A2), note that the algebraical inclusion
Fγd ⊂ H

γ
d is trivial by arguments given in Section 5. For f ∈ Fγd = Pγd we calculate

‖f |Hγ
d‖

2 ≤
∑

α∈{0,1}d

1

γα

∫
[0,1]|α|

‖Dαf‖2∞ dxα ≤ ‖f | F
γ
d ‖

2 ·
∑

α∈{0,1}d
γα.

Hence, the norm of the embedding Fγd ↪→ H
γ
d is bounded by ∑

α∈{0,1}d
γα

1/2

=

(
d∏
j=1

(1 + γd,j)

)1/2

≤ exp

(
1

2

d∑
j=1

γd,j

)
.

So, with a = 1, b = 1/2 and t = 1 also assumption (A2) is fulfilled and we can apply the
stated theorems for the space Fγd = Pγd .
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We now turn to the case Fγd = Hγ
d . Unfortunately, the estimate above indicates that (A1)

may not hold for Fγd = Hγ
d with C1,d ≤ 1. Nevertheless, in this case assumption (A2) is true

with C2,d = 1, i.e., a = 1, b = 0 and t = 1. Therefore, we can apply Theorem 3 for this
space. Then the problem is strongly polynomially tractable if p(γ) < 1. Moreover, we have
polynomial tractability if q(γ) < 1. It is known that these conditions are also necessary, see,
e.g., Theorem 12 in [3].

Example 2 (C(1,...,1)). Consider the space

Fγd = {f : [0, 1]d → R | f ∈ C(1,...,1), where ‖f | Fγd ‖ = max
α∈{0,1}d

1

γα
‖Dαf‖∞ <∞}.

Since Pγd is a linear subset of Fγd and ‖· | Pγd ‖ is simply the restriction of ‖· | Fγd ‖ we have
Pγd ↪→ Fγd with an embedding factor C1,d = 1 and (A1) holds. For the factor C2,d of the
embedding Fγd ↪→ Hγ

d , the same estimates hold exactly as in the previous example and,
moreover, the set inclusion is obvious. Therefore, also assumption (A2) is fulfilled and we
can apply the theorems of this section to the space Fγd .

Finally, the last example shows that even very high smoothness does not improve the
conditions for tractability.

Example 3 (C∞). Assume

Fγd = {f : [0, 1]d → R | f ∈ C∞, where ‖f | Fγd ‖ = sup
α∈Nd0

1

γα
‖Dαf‖∞ <∞}.

Obviously, Pγd ⊂ C∞, and functions from Pγd are at most linear in each coordinate. Hence,
Dαf ≡ 0 for all α ∈ Nd

0 \ {0, 1}d. Therefore, once again we have

‖f | Pγd ‖ = max
α∈{0,1}d

1

γα
‖Dαf‖∞ = ‖f | Fγd ‖ for all f ∈ Pγd .

This yields Pγd ↪→ Fγd with an embedding factor C1,d = 1. In addition, also (A2) can be
concluded as in the examples above. So, even infinite smoothness leads to the the same
conditions for tractability and the curse of dimensionality as before.

Note that in the last example we do not need to claim a product structure for the weights
according to multi-indices α ∈ Nd

0 \{0, 1}d. Moreover, this example is a generalization of the
space considered in [7]. For γα ≡ 1 we reproduce the intractability result stated there.

In conclusion, we discuss the tractability behavior of L∞-approximation defined on one
of the spaces Fγd above using product weights which are independent of the dimension d, i.e.,

γd,j ≡ γj = Θ(j−β) for some β ≥ 0.
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This is a typical example in the theory of product weights, and p(γ) is finite if and only if
β > 0. If so then p(γ) = 1/β. See, e.g., Section 5.3.4 in [6].

If β = 0 then the problem is intractable due to Theorem 4, assertion (v), since d−1
∑d

j=1 γd,j
does not tend to zero. For β ∈ (0, 1), easy calculus yields q(γ) > 1. So, using Theorem 2
we conclude polynomial intractability in this case. On the other hand, for all δ and κ with
0 < δ < κ ≤ 1, we have∑d

j=1 j
−κ

d
=

∑d
j=1 j

−κdκ−(1+δ)

dκ−δ
≤
∑d

j=1 j
−(1+δ)

dκ−δ
→ 0 with d→∞

and if κ > 1 then the fraction obviously tends to zero, too. Hence, condition (vi) of Theorem 4
holds and the problem is weakly tractable if β > 0.

For β = 1, we use inequality (10) from Theorem 2 and estimate

d∑
j=1

γd,j =
d∑
j=1

j−1 ≥ c · ln(d+ 1)

for some positive c. Therefore,

n(ε, d;Fγd ) ≥ 1

22/3
(d+ 1)c/3·ln(2) for all d ∈ N, ε ∈ (0, 1).

Hence, strong polynomial tractability does not hold. Moreover, it is easy to show that for
β = 1 the sufficient condition q(γ) < 1 for polynomial tractability is not fulfilled. So, we do
not know if polynomial tractability holds.

