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Abstract

In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski proved that the inverse of the
discrepancy depends linearly on the dimension, by showing that a Monte Carlo point set P of
N points in the s-dimensional unit cube satisfies the discrepancy bound D∗sN (P)≤ cabss1/2N−1/2

with positive probability. Later their results were generalized by Dick to the case of double
infinite random matrices. In the present paper we give asymptotically optimal bounds for the
discrepancy of such random matrices, and give estimates for the corresponding probabilities.
Additionally, we show how our results can be applied to Markov Chain Monte Carlo.

1 Introduction and statement of results

1.1 Uniform distribution and discrepancy
Let x,y be two elements of the s-dimensional unit cube [0,1]s. We write x ≤ y if this in-
equality holds coordinatewise, and x < y if x ≤ y and at least one coordinate of x is effec-
tively smaller than the corresponding coordinate of y. Furthermore, [x,y) denotes the set
{z ∈ [0,1]s |x ≤ z < y}. We write 0 for the s-dimensional vector (0, . . . ,0), and thus [0,x)
denotes the set {z ∈ [0,1]s |0≤ z < x}. Throughout the paper we will use the same notation for
real numbers and for real vectors; it will be clear from the context what we mean. Moreover,
by cabs we will denote universal constants which may change at every occurrence.
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A sequence (xn)n∈N of numbers from [0,1]s is called uniformly distributed (modulo 1) if
for any x ∈ [0,1]s the asymptotic equality

lim
N→∞

1
N

N

∑
n=1

1[0,x)(xn) = λ ([0,x)) (1)

holds. Here N denotes the set of positive integers, and λ denotes the s-dimensional Lebesgue
measure. By an observation of Weyl [20] a sequence is uniformly distributed if and only if

lim
N→∞

1
N

N

∑
n=1

f (xn) =
∫
[0,1]s

f (x)dx (2)

for any continuous s-dimensional function f . This interrelation already suggests that uniformly
distributed sequences can be used for numerical integration - an idea which is the origin of the
so-called Quasi-Monte Carlo (QMC) method for numerical integration. The speed of conver-
gence in (1) and (2) can be measured by means of the star discrepancy of the point sequence
(xn)n∈N ⊂ [0,1]s, which is defined as

D∗sN (x1, . . . ,xN) = sup
x∈[0,1]s

∣∣∣∣∣ 1
N

N

∑
n=1

1[0,x)(xn)−λ ([0,x))

∣∣∣∣∣ , N ∈ N. (3)

A sequence is uniformly distributed if and only the discrepancy of its first N elements tends
to 0 as N→ ∞.

The Koksma-Hlawka inequality states that the deviation between the finite average

1
N

N

∑
n=1

f (xn)

and the integral of a function f can be estimated by the product of the star discrepancy of the
point set {x1, . . . ,xN} and the variation (in the sense of Hardy and Krause) of f (see [6, 13]
for details, as well as for a general introduction to uniform distribution theory and discrepancy
theory). Thus, as a rule of thumb it is reasonable to perform Quasi-Monte Carlo integration
by using point sets having small discrepancy. There exist many constructions of so-called
low-discrepancy point sets and low-discrepancy sequences, where for many decades the main
focus of research was set on finding point sets and sequences satisfying strong discrepancy
bounds for large N and fixed s; however, recently, the problem asking for point sets having
small discrepancy for a moderate number of points in comparison with the dimension has at-
tracted some attention.

From a probabilistic point of view, a sequence (xn)n∈N is uniformly distributed if the cor-
responding sequence of empirical distribution functions converges to the uniform distribution.
In particular, by the Glivenko-Cantelli theorem a random sequence is almost surely uniformly
distributed.
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1.2 The inverse of the discrepancy
Let n∗(s,ε) denote the smallest possible size of a set of s-dimensional points having star dis-
crepancy not exceeding ε . This quantity is called the inverse of the discrepancy. By a profound
result of Heinrich, Novak, Wasilkowski and Woźniakowski [11] we know that

n∗(s,ε)≤ cabss ε
−2. (4)

This upper bound is complemented by a lower bound of Hinrichs [12], stating that

n∗(s,ε)≥ cabss ε
−1. (5)

