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Abstract

Given a smooth Riemannian two-sphere (S2, g), consider `min(S2, g) defined as the
minimum of all lengths of non-constant closed geodesics. Our main result asserts that
if g is δ-pinched for some δ > (4 +

√
7)/8 = 0.8307 . . . then the systolic inequality

`min(S2, g)2 ≤ π Area(S2, g) holds, with equality if and only if (S2, g) is Zoll. The
proof is based on Toponogov’s comparison theorem and on a theorem relating the
Calabi invariant to the action of fixed points for certain area-preserving annulus maps
admitting a generating function.
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Introduction

The 1-systole Sys1(M, g) of a Riemannian manifold (M, g) is the infimum of lengths of
non-contractible closed loops. The origin of systolic geometry can be traced back to a
classical result due to Loewner, asserting that for every Riemannian 2-torus (T2, g)

Sys1(T2, g)2 ≤ 2√
3

Area(T2, g),

and to Pu’s inequality, asserting that the inequality

Sys1(RP2, g)2 ≤ π

2
Area(RP2, g)

holds for every Riemannian metric g on the real projective plane RP2.
In the eighties Gromov [Gro83] introduced the filling radius of a Riemannian man-

ifold and showed that there exists a constant Cn > 0 such that

Sys1(M, g)n ≤ Cn Vol(M, g)

holds for all n-dimensional closed aspherical Riemannian manifolds. This theorem also
holds on so-called essential manifolds.

The number Sys1 is a critical value of the length functional. It is also interesting to
analyze critical values of the length on simply connected Riemannian manifolds, which
may not be attained by local minima.

Given a Riemannian metric g on the two-sphere S2, a relevant quantity is

`min(S2, g) = minimum of lengths of non-constant closed geodesics on (S2, g).

A deep result by Croke [Cro88] asserts the existence of a number C > 0 such that

`min(S2, g)2 ≤ C Area(S2, g),

for every metric g on S2. In other words, the systolic ratio

ρsys(g) :=
`min(S2, g)2

Area(S2, g)

is bounded from above. The value of the supremum of ρ is not known, but it was shown
to be not larger than 32 by Rotman [Rot06], who improved the previous estimates due
to Croke [Cro88], Nabutowski and Rotman [NR02], and Sabourau [Sab04].

The näıve conjecture that the round metric ground on S2 maximizes ρsys is false.
Indeed,

ρsys(ground) = π,

while, by studying suitable metrics approximating a singular metric constructed by
gluing two flat equilateral triangles along their boundaries, one sees that

sup ρsys ≥ 2
√

3 > π.

This singular example is known as the Calabi-Croke sphere. Actually, it is conjectured
that the supremum of ρsys is 2

√
3 and that it is not attained. See [Bal10] and [Sab10]
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for two different proofs of the fact that the Calabi-Croke sphere can be seen as a local
maximum of ρsys.

The round metric can be seen as a critical point of ρsys, and in [Bal06] Balacheff
asked if it is a local maximizer (in [BM13, Question 8.7.2] this question is attributed
to Babenko). Certainly, ground is not a strict local maximiser of ρsys, even after mod-
ding out rescaling, because in any neighbourhood of it there are infinitely many non-
isometric Zoll metrics, i.e. Riemannian metrics on S2 all of whose geodesics are closed
and have the same length, and ρsys is constantly equal to π on them (see [Gui76]).
Evidence in favour of the local maximality of the round metric is given in [APB14],
where Álvarez Paiva and Balacheff prove that ρsys strictly decreases under infinitesimal
deformations of the round metric which are not tangent with infinite order to the space
of Zoll metrics.

The aim of this paper is to give a positive answer to Balacheff’s question. We recall
that a Riemannian metric g on S2 is δ-pinched, for some δ ∈ (0, 1], if its Gaussian
curvature K is positive and satisfies

minK ≥ δmaxK.

Our main theorem asserts that, if the metric g on S2 is sufficiently pinched, then

ρsys(g) ≤ ρsys(ground) = π,

and that the equality holds if and only if g is Zoll. More precisely, we shall prove the
following:

Theorem. Let g be a δ-pinched smooth Riemannian metric on S2, with

δ >
4 +
√

7

8
= 0.8307 . . .

Then
`min(S2, g)2 ≤ πArea(S2, g),

and the equality holds if and only if g is Zoll.

We conclude this introduction with an informal description of the proof of this
theorem. We start by looking at a closed geodesic γ on (S2, g) of minimal length
L = `min(S2, g), parametrized by arc length. When g is δ-pinched for some δ > 1/4,
one can show that γ is a simple curve.

Then we consider a Birkhoff annulus Σ+
γ which is associated to γ: Σ+

γ is the set
of all unit tangent vectors to S2 which are based at points of γ(R) and point in the
direction of one of the two disks which compose S2 \ γ(R). The set Σ+

γ is a closed
annulus, and its boundary consists of the unit vectors γ̇(t) and −γ̇(t), for t ∈ R/LZ.

By a famous result of Birkhoff, the positivity of the curvature K guarantees that
the orbit of any v in the interior part of Σ+

γ under the geodesic flow on the unit tangent
bundle T 1S2 of (S2, g) hits again Σ+

γ at some positive time. This allows us to consider
the first return time function

τ : int(Σ+
γ )→ (0,+∞), τ(v) := inf{t > 0 | φt(v) ∈ Σ+

γ },

and the first return time map

ϕ : int(Σ+
γ )→ int(Σ+

γ ), ϕ(v) := φτ(v)(v),
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where φt : T 1S2 → T 1S2 denotes the geodesic flow induced by g. The function τ and
the map ϕ are smooth and, as we will show, have a unique smooth extension to the
boundary of Σ+

γ .
The map ϕ preserves the two-form dλ, where λ is the restriction to Σ+

γ of the
standard contact form on T 1S2. The two-form dλ is an area-form in the interior of Σ+

γ ,
but vanishes on the boundary, due to the fact that the geodesic flow is not transverse
to the boundary. Indeed, if we consider the coordinates

(x, y) ∈ R/LZ× [0, π]

on Σ+
γ given by the arc parameter x on the geodesic γ and the angle y which a unit

tangent vector makes with γ̇, the one-form λ and its differential have the form

λ = cos y dx, dλ = sin y dx ∧ dy. (1)

By lifting the first return map ϕ to the strip S = R× [0, π], we obtain a diffeomor-
phism Φ : S → S which preserves the two-form dλ given by (1), maps each boundary
component into itself, and satisfies

Φ(x+ L, y) = (L, 0) + Φ(x, y), ∀(x, y) ∈ S.

As we shall see, diffeomorphisms of S with these properties have a well defined flux
and, when the flux vanishes, a well defined Calabi invariant. The flux of Φ is its average
horizontal displacement. We shall prove that, if g is δ-pinched with δ > 1/4, one can
find a lift Φ of ϕ having zero flux. For diffeomorphisms Φ with zero flux, the action
and the Calabi invariant can be defined in the following way. The action of Φ is the
unique function

σ : S → R,

such that
dσ = Φ∗λ− λ on S,

and whose value at each boundary point w ∈ ∂S coincides with the integral of λ on the
arc from w to Φ(w) along ∂S. The Calabi invariant of Φ is the average of the action,
that is, the number

CAL(Φ) =
1

2L

∫∫
[0,L]×[0,π]

σ dλ.

We shall prove that, still assuming g to be δ-pinched with δ > 1/4, the action and the
Calabi invariant of Φ are related to the geometric quantities we are interested in by
the identities

τ ◦ p = L+ σ, (2)

πArea(S2, g) = L2 + L CAL(Φ), (3)

where
p : S = R× [0, π]→ Σ+

γ = R/LZ× [0, π]

is the standard projection. The δ-pinching assumption on g with δ > (4 +
√

7)/8
implies that the map Φ is monotone, meaning that, writing

Φ(x, y) = (X(x, y), Y (x, y)),
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the strict inequality D2Y > 0 holds on S. This is proved by using an upper bound on
the perimeter of convex geodesic polygons which follows from Topogonov’s comparison
theorem. This upper bound plays an important role also in the proof of some of the
facts stated above, and we discuss it in the appendix which concludes this article.
The monotonicity of Φ allows us to express it in terms of a generating function. By
using such a generating function, we shall prove the following fixed point theorem: If
a monotone map Φ with vanishing flux is not the identity and satisfies CAL(Φ) ≤ 0,
then Φ has an interior fixed point with negative action.

Our main theorem is now a consequence of the latter fixed point theorem and of
the identities (2) and (3). First one observes that Φ is the identity if and only if g is
Zoll. Assume that g is not Zoll. If, by contradiction, the inequality

L2 = `min(S2, g)2 ≥ πArea(S2, g)

holds, (3) implies that CAL(Φ) ≤ 0, so Φ has a fixed point w ∈ int(S) with σ(w) < 0.
But then (2) implies that the closed geodesic which is determined by p(w) ∈ Σ+

γ has
length τ(p(w)) < L, which is a contradiction, because L is the minimal length of a
closed geodesic. This shows that when g is not Zoll, the strict inequality

`min(S2, g)2 < πArea(S2, g)

holds, concluding the proof.

A final remark on the pinching hypothesis. Since the smooth metrics approximating
the Calabi-Croke sphere can be chosen to have positive curvature, the above theorem
cannot hold for every positively curved metric, and it is natural to ask under which
value of the pinching constant δ it may fail. Our pinching constant (4 +

√
7)/8 is

most probably not optimal. Indeed, in many of our arguments it is enough to as-
sume that δ > 1/4, a condition which has clear geometrical implications: For instance,
under this assumption, every geodesic ray emanating from the Birkhoff annulus does
not intersect itself before hitting the annulus again. The stronger pinching assump-
tion δ > (4 +

√
7)/8 is used only to guarantee that the lift of the first return map is

monotone, and hence has a generating function. Proving a suitable generalization of
our fixed point theorem to non-monotone maps would allow one to prove the systolic
optimality of the round sphere among all δ-pinched metrics with δ > 1/4.
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1 A class of self-diffeomorphisms of the strip

preserving a two-form

We denote by S the closed strip

S := R× [0, π],
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on which we consider coordinates (x, y), x ∈ R, y ∈ [0, π]. The smooth two-form

ω(x, y) := sin y dx ∧ dy

is an area form on the interior of S and vanishes on its boundary. Fix some L > 0,
and let DL(S, ω) be the group of all diffeomorphisms Φ : S → S such that:

(i) Φ(x+ L, y) = (L, 0) + Φ(x, y) for every (x, y) ∈ S.

(ii) Φ maps each component of ∂S into itself.

(iii) Φ preserves the two-form ω.

The elements of DL(S, ω) are precisely the maps which are obtained by lifting to
the universal cover

S → A := R/LZ× [0, π]

self-diffeomorphisms of A which preserve the two-form ω on A and map each boundary
component into itself.

By conjugating an element Φ of DL(S, ω) by the homeomorphism

S → R× [−1, 1], (x, y) 7→ (x,− cos y),

one obtains a self-homeomorphism of the strip R× [−1, 1] which preserves the standard
area form dx∧dy. Such a homeomorpshism is in general not continuously differentiable
up to the boundary. Since we find it more convenient to work in the smooth category,
we prefer not to use the above conjugacy and to deal with the non-standard area-form
ω vanishing on the boundary.