If β > 1 we easily see that p(γ) = 1
β
< 1 = t. Hence, Theorem 3 provides strong

polynomial tractability in this case.

7 Final remarks

Note that the main result of this paper, the lower bound given in Theorem 1, can be easily
transfered from [0, 1]d to more general domains Ω. Indeed, the case Ω = [c1, c2]

d, where
c1 < c2, can be immediately obtained using our techniques. It turns out that in this case we
have to modify estimate (6) by a constant which depends only on the length of the interval
[c1, c2]. Thus, the general tractability behavior does not change.

Another extension of the results is possible if we consider the Lp-norms (1 ≤ p <∞) in-
stead of the L∞-norm. We want to briefly discuss these norms for the unweighted case. Then
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the modifications for the weighted case are obvious. Following Novak and Woźniakowski [7]
let

Fd,p =

{
f : [c1, c2]

d → R | f ∈ C∞ with ‖f | Fd,p‖ = sup
α∈Nd0

‖Dαf |Lp‖ <∞

}

for 1 ≤ p < ∞ and d ∈ N. Let l = c2 − c1 > 0. We want to approximate f ∈ Fd,p in the
norm of Lp, i.e., we consider the n-th minimal error

ep(n, d;Fd,p) = inf
An,d∈An

eworp (An,d;Fd,p) = inf
An,d∈An

sup
f∈B(Fd,p)

∥∥f − An,d(f) |Lp([c1, c2]d)
∥∥ .

Without loss of generality we restrict ourselves to the case [c1, c2] = [0, l]. In order to conclude
a lower bound analogue to Theorem 1, i.e., ep(n, d;Fd,p) ≥ 1 for n < 2s, we once again use
Lemma 1 with F = Fd,p and G = Lp([0, l]

d). The authors of [7] suggest to use the subspace

V
(k)
d ⊂ Fd,p defined as

V
(k)
d = span

gi : [c1, c2]
d → R, x 7→ gi(x) =

s∏
j=1

 jk∑
m=(j−1)k+1

xm

ij

| i ∈ {0, 1}s
 ,

where s = bd/kc and k ∈ N such that kl ≥ 2(p+ 1)1/p. Hence, if l < 2(p+ 1)1/p we have to
use blocks of variables with size k > 1 in order to guarantee (5), i.e., to fulfill the condition

‖g | Fd,p‖ ≤ ‖g |Lp‖ for all g ∈ V (k)
d . (12)

Therefore, Novak and Woźniakowski defined k =
⌈
2(p+ 1)1/p/l

⌉
, but this is too small as the

following example shows.
Take l = 1, i.e. [c1, c2]

d = [0, 1]d, and p = 1. Then k = 4 should be a proper choice,
but for g∗(x) = (x1 + x2 + x3 + x4) − 2 we obtain ‖g∗ |L1‖ = 7/15 by using Maple, while
‖∂g∗/∂x1 |L1‖ = 1. This contradicts (12).

Proposition 3. Let 1 ≤ p <∞ and k ∈ N with

k ≥
⌈
8(p+ 1)2/p/l2

⌉
. (13)

Then condition (12) holds for V
(k)
d ⊂ Fd,p. Hence, the problem remains intractable since

ep(n, d;Fd,p) ≥ 1 for all n < 2bd/kc.
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Proof. Step 1. Due to the structure of functions g from V
(k)
d , it suffices to show∥∥Dαg |Lp([0, l]ks)

∥∥ ≤ ∥∥g |Lp([0, l]ks)∥∥ for all g ∈ V (k)
d and for every α ∈M(k),

where the set of multi-indices M(k) is defined by

M(k) =

α ∈ {0, 1}ks | ∑
m∈Ij

αm ≤ 1, for all j = 1, . . . , s


and Ij = {(j − 1)k + 1, . . . , jk}. Similar to the proof of Theorem 1, we only consider the
case α = et ∈ {0, 1}ks with t ∈ Ij. The rest then follows by induction. We can represent

g ∈ V (k)
d , as well as Detg, by functions a, b : [0, l]k(s−1) → R such that

g(x) = a(x̃)
k∑

m=1

ym + b(x̃) and Detg(x) = a(x̃),

where x = (xI1 , . . . , xIj−1
, y, xIj+1

, . . . , xIs) ∈ [0, l]ks and x̃ = (xI1 , . . . , xIj−1
, xIj+1

, . . . , xIs) ∈
[0, l]k(s−1), as well as y = (y1, . . . , yk) ∈ [0, l]k. Here xIj denotes the k-dimensional vec-
tor of components xm with coordinates m ∈ Ij. Therefore, we can rewrite the inequality∥∥Detg |Lp([0, l]ks)

∥∥ ≤ ∥∥g |Lp([0, l]ks)∥∥ as∫
[0,l]k(s−1)

∫
[0,l]k
|a(x̃)|p dy dx̃ ≤

∫
[0,l]k(s−1)

∫
[0,l]k

∣∣∣∣∣a(x̃)
k∑

m=1

ym + b(x̃)