Together, (4) and (5) give a complete description of the dependence of the inverse of the star
discrepancy on the dimension s, while the precise dependence on ε is still an important open
problem. For their proof Heinrich et al. use deep results of Haussler [10] and Talagrand [19].
In fact, what they exactly prove is that a randomly generated sequence satisfies (4) with positive
probability. The upper bound in (4) is equivalent to the fact that for any N and s there exists a
set of N points in [0,1]s satisfying the discrepancy bound

D∗sN ≤ cabs

√
s√
N
. (6)

For more details on the inverse of the discrepancy and on feasibility of Quasi-Monte Carlo
integration we refer to [8, 15, 16].

1.3 Double infinite matrices
Dick [4] observed that the probabilities of the exceptional sets in the argument of Heinrich
et al. to prove (6) are summable over s and N, if the factor N is replaced by N lnN. More
precisely, he proved that with positive probability all the N× s-dimensional projections of a
randomly generated double infinite matrix (Xn,i)n,i∈N satisfy

D∗sN ≤ cabs
√

lnN
√

s√
N
. (7)

Dick’s result has been slightly improved by Doerr, Gnewuch, Kritzer and Pillichshammer [5],
again for randomly generated matrices. It is clear that such a randomly generated matrix
can not achieve the discrepancy bound (6) uniformly in s and N, since by Philipp’s law of the
iterated logarithm [17] for any sequence (Xn)n∈N of independent, uniformly distributed random
vectors

limsup
N→∞

√
ND∗sN (X1, . . . ,XN)√

ln lnN
=

1√
2

almost surely. (8)
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Thus, the factor
√

lnN in (7) cannot be reduced to a function from the class o
(√

ln lnN
)

, since
by (8) no positive probability can exist for a random matrix satisfying such an asymptotic
discrepancy bound. However, there exists a double infinite matrix constructed in a hybrid
way (that is, consisting of both random and deterministic entries) whose N× s-dimensional
projections satisfy

D∗sN ≤ cabs

√
s√
N

uniformly in N and s, see [1]. The purpose of the present paper is to find optimal discrepancy
bounds which hold for random double infinite matrices with positive probability, and to give
estimates for the corresponding probabilities.

1.4 Complete uniform distribution and Markov Chain
Monte Carlo
A sequence (xn)n∈N is called completely uniformly distributed (c.u.d.), if for any s the se-
quences

((xn, . . . ,xn+s−1))n∈N ⊂ [0,1]s

are uniformly distributed. This property was suggested by Knuth as a test for pseudorandom-
ness of sequences in volume II of his celebrated monograph on The Art of Computer Program-
ming. However, in our context it is more sensible to use an equivalent, non-overlapping version
of the above construction, namely to use the first Ns elements of an infinite sequence (xn)n∈N

to construct N points u(s)1 , . . . ,u(s)N ∈ [0,1]s in the form

u(s)1 = (x1, . . . ,xs),

u(s)2 = (xs+1, . . . ,x2s),

...

u(s)N = (x(N−1)s+1, . . . ,xNs). (9)

In many practical applications, e.g. in financial mathematics, a general integral of the form∫
Ω

f (y)dµ(y)

for some measure space Ω and some measure µ can be transferred to the form∫
[0,1]s

f̂ (y)dy.

That is, the original function f (which can be, for example, the payoff-function of some finan-
cial derivative, where the properties of the underlying problem are described by µ) has to be
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replaced by a new function f̂ , which contains all the information about the change of measure
from µ to λ . However, such a change of measure is not always possible in a reasonable way,
and thus it is often necessary to directly calculate integrals of the form∫

[0,1]s
f (y)π(y)dy, (10)

where π is a density function. In other words, it is necessary to sample random variables having
density π , which may not be directly possible by standard methods. This problem can be
solved by using Markov Chain Monte Carlo (MCMC). Here y0 is a (random) starting element,
and the other samples yn are constructed iteratively in the form yn = Φ(yn−1,un), where un ∈
[0,1]s and Φ is an appropriate function. The distribution of (yn|y0, . . . ,yn−1) is the same as
the distribution of (yn|yn−1), which means that the sequence (yn)n∈N has the Markov property.
Then, if π is the density of the stationary distribution of (yn)n∈N under Φ, the integral (10) can
be estimated by

1
N

N

∑
n=1

f (yn).