1.1 The flux and the Calabi invariant

In this section, we define the flux on DL(S, ω) and the Calabi homomorphism on
the kernel of the flux. These real valued homomorphisms were introduced by Calabi in
[Cal70] for the group of compactly supported symplectic diffeomorphisms of symplectic
manifolds of arbitrary dimension. See also [MS98, Chapter 10]. In this paper we need
to extend these definitions to the surface with boundary S. Our presentation is self-
contained.

Definition 1.1. The flux of a map Φ ∈ DL(S, ω), Φ(x, y) = (X(x, y), Y (x, y)), is the
real number

FLUX(Φ) :=
1

2L

∫∫
[0,L]×[0,π]

(X(x, y)− x)ω(x, y).

In other words, the flux of Φ is the average shift in the horizontal direction (notice
that 2L is the total area of [0, L] × [0, π] with respect to the area form ω). Using the
fact that the elements of DL(S, ω) preserve ω, it is easy to show that the function
FLUX : DL(S, ω)→ R is a homomorphism.

Proposition 1.2. Let α0 : [0, π]→ S be the path α0(t) := (0, t). Then

FLUX(Φ) =
1

2

∫
Φ(α0)

x sin y dy,

for every Φ in DL(S, ω).

6



Proof. Let Θ : S → S be the covering transformation (x, y) 7→ (x + L, y), and set
Q := [0, L] × [0, π]. With its natural orientation, Q ⊂ S is the region whose signed
boundary is Θ(α0)−α0 plus pieces that lie in ∂S. Since Φ ∈ DL(S, ω) commutes with
Θ, we have

Φ(Q)−Q = Θ(R)−R (4)

as simplicial 2-chains in S, where R ⊂ S is an oriented region whose signed boundary
consists of Φ(α0) − α0 plus two additional pieces in ∂S that we do not need to label.
Therefore,

FLUX(Φ) =
1

2L

∫
Q

(
X − x

)
ω =

1

2L

∫
Q

(
Φ∗(xω)− xω

)
=

1

2L

∫
R

(
Θ∗(xω)− xω

)
,

using (4) for the last equality. Since

Θ∗(xω)− xω = Lω = Ld
(
x sin y dy

)
,

by Stokes theorem we conclude that

FLUX(Φ) =
1

2

∫
∂R
x sin y dy =

1

2

∫
Φ(α0)−α0

x sin y dy =
1

2

∫
Φ(α0)

x sin y dy.

Remark 1.3. More generally, it is not difficult to show that if α is any smooth path
in S with the first end-point in R× {0} and the second one in R× {π}, then

FLUX(Φ) =
1

2

∫
Φ(α)

x sin y dy − 1

2

∫
α
x sin y dy,

for every Φ in DL(S, ω).

Now we fix the following primitive of ω on S

λ := cos y dx.

Notice that λ is invariant with respect to translations in the x-direction. Let Φ be an
element of DL(S, ω). Since Φ preserves ω = dλ, the one-form

Φ∗λ− λ

is closed. Since S is simply connected, there exists a unique smooth function

σ : S → R

such that
dσ = Φ∗λ− λ on S, (5)

and

σ(0, 0) =

∫
γ0

λ− FLUX(Φ), (6)

where γ0 is a smooth path in ∂S going from (0, 0) to Φ(0, 0). Of course, the value of
the integral in (6) does not depend on the choice of γ0, but only on its end-points.
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Notice that the function σ is L-periodic in the first variable: This follows from
the fact that Φ∗λ − λ is L-periodic in the first variable and its integral on the path
β0 : [0, L]→ S, β0(t) = (t, 0), vanishes:∫

β0

(Φ∗λ− λ) =

∫
Φ(β0)

λ−
∫
β0

λ =

∫
Φ(0,0)+β0

λ−
∫
β0

λ = 0,

thanks to the invariance of λ with respect to horizontal translations (here, the L-
periodicity of λ in the first variable would have sufficed).

Notice also that, thanks to (5), the same normalization condition (6) holds for every
point in the lower component of the boundary of S: For every x in R there holds

σ(x, 0) =

∫
γx

λ− FLUX(Φ), (7)

where γx is a smooth path in ∂S going from (x, 0) to Φ(x, 0). Indeed, if ξx is a smooth
path in ∂S from (0, 0) to (x, 0), then the paths γ0#(Φ ◦ ξx) and ξx#γx in ∂S have the
same end-points. Thus, ∫

γ0

λ+

∫
ξx

Φ∗λ =

∫
ξx

λ+

∫
γx

λ,

and equations (5) and (6) imply

σ(x, 0) = σ(0, 0) +

∫
ξx

dσ =

∫
γ0

λ− FLUX(Φ) +

∫
ξx

(Φ∗λ− λ) =

∫
γx

λ− FLUX(Φ).

Therefore, we can give the following definitions.

Definition 1.4. Let Φ ∈ DL(S, ω). The unique smooth function σ : S → R which
satisfies (5) and (6) (or, equivalently, (5) and (7)) is called action of Φ.

Definition 1.5. Let Φ ∈ ker FLUX and let σ be the action of Φ. The Calabi invariant
of Φ is the real number

CAL(Φ) =
1

2L

∫∫
[0,L]×[0,π]

σ ω.

In other words, the Calabi invariant of Φ is its average action. The following remark
explains why we define the Calabi invariant only for diffeomorphisms having zero flux.

Remark 1.6. The action σ depends on the choice of the primitive λ of ω. Let λ′ be
another primitive of ω, still L-periodic in the first variable. Then one can easily show
that λ′ = λ + df + c dx, where f : S → R is a smooth function which is L-periodic in
the first variable and c is a real number, and that the action σ′ of Φ with respect to λ′

is given by

σ′(x, y) = σ(x, y) + f ◦ Φ(x, y)− f(x, y) + c(X(x, y)− x),

where Φ = (X,Y ). If Φ has zero flux, then the integrals of σ′ ω and of σ ω on [0, L]×
[0, π] coincide, so the Calabi invariant of Φ does not depend on the choice of the periodic
primitive of ω. Moreover, this formula also shows that the value of the action at a
fixed point of Φ is independent on the choice of the primitive of ω. Since Φ∗λ is
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another periodic primitive of ω, the above facts imply that CAL : ker FLUX → R is a
homomorphsim. In this paper, we work always with the chosen primitive λ of ω and
do not need the homomorphsim property of CAL, so we leave these verifications to
the reader. See [Fat80] and [GG95] for interesting equivalent definitions of the Calabi
invariant in the case of compactly supported area preserving diffeomorphisms of the
plane.

In our definition of the action, we have chosen to normalize σ by looking at the
lower component of ∂S. The following result describes what happens on the upper
component.

Proposition 1.7. Let Φ ∈ DL(S, ω) and let σ : S → R be its action. Let δx be a
smooth path in ∂S going from (x, π) to Φ(x, π). Then

σ(x, π) =

∫
δx

λ+ FLUX(Φ).

Proof. The same argument used in the paragraph above Definition 1.4 shows that it
is enough to check the formula for x = 0. In this case, by integrating over the path
α0 : [0, π]→ S, α0(t) := (0, t), we find by Stokes theorem

σ(0, π) = σ(0, 0) +

∫
α0

dσ =

∫
γ0

λ− FLUX(Φ) +

∫
α0

(Φ∗λ− λ)

=

∫
γ0

λ− FLUX(Φ) +

∫
Φ(α0)

λ+

∫
α−1
0

λ =

∫
δ0

λ− FLUX(Φ) +

∫∫
R
h∗(dλ),

where h : R → S is a smooth map on a closed rectangle R whose restriction to the
boundary is given by the concatenation γ0#(Φ◦α0)#δ−1

0 #α−1
0 . By using again Stokes

theorem with the primitive x sin y dy of ω = dλ, we get∫∫
R
h∗(dλ) =

∫
γ0#(Φ◦α0)#δ−1

0 #α−1
0

x sin y dy =

∫
Φ(α0)

x sin y dy.

By Proposition 1.2, the latter quantity coincides with twice the flux of Φ, and the
conclusion follows.

1.2 Generating functions

As it is well known, area-preserving self-diffeomorphisms of the strip which satisfy a
suitable monotonicity condition can be represented in terms of a generating function.
See for instance [MS98, Chapter 9]. Here we need to review these facts in the case of
diffeomorphims preserving the special two-form ω = sin y dx ∧ dy.

Definition 1.8. The diffeomorphism Φ = (X,Y ) in DL(S, ω) is said to be monotone
if D2Y (x, y) > 0 for every (x, y) ∈ S.

Assume that Φ = (X,Y ) ∈ DL(S, ω) is a monotone map. Then the map

Ψ : S → S, Ψ(x, y) =
(
x, Y (x, y)

)
is a diffeomorphism: This follows from the fact that its differential at every point is
invertible, thanks to the monotonicity assumption, and from the fact that Ψ fixes the
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boundary. Denoting by y the second component of the inverse of Ψ, we can work with
coordinates (x, Y ) on S and consider the one-form

η(x, Y ) = (cosY − cos y) dx+ (X − x) sinY dY on S.

From the fact that Φ preserves ω we find

dη = sinY dx ∧ dY − sin y dx ∧ dy + sinY dX ∧ dY − sinY dx ∧ dY
= − sin y dx ∧ dy + sinY dX ∧ dY = 0,

so η is closed. Let W = W (x, Y ) be a primitive of η. Then also (x, y) 7→ W (x+ L, y)
is a primitive of η, and hence

W (x+ L, Y )−W (x, Y ) = c, ∀(x, Y ) ∈ S,

for some real number c. Since the integral of η on any path in ∂S connecting (0, 0)
to (L, 0) vanishes, the constant c must be zero, and hence any primitive W of η is
L-periodic. By writing

dW (x, Y ) = D1W (x, Y ) dx+D2W (x, Y ) dY,

and using the definition of η, we obtain the following:

Proposition 1.9. Assume that Φ in DL(S, ω) is a monotone map. Then there exists
a smooth function W : S → R such that the following holds: Φ(x, y) = (X,Y ) if and
only if

(X − x) sinY = D2W (x, Y ), (8)

cosY − cos y = D1W (x, Y ). (9)

The function W is L-periodic in the first variable. It is uniquely defined up to the
addition of a real constant.

A function W as above is called a generating function of Φ. Equation (9) implies
that W is constant on each of the two connected components of the boundary of S.
The difference between these two constant values coincides with twice the flux of Φ:

Proposition 1.10. If W is a generating function of the monotone map Φ ∈ DL(S, ω),
then

FLUX(Φ) =
1

2

(
W |R×{π} −W |R×{0}

)
.

Proof. By Proposition 1.2 and (8) we compute

FLUX(Φ) =
1

2

∫
Φ(α0)

x sin y dy =
1

2

∫
α0

X sinY dY =
1

2

∫
α0

(X − x) sinY dY

=
1

2

∫
α0

D2W (x, Y ) dY =
1

2

(
W |R×{π} −W |R×{0}

)
,

where we have used the fact that x = 0 on the path α0 which is defined in Proposi-
tion 1.2.
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By the above proposition, we can choose the free additive constant of the generating
function W in such a way that:

W |R×{0} = −FLUX(Φ), W |R×{π} = FLUX(Φ). (10)

We conclude this section by expressing the action and the Calabi invariant of a mono-
tone element of DL(S, ω) in terms of its generating function, normalized by the above
condition.

Proposition 1.11. Let Φ = (X,Y ) ∈ DL(S, ω) be a monotone map, and denote by W
the generating function of Φ normalized by (10). Then we have:

(i) The action of Φ is the function

σ(x, y) = W (x, Y (x, y)) +D2W (x, Y (x, y)) cotY (x, y).