∣∣∣∣∣
p

dy dx̃

such that it is enough to prove a point wise estimate of the inner integrals for fixed x̃ ∈
[0, l]k(s−1) with a = a(x̃) 6= 0. Easy calculus yields∫

[0,l]k

∣∣∣∣∣a
k∑

m=1

ym + b

∣∣∣∣∣
p

dy = lp+k ·
∫
[−1/2,1/2]k

∣∣∣∣∣a
k∑

m=1

zm + b′

∣∣∣∣∣
p

dz

for some constant b′ ∈ R. The right-hand side is minimized for b′ = 0. So, we can estimate
this integral from below by∫

[0,l]k

∣∣∣∣∣a
k∑

m=1

ym + b

∣∣∣∣∣
p

dy ≥ lp+k · |a|p ·
∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dz

= lp ·
∫
[0,l]k
|a|p dy ·

∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dz.
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Hence, it remains to show that the choice of k implies that∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dz ≥ l−p.

Step 2. In this last part, we will show by arguments from Banach space geometry that∫
[−1/2,1/2]k

∣∣∣∣∣
k∑

m=1

zm

∣∣∣∣∣
p

dz ≥
(
k

2

)p/2
· 1

2p(1 + p)
=

(
k

2

)p/2
·
∫ 1/2

−1/2
|x|p dx. (14)

Obviously, we only need to prove the inequality for k ≥ 2 since the equation on the right, as
well as the case k = 1, are trivial. To abbreviate the notation, we define

f : Rk → R, z = (z1, . . . , zk) 7→
k∑

m=1

zm

for fixed k ≥ 2.
For given vectors z, ξ ∈ Rk, let 〈z, ξ〉 denote the scalar product

∑k
m=1 zmξm. In the

special case ξ = 1/
√
k · (1, . . . , 1) ∈ Sk−1 it is 〈z, ξ〉 = t for a given t ∈ R, if and only if,

f(z) = t
√
k. Furthermore, note that every ξ in the k-dimensional unit sphere Sk−1 uniquely

defines a hyperplane ξ⊥ = {z ∈ Rk | 〈z, ξ〉 = 0} perpendicular to ξ which contains zero.
Therefore, for every t ∈ [0,∞), the set ξ⊥ + tξ = {z ∈ Rk | 〈z, ξ〉 = t} describes a parallel
shifted hyperplane with distance t to the origin. Using Fubini’s theorem, this leads to the
following representation

∫
[−1/2,1/2]k

|f(z)|p dz = 2 ·
∫
[−1/2,1/2]k
〈z,ξ〉≥0

f(z)p dz = 2 · kp/2 ·
∫ ∞
0

tp

∫
[−1/2,1/2]k
〈z,ξ〉=t

1 dz

 dt.

Now we see that the inner integral describes the (k − 1)-dimensional volume

v(t) = λk−1
(
[−1/2, 1/2]k ∩ (ξ⊥ + tξ)

)
of the parallel section of the unit cube with the hyperplane defined above. Because of Ball’s
famous theorem we know v(0) ≤

√
2, independent of k, see, e.g., [2, Chapter 7]. Moreover,

ξ⊥ provides a central hyperplane section of the unit cube such that we have∫ ∞
0

v(t) dt =
1

2
· λk([−1/2, 1/2]k) =

1

2
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and, by Brunn’s theorem (see Theorem 2.3 in [2]), v ≥ 0 is non-increasing on [0,∞). Thus,
v is related to the distribution function of a certain non-negative real-valued random vari-
able X, up to a normalizing factor, i.e. v(t) = v(0) · P(X ≥ t). Using Hölder’s inequality we
obtain E(X1+p) ≥ (EX)1+p and, respectively,∫ ∞

0

tpv(t) dt ≥ 1

v(0)p(1 + p)
·
(∫ ∞

0

v(t) dt

)1+p

by integration by parts. Altogether we conclude inequality (14) and, with k bounded from
below by (13), even ∫

[−1/2,1/2]k
|f(z)|p dz ≥ l−p.

Therefore, the proof is complete.

Using other methods, we can improve inequality (14) in Step 2 of the last proof. In
detail, we can represent the integral on the left as an expectation E(|f(Y )|p) with a suitable
random vector Y . For p = 2N with N ∈ N this can be calculated exactly. Finally, it turns
out that it is enough to take

k ≥

{
d12/l2e , if 2 ≤ p < 4

d8/l2e , if 4 ≤ p

in order to conclude the claimed intractability result for the Lp-approximation problem.
Nevertheless, we want to stress the point that also with this improvements the lower bounds
on k are not sharp since we know from [7] that in the limit case p =∞ we can take k = d2/le.
On the other hand, upper bounds for the k-dimensional integral, concluded using Hoeffding’s
inequality, yield that kp/2 is the right order.
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[6] E. Novak, and H. Woźniakowski, Tractability of Multivariate Problems. Vol. I: Linear
Information, Europ. Math. Soc., Zürich, 2008.
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