For more background information on MCMC we refer to [14, 18].

Traditionally, the numbers (un)n∈N⊂ [0,1]s in the aforementioned construction are sampled
randomly. However, Chen, Dick and Owen [3] recently showed that it is also possible to
use quasi-random numbers instead, namely by choosing un = u(s)n , n ∈ N, constructed out
of a completely uniformly distributed sequence (xn)n∈N according to (9). Then, under some
regularity assumptions, the MCMC sampler consistently samples numbers having density π ,
provided the discrepancy of the c.u.d.-sequence is sufficiently small. The results of [3] are of a
merely qualitative nature, stating that certain MCMC-methods are consistent if the discrepancy
of the QMC-points, constructed according to (9), tends to zero. However, it is natural to assume
that the speed of convergence of these MCMC samplers can be estimated by the speed of decay
of the discrepancy of

{
u(s)n |1≤ n≤ N

}
, and therefore it is desirable to find sequences (xn)n∈N

for which this discrepancy is small. In [3] it is noted that Dick’s proof from [4] can be modified
to prove the existence of a sequence (xn)n∈N for which

D∗sN

(
u(s)1 , . . . ,u(s)N

)
≤ cabs

√
lnN
√

s√
N
,

uniformly in N and s. In the present paper we will show that the factor
√

lnN can be reduced
to
√

cabs +(ln lnN)/s, which is already very close to the upper bound of Heinrich et al. in (6).
We tried to find a hybrid construction achieving (6), similar to the hybrid construction of a
double infinite matrix mentioned at the end of the previous section, but due to the compli-
cated dependence between the diverse coordinates of the point sets

{
u(s1)

n |1≤ n≤ N1

}
and
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{
u(s2)

n |1≤ n≤ N2

}
for different s1,s2 and N1,N2 this seems to be hopeless. The discrepancy

bound in our Theorem 2 below is the strongest known discrepancy bound for c.u.d.-sequences
(which is valid uniformly in N and s) at present. Furthermore, Dick’s result is of limited
practical use as it involves unknown constants, while our results are completely explicit and
even allow to calculate the probability of a random sequence satisfying the desired discrepancy
bounds.

1.5 Results
Let X = (Xn,i)n,i∈N be a double infinite array of independent copies of some uniformly [0,1]-
distributed random variable. For positive integers N and s set

PN,s = PN,s(ω) =
{

X (1), . . . ,X (N)
}
,

where X (n) = (Xn,1(ω), . . . ,Xn,s(ω)) ∈ [0,1]s for n = 1, . . . ,N. Hence, PN,s is the projection
of X onto its first N× s entries. As in (3) let D∗sN (PN,s) denote the s-dimensional star discrep-
ancy of these N points.

The main technical tool of the present paper is the following Lemma 1, which will be used
to derive our theorems.

Lemma 1. Let α ≥ 1 and β ≥ 0 be given. Moreover, for M,s ∈ N set

ΩM,s =

{
ω

∣∣∣ max
2M≤N<2M+1

N ·D∗sN (PN,s(ω))>

√
αA+βB

lnM
s

√
s ·2M

}
,

where A = 1165 and B = 178. Then we have for all natural numbers M and s

P(ΩM,s)<
1

(1+ s)α

1
Mβ

.

The proof of Lemma 1, which is given in Section 2 below, essentially follows the lines
of [2]. In addition we use a Bernstein type inequality which can be found, e.g., in Einmahl and
Mason [7, Lemma 2.2]:

Lemma 2 (maximal Bernstein inequality). For M ∈ N let Zn, 1 ≤ n ≤ 2M+1, be independent
random variables with zero mean and variance V(Zn). Moreover, assume |Zn| ≤ C for some
C > 0 and all n ∈ {1, . . . ,2M+1}. Then for every t ≥ 0

P

(
max

1≤N≤2M+1

N

∑
n=1

Zn > t

)
≤ exp

(
−t2/

(
2

2M+1

∑
n=1

V(Zn)+2Ct/3

))
.
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At the end of Section 2, we will conclude the following two theorems from Lemma 1.
Here ζ denotes the Riemann Zeta function.

