J. Prof. Dr. Barney Bramham

List of Topics

References: [L]=Levandosky, [E]=Evans, [F]=Folland, [FJ]=Fritz-John, [H]=Hunter, [HN]=Hunter-Nachtergaele, [R]=Rauch, [RR]=Renardy-Rogers, [S]=Schweizer(online version Feb 2012).

- 1. Background review, mostly without proofs: Selected from [H, Ch 1] and [E, Appendices].
 - Some notation.
 - L^{p} -spaces (and L^{p}_{loc}), Lebesgue convergence theorem, Banach and Hilbert spaces, Fubini, Hölder inequality, Minkowski inequality. (isometries, reflexivity, separability, complete orth.normal bases, dual space?).
 - The C_c , C_0 , C^k , and $C^{k,\alpha}$ spaces. Density of C^{∞} in L^p on \mathbb{R}^n .
 - Divergence theorem, Green's identities, integration by parts, averages, polar coordinates.
 - Convolution, mollifiers and smoothing. Density of $C^{\infty}(\mathbb{R}^n)$ in $L^p(\mathbb{R}^n)$.
- 2. Introduction to PDE's.

Types of PDE, Well-posedness, Modern strategy: distributional, weak, strong, classical solutions, [S pg60].

- 3. The Transport Equation (with constant coefficients).
 - Homogenous equation: $u_t + \sum_{i=1}^n b_i u_{x_i} = 0$ on $\mathbb{R}^n \times (0, \infty)$ with initial condition u = g on $\mathbb{R}^n \times \{0\}$.
 - Special case n = 1 and b = 1 in [S, pg 32-33].
 - General case in [E, pg 18].
 - Characteristics of the equation. [S, pg 34].
 - Nonhomogenous equation: $u_t + \sum_{i=1}^n b_i u_{x_i} = f$ on $\mathbb{R}^n \times (0, \infty)$ with initial condition u = g on $\mathbb{R}^n \times \{0\}$.
 - Special case n = 1 and b = 1 in [S, pg 33-34].
 - General case in [E, pg 19].
 - On a space-time cylinder: $(a, b) \times (0, \infty)$ and boundary conditions compatible with the characteristics [S, pg 34].

- 4. The Fourier Transform^{*}. Follow [L, Sec 2.3], plus references mentioned below for Riemann-Lebesgue Lemma.
 - Motivation: diagonalizing translation operator, and hence also differentiation. See me.
 - Definition on $L^1(\mathbb{R}^n)$. Riemann-Lebesgue Lemma: $f \in L^1$ implies \hat{f} is continuous and $\|\hat{f}\|_{C^0} \leq \|f\|_{L^1}$. [HN, thm 11.34], see also [F, Lem 0.24].
 - FT of Gaussians. Extension of FT to $L^2(\mathbb{R}^n)$ by density.
 - Properties of Fourier transform; Plancherel's theorem, derivative $\partial_i \rightarrow$ multiplication by x_i , convolution \rightarrow multiplication, inversion formula.
- 5. The Heat Equation. Follow [L, Sec 2.4]
 - Solving the heat equation on \mathbb{R}^n : formally using Fourier transform, rigorous justification.
 - Fundamental solution of the Heat Equation.
- 6. Interlude on Distributions (Generalized functions). Follow [L, Sec 2.5] plus references below.
 - Definitions and examples [L, Sec 2.5], convergence of distributions, see also [H, Sec 3.3] if want more precision. Regular distributions [H, Example 3.11].
 - Derivatives of distributions [L, Sec 2.5].
 - Weak derivatives of functions in L^1_{loc} and examples, [H, pgs 47,48]. Also remarks on [H, pg 53] interpreting weak derivatives as distributional derivatives. Basic properties of weak derivatives: uniqueness [E, pg 243], Leibniz rule [H, prop 3.16].
 - Distributional solution to transport equation when initial conditions are only in L_{loc}^1 . See [S, Beispiel 3.9].
- 7. The Heat Equation continued. Basically follow [L, Sec 4, pgs 30-44], leave out [L, Sec 2.7.3] and [L, Sec 2.7.4]. More details:
 - Fundamental solution of the Heat Equation revisited, [L, Sec 2.5.4].
 - Properties of solutions to the Heat equation, [L, Sec 2.6].
 - Inhomogenous Heat Equation on ℝⁿ. Duhamel's Principle. [L, Sec 2.7], omit sections 2.7.3, 2.7.4 unless have plenty of time.
 - Maximum principle for bounded space domains, maximum principle for unbounded space domains [L Sec 2.8]. Could leave uniqueness statement until end of section, then can compare with uniqueness result from energy.
 - Energy estimates. In [L, pg 44] energy is not stated as an inequality, but see [RR Lemma 1.20].
 - Uniqueness: from max principle, and energy. Non-uniqueness without suitable bound. For non-uniqueness see [FJ, pg211].