(ii) If moreover FLUX(Φ) = 0, then the Calabi invariant of Φ is the number

CAL(Φ) =
1

2L

∫∫
[0,L]×[0,π]

(
W (x, y) +W (x, Y (x, y))

)
ω(x, y).

The formula for σ in (i) is valid only in the interior of S, because the cotangent
function diverges at 0 and π. Since D2W vanishes on the boundary of S, thanks to
(8), this formula defines a smooth function on S by setting

σ(x, 0) = W (x, 0) +D22W (x, 0), σ(x, π) = W (x, π) +D22W (x, π),

for every x ∈ R.

Proof. Let us check that the function σ which is defined in (i) coincides with the action
of Φ. By (8) we have

σ = W +D2W cotY = W + (X − x) cosY (11)

on int(S). By continuity, this formula for σ is valid on the whole S. By differentiating
it and using again (8) together with (9), we obtain

dσ = dW − (X − x) sinY dY + cosY (dX − dx)

= dW −D2W dY + cosY (dX − dx) = D1W dx+ cosY (dX − dx)

= (cosY − cos y) dx+ cosY (dX − dx) = cosY dX − cos y dx = Φ∗λ− λ.

Therefore, σ satisfies (5). Evaluating (11) in (0, 0) we find

σ(0, 0) = W (0, 0) +X(0, 0) = −FLUX(Φ) +X(0, 0) = −FLUX(Φ) +

∫
γ0

λ,

where γ0 is a path in ∂S going from (0, 0) to Φ(0, 0). We conclude that σ satisfies also
(6), and hence coincides with the action of Φ. This proves (i).

We now use (i) in order to compute the integral of the two form σ ω on [0, L]× [0, π].
We start from the identity∫∫

[0,L]×[0,π]
σ ω =

∫∫
[0,L]×[0,π]

W (x, Y (x, y))ω(x, y)

+

∫∫
[0,L]×[0,π]

D2W (x, Y (x, y)) cotY (x, y) sin y dx ∧ dy,
(12)
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and we manipulate the last integral. By differentiating (9), that is, the identity

cosY (x, y)− cos y = D1W (x, Y (x, y)),

we obtain
sin y dy = sinY dY +D11W dx+D12W dY.

By the above formula, the integrand in the last integral in (12) can be rewritten as

D2W cotY sin y dx ∧ dy = D2W cotY dx ∧ (sinY dY +D12W dY )

= D2W cosY dx ∧ dY +D2WD12W cotY dx ∧ dY.
(13)

We integrate the above two forms separately. By the L-periodicity in x, the integral
of the first two-form can be manipulated as follows:∫∫

[0,L]×[0,π]
D2W (x, Y (x, y)) cosY (x, y) dx ∧ dY (x, y)

=

∫∫
[0,L]×[0,π]

D2W (x, Y ) cosY dx ∧ dY

=

∫ L

0

(∫ π

0
D2W (x, Y ) cosY dY

)
dx

=

∫ L

0

([
W (x, Y ) cosY

]Y=π

Y=0
+

∫ π

0
W (x, Y ) sinY dY

)
dx

= −L
(
W |R×{π} +W |R×{0}

)
+

∫∫
[0,L]×[0,π]

W (x, Y ) sinY dx ∧ dY

= −L
(
−FLUX(Φ) + FLUX(Φ)

)
+

∫∫
[0,L]×[0,π]

W (x, y) sin y dx ∧ dy

=

∫∫
[0,L]×[0,π]

W (x, y)ω(x, y),

(14)

where we have used the normalization condition (10). The integral of the second form
in the right-hand side of (13) vanishes, because∫∫

[0,L]×[0,π]
D2WD12W cotY dx ∧ dY

=
1

2

∫∫
[0,L]×[0,π]

D1(D2W )2 cotY dx ∧ dY

=
1

2

∫ π

0
cotY

(∫ L

0
D1(D2W )2 dx

)
dY = 0,

(15)

by L-periodicity in x. By (12), (13), (14) and (15) we obtain∫∫
[0,L]×[0,π]

σ ω =

∫∫
[0,L]×[0,π]

(
W (x, Y (x, y)) +W (x, y)

)
ω(x, y),

and (ii) follows.
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1.3 The Calabi invariant and the action at fixed points

We are now in the position to prove the main result of this first part.

Theorem 1.12. Let Φ be a monotone element of DL(S, ω) which is different from the
identity and has zero flux. If CAL(Φ) ≤ 0, then Φ has an interior fixed point with
negative action.

Proof. Let W be the generating function of Φ normalised by the condition (10). Since
Φ has zero flux, this condition says that W is zero on the boundary of S. Since Φ
is not the identity, W is not identically zero. Then the condition CAL(Φ) ≤ 0 and
the formula of Proposition 1.11 (ii) for CAL(Φ) imply that W is somewhere negative.
Being a continuous periodic function, W achieves its minimum at some interior point
(x, Y ) ∈ int(S). Since the differential of W vanishes at (x, Y ), equations (8) and (9)
imply that (x, y) := (x, Y ) is a fixed point of Φ. By Proposition 1.11 (i),

σ(x, y) = W (x, Y ) < 0.

Therefore, (x, y) is an interior fixed point of Φ with negative action.

2 The geodesic flow on a positively curved two-

sphere

Throughout this section, a smooth oriented Riemannian two-sphere (S2, g) is fixed.
The associated unit tangent bundle is

T 1S2 := {v ∈ TS2 | gπ(v)(v, v) = 1},

where π : TS2 → S2 denotes the bundle projection. For each v ∈ T 1S2, we denote by
v⊥ ∈ Tπ(v)S

2 the unit vector perpendicular to v such that {v, v⊥} is a positive basis of
Tπ(v)S

2.
We shall deal always with Riemannian metrics g having positive Gaussian curvature

K and shall often use Klingenberg’s lower bound on the injectivity radius inj(g) of the
metric g from [Kli59], that is,

inj(g) ≥ π√
maxK

, (16)

see also [Kli82, Theorem 2.6.9].

2.1 Extension and regularity of the Birkhoff map

Let γ : R/LZ→ S2 be a simple closed geodesic of length L parametrized by arc-length,
i.e. satisfying gγ(γ̇, γ̇) ≡ 1. The smooth unit vector field γ̇⊥ along γ determines the
Birkhoff annuli

Σ+
γ := {cos y γ̇(x) + sin y γ̇⊥(x) ∈ T 1S2 | (x, y) ∈ R/LZ× [0, π]},

Σ−γ := {cos y γ̇(x) + sin y γ̇⊥(x) ∈ T 1S2 | (x, y) ∈ R/LZ× [−π, 0]}.
(17)

These sets are embedded closed annuli and (x, y) are smooth coordinates on them.
The annuli Σ+

γ and Σ−γ intersect along their boundaries ∂Σ+
γ = ∂Σ−γ . This common
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boundary has two components, one containing unit vectors γ̇ and the other containing
unit vectors −γ̇. We denote the open annuli by

int(Σ+
γ ) := Σ+

γ \ ∂Σ+
γ , int(Σ−γ ) := Σ−γ \ ∂Σ−γ .

Let φt be the geodesic flow on T 1S2. We define the functions

τ+ : int(Σ+
γ )→ (0,+∞], τ+(v) := inf{t > 0 | φt(v) ∈ int(Σ−γ )},

τ− : int(Σ−γ )→ (0,+∞], τ−(v) := inf{t > 0 | φt(v) ∈ int(Σ+
γ )},

where the infimum of the empty set is +∞. The functions τ+ and τ− are the transition
times to go from the interior of Σ+

γ to the interior of Σ−γ and the other way round. The
first return time to Σ+

γ is instead the function

τ : int(Σ+
γ )→ (0,+∞], τ(v) := inf{t > 0 | φt(v) ∈ int(Σ+

γ )}.

Recall the following celebrated theorem due to Birkhoff (see also [Ban93]):

Theorem 2.1 (Birkhoff [Bir27]). If the Gaussian curvature of g is everywhere positive
then the functions τ+, τ− and τ are everywhere finite.

Thanks to the above result, we have the transition maps

ϕ+ : int(Σ+
γ )→ int(Σ−γ ), ϕ+(v) := φτ+(v)(v),

ϕ− : int(Σ−γ )→ int(Σ+
γ ), ϕ−(v) := φτ−(v)(v),

and the first return map

ϕ : int(Σ+
γ )→ int(Σ+

γ ), ϕ(v) := φτ(v)(v).

By construction,

ϕ = ϕ− ◦ ϕ+, (18)

τ = τ+ + τ− ◦ ϕ+. (19)

Using the implicit function theorem and the fact that the geodesic flow is transverse
to both int(Σ+

γ ) and int(Σ−γ ), one easily proves that the functions τ+, τ− and τ are
smooth. These functions have smooth extensions to the closure of their domains. More
precisely, we have the following statement.

Proposition 2.2. Assume that the Gaussian curvature of (S2, g) is everywhere posi-
tive. Then:

(i) The functions τ+ and τ− can be smoothly extended to Σ+
γ and Σ−γ , respectively,

as follows: τ+(γ̇(x)) = τ−(γ̇(x)) is the time to the first conjugate point along the
geodesic ray t ∈ [0,+∞) 7→ γ(x + t), and τ+(−γ̇(x)) = τ−(−γ̇(x)) is the time to
the first conjugate point along the geodesic ray t ∈ [0,+∞) 7→ γ(x− t).

(ii) The function τ can be smoothly extended to Σ+
γ as follows: τ(γ̇(x)) is the time

to the second conjugate point along the geodesic ray t ∈ [0,+∞) 7→ γ(x + t),
and τ(−γ̇(x)) is the time to the second conjugate point along the geodesic ray
t ∈ [0,+∞) 7→ γ(x− t).

14



The smooth extensions of τ+, τ− and τ are denoted by the same symbols. The
above proposition has the following consequence:

Corollary 2.3. Suppose that the Gaussian curvature of (S2, g) is everywhere positive.
Then the formulas

v 7→ φτ+(v)(v), v 7→ φτ−(v)(v) and v 7→ φτ(v)(v)

define smooth extensions of the maps ϕ+, ϕ− and ϕ to diffeomorphisms

ϕ+ : Σ+
γ → Σ−γ , ϕ− : Σ−γ → Σ+

γ and ϕ : Σ+
γ → Σ+

γ ,

which still satisfy (18) and (19).

Proof. The smoothness of the geodesic flow φ and of the functions τ+, τ− and τ imply
that ϕ+, ϕ− and ϕ are smooth. Since the inverses of these maps on the interior of
their domains have analogous definitions, such as for instance

ϕ−1
+ (v) = φτ̂+(v)(v), where τ̂+(v) := sup{t < 0 | φt(v) ∈ int(Σ+

γ )},

the maps ϕ−1
+ , ϕ−1

− and ϕ−1 have also smooth extensions to the closure of their domains,
and hence ϕ+, ϕ− and ϕ are diffeomorphisms.

For sake of completeness, we include a proof of Proposition 2.2. A proof of statement
(ii) has recently appeared in [Sch14]. This proof is based on a technical lemma about
return time functions of a certain class of flow, which we now introduce. Consider
coordinates (x, q, p) ∈ R/Z × R2 and a smooth tangent vector field X on R/Z × R2

satisfying
X(x, 0, 0) = (1, 0, 0), ∀x ∈ R/Z. (20)

If we denote by ψt the flow of X then

ψt(x, 0, 0) = (x+ t, 0, 0), ∀x ∈ R/Z,

and P := R/Z× 0 is a 1-manifold invariant by the flow. We assume also that for every
x ∈ R/Z and t ∈ R the subspace {0} × R2 ⊂ R3 is preserved by the differential of the
flow, i.e.