Theorem 1. Let γ ≥ ζ−1(2) ≈ 1.73 be arbitrarily fixed. Then with probability strictly larger
than 1− (ζ (γ)−1)2 ≥ 0 we have for all s ∈ N and every N ≥ 2

D∗sN (PN,s)≤
√

γ ·
√

1165+178
ln log2 N

s
·
√

s
N
.

In particular, there exists a positive probability that a random matrix X satisfies for all s ∈ N
and every N ≥ 2

D∗sN (PN,s)≤
√

2130+308
ln lnN

s
·
√

s
N
.

In our second theorem, we show how our method can be applied to obtain discrepancy
bounds for completely uniformly distributed sequences. To this end let X = (Xn)n∈N be a
sequence of independent, identically distributed random variables having uniform distribution
on [0,1]. For any s ∈ N and N ≥ 2 define a sequence

U (s)
1 = (X1, . . . ,Xs),

U (s)
2 = (Xs+1, . . . ,X2s),

...

U (s)
N = (X(N−1)s+1, . . . ,XNs).

Furthermore, let
UN,s =

{
U (s)

1 , . . . ,U (s)
N

}
. (11)

Theorem 2. Let γ ≥ ζ−1(2) be arbitrarily fixed. Then with probability strictly larger than
1− (ζ (γ)−1)2 ≥ 0 we have for all s ∈ N and every N ≥ 2

D∗sN (UN,s)≤
√

γ ·
√

1165+178
ln log2 N

s
·
√

s
N
.

In particular, there exists a positive probability that a random sequence X is completely uni-
formly distributed and satisfies for all s ∈ N and every N ≥ 2

D∗sN (UN,s)≤
√

2130+308
ln lnN

s
·
√

s
N
.

Our results are essentially optimal in two respects. On the one hand, for any N and s satis-
fying N ≤ exp(exp(s)) our Theorem 1 gives (with positive probability) a discrepancy estimate
of the form

D∗sN (PN,s)≤ cabs

√
s√
N

(12)
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and by this means resembles the aforementioned result of Heinrich et al. (note that a dis-
crepancy estimate of the form (12) is not of much use if N > exp(exp(s)), since in this case
the well-known bounds for low-discrepancy sequences are much smaller). Hence, any im-
provement of our Theorem 1 (up to the values of the constants) would require an improvement
of (4). However, we are convinced that any improvement of (4) will only be made by consider-
ing different sequences (instead of i.i.d. random ones) and not by improving the estimates for
random sequences in the known proofs of (4). Thus, we are also convinced that our Theorem 1
is essentially optimal for N ≤ exp(exp(s)) in the case of random matrices X (which is the case
we consider here). It should also be mentioned that it is possible that (4) is already optimal an
cannot be improved.
On the other hand, for fixed s and large N our discrepancy estimate is of the form

D∗sN (PN,s)≤ c(s)
√

log logN√
N

.

This discrepancy bound is asymptotically optimal for random matrices (up to the value of the
constants c(s)), since in view of the law of the iterated logarithm (8) no random construction
can achieve a significantly better rate of decay of the discrepancy with positive probability.
We note that constructing a sequence of elements of [0,1] satisfying good discrepancy bounds
in the sense of complete uniform distribution is much more difficult than constructing point
sets in [0,1]s for a fixed number of points and fixed dimension s. There exist constructions of
sequences having good c.u.d.-behavior, but usually the corresponding discrepancy bounds are
only useful if N is much larger than s; it is possible that the discrepancy estimates in Theorem 2
are optimal in the sense that they give good results uniformly for all possible values of N and s,
and that Theorem 2 cannot be significantly improved (up to the values of the constants) in this
regard.

2 Proofs
Proof of Lemma 1: Since the proof is somewhat technical we split it into different steps. In a
first step we define a set of parameters equipped with some assumptions and prove a simple
consequence out of this definition. Afterwards we recall a special decomposition of the unit
cube which was introduced in [2]. In Step 3 we make use of Lemma 2 in order to estimate
some probabilities related to this decomposition. Next, we show how these estimates can be
used to conclude the assertion in Lemma 1. Finally, we justify the assumptions made on our
parameters in Step 5.

