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List of Topics

References: [L]=Levandosky, [E]=Evans, [F]=Folland, [FJ]=Fritz-John, [H]=Hunter,
[HN]=Hunter-Nachtergaele, [R]=Rauch, [RR]=Renardy-Rogers, [S]=Schweizer(online version
Feb 2012).

1. Background review, mostly without proofs: Selected from [H, Ch 1] and [E, Appendices].

• Some notation.

• Lp-spaces (and Lploc), Lebesgue convergence theorem, Banach and Hilbert spaces,
Fubini, Hölder inequality, Minkowski inequality. (isometries, reflexivity, separabili-
ty, complete orth.normal bases, dual space?).

• The Cc, C0, Ck, and Ck,α spaces. Density of C∞ in Lp on Rn.
• Divergence theorem, Green’s identities, integration by parts, averages, polar coor-

dinates.

• Convolution, mollifiers and smoothing. Density of C∞(Rn) in Lp(Rn).

2. Introduction to PDE’s.

Types of PDE, Well-posedness, Modern strategy: distributional, weak, strong, classical
solutions, [S pg60].

3. The Transport Equation (with constant coefficients).

• Homogenous equation: ut +
∑n

i=1 biuxi = 0 on Rn × (0,∞) with initial condition
u = g on Rn × {0}.

– Special case n = 1 and b = 1 in [S, pg 32-33].
– General case in [E, pg 18].
– Characteristics of the equation. [S, pg 34].

• Nonhomogenous equation: ut+
∑n

i=1 biuxi = f on Rn×(0,∞) with initial condition
u = g on Rn × {0}.

– Special case n = 1 and b = 1 in [S, pg 33-34].
– General case in [E, pg 19].

• On a space-time cylinder: (a, b)× (0,∞) and boundary conditions compatible with
the characteristics [S, pg 34].
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4. The Fourier Transform*. Follow [L, Sec 2.3], plus references mentioned below for Riemann-
Lebesgue Lemma.

• Motivation: diagonalizing translation operator, and hence also differentiation. See
me.

• Definition on L1(Rn). Riemann-Lebesgue Lemma: f ∈ L1 implies f̂ is continuous
and ‖f̂‖C0 ≤ ‖f‖L1 . [HN, thm 11.34], see also [F, Lem 0.24].

• FT of Gaussians. Extension of FT to L2(Rn) by density.

• Properties of Fourier transform; Plancherel’s theorem, derivative ∂i → multiplica-
tion by xi, convolution → multiplication, inversion formula.

5. The Heat Equation. Follow [L, Sec 2.4]

• Solving the heat equation on Rn: formally using Fourier transform, rigorous justi-
fication.

• Fundamental solution of the Heat Equation.

6. Interlude on Distributions (Generalized functions). Follow [L, Sec 2.5] plus references
below.

• Definitions and examples [L, Sec 2.5], convergence of distributions, see also [H, Sec
3.3] if want more precision. Regular distributions [H, Example 3.11].

• Derivatives of distributions [L, Sec 2.5].

• Weak derivatives of functions in L1
loc and examples, [H, pgs 47,48]. Also remarks

on [H, pg 53] interpreting weak derivatives as distributional derivatives. Basic pro-
perties of weak derivatives: uniqueness [E, pg 243], Leibniz rule [H, prop 3.16].

• Distributional solution to transport equation when initial conditions are only in
L1

loc. See [S, Beispiel 3.9].

7. The Heat Equation continued. Basically follow [L, Sec 4, pgs 30-44], leave out [L, Sec
2.7.3] and [L, Sec 2.7.4]. More details:

• Fundamental solution of the Heat Equation revisited, [L, Sec 2.5.4].

• Properties of solutions to the Heat equation, [L, Sec 2.6].

• Inhomogenous Heat Equation on Rn. Duhamel’s Principle. [L, Sec 2.7], omit sec-
tions 2.7.3, 2.7.4 unless have plenty of time.

• Maximum principle for bounded space domains, maximum principle for unbounded
space domains [L Sec 2.8]. Could leave uniqueness statement until end of section,
then can compare with uniqueness result from energy.

• Energy estimates. In [L, pg 44] energy is not stated as an inequality, but see [RR
Lemma 1.20].

• Uniqueness: from max principle, and energy. Non-uniqueness without suitable bound.
For non-uniqueness see [FJ, pg211].

*Careful: different texts use slighly different definitions for the Fourier transform. We will follow the defini-
tion appearing in most of the references we are using, such as [E], [L], [H].
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8. Laplace Equation on Rn. Follow [L, Sec 3] plus reference below for Harnack’s inequality.
Can omit all of Sec 3.3 in [L].

• Fundamental solution of Laplace equation including proof in sense of distributions.

• A solution to Poisson’s equation, (later we see is the unique bounded solution when
n ≥ 3).

• Harmonic functions: mean value properties, maximum principle, Harnack’s inequa-
lity [H Sec 2.4], uniqueness on bounded domains, regularity, Liouville’s theorem,
uniqueness of bounded solutions on Rn≥3 (representation formula).

9. Laplace Equation on a bounded domain Ω ⊂ Rn. Follow [L, Sec 4] and comments below.

• Discussion of Dirichlet and Neumann Problems, including non-uniqueness of NP:
[F, pg 83-85].

• Green’s functions (fundamental solution of Laplace equation on a bounded domain).
Motivation, representation of a solution. Explicit computation of Green’s function
on Rn+. Poisson’s formula for Rn+ and ball (state without proof, details in [L, Sec
4]).