Dψt(x, 0, 0)
[
{0} × R2

]
= {0} × R2, ∀x ∈ R/Z, ∀t ∈ R. (21)

For each δ ∈ (0,∞] consider the annuli

A+
δ := R/Z× [0, δ), A−δ := R/Z× (−δ, 0],

both equipped with the coordinates (x, y). To each point (x, y) ∈ int(A+
δ ) one may try

to associate the point ϕ+(x, y) ∈ int(A−δ ) given by the formula

ϕ+(x, y) = ψτ+(x,y)(x, y, 0) (22)

where τ+(x, y) is a tentative “first hitting time of A−δ ”, that is,

τ+(x, y) = inf
{
t > 0 | ψt(x, y, 0) ∈ int(A−∞)× {0}

}
. (23)

Of course, in general τ+ and ϕ+ may not be well-defined, even for small δ. Our purpose
below is to give a sufficient condition on the vector field X to guarantee that, if δ is
small enough, τ+ and ϕ+ are well-defined smooth functions on int(A+

δ ) which extend
smoothly to A+

δ . In the following definition and in the proof of the lemma below, we
identify R2 with C.

15



Definition 2.4. Fix some x ∈ R/Z and v ∈ R2 \ {0}. By (21) the image of (0, v) by
the differential of ψt at (x, 0, 0) has the form

Dψt(x, 0, 0)
[
(0, v)

]
= (0, ρ(t)eiθ(t)),

for suitable smooth functions ρ > 0 and θ, where ρ is unique and θ is unique up to the
addition of an integer multiple of 2π. We say that the linearized flow along P has a
positive twist if for every choice of x ∈ R/Z and v ∈ R2 \ {0} the function θ which is
defined above satisfies θ′(t) > 0 for all t ∈ R.

Lemma 2.5. If the linearized flow along P has a positive twist, then there exists δ0 > 0
such that τ+ is a well-defined smooth function on int(A+

δ0
) which extends smoothly as

a positive function on A+
δ0

. Moreover, this extension is described by the formula

τ+(x, 0) = inf {t > 0 | Dψt(x, 0, 0)[∂y] ∈ R−∂y}, (24)

where ∂y := (0, 1, 0).

Proof. Write w = y + iz and Y = X2 + iX3, where (X1, X2, X3) are the components
of the vector field X. Then

X(x,w) =
(
X1(x,w), Y (x,w)

)
.

By (20) we have X1(x, 0) = 1 and Y (x, 0) = 0. Consider W (x,w) ∈ LR(C) defined by

W (x,w) =

∫ 1

0
D2Y (x, sw) ds,

where D2Y denotes derivative with respect to the second variable. Then

W (x, 0) = D2Y (x, 0), Y (x,w) = W (x,w)w.

We shall now translate the assumption that the linearized flow along P has a
positive twist into properties of W (x, 0). Choose v0 ∈ C \ 0. Using (21) we find a
smooth non-vanishing complex valued function v such that

Dψt(x, 0)[(0, v0)] = (0, v(t)).

From
d

dt
Dψt = (DX ◦ ψt)Dψt,

and from (21) we get the linear ODE

v̇(t) = D2Y (x+ t, 0)v(t) = W (x+ t, 0)v(t).

Writing v(t) = r(t)eiθ(t) with smooth functions r > 0 and θ, we know that

θ′ = Re

(
v̇

iv

)
= Re

(
W (x+ t, 0)v

iv

iv

iv

)
=
〈W (x+ t, 0)v, iv〉

|v|2
=
〈
W (x+ t, 0)eiθ, ieiθ

〉
,

(25)
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where 〈·, ·〉 denotes the Hermitian product on C. Since x, t and v(t) can take arbitrary
values, we conclude from the above formula and the assumptions of the lemma that

〈W (x, 0)u, iu〉 > 0, ∀u ∈ C \ {0}, ∀x ∈ R/Z. (26)

Consider polar coordinates (r, θ) ∈ [0,+∞)× R/2πZ in the w-plane given by w =
y + iz = reiθ. The map

(x, r, θ) 7→ X(x, reiθ)

is smooth. Using the formulas

∂y =
y

r
∂r −

z

r2
∂θ, ∂z =

z

r
∂r +

y

r2
∂θ,

we obtain that the vector field X pulls back by this change of coordinates to a smooth
vector field

Z = (Z1, Z2, Z3),

which is given by
Z1(x, r, θ) = X1(x, reiθ),

Z2(x, r, θ) = cos θ X2(x, reiθ) + sin θ X3(x, reiθ),

Z3(x, r, θ) =
1

r

(
cos θ X3(x, reiθ)− sin θ X2(x, reiθ)

)
.

(27)

Indeed, the smoothness of Z1 and Z2 follows immediately from the above formulas,
while that of Z3 needs a little more care. Since X2, X3 vanish on R/Z × {0}, we can
find smooth functions X2,2, X2,3, X3,2, X3,3 such that

X2(x, y + iz) = yX2,2(x, y + iz) + zX2,3(x, y + iz),

X3(x, y + iz) = yX3,2(x, y + iz) + zX3,3(x, y + iz),

where

X2,2(x, 0) = D2X2(x, 0, 0), X2,3(x, 0) = D3X2(x, 0, 0),

X3,2(x, 0) = D2X3(x, 0, 0), X3,3(x, 0) = D3X3(x, 0, 0),

and

W (z, w) =

[
X2,2(x,w) X2,3(x,w)
X3,2(x,w) X3,3(x,w)

]
.

Substituting y = r cos θ, z = r sin θ we find

Z3(x, r, θ) =
〈
W (x, reiθ)eiθ, ieiθ

〉
. (28)

Thus Z3 is a smooth function of (x, r, θ) and

Z3(x, 0, θ) > 0, ∀x ∈ R/Z, ∀θ ∈ R/2πZ, (29)

thanks to (26).
From now on we lift the variable θ from R/2πZ to the universal covering R and

think of the vector field Z as a smooth vector field defined on R/Z × [0,+∞) × R,
having components 2π-periodic in θ. Clearly this vector field is tangent to {r = 0}.
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Let ζt denote the flow of Z. After changing coordinates and lifting, we see that the
conclusions of the lemma will follow if we check that

τ+(x, r) = inf{t > 0 | θ ◦ ζt(x, r, 0) = π} (30)

defines a smooth function of (x, r) ∈ R/Z× [0, δ) when δ is small enough. By (29) we
see that if δ0 is fixed small enough then τ+(x, r) is a well-defined, uniformly bounded
and strictly positive function of (x, r) ∈ R/Z× [0, δ0). Here we used that Z is tangent
to {r = 0}. Perhaps after shrinking δ0, we may also assume that

Z3(ζt(x, r, 0)) > 0, ∀(x, r) ∈ R/Z× [0, δ0), ∀t ∈ [0, τ+(z, r)]. (31)

Continuity and smoothness properties of τ+ remain to be checked. This is achieved
with the aid of the implicit function theorem. In fact, consider the smooth function

F : R× R/Z× [0,+∞)→ R, F (τ, x, r) := θ ◦ ζτ (x, r, 0).

Since
D1F (τ, x, r) = dθ

[
Z(ζτ (x, r, 0))

]
= Z3(ζτ (x, r, 0)),

it follows from (31) and from the implicit function theorem that the equation

F (τ+, x, r) = π

determines τ+ = τ+(x, r) as a smooth function of (x, r) ∈ R/Z× [0, δ0).
We now check formula (24) for τ+(x, 0). From the above equations one sees that

θ(t) = θ ◦ ζt(x, 0, 0) satisfies the differential equation

θ′(t) =
〈
D2Y (x+ t, 0)eiθ, ieiθ

〉
,

with initial condition θ(0) = 0. Thanks to (25), this is exactly the same initial value

problem for the argument θ̂(t) of the solution v(t) = ρ(t)eiθ̂(t) of the linearized flow
starting at the base point (x, 0) applied to the vector ∂y.

In order to prove Proposition 2.2, it is enough to show that coordinates can be
arranged in such a way that the geodesic flow near a simple closed geodesic γ meets
the assumptions of Lemma 2.5 when the Gaussian curvature is positive along γ. We
will assume for simplicity, and without loss of generality, that L = 1. We start by
recalling basic facts from Riemannian geometry and fixing some notation.

Given v ∈ TS2, let Vv ⊂ TvTS
2 be the vertical subspace, which is defined as

Vv := ker dπ(v). The isomorphism

iVv : Tπ(v)S
2 → Vv

is defined as

iVv(w) :=
d

dt
(v + tw)

∣∣∣
t=0

, ∀w ∈ Tπ(v)S
2.

The Levi-Civita connection of g determines a bundle map K : TTS2 → TS2 satisfying
∇YX = K(dX ◦ Y ), where X,Y are vector fields on S2 seen as maps S2 → TS2.
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The horizontal subspace Hv := kerK|TvTS2 satisfies TvTS
2 = Vv ⊕ Hv. There is an

isomorphism

iHv : Tπ(v)S
2 → Hv, iHv(w) :=

d

dt
V (t)

∣∣∣
t=0

, ∀w ∈ Tπ(v)S
2,

where V is the parallel vector field along the geodesic β(t) satisfying β̇(0) = w with
initial condition V (0) = v, seen as a curve in TTS2. The isomorphism iHv satisfies

dπ(v)
[
iHv(w)

]
= w, ∀w ∈ Tπ(v)S

2. (32)

For each v ∈ T 1S2 we have

TvT
1S2 = span{iVv(v⊥), iHv(v

⊥), iHv(v)}.

The Hilbert form λH on TS2 is given by

λH(v)[ζ] := gπ(v)

(
v, dπ(v)[ζ]

)
, ∀ζ ∈ TvS2, (33)

and restricts to a contact form α on T 1S2. The contact structure ξ := kerα is trivial
since

ξv = span{iVv(v⊥), iHv(v
⊥)}.

The Reeb vector field Rα of α coincides with iHv(v), and {iVv(v⊥), iHv(v
⊥)} forms a

symplectic basis for dα|ξv , because

dα(v)
[
iVv(v

⊥), iHv(v
⊥)
]

= 1.

If (x, y) are the standard coordinates on Σ±γ given by

v = cos y γ̇(x) + sin y γ̇(x)⊥,

then the tangent vectors ∂x and ∂y in TvΣ
±
γ are

∂x = iHv(γ̇(x)) = cos y iHv(v)− sin y iHv(v
⊥),

∂y = iVv(v
⊥).

(34)

Proof of Proposition 2.2. It is enough to prove statement (i) for the function τ+. In
fact, the case of τ− follows by inverting the orientation of γ, and statement (ii) is then
a direct consequence of the identity (19).

By (34) the vector field Rα = iHv(v) is transverse to the interior of Σ±γ . The smooth
vector field

iHv(γ̇
⊥) = sin y iHv(v) + cos y iHv(v

⊥)

along Σ+
γ ∪Σ−γ is transverse to it near γ̇. To obtain the desired coordinates near γ̇ we

proceed as follows: let ḡ be the Riemannian metric on T 1S2 defined by

ḡv(ζ1, ζ2) := α(ζ1)α(ζ2) + dα
(
πξ(ζ1), Jπξ(ζ2)

)
,

where J : ξ → ξ is the dλ-compatible complex structure determined by

J
(
iVv(v

⊥)
)

= iHv(v
⊥),
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πξ : T 1S2 → ξ is the projection along Rα, and ζ1, ζ2 ∈ TvT 1S2 are arbitrary. Note that
ξ is orthogonal to RRα with respect to ḡ and ḡ(iVv(v

⊥), iHv(v
⊥)) = 0.