Step 1. Let M,s ∈ N be fixed. Without loss of generality we can assume

1
2

√
αA+βB

lnM
s

√
s

2M < 1 (13)
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because otherwise

ΩM,s ⊆
{

ω

∣∣∣ max
2M≤N<2M+1

N ·D∗sN (PN,s(ω))> 2M+1
}
= /0.

For a moment assume L ≥ 2 to be given. Let (ak)
L
k=−1 and (bk)

L
k=−1 be two nonnegative,

non-increasing sequences such that

A≥ 2

(
L

∑
k=−1

√
ak

)2

and B≥ 2

(
L

∑
k=−1

√
bk

)2

(14)

and set
yk = αak +βbk

lnM
s

and tk =
√

yk
√

s ·2M. (15)

Hence, using (13), as well as (14), we have

1 >
1√
2

√
αa−1 +βb−1

lnM
s

√
s

2M = 2 · 1
2
√

2
√

y−1

√
s

2M .

If we choose L ∈ N such that

1
2

(
1

2
√

2
√

y−1

√
s

2M

)
< 2−L ≤ 1

2
√

2
√

y−1

√
s

2M (16)

this implies L≥ 2.
Since the square root function is sublinear and concave we may use Jensen’s inequality to

obtain

L

∑
k=−1

√
yk ≤

L

∑
k=−1

√
αak +

L

∑
k=−1

√
βbk

lnM
s

=

√
α

(
∑

L
k=−1
√

ak

)2
+

√
β

(
∑

L
k=−1

√
bk

)2 lnM
s

≤
√

α2
(
∑

L
k=−1
√

ak

)2
+β2

(
∑

L
k=−1

√
bk

)2 lnM
s

≤
√

αA+βB
lnM

s
(17)

out of (14) and the definition of yk.

Step 2. In what follows we use a decomposition of the s-dimensional unit cube in terms of
δ -covers and δ -bracketing covers. A detailed description of this decomposition can be found
in [2]. We briefly sketch the main points.
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For 1≤ k < L let Γk denote a 2−k-cover of [0,1]s. Moreover, let ∆L denote a 2−L-bracketing
cover of [0,1]s. For notational convenience we set

ΓL =
{

pL ∈ [0,1]s
∣∣∣(pL, pL+1) ∈ ∆L for some pL+1

}
,

ΓL+1 =
{

pL+1 ∈ [0,1]s
∣∣∣(pL, pL+1) ∈ ∆L for some pL

}
and p0 = 0 ∈ [0,1]s. Furthermore, for points a,b ∈ [0,1]s we define

[a,b) =

{
[0,b)\ [0,a), if a 6= 0,
[0,a), if a = 0 and b 6= 0,

as well as [a,b) = /0 if a = b = 0. Then for every x ∈ [0,1]s there exists a uniquely determined
sequence of sets Ik(x)= [pk(x), pk+1(x)), 0≤ k≤ L, such that each pi(x), 1≤ i≤ L+1, belongs
to Γi∪{0}. This leads to the following disjoint decomposition of the box [0,x)

L−1⋃
k=0

Ik(x)⊂ [0,x)⊂
L⋃

k=0

Ik(x). (18)

Moreover, the construction yields that the volume of every set Ik(x) is (independently of x)
bounded by

λ (Ik(x))≤ 2−k, k ∈ {0, . . . ,L}.

For every such k let Ak = {Ik(x) |x ∈ [0,1]s} denote the collection of all possible sets Ik(x),
as x runs through the whole unit cube [0,1]s. Then the cardinality of these sets is bounded by
#Γk+1. Using Theorem 1.15 from Gnewuch [9] we see that we can choose our 2−k-covers Γk
such that

#Ak ≤ #Γk+1 ≤ 2s ss

s!
(2k+1 +1)s <

1
2

√
2/π

(
2e(2k+1 +1)

)s

≤ 1
2

exp
(

ln
√

2/π +αs ln
(

2e(2k+1 +1)
))

, k ∈ {0, . . . ,L−2} (19)

where we used Stirling’s formula, as well as s ≥ 1, and α ≥ 1. Similarly, we can choose the
2−L-bracketing cover ∆L in a way that

#Ak ≤ #ΓL = #∆L ≤ 2s−1 ss

s!
(2L +1)s <

1
2

√
1/(2π)

(
2e(2L +1)

)s

≤ 1
2

exp
(

ln
√

1/(2π)+αs ln
(
2e(2L +1)

))
, k ∈ {L−1,L}.