^{*}Careful: different texts use slighly different definitions for the Fourier transform. We will follow the definition appearing in most of the references we are using, such as [E], [L], [H].

- 8. Laplace Equation on \mathbb{R}^n . Follow [L, Sec 3] plus reference below for Harnack's inequality. Can omit all of Sec 3.3 in [L].
 - Fundamental solution of Laplace equation including proof in sense of distributions.
 - A solution to Poisson's equation, (later we see is the unique bounded solution when $n \geq 3$).
 - Harmonic functions: mean value properties, maximum principle, Harnack's inequality [H Sec 2.4], uniqueness on bounded domains, regularity, Liouville's theorem, uniqueness of bounded solutions on $\mathbb{R}^{n\geq 3}$ (representation formula).
- 9. Laplace Equation on a bounded domain $\Omega \subset \mathbb{R}^n$. Follow [L, Sec 4] and comments below.
 - Discussion of Dirichlet and Neumann Problems, including non-uniqueness of NP: [F, pg 83-85].
 - Green's functions (fundamental solution of Laplace equation on a bounded domain). Motivation, representation of a solution. Explicit computation of Green's function on ℝⁿ₊. Poisson's formula for ℝⁿ₊ and ball (state without proof, details in [L, Sec 4]).
 - Symmetry of Green's function: If not enough time then only outline proof. See [F pg 86], and [L Sec 4.3, Lemma 13].
 - Using Green's function to solve Poisson, i.e. assuming existence of Green's function prove existence of solution to Poisson/Dirichlet.

State examples 6,7,8, 10 in [L, Sec 4] without details. Can also omit Theorem 12.

- 10. The Wave Equation.
 - On $\mathbb{R}^n \times [0, T]$; first n = 1, deducing D'Alembert's formula and proving it works [S, Sec 2.3.3] and [E, Sec 2.4.1].
 - n = 3: Kirchoff's formula via method of spherical means: [E, pg 70-72].
 - n = 2: Outline method of descent from n = 3 to n = 2. [E, pg 73-74].
 - Properties of solutions to the Wave Equation: [E, pg 83-85] + [E, Rmks pg 78]. Include the following:
 - Huygens principle (see also remarks in [F, pg 172]).
 - Domain of dependence,
 - Finite speed of propagation,
 - Energy conservation,
 - Uniqueness from energy
 - No maximum principle; explain why (domain of dependence or finite speed of propagation).

Omit discussion of: inhomogenous equation except to remark that a similar approach to the Heat equation motivated by Duhamel's principle works; wave equation in dimensions n>3 except to remark that procedure is similar to n = 2, 3 namely first some n = odd by method of spherical means then descend to n = even.