• Symmetry of Green’s function: If not enough time then only outline proof. See [F
pg 86], and [L Sec 4.3, Lemma 13].

• Using Green’s function to solve Poisson, i.e. assuming existence of Green’s function
prove existence of solution to Poisson/Dirichlet.

State examples 6,7,8, 10 in [L, Sec 4] without details. Can also omit Theorem 12.

10. The Wave Equation.

• On Rn × [0, T ]; first n = 1, deducing D’Alembert’s formula and proving it works
[S, Sec 2.3.3] and [E, Sec 2.4.1].

• n = 3: Kirchoff’s formula via method of spherical means: [E, pg 70-72].

• n = 2: Outline method of descent from n = 3 to n = 2. [E, pg 73-74].

• Properties of solutions to the Wave Equation: [E, pg 83-85] + [E, Rmks pg 78].
Include the following:

– Huygens principle (see also remarks in [F, pg 172]).
– Domain of dependence,
– Finite speed of propagation,
– Energy conservation,
– Uniqueness from energy
– No maximum principle; explain why (domain of dependence or finite speed of

propagation).

Omit discussion of: inhomogenous equation except to remark that a similar approach
to the Heat equation motivated by Duhamel’s principle works; wave equation in
dimensions n>3 except to remark that procedure is similar to n = 2, 3 namely first
some n =odd by method of spherical means then descend to n =even.
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11. Potential Theory. Follow [L, Sec 5]. Omit discussion of Exterior Problems. Focus on the
Dirichlet problem rather than Neumann problem.

• Definitions of single and double layer potentials, preliminaries.

• Gauss’ Lemma.

• Reduction of (interior) Dirichlet and Neumann Problems to integral equations.

12. Solving the integral equations for the Dirichlet and Neumann Problems using methods
from Functional Analysis (with some details missing). Mainly following [F, parts of Ch
3].

• Easier example where can solve an integral equation using contraction mapping
theorem. Why this does not work in case of interest.

• Compact operators: e.g. C0,α(K) ↪→ C0(K), closed under operator convergence.
Hilbert-Schmidt kernels. Mostly found in [F, Ch 0 sec F].

• Weak convergence in Hilbert spaces, and weak compactness theorem. Compact
operators take weakly convergent sequences to strongly convergent sequences. [E,
Appendix D].

• The Fredholm alternative (a special case): how uniqueness yields existence. [E,
Appendix D].

• Solving the Dirichlet and Neumann Problems. (This uses Young’s inequality). [F,
parts of Ch 3].

• † Some further perspectives: ellipticity, L2-theory, Lp-theory, Schauder theory, Per-
ron’s method, Pseudo-differential operators. [H Sec 4.13].

13. Solving the Dirichlet problem using variational/Hilbert space methods (with some details
missing). There are three parts; can cover just the first two if not enough time.

(A) Introduce Sobolev spaces, relate weak to classical derivatives via Sobolev’s Lemma
(Sobolev embedding theorem).

(B) Prove existence and uniqueness of a weak solution u ∈ H1
0 (Ω) to

−∆u = f ∈ L2 on Ω, (1)
u = 0 on ∂Ω.

(C) Show weak solutions satisfy the boundary conditions in a meaningful way (trace
theorem), and that u is not just a weak solution but a strong solution (elliptic
estimates), and is a classical solution if f ∈ C∞(Ω).

More details:
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(A) Sobolev spaces I:

(i) Define W k,p(Rn) and Hk(Rn), and on a bounded domain Ω ⊂ Rn using dis-
tributional derivatives. Basic properties such as completeness. Smooth appro-
ximations C∞c (Rn). [S, Sec 3.3: pg 51-54]. Definition of Hk

0 (Ω), and comple-
teness, [S, Def 3.21].

(ii) Lemma: equivalent characterization of Hk(Rn) using Fourier transform [F,
thm 6.1]. Also can use to define Hs(Rn) for non-integer s ≥ 0.

(iii) The Sobolev Lemma: Hk(Rn) embeds in Cr(Rn) if k > r + 1
2n, using Fourier

transform. Corollary: f ∈ Hk for all k implies f ∈ C∞. [F, Lem 6.5, Cor 6.7].

(B) Dirichlet’s principle and weak solutions of −∆u = f on Ω with homogenous boun-
dary conditions. Nicely presented in [S, pg 97-102]

(i) Poincare inequality. [S, Satz 6.1] but do only for p = 2.
(ii) Proof of existence of weak solution u ∈ H1

0 (Ω). [S, Satz 6.3], but their boundary
conditions are more general: we just set g = 0. Also, replace the space Xg by
H1

0 (Ω).

(C) Sobolev spaces II:

(i) Trace theorem for Ω with smooth boundary. Idea behind proof. See for example
[S, Satz 3.20], or see me.

(ii) Interior elliptic estimates. Proof is simple using Fourier transform, see step 1
in proof of [F, thm 6.28], or I can explain.

(iii) Elliptic estimates up to the boundary. Statement without proof.

Combining (B) and (C) we can now show that our weak solution u ∈ H1
0 (Ω) to (1)

actually satisfy: (See me)

• u ∈ H2(Ω′) for all Ω′ ⊂⊂ Ω using Fourier transform.
• u = 0 in the sense of trace.
• f ∈ C∞(Ω) =⇒ u ∈ C∞(Ω).
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