Step 3. Given the decomposition from Step 2 we define for k = 0, . . . ,L and I ∈Ak

Ek(I) =

{
ω

∣∣∣ max
2M≤N<2M+1

∣∣∣∣∣ N

∑
n=1

1I

(
X (n)(ω)

)
−Nλ (I)

∣∣∣∣∣> tk

}
,
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where the numbers tk were defined in (15). Moreover, let Ek =
⋃

I∈Ak
Ek(I) and E =

⋃L
k=0 Ek.

If we can show that independently of I ∈Ak we have

2k+1(1+ s)αMβ ·#Ak ·P(Ek(I))< 1 for k ∈ {0, . . . ,L}, (20)

then this leads to

P(E) ≤
L

∑
k=0

∑
I∈Ak

P(Ek(I))≤
L

∑
k=0

2−(k+1)(1+ s)−αM−β <
1

(1+ s)α

1
Mβ

. (21)

In order to show (20) for fixed I ∈ Ak with k ∈ {0, . . . ,L} let us define the random vari-
ables Zn = 1I(X (n))−λ (I), where n = 1, . . . ,2M+1. Obviously, all the Zn are independent and
bounded by

|Zn| ≤C = max{λ (I),1−λ (I)} .

Furthermore, we have E(Zn) = 0 and V(Zn) = λ (I)(1−λ (I)). From Lemma 2 applied to ±Zn

and t = tk we conclude

P(Ek(I))≤ 2exp
(
− tk/2M

4λ (I)(1−λ (I))+2Ctk/(3 ·2M)

)
. (22)

Since tk =
√

yk
√

s ·2M ≤√y−1
√

s ·2M estimate (16) implies

2
tk

3 ·2M < 2
4
√

2
3

2−L <

{
2−k+1, for k = 0, . . . ,L−1,
2−L+2, for k = L.

For k ∈ {0,1} we use λ (I)(1− λ (I)) ≤ 1/4 and C ≤ 1 to estimate the denominator in (22)
by 3 and 2, respectively. If L > 2 and k ∈ {2, . . . ,L− 1} it is easy to see that maximizing
4λ (1− λ ) + 2−k+1(1− λ ) subject to λ ∈ [0,2−k] gives the bound 3 · 2−k+1(1− 2−k). For
K = L a similar argument shows that the denominator in (22) is less than 2−L+3(1− 2−L).
Hence, we have

P(Ek(I))≤ 2exp(−yks/Λk), where Λk =

{
3, k = 0,
2−k+3(1−2−k), k > 0.

(23)

Using s≥ 1 it is easily seen that for any k ≥ 0

2k+1(1+ s)αMβ ≤ exp
(

ln2k+1 +αs ln2+β lnM
)

(24)

such that we can conclude (20) if we choose ak and bk in the right way. We explain the
necessary arguments for the case k = 0 explicitly. The case k > 0 then works in the same
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manner. Combining the estimates (19), (23) and (24) we have because of αs≥ 1 that

21(1+ s)αMβ ·#A0 ·P(E0(I))

≤ exp
(

ln
(

2
√

2/π

)
+αs ln

(
4e(21 +1)

)
+β ln(M)−αsa0/Λ0−β ln(M)b0/Λ0

)
≤ exp

(
αs
(

ln
(

24e
√

2/π

)
−a0/Λ0

)
+β ln(M)(1−b0/Λ0)

)
≤ exp(0) = 1,

if we choose
b0 = Λ0 and a0 = Λ0 ln

(
24e
√

2/π

)
. (25)

Similarly, we choose

bk = Λk and ak = Λk · ln
(

2k+3e
√

2/π(2k+1 +1)
)

(26)

to obtain (20) also for k = 1, . . . ,L.