- 11. Potential Theory. Follow [L, Sec 5]. Omit discussion of Exterior Problems. Focus on the Dirichlet problem rather than Neumann problem.
 - Definitions of single and double layer potentials, preliminaries.
 - Gauss' Lemma.
 - Reduction of (interior) Dirichlet and Neumann Problems to integral equations.
- 12. Solving the integral equations for the Dirichlet and Neumann Problems using methods from Functional Analysis (with some details missing). Mainly following [F, parts of Ch 3].
 - Easier example where can solve an integral equation using contraction mapping theorem. Why this does not work in case of interest.
 - Compact operators: e.g. $C^{0,\alpha}(K) \hookrightarrow C^0(K)$, closed under operator convergence. Hilbert-Schmidt kernels. Mostly found in [F, Ch 0 sec F].
 - Weak convergence in Hilbert spaces, and weak compactness theorem. Compact operators take weakly convergent sequences to strongly convergent sequences. [E, Appendix D].
 - The Fredholm alternative (a special case): how uniqueness yields existence. [E, Appendix D].
 - Solving the Dirichlet and Neumann Problems. (This uses Young's inequality). [F, parts of Ch 3].
 - † Some further perspectives: ellipticity, L²-theory, L^p-theory, Schauder theory, Perron's method, Pseudo-differential operators. [H Sec 4.13].
- 13. Solving the Dirichlet problem using variational/Hilbert space methods (with some details missing). There are three parts; can cover just the first two if not enough time.
 - (A) Introduce Sobolev spaces, relate weak to classical derivatives via Sobolev's Lemma (Sobolev embedding theorem).
 - (B) Prove existence and uniqueness of a weak solution $u \in H_0^1(\Omega)$ to

$$-\Delta u = f \in L^2 \quad \text{on } \Omega, \tag{1}$$
$$u = 0 \quad \text{on } \partial\Omega.$$

(C) Show weak solutions satisfy the boundary conditions in a meaningful way (trace theorem), and that u is not just a weak solution but a strong solution (elliptic estimates), and is a classical solution if $f \in C^{\infty}(\overline{\Omega})$.

More details:

- (A) Sobolev spaces I:
 - (i) Define W^{k,p}(ℝⁿ) and H^k(ℝⁿ), and on a bounded domain Ω ⊂ ℝⁿ using distributional derivatives. Basic properties such as completeness. Smooth approximations C[∞]_c(ℝⁿ). [S, Sec 3.3: pg 51-54]. Definition of H^k₀(Ω), and completeness, [S, Def 3.21].
 - (ii) Lemma: equivalent characterization of $H^k(\mathbb{R}^n)$ using Fourier transform [F, thm 6.1]. Also can use to define $H^s(\mathbb{R}^n)$ for non-integer $s \ge 0$.
 - (iii) The Sobolev Lemma: $H^k(\mathbb{R}^n)$ embeds in $C^r(\mathbb{R}^n)$ if $k > r + \frac{1}{2}n$, using Fourier transform. Corollary: $f \in H^k$ for all k implies $f \in C^{\infty}$. [F, Lem 6.5, Cor 6.7].
- (B) Dirichlet's principle and weak solutions of $-\Delta u = f$ on Ω with homogenous boundary conditions. Nicely presented in [S, pg 97-102]
 - (i) Poincare inequality. [S, Satz 6.1] but do only for p = 2.
 - (ii) Proof of existence of weak solution $u \in H_0^1(\Omega)$. [S, Satz 6.3], but their boundary conditions are more general: we just set g = 0. Also, replace the space X_g by $H_0^1(\Omega)$.
- (C) Sobolev spaces II:
 - (i) Trace theorem for Ω with smooth boundary. Idea behind proof. See for example [S, Satz 3.20], or see me.
 - (ii) Interior elliptic estimates. Proof is simple using Fourier transform, see step 1 in proof of [F, thm 6.28], or I can explain.
 - (iii) Elliptic estimates up to the boundary. Statement without proof.

Combining (B) and (C) we can now show that our weak solution $u \in H_0^1(\Omega)$ to (1) actually satisfy: (See me)

- $u \in H^2(\Omega')$ for all $\Omega' \subset \subset \Omega$ using Fourier transform.
- u = 0 in the sense of trace.
- $f \in C^{\infty}(\overline{\Omega}) \implies u \in C^{\infty}(\overline{\Omega}).$