Denote by Exp the exponential map of ḡ. Then for all δ > 0 sufficiently small, the
map

R/Z× (−δ, δ)× (−δ, δ)→ U

(x, y, z) 7→ Expv=cos yγ̇(x)+sin yγ̇⊥(x)

(
z(sin y iHv(v) + cos y iHv(v

⊥))
)

is a diffeomorphism, where U ⊂ T 1S2 is a small tubular neighborhood of γ̇. In coordi-
nates (x, y, z), we have

γ̇ ≡ R/Z× {(0, 0)}
Σ+
γ ≡ {z = 0, y ≥ 0}

Σ−γ ≡ {z = 0, y ≤ 0}
Rα|γ̇ ≡ (1, 0, 0)|R/Z×{(0,0)}

ξ|γ̇ ≡ {0} × R2|R/Z×{(0,0)}

iVγ̇ (γ̇⊥) ≡ ∂y|R/Z×{(0,0)}

iHγ̇ (γ̇⊥) ≡ ∂z|R/Z×{(0,0)}.

(35)

Denote by X = (X1, X2, X3) the Reeb vector field Rα in these coordinates and by
ψt its flow. Then X(x, 0, 0) = (1, 0, 0) and since ψt preserves the contact structure, we
have

Dψt(x, 0, 0)
[
{0} × R2

]
= {0} × R2.

A linearized solution ζ(t) = a1(t)∂y + a2(t)∂z along ψt(x, 0, 0) = (x+ t, 0, 0) satisfies(
a′1(t)
a′2(t)

)
=

(
0 −K(t)
1 0

)(
a1(t)
a2(t)

)
,

where K(t) is the Gaussian curvature at γ(x+t). Writing in complex polar coordinates
a1(t) + ia2(t) = ρ(t)eiθ(t), for smooth functions ρ ≥ 0 and θ, we can easily check that

θ′(t) = cos2 θ(t) +K(t) sin2 θ(t), ∀t ∈ R.

Therefore, the positivity of the Gaussian curvature along γ implies the twist condi-
tion. We have finished checking that X meets all the assumptions of Lemma 2.5.
Proposition 2.2 follows readily from an application of that lemma.

2.2 The contact volume, the return time and the Rieman-
nian area

As we have seen in the previous section, the Hilbert form λH defined in (33) induces
by restriction a contact form α on T 1S2. A further restriction produces the one-form
λ on the Birkhoff annulus Σ+

γ . By using the standard smooth coordinates (x, y) ∈
R/LZ× [0, π] on Σ+

γ , we express a vector v ∈ Σ+
γ as

v = cos y γ̇(x) + sin y γ̇(x)⊥, (36)
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and we find, using (33) and (34), together with (32),

λ(v)[∂x] = gπ(v)

(
v, dπ(v)[cos y iHv(v)− sin y iHv(v

⊥)]
)

= gπ(v)(v, cos y v − sin y v⊥) = cos y,

λ(v)[∂y] = gπ(v)

(
v, dπ(v)[iVv(v

⊥)]
)

= gπ(v)(v, 0) = 0

Therefore, the expression of λ in the coordinates (x, y) is

λ = cos y dx,

and its differential reads
dλ = sin y dx ∧ dy.

Thus, the forms λ and ω = dλ are the ones considered in part 1 on the universal cover
S of R/LZ× [0, π].

Since the geodesic flow φt preserves α for all t, we have for any v in int(Σ+
γ ) and ζ

in TvΣ
+
γ

(ϕ∗λ)(v)[ζ] = λ(ϕ(v))
[
dϕ(v)[ζ]

]
= λ

(
φτ(v)(v)

)[
dφτ(v)(v)[ζ] + dτ(v)[ζ]Rα(φτ(v)(v))

]
= λ(v)[ζ] + dτ(v)[ζ]

on int(Σ+
γ ), and hence on its closure Σ+

γ since all the objects here are smooth. Here,
Rα is the Reeb vector field on the contact manifold (T 1S2, α), which coincides with
the generator of the geodesic flow. Therefore,

dτ = ϕ∗λ− λ on Σ+
γ .

Now let
Ψ : int(Σ+

γ )× R→ T 1S2 \
(
γ̇(R) ∪ −(γ̇(R)

)
be defined as Ψ(v, t) := φt(v). Then

Ψ∗α(v, t)[(ζ, s)] = α(φt(v))
[
dφt(v)[ζ] + sRα(φt(v))

]
= α(v)[ζ] + s = λ(v)[ζ] + s,

that is,
Ψ∗α = λ+ dt.

Again, we used the preservation of α by φt. Since λ ∧ dλ = 0, being a three-form on a
two-dimensional manifold, we deduce that

Ψ∗(α ∧ dα) = dt ∧ dλ.

Denoting by K the subset

K := {(v, t) ∈ int(Σ+
γ )× R | v ∈ int(Σ+

γ ), t ∈ [0, τ(x)]},

we can relate the contact volume Vol(T 1S2, α) with the function τ as follows

Vol(T 1S2, α) =

∫∫∫
T 1S2\

(
γ̇(R)∪(−γ̇(R))

) α ∧ dα =

∫∫∫
K

Ψ∗(α ∧ dα)

=

∫∫∫
K
dt ∧ dλ =

∫∫
Σ+
γ

(∫ τ(v)

0
dt

)
dλ(v) =

∫∫
Σ+
γ

τ dλ.

Summarizing, we have proved the following:
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Proposition 2.6. The restriction λ of the contact form α of T 1S2 to Σ+
γ has the form

λ = cos y dx

in the standard coordinates (x, y) ∈ R/LZ× [0, π]. The first return map ϕ : Σ+
γ → Σ+

γ

preserves dλ. Moreover, the first return time τ : Σ+
γ → R satisfies

dτ = ϕ∗λ− λ on Σ+
γ .

Finally

Vol(T 1S2, α) =

∫∫
Σ+
γ

τ dλ.

For completeness we state and prove below a well known fact.

Proposition 2.7. The contact volume of (T 1S2, α) and the Riemannian area of (S2, g)
are related by the identity

Vol(T 1S2, α) = 2πArea(S2, g).

Proof. Take isothermal coordinates (x, y) ∈ U ⊂ R2 on an embedded closed disk
U ′ ⊂ S2. In these coordinates, the metric g takes the form

ds2 = a(x, y)2(dx2 + dy2),

for a smooth positive function a. Any unit tangent vector v ∈ T 1U ′ ⊂ T 1S2 can be
written as

v =
cos θ

a
∂x +

sin θ

a
∂y, with θ ∈ R/2πZ,

where a = |∂x|g = |∂y|g. Thus (x, y, θ) ∈ U × R/2πZ can be taken as coordinates on
T 1U ′, and the bundle projection becomes π(x, y, q) = (x, y). With respect to these
coordinates, the contact form

α(v)[ζ] = gπ(v)

(
v, dπ(v)[ζ]

)
has the expression

α = a(cos θ dx+ sin θ dy).

Differentiation yields

dα = da ∧ (cos θ dx+ sin θ dy) + a(− sin θ dθ ∧ dx+ cos θ dθ ∧ dy).

Hence

α ∧ dα = a da ∧ (cos θ sin θ dx ∧ dy + sin θ cos θ dy ∧ dx)

+ a2(cos2 θ dx ∧ dθ ∧ dy − sin2 θ dy ∧ dθ ∧ dx)

= a2 dx ∧ dθ ∧ dy = −a2 dx ∧ dy ∧ dθ.

Therefore, the orientation of T 1U ′ which is induced by α∧dα is opposite to the standard
orientation of U × R/2πZ, and we get

Vol(T 1U ′, α) =

∫∫∫
T 1U ′

α ∧ dα =

∫∫∫
U×R/2πZ

a2dx ∧ dy ∧ dθ

=

∫∫
U
a2(x, y)

(∫ 2π

0
dθ

)
dxdy = 2π

∫∫
U
a2(x, y) dxdy

= 2π

∫∫
U

√
det(g) dxdy = 2πArea(U ′, g).
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Taking two embedded disks U ′, U ′′ ⊂ S2 with disjoint interiors and coinciding bound-
aries, we get

Vol(T 1S2, α) = Vol(T 1U ′, α) + Vol(T 1U ′′, α)

= 2π(Area(U ′, g) + Area(U ′′, g))

= 2πArea(S2, g).

2.3 The flux and the Calabi invariant of the Birkhoff re-
turn map

By using the standard smooth coordinates (x, y) given by (36), we can identify the
Birkhoff annulus Σ+

γ with R/LZ× [0, π]. Its universal cover is the natural projection

p : S → Σ+
γ ,

where S is the strip R × [0, π]. The first return map ϕ : Σ+
γ → Σ+

γ preserves the
two-form ω = dλ and maps each boundary component into itself. Therefore, ϕ can be
lifted to a diffeomorphism in the group DL(S, ω) which is considered in part 1. The
aim of this section is to prove the following result, which relates the objects of this part
with those of part 1.

Theorem 2.8. Assume that the metric g on S2 is δ-pinched with δ > 1/4. Let γ be a
simple closed geodesic of length L on (S2, g). Then the first return map ϕ : Σ+

γ → Σ+
γ

has a lift Φ : S → S which belongs to DL(S, ω) and has the following properties:

(i) Φ has zero flux.

(ii) The first return time τ : Σ+
γ → R is related to the action σ : S → R of Φ by the

identity
τ ◦ p = L+ σ on S.

(iii) The area of (S2, g) is related to the Calabi invariant of Φ by the identity

πArea(S2, g) = L2 + L CAL(Φ).

The proof of this theorem requires an auxiliary lemma, which will play an important
role also in the next section.

Lemma 2.9. Assume that (S2, g) is δ-pinched for some δ > 1/4. Fix some v in Σ±γ
and denote by α the geodesic satisfying α̇(0) = v. Then the geodesic arc α|[0,τ±(v)] is
injective.

Proof. We consider the case of Σ+
γ , the case of Σ−γ being completely analogous. Up to

the multiplication of g by a positive number, we may assume that 1 ≤ K < 4.
Let x∗ ∈ R be such that α(0) = γ(x∗) and let y∗ ∈ [0, π] be the angle between γ̇(x∗)

and v = α̇(0). Consider the family of unit speed geodesics αy with αy(0) = α(0) =
γ(x∗) such that the angle from γ̇(x∗) to vy := α̇y(0) is y, for y ∈ [0, π]. In particular,
αy∗ = α and vy∗ = v. By Proposition 2.2 (i),

{αy|[0,τ+(vy)]}y∈[0,π]
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is a smooth family of geodesic arcs, parametrized on a family of intervals whose length
varies smoothly.

We claim that τ+(v0) < L and τ+(vπ) < L. In order to prove this, first notice that
the length L of the closed geodesic γ satisfies

L ≥ 2π√
maxK

>
2π√

4
= π, (37)

thanks to the lower bound (16) on the injectivity radius and to the inequality K < 4.
Moreover, by Proposition 2.2 (i) the number τ+(v0) is the first positive zero of the
solution u of the Jacobi equation

u′′(t) +K(γ(x∗ + t))u(t) = 0, u(0) = 0, u′(0) = 1.