Step 4. To conclude the main statement of Lemma 1 by applying (21) it remains to show
that ΩM,s ⊆ E. To this end let N ∈ [2M,2M+1) be arbitrary, but fixed. Due to the definitions in
Step 3 for every ω ∈ EC =

⋂L
k=0

⋂
I∈Ak

Ek(I)C and xn = X (n)(ω) ∈ [0,1]s (for n = 1, . . . ,N) we
have ∣∣∣∣∣ N

∑
n=1

1I(xn)−Nλ (I)

∣∣∣∣∣≤ tk for all k ∈ {0, . . . ,L} and every I ∈Ak.

Thus, from (18) we conclude for every x ∈ [0,1]s

N

∑
n=1

1[0,x)(xn) ≤
L

∑
k=0

N

∑
n=1

1[pk(x),pk+1(x))
(xn)

≤
L

∑
k=0

(
Nλ

(
[pk(x), pk+1(x))

)
+ tk
)

= Nλ ([0,x))+Nλ

(
[x, pL+1(x))

)
+

L

∑
k=0

tk.

Since pL(x)≤ x≤ pL+1(x) the volume of the set [x, pL+1(x)) can be estimated from above by
2−L what is no larger than 1/2

√
y−1
√

s/2M due to (16). Hence, because of N < 2 · 2M, the
second term in the above sum is less than

√
y−1
√

s ·2M. Consequently,

N

∑
n=1

1[0,x)(xn) < Nλ ([0,x))+
√

s ·2M
L

∑
k=−1

√
yk

≤ Nλ ([0,x))+

√
αA+βB

lnM
s

√
s ·2M,

12



where we used (17) from Step 1 for the last estimate. In a similar way we obtain the corre-
sponding lower bound

N

∑
n=1

1[0,x)(xn) ≥
L−1

∑
k=0

N

∑
n=1

1[pk(x),pk+1(x))
(xn)

≥ Nλ ([0,x))−Nλ

(
[x, pL+1(x))

)
−

L−1

∑
k=0

tk

> Nλ ([0,x))−
√

αA+βB
lnM

s

√
s ·2M.

Both the estimates, together with the definition of D∗sN , imply

N ·D∗sN (x1, . . . ,xN)≤
√

αA+βB
lnM

s

√
s ·2M

since x ∈ [0,1]s was arbitrary. Due to the fact that this holds for all N ∈ [2M,2M+1) and for
every ω ∈ EC we have shown ΩM,s ⊆ E.

Step 5. Finally, we need to check that the sequences (ak)
L
k=−1 and (bk)

L
k=−1, which were

defined in (25), (26), and (23), satisfy the assumptions made at the beginning of Section 2. We
already checked that L≥ 2, see (16). Moreover, it is obvious that both sequences are nonneg-
ative and non-increasing for k ≥ 0. Hence, we define a−1 = a0 and b−1 = b0 to guarantee that
this holds for all k. It remains to show (14). To this end we calculate for c ∈ {a,b}

2

(
L

∑
k=−1

√
ck

)2

≤ 2

(
2
√

c0 +
∞

∑
k=1

√
ck

)2

≤

{
1164.87, if c = a,
177.41, if c = b.

This completes the proof choosing A = 1165 and B = 178.

Proof of Theorem 1: Let ζ denote the Riemann Zeta function, and let γ ≥ ζ−1(2). Due to
the choice of A > 9/2 in Lemma 1 we have Ω1,s = /0 for all s ∈ N. Hence, for α = β = γ it
follows

P

(⋃
s≥1

⋃
M≥1

ΩM,s

)
≤ ∑

s≥1
∑

M≥2
P(ΩM,s)< ∑

s≥1
∑

M≥2

1
(1+ s)γ

1
Mγ

= (ζ (γ)−1)2 ≤ 1.

In particular, this implies P
((⋃

s≥1
⋃

M≥1 ΩM,s
)C)

> 0. Since ζ−1(2) < 1.73 and B ln log2 N
s ≤

B ln lnN
s −B ln ln2≤ 66+B ln lnN

s , we can choose γ = 1.73 and obtain

D∗sN (PN,s) ≤
√

1.73

√
1165+66+178

ln lnN
s
·
√

s
N

≤
√

2130+308
ln lnN

s
·
√

s
N

13



with positive probability. This proves Theorem 1.

Proof of Theorem 2: For any fixed N and s, the point set UN,s is an array of N× s i.i.d.
uniformly distributed random variables, just like PN,s in the assumptions of Lemma 1. For
given α ≥ 1, β ≥ 0, M,s ∈ N, as well as A = 1165 and B = 178, set

ΩM,s =

{
ω

∣∣∣ max
2M≤N<2M+1

N ·D∗sN (UN,s)>

√
αA+βB

lnM
s

√
s ·2M

}

where UN,s now is defined in (11). Then Lemma 1 yields

P(ΩM,s)<
1

(1+ s)α

1
Mβ

.

With this estimate for the probabilities of the exceptional sets, the rest of the proof of Theo-
rem 2 can be carried out in exactly the same way as the proof of Theorem 1.

Note that the choice of the constants α = β = γ in the above proofs is not essential.
Alternatively, it would be sufficient to take any pair of parameters 1 < α,β < ∞ such that
(ζ (α)− 1)(ζ (β )− 1) ≤ 1. Using this trade-off it is possible to fine-tune the absolute con-
stants in our theorems in order to minimize the discrepancy bounds for given N and s. More-
over, better estimates on the size of the used δ -(bracketing) covers may lead to (minor im-
portant) improvements of these constants. For details we refer to [2] and the conjectures in
Gnewuch [9].

Acknowledgements
The questions considered in the present paper arose during discussions with several colleagues
at the MCQMC 2012 conference. We particularly want to thank Joseph Dick for pointing out to
us the connection between the discrepancy of random matrices, complete uniform distribution
and Markov chain Monte Carlo.

References
[1] Aistleitner, C.: On the inverse of the discrepancy for infinite dimensional infinite se-

quences. Preprint.

[2] Aistleitner, C.: Covering numbers, dyadic chaining and discrepancy. J. Complexity 27(6),
531–540 (2011). DOI 10.1016/j.jco.2011.03.001. URL http://dx.doi.org/10.
1016/j.jco.2011.03.001

14

http://dx.doi.org/10.1016/j.jco.2011.03.001
http://dx.doi.org/10.1016/j.jco.2011.03.001


[3] Chen, S., Dick, J., Owen, A.B.: Consistency of Markov chain quasi-Monte Carlo on
continuous state spaces. Ann. Statist. 39(2), 673–701 (2011). DOI 10.1214/10-AOS831.
URL http://dx.doi.org/10.1214/10-AOS831

[4] Dick, J.: A note on the existence of sequences with small star discrepancy. J. Complexity
23(4-6), 649–652 (2007). DOI 10.1016/j.jco.2007.01.004. URL http://dx.doi.
org/10.1016/j.jco.2007.01.004

[5] Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-component con-
struction of low-discrepancy point sets of small size. Monte Carlo Methods Appl. 14(2),
129–149 (2008). DOI 10.1515/MCMA.2008.007. URL http://dx.doi.org/10.
1515/MCMA.2008.007

[6] Drmota, M., Tichy, R.F.: Sequences, discrepancies and applications, Lecture Notes in
Mathematics, vol. 1651. Springer-Verlag, Berlin (1997).

[7] Einmahl, U., Mason, D.M.: Some universal results on the behavior of increments of
partial sums. Ann. Probab. 24(3), 1388–1407 (1996). DOI 10.1214/aop/1065725186.
URL http://dx.doi.org/10.1214/aop/1065725186

[8] Gnewuch, M.: Entropy, randomization, derandomization, and discrepancy. To appear
in: L. Plaskota, H. Wozniakowski (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2010, Springer-Verlag.

[9] Gnewuch, M.: Bracketing numbers for axis-parallel boxes and applications to geometric
discrepancy. J. Complexity 24(2), 154–172 (2008). DOI 10.1016/j.jco.2007.08.003.
URL http://dx.doi.org/10.1016/j.jco.2007.08.003

[10] Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A 69(2), 217–232
(1995). DOI 10.1016/0097-3165(95)90052-7. URL http://dx.doi.org/10.
1016/0097-3165(95)90052-7

[11] Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-
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