Writing the complex function u′+ iu in polar coordinates as u′+ iu = reiθ, for smooth
real functions r > 0 and θ satisfying r(0) = 1, θ(0) = 0, a standard computation gives

θ′(t) = cos2 θ(t) +K(γ(x∗ + t)) sin2 θ(t).

Since K ≥ 1, we have θ′ ≥ 1 and hence θ(L) ≥ L > π. This implies that τ+(v0) < L.
The case of τ+(vπ) follows by applying the previous case to the geodesic t 7→ γ(−t).

Let Y0 be the subset of [0, π] consisting of those y for which αy|[0,τ+(vy)] is injective.
The set Y0 is open in [0, π], and by the above claim 0 and π belong to Y0. Let Y1

be the subset of (0, π) consisting of those y for which αy|[0,τ+(vy)] has an interior self-
intersection: There exist 0 < s < t < τ+(vy) such that αy(s) = αy(t). Such an interior
self-intersection must be transverse, so the fact that S2 is two-dimensional implies that
also Y1 is open in [0, π]. It is enough to show that Y0 ∪ Y1 = [0, π]: Indeed, if this is
so, the fact that [0, π] is connected implies that only one of the two open sets Y0 and
Y1 can be non-empty, and we have already checked that Y0 contains 0 and π. The
conclusion is that [0, π] = Y0, and in particular α = αy∗ is injective.

If y belongs to the complement of Y0 ∪ Y1 in [0, π], then y ∈ (0, π) and αy|[0,τ+(vy)]

has a self-intersection only at its endpoints: α|[0,τ+(vy)) is injective and αy(τ+(vy)) =
αy(0). Denote by l > 0 the length of the geodesic loop αy|[0,τ+(vy)]. Together with the
closed curve γ, this geodesic loop forms a two-gon with perimeter equal to L + l. By
Theorem A.12 and the inequality K ≥ 1, its perimeter L+ l satisfies

L+ l ≤ 2π√
minK

≤ 2π.

By using the bound (37) and the analogous bound l > π for the geodesic loop αy|[0,τ+(vy)],
we obtain

L+ l > 2π.

The above two estimates contradict each other, and this shows that the complement
of Y0 ∪ Y1 is empty, concluding the proof.

Proof of Theorem 2.8. Given v ∈ T 1S2, we denote by αv the geodesic parametrised
by arc length such that α̇v(0) = v. Let v ∈ Σ+

γ with π(v) = γ(x). Then we know
from Lemma 2.9 that the geodesic arc αv|[0,τ+(v)] is injective. In particular, αv(τ+(v))
is distinct from αv(0) = γ(x), so there exists a unique number

ρ+(v) ∈ (0, L)
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such that
αv(τ+(v)) = γ(x+ ρ+(v)).

By the continuity of the geodesic flow and of the function τ+, the function

ρ+ : Σ+
γ → (0, L)

is continuous. The restriction of τ+ to the boundary of Σ+
γ satisfies

ρ+(γ̇(x)) = τ+(γ̇(x)) and ρ+(−γ̇(x)) = L− τ+(−γ̇(x)), ∀x ∈ R. (38)

Similarly, there exists a unique continuous function

ρ− : Σ−γ → (0, L)

such that, if v ∈ Σ−γ is based at γ(x), we have

αv(τ−(v)) = γ(x+ ρ−(v)).

As before,

ρ−(γ̇(x)) = τ−(γ̇(x)) and ρ−(−γ̇(x)) = L− τ−(−γ̇(x)), ∀x ∈ R. (39)

Define the function
ρ : Σ+

γ → (0, 2L)

by
ρ := ρ+ + ρ− ◦ ϕ+.

By construction, we have for every v ∈ Σ+
γ with π(v) = γ(x),

π(ϕ(v)) = γ(x+ ρ(v)), (40)

and, by (38) and (39), together with (19),

ρ(γ̇(x)) = τ(γ̇(x)) and ρ(−γ̇(x)) = 2L− τ(−γ̇(x)), ∀x ∈ R. (41)

Using the standard coordinates (x, y) ∈ R/LZ × [0, π] on Σ+
γ , we can see ρ and τ as

functions on R/LZ × [0, π] or, equivalently, as functions on R × [0, π] which are L-
periodic in the first variable. Thanks to (40) we can fix a lift Φ = (X,Y ) ∈ DL(S, ω)
of ϕ by requiring its first component to be given by

X(x, y) = x+ ρ(x, y)− L. (42)

By (41) we have

X(x, 0)− x = τ(x, 0)− L, X(x, π)− x = L− τ(x, π), ∀x ∈ R. (43)

By definition, the action σ : S → R of Φ is uniquely determined by the conditions

dσ = Φ∗λ− λ,

σ(x, 0) + FLUX(Φ) =

∫
γx

λ = X(x, 0)− x, ∀x ∈ R.
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where γx is a path in ∂S connecting (x, 0) to Φ(x, 0) = (X(x, 0), 0). By the first identity
in (43) we have

σ(x, 0) + FLUX(Φ) = τ(x, 0)− L, ∀x ∈ R.

By Proposition 2.6, also the (L, 0)-periodic function τ : S → R satisfies dτ = Φ∗λ− λ,
so the above identity implies that

σ(x, y) + FLUX(Φ) = τ(x, y)− L, ∀(x, y) ∈ S. (44)

By Proposition 1.7 and the second identity in (43) we have

σ(x, π)− FLUX(Φ) =

∫
δx

λ = −X(x, π) + x = τ(x, π)− L, ∀x ∈ R,

where δx is a path in ∂S connecting (x, π) to Φ(x, π) = (X(x, π), π). Together with
(44) this implies that FLUX(Φ) = 0, thus proving statement (i). Statement (ii) now
follows from (44).

By Propositions 2.7 and 2.6, we have

πArea(S2, g) =
1

2
Vol(T 1S2, α) =

1

2

∫∫
R/LZ×[0,π]

τ dλ =
1

2

∫∫
[0,L]×[0,π]

(L+ σ) dλ

= L2 +
1

2

∫∫
[0,L]×[0,π]

σ dλ = L2 + L CAL(Φ),

and (iii) is proved.

2.4 Proof of the monotonicity property

As we have seen, the first return map ϕ can be lifted to a diffeomorphism Φ in the
class DL(S, ω). The aim of this section is to prove that, if the curvature is sufficiently
pinched, then this lift is a monotone map, in the sense of Definition 1.8 (notice that
the monotonicity does not depend on the choice of the lift).

Proposition 2.10. If g is δ-pinched for some δ > (4 +
√

7)/8, then any lift Φ : S → S
of the first return map ϕ : Σ+

γ → Σ+
γ is monotone.

Proof. We may assume that the values of the curvature lie in the interval [δ, 1], where
δ > (4 +

√
7)/8.

Fix some x∗ ∈ R. In order to simplify the notation in the next computations, we
set for every y ∈ [0, π]

ly := τ(x∗, y), ty := X(x∗, y), ỹ(y) := Y (x∗, y),

where τ is seen as a (L, 0)-periodic function on S and X and Y are the components of
the fixed lift Φ = (X,Y ) of ϕ. Our aim is to show that the derivative of the function
ỹ is positive on [0, π].

Consider the 1-parameter geodesic variation

αy(t) := expγ(x∗)[t(cos y γ̇(x∗) + sin y γ̇(x∗)⊥)],
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where y ∈ [0, π]. For each y ∈ (0, π), ly is the second time αy(t) hits γ(R) or, equiva-
lently, the first time α̇y(t) hits Σ+

γ . Moreover, α0(t) = γ(x∗ + t), and l0 is the time to
the second conjugate point to α0(0) along α0; analogously, απ(t) = γ(x∗− t), and lπ is
the time to the second conjugate point to απ(0) along απ. By construction

αy(ly) = γ(ty),

and
α̇y(ly) = cos ỹ γ̇(ty) + sin ỹ γ̇(ty)

⊥,

α̇y(ly)
⊥ = − sin ỹ γ̇(ty) + cos ỹ γ̇(ty)

⊥,
(45)

for every y ∈ [0, π], where the function ỹ is evaluated at y. Since γ is a geodesic,

D

dy
γ̇ ◦ ty =

D

dt
γ̇(ty)

∂ty
∂y

= 0,

and since the vector field γ̇⊥ along γ is parallelly transported,

D

dy
γ̇⊥ ◦ ty =

D

dt
γ̇(ty)

⊥∂ty
∂y

= 0.

Notice that V (y) := α̇y(ly) is a vector field along the smooth curve y 7→ γ(ty). Using
that γ is a geodesic we obtain from (45)

DV

dy
(y) = −ỹ′ sin ỹ γ̇(ty) + cos ỹ

D

dy
γ̇ ◦ ty + ỹ′ cos ỹ γ̇(ty)

⊥ + sin ỹ
D

dy
γ̇⊥ ◦ ty

= −ỹ′ sin ỹ γ̇(ty) + ỹ′ cos ỹ γ̇(ty)
⊥

= ỹ′(y) α̇y(ly)
⊥. (46)

The geodesic variation {αy} at y = y∗ corresponds to the Jacobi field J along αy∗ given
by

J(t) :=
∂

∂y

∣∣∣∣
y=y∗

αy(t). (47)

From the initial conditions J(0) = 0 and

DJ

dt
(0) =

D

dy

∣∣∣∣
y=y∗

α̇y(0) =
d

dy

∣∣∣∣
y=y∗

α̇y(0) = α̇y∗(0)⊥,

we find a smooth real function u such that

J(t) = u(t)α̇y∗(t)
⊥,

DJ

dt
(t) = u′(t)α̇y∗(t)

⊥, ∀t ∈ R,

and
u(0) = 0, u′(0) = 1. (48)

Moreover
D

dy

∣∣∣∣
y=y∗

α̇y(t) =
D

dt
J(t) = u′(t)α̇y∗(t)

⊥, ∀t ∈ R. (49)

Recall that the covariant derivative of a vector field v along a curve δ on S2 is the
full derivative of the corresponding curve (δ, v) on TS2 projected back to TS2 by the
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connection operator K : TTS2 → TS2. More precisely, K projects this full deriva-
tive (δ, v)′ onto the vertical subspace V(δ,v) ⊂ T(δ,v)TS

2 along the horizontal subspace
H(δ,v) ⊂ T(δ,v)TS

2, and then brings it to TδS
2 via the inverse of the isomorphism iVv ,

see the discussion after the proof of Lemma 2.5. In (46) we find the covariant derivative
of the vector field y 7→ α̇y(ly) along the curve y 7→ αy(ly). In (49) we see the covariant
derivative of the vector field y 7→ α̇y(t) along the curve y 7→ αy(t) for fixed t. Since αy
is a geodesic for all y, by using the above description of the covariant derivative we get
from (46) and (49)

ỹ′(y∗)α̇y∗(ly∗)
⊥ =

DV

dy
(y∗) =

D

dy

∣∣∣∣
y=y∗

α̇y(ly∗) + l′y(y
∗)
D

dt

∣∣∣∣
t=ly∗

α̇y∗(t)

=
D

dy

∣∣∣∣
y=y∗

α̇y(ly∗) = u′(ly∗)α̇y∗(ly∗)
⊥,

for every y∗ ∈ [0, π], from which we derive the important identity

ỹ′(y∗) = u′(ly∗), ∀y∗ ∈ [0, π]. (50)

Write
ly∗ = l + l′

where l > 0 is the first time αy∗(t) hits γ, that is,

l = τ+(α̇y∗(0)), l′ = τ−
(
ϕ+(α̇y∗(0))

)
.

By Lemma 2.9, αy∗ |[0,l] is injective and, in particular, its end-points are distinct points
of γ, dividing it into two segments γ1, γ2 with lengths l1, l2 > 0, respectively, and
l1 + l2 = L. Therefore, αy∗ |[0,l] and γ1 determine a geodesic two-gon. The same holds
with αy∗ |[0,l] and γ2. It follows from Theorem A.12 that

l1 + l ≤ 2π√
δ

and l2 + l ≤ 2π√
δ
.

Theorem A.12 also implies that L ≤ 2π/
√
δ. From Klingenberg’s lower bound (16) on

the injectivity radius of g, we must have l1 + l ≥ 2π, l2 + l ≥ 2π, and L ≥ 2π. Putting
these inequalities together, we obtain

2π ≤ li + l ≤ 2π√
δ
, i = 1, 2, (51)

2π ≤ L = l1 + l2 ≤
2π√
δ
. (52)

By adding the inequalities (51), we obtain

4π ≤ 2l + L ≤ 4π√
δ
. (53)

Together with (52), the above inequality implies

2π − π√
δ
≤ l ≤ 2π√

δ
− π.
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Arguing analogously with the geodesic arc αy∗ |[l,ly∗=l+l′], we obtain the similar estimate

2π − π√
δ
≤ l′ ≤ 2π√

δ
− π,

concluding that the length ly∗ of αy∗ satisfies

4π − 2π√
δ
≤ ly∗ = l + l′ ≤ 4π√

δ
− 2π. (54)

The Jacobi equation for the vector field J along αy∗ which is defined in (47) can be
written in terms of the scalar function u as

u′′(t) +K(αy∗(t))u(t) = 0.

Writing
u(t)′ + iu(t) = reiθ

for smooth real functions r > 0 and θ, we get

θ′ = cos2 θ +K(αy∗) sin2 θ. (55)

The initial conditions (48) imply that r(0) = 1 and θ(0) = 0. From (55) we have
δ ≤ θ′ ≤ 1. Hence, from the estimate for ly∗ given in (54), we find

δ

(
4π − 2π√

δ

)
≤ θ(ly∗) ≤

4π√
δ
− 2π. (56)

From δ > (4 +
√

7)/8 we get

δ

(
4π − 2π√

δ

)
>

3π

2
,

and since a fortiori δ > 64/81, we have also

4π√
δ
− 2π <

5π

2
.

Therefore, (56) implies that cos θ(ly∗) is positive. By the identity (50), we conclude
that

ỹ′(y∗) = u′(ly∗) = r(ly∗) cos θ(ly∗) > 0,

as we wished to prove.

2.5 Proof of the main theorem

Two more lemmata are needed for the proof of the main theorem of the introduction.

Lemma 2.11. Assume that the metric g on S2 is δ-pinched for some δ > 1/4. Then
any closed geodesic γ of minimal length on (S2, g) is a simple curve.
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Proof. If a closed geodesic γ of minimal length is not simple, then it contains at least
two distinct geodesic loops. By the lower bound (16) on the injectivity radius, each of
these two geodesic loops has length at least

2π√
maxK

,

and we deduce that

L ≥ 4π√
maxK

. (57)

A celebrated theorem due to Lusternik and Schnirelmann implies the existence of
simple closed geodesics on any Riemannian S2. By Theorem A.12 any simple closed
geodesic has length at most

2π√
minK

.

By the pinching assumption,

2π√
minK

≤ 2π√
δmaxK

<
4π√

maxK
,

so by (57) any simple closed geodesic is shorter than L. This contradicts the fact that
L is the minimal length of a closed geodesic and proves that γ must be simple.

Assume the metric g on S2 to be δ-pinched for some δ > 1/4. Let γ be a closed
geodesic on (S2, g) of minimal length, which by the above lemma is a simple curve. We
denote by L its length, so that

`min(S2, g) = L.

Let ϕ : Σ+
γ → Σ+

γ be the associated Birkhoff first return map and let Φ ∈ DL(S, ω) be
the lift of ϕ with zero flux whose existence is guaranteed by Theorem 2.8. Here is a
first consequence of Theorem 2.8:

Lemma 2.12. Assume that the metric g on S2 is δ-pinched for some δ > 1/4. Then g
is Zoll if and only if Φ = id.

Proof. Assume that Φ = id. Then the action σ of Φ is identically zero, so by Theorem
2.8 (ii) the first return time function τ is identically equal to L. Therefore, all the
vectors in the interior of Σ+

γ are initial velocities of closed geodesics of length L. Since
also the vectors in the boundary of Σ+

γ are by construction initial velocities of closed
geodesics of length L, we deduce that all the geodesics on (S2, g) are closed and have
length L.

Conversely assume that (S2, g) is Zoll. Since γ has length L, all the geodesics on
(S2, g) are closed and have length L. Then every v in int(Σ+

γ ) is a periodic point of ϕ,

i.e. there is a minimal natural number k(v) such that ϕk(v)(v) = v, and the identity

k(v)−1∑
j=0

τ(ϕj(v)) = L
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holds on int(Σ+
γ ). Thanks to the continuity of τ and ϕ and to the positivity of τ , the

above identity forces the function k to be constant, k ≡ k0 ∈ N. By continuity, the
above identity holds also on the boundary of Σ+

γ , and we have in particular

k0−1∑
j=0

τ(ϕj(γ̇(t))) = L ∀t ∈ R/LZ.

By the above identity, there exists t0 ∈ R/LZ such that

τ(γ̇(t0)) ≤ L

k0
,

that is, the time to the second conjugate point to γ(t0) along γ is at most L/k0. Since
this time is at least twice the injectivity radius of (S2, g), we obtain from (16)

L

k0
≥ τ(γ̇(t0)) ≥ 2 inj(g) ≥ 2π√

maxK
. (58)

On the other hand, by Theorem A.12 and by the pinching assumption, the length L of
the simple closed geodesic γ satisfies

L ≤ 2π√
minK

≤ 2π√
δmaxK

<
4π√

maxK
. (59)

Inequalities (58) and (59) imply that the positive integer k0 is less than 2, hence k0 = 1
and ϕ = id. Then Φ is a translation by an integer multiple of L and, having zero flux,
it must be the identity.

We can finally prove the theorem which is stated in the introduction: If g is δ-
pinched with δ > (4 +

√
7)/8, then the bound

L2 = `min(S2, g)2 ≤ πArea(S2, g) (60)

holds, with the equality holding if and only if (S2, g) is Zoll.

Proof. If (S2, g) is Zoll, then by the above lemma Φ = id, so CAL(Φ) = 0, and Theorem
2.8 (iii) implies that

πArea(S2, g) = L2.

This shows that if g is Zoll, then the equality holds in (60).
There remains to show that if (S2, g) is not Zoll, then the strict inequality holds in

(60). Assume by contradiction that

L2 ≥ πArea(S2, g).

Then by Theorem 2.8 (iii) we have

L CAL(Φ) = πArea(S2, g)− L2 ≤ 0,

and CAL(Φ) is non-positive. Since (S2, g) is not Zoll, by Lemma 2.12 the map Φ is not
the identity. Therefore, Φ satisfies the hypothesis of Theorem 1.12, which guarantees
the existence of a fixed point (x, y) ∈ int(S) of Φ with action σ(x, y) < 0. The geodesic
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which is determined by the corresponding vector in Σ+
γ is closed and, by Theorem 2.8,

has length
τ(x, y) = L+ σ(x, y) < L.

This contradicts the fact that L is the minimal length of a closed geodesic. This
contradiction implies that when (S2, g) is not Zoll, then the strict inequality

L2 < πArea(S2, g)

holds. The proof is complete.

A Toponogov’s theorem and its consequences

This appendix is devoted to explaining how to estimate lengths of convex geodesic
polygons using a relative version of Toponogov’s theorem.

A.1 Geodesic polygons and their properties

For this discussion we fix a Riemannian metric g on S2. The following definitions are
taken from [CE75].

Definition A.1. Let X ⊂ S2.

i) X is strongly convex if for every pair of points p, q in X there is a unique minimal
geodesic from p to q, and this geodesic is contained in X.

ii) X is convex if for every p in X there exists r > 0 such that Br(p)∩X is strongly
convex.

When p ∈ S2 and u, v ∈ TpS2 are non-colinear vectors, consider the sets

∆(u, v) = {su+ tv | s, t ≥ 0} (61)

∆r(u, v) = {w ∈ ∆(u, v) | |w| < r}. (62)

When u ∈ TpS2 \ {0} consider also

H(u) = {v ∈ TpS2 | g(v, u) ≥ 0} (63)

Hr(u) = {w ∈ H(u) | |w| < r}. (64)

A corner of a unit speed broken geodesic γ : R/LZ → S2 is a point γ(t) such that
γ′+(t) 6∈ R+γ′−(t), where γ′± denote one-sided derivatives.

Definition A.2. D ⊂ S2 is said to be a geodesic polygon if it is the closure of an open
disk bounded by a simple closed unit speed broken geodesic γ : R/LZ→ S2. We call D
convex if for every corner p = γ(t) of γ we find 0 < r < injp small enough such that
D ∩ Br(p) = expp(∆r(−γ′−(t), γ′+(t))). The corners of γ are called vertices of D, and
a side of D is a smooth geodesic arc contained in ∂D connecting two adjacent vertices.

Jordan’s theorem ensures that every simple closed unit speed broken geodesic is
the boundary of exactly two geodesic polygons. At each boundary point which is not
a vertex the inner normals to the two polygons are well-defined and opposite to each
other.

It is well-known that Br(p) is strongly convex when r is small enough. By the
following lemma the same property holds for expp(∆r(u, v)) and expp(Hr(u)).
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Lemma A.3. Choose p in S2 and let 0 < r < inj(g). If Br(p) is strongly convex
then expp(∆r(u, v)) and expp(Hr(u)) are strongly convex for all pairs u, v ∈ TpS2 of
non-colinear vectors.

Proof. There is no loss of generality to assume that u, v are unit vectors. We argue
indirectly. Assume that y, z ∈ expp(∆r(u, v)) are points for which the minimal geodesic
γ from y to z (with unit speed) is not contained in expp(∆r(u, v)). Let γu and γv be
the geodesic segments expp(τu), expp(τv) respectively, τ ∈ (−r, r). Note that γ is
contained in Br(p) and, consequently, γ must intersect one of the geodesic segments
γu or γv in two points a 6= b. Thus we have found two geodesic segments from a to b
which are length minimizers in S2 (one is contained in γ and the other is contained in
γu or γv). This contradicts the fact that Br(p) is strongly convex. The argument to
prove strong convexity of expp(Hr(u)) is analogous.

As an immediate consequence we have the following:

Corollary A.4. A convex geodesic polygon D ⊂ S2 is convex.

Let d(p, q) denote the g-distance between points p, q ∈ S2.

Lemma A.5. Let D be a convex geodesic polygon. Then there exists a positive number
ε1 < inj(g) such that if p, q are in D and satisfy d(p, q) < ε1, then the (unique) minimal
geodesic from p to q lies in D.

Proof. If not we find pn, qn ∈ D such that d(pn, qn)→ 0 and the minimal geodesic γn
in S2 from pn to qn intersects S2 \D. Thus, up to selection of a subequence, we may
assume that pn, qn → x ∈ ∂D. If x is not a corner of ∂D then we consider the unit
vector n ∈ TxS2 pointing inside D normal to the boundary and note that, for some
r > 0 small, D ∩ Br(x) = expx(Hr(n)) is strongly convex. Here we used Lemma A.3.
This is in contradiction to the fact that pn, qn ∈ D ∩Br(x) when n is large. Similarly,
if x is a corner of ∂D then, in view of the same lemma, we find unit vectors u, v ∈ TxS2

and r very small such that D ∩Br(x) = expx(∆r(u, v)) is strongly convex. This again
provides a contradiction.

The next lemma shows that a convex geodesic polygon is ‘convex in the large’.

Lemma A.6. Let D be a convex geodesic polygon. Then for every p and q in D there
is a smooth geodesic arc γ from p to q satisfying

i) γ ⊂ D.

ii) γ minimizes length among all piecewise smooth curves inside D from p to q.

Proof. The argument follows a standard scheme. Consider a partition P of [0, 1] given
by t0 = 0 < t1 < · · · < tN−1 < tN = 1, with norm

‖P‖ = max
i
{ti+1 − ti}.

Let ΛP be the set of continuous curves α : [0, 1] → S2 such that each α|[ti,ti+1] is
smooth, α(0) = p, α(1) = q. On ΛP we have the usual length and energy functionals

L[α] =
∫ 1

0 |α
′(t)|dt, E[α] = 1

2

∫ 1
0 |α

′(t)|2dt. (65)

33



Set

BP = {α ∈ ΛP | α|[ti,ti+1] is a geodesic ∀i},
ΛP (D) = {α ∈ ΛP | α([0, 1]) ⊂ D}, BP (D) = BP ∩ ΛP (D).

As usual, we use superscritps ≤ a to indicate sets of paths satisfying E ≤ a.
If α is in Λ≤aP and

√
‖P‖ ≤ ε1/

√
2a, then d(α(ti), α(ti+1)) ≤ ε1 ∀i, where ε1 > 0 is

the number given by Lemma A.5. Thus, for every α ∈ Λ≤aP (D) we find γ ∈ BP (D) such
that each γ|[ti,ti+1] is a constant-speed reparametrization of the unique minimal geodesic
arc from α(ti) to α(ti+1). Here we have used Lemma A.5 to conclude that γ([0, 1]) ⊂ D.
Clearly L[γ] ≤ L[α], so minimizing L on Λ≤aP (D) amounts to minimizing L on B≤aP (D).

Now pick a > 0 and a partition P such that Λ≤aP (D) 6= ∅ and
√
‖P‖ ≤ ε1/

√
2a. By

the above argument, B≤aP (D) 6= ∅ and, as usual, the map γ 7→ (γ(t1), . . . , γ(tN−1)) is a

bijection between B≤aP (D) and a certain closed subset of DN−1. The topology which

B≤aP (D) inherits from this identification makes L continuous. Thus, by compactness,

we find γ∗ ∈ B≤aP (D) which is an absolute minimizer of L over Λ≤aP (D).
We claim that γ∗ is smooth, i.e., it has no corners. In fact, arguing indirectly,

suppose it has a corner, which either lies on int(D) or on ∂D. In both cases we can
use the auxiliary claim below to find a variation of γ∗ through paths in B≤aP (D) that
decreases length; the convexity of D is strongly used. This is a contradiction, and the
smoothness of γ∗ is established.

Auxiliary Claim. Consider a < x < b and a broken geodesic β : [a, b]→ S2, which is
smooth and non-constant on [a, x] and on [x, b], satisfying β′+(x) 6∈ R+β′−(x). Let α :
(−ε, ε)×[a, b]→ S2 be a piecewise smooth variation with fixed endpoints of β (α(0, ·) =
β) by broken geodesics such that α is smooth on (−ε, ε)× [a, x] and on (−ε, ε)× [x, b].
If D1α(0, x) is a non-zero vector in ∆(−β′−(x), β′+(x)), then d

ds |s=0L[α(s, ·)] < 0. In
fact, the first variation formula gives us

d

ds

∫ b

a
|D2α(s, t)| dt

∣∣∣
s=0

= gβ(x)

(
D1α(0, x),

β′−(x)

‖β′−(x)‖
−

β′+(x)

‖β′+(x)‖

)
< 0

as desired.

It remains to be shown that γ∗ is an absolute length minimizer among all piecewise
smooth curves in D joining p to q. Let α be such a curve, which must belong to Λ≤bQ (D)
for some positive number b and some partition Q. Up to increasing b and refining Q,
we may assume that b ≥ a, Q ⊃ P , and

√
‖Q‖ ≤ ε1/

√
2b. By the previously explained

arguments we can find a smooth geodesic γ̃ from p to q in D which is a global minimizer
of L over Λ≤bQ (D). Since Λ≤aP (D) is contained in Λ≤bQ (D), we must have L[γ̃] ≤ L[γ∗].

Noting that γ∗, γ̃ are smooth geodesics, we compute E[γ̃] = 1
2L[γ̃]2 ≤ 1

2L[γ∗]
2 = E[γ∗]

and conclude that γ̃ ∈ Λ≤aP (D). Thus L[γ∗] = L[γ̃] ≤ L[α] as desired.

Lemma A.7. If D is a convex geodesic polygon in (S2, g), p and q are distinct points
of ∂D, and d is the distance from p to q relative to D then the following holds: a
unit speed geodesic γ : [0, d]→ D from p to q minimal relative to D (which exists and
is smooth in view of Lemma A.6) is injective, and satisfies either γ((0, d)) ⊂ int(D)
or γ([0, d]) ⊂ ∂D. In the former case γ divides D into two convex geodesic polygons
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D′, D′′ satisfying D = D′ ∪D′′, γ = D′ ∩D′′; moreover, a geodesic between two points
of D′ (D′′) which is minimal relative to D is contained in D′ (D′′). In the latter case
there are no vertices of D in γ((0, d)).

Proof. If there exists t in (0, d) such that γ(t) belongs to ∂D, then either γ(t) is a
vertex or not. But it can not be a vertex since in this case γ′(t) would be colinear to
one of the tangent vectors of ∂D at γ(t), allowing us to find t′ close to t such that γ(t′)
is not in D. Not being a vertex, γ(t) is a point of tangency with ∂D. By uniqueness of
solutions of ODEs, we must have γ([0, d]) ⊂ ∂D, hence D has no vertices in γ((0, d)).
By minimality γ has to be injective. If δ′, δ′′ are the two distinct arcs on ∂D from p to q
and γ((0, d))∩∂D = ∅ then δ′∪γ and δ′′∪γ bound disks D′, D′′ ⊂ D which are clearly
geodesic convex polygons. Let α ⊂ D be a (smooth) geodesic arc connecting distinct
points of D′ minimal relative to D. If α 6⊂ D′ then α intersects γ((0, d)) transversally
at (at least) two distinct points x 6= y. By minimality, there are subarcs of α and of
γ from x to y with the same length. Thus, one can use these transverse intersections
in a standard fashion to find a smaller curve in D connecting the end points of α,
contradicting its minimality.

Lemma A.8. If the Gaussian curvature of g is everywhere not smaller than H > 0 then
any two points p, q ∈ D can be joined by a smooth geodesic arc γ satisfying γ ⊂ D,
L[γ] ≤ π/

√
H.

Proof. According to Lemma A.6 we can find a smooth geodesic arc γ : [0, 1] → D
from p to q which is length minimizing among all piecewise smooth curves from p to
q inside D. If L[γ] > π/

√
H then for every ε > 0 small enough we can find tε ∈ (ε, 1)

such that γ(tε) is conjugated to γ(ε) along γ|[ε,tε]. Note that either γ is contained in
a single side of D or γ maps (0, 1) into int(D). In latter case we use a Jacobi field J
along γ|[ε,tε] satisfying J(ε) = 0, J(tε) = 0 to construct an interior variation of γ which
decreases length, a contradiction. In the former note that, perhaps up to a change of
sign, J can be arranged so that it produces variations into D which decrease length,
again a contradiction.

Before moving to Toponogov’s theorem and its consequence, we take a moment to
study convex geodesic polygons on the 2-sphere equipped with its metric of constant
curvature H > 0. This space is realized as a spherical shell of radius H−1/2 sitting
inside the euclidean 3-space, and will be denoted by SH .

Lemma A.9. Let D be a convex geodesic polygon in SH . Then the following hold.

i) D coincides with the intersection of the hemispheres determined by its sides and
the corresponding inward-pointing normal directions.

ii) The total perimeter of ∂D is not larger than 2π/
√
H.

iii) If D has at least two sides then all sides of D have length at most π/
√
H.

Proof. Assertion iii) is obvious. The argument to be given below to prove i) and ii) is
by induction on the number n of sides of D. The cases n = 1, 2, 3 are obvious.

Now fix n > 3 and assume that i), ii) and iii) hold for cases with j < n sides. Let
p, q, r be three consecutive vertices of D, so that minimal geodesic arcs γpq, γqr from p
to q and from q to r, respectively, can be taken as two consecutive sides of D. Here we
used that sides have length at most π/

√
H. Let γ1, . . . , γn−2 be the other sides of D
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and denote by Hpq, Hqr, H1, . . . ,Hn−2 the corresponding hemispheres determined by
these sides and D.

We argue indirectly to show that D ⊂ Hpq ∩Hqr. If x ∈ D \ (Hpq ∩Hqr), consider
a smooth geodesic arc γ from x to q inside D which minimizes length among piecewise
smooth paths in D. γ exists by Lemma A.6 and, by the Lemma A.8, L[γ] ≤ π/

√
H.

Since x is not antipodal to q we have L[γ] < π/
√
H which implies that γ is the unique

minimal geodesic from x to q in SH . Combining x 6∈ Hpq ∩Hqr and Definition A.2 one
concludes that γ is not contained in D, a contradiction. Repeating this argument for
all triples of consecutive vertices we find that

D ⊂ Hpq ∩Hqr ∩H1 ∩ · · · ∩Hn−2. (66)

Now let γpr ⊂ D be the smooth geodesic arc from p to r which is minimal relatively
to D. This arc exists by Lemma A.6. Moreover, γpr\{p, r} ⊂ int(D) since otherwise, by
the previous lemma, γpr ⊂ ∂D contradicting the fact that n > 3. Note that γpr divides
D into D = D′ ∪T , where D′ is a convex geodesic polygon with sides γpr, γ1, . . . , γn−2,
and T is the convex geodesic triangle bounded by γpq, γqr, γpr. Finally, let Hpr be the
hemisphere determined by γpr and D′, and let H ′pq is the closure of SH \Hpr. By the
induction step D′ = Hpr ∩H1 ∩ · · · ∩Hn−2, and T = Hpq ∩Hqr ∩H ′pr. Thus

Hpq ∩Hqr ∩H1 ∩ · · · ∩Hn−2

= Hpq ∩Hqr ∩H1 ∩ · · · ∩Hn−2 ∩ SH
= Hpq ∩Hqr ∩H1 ∩ · · · ∩Hn−2 ∩ (Hpr ∪H ′pr)
⊂ (Hpr ∩H1 ∩ · · · ∩Hn−2) ∪ (Hpq ∩Hqr ∩H ′pr)
= D′ ∪ T = D.

(67)

Hence (66) and (67) prove that i) holds for all convex geodesic polygons with at most
n sides.

To prove ii) we again assume n > 3 and consider a, b, c, d four consecutive vertices
of D, the consecutive sides γab, γbc, γcd connecting them, and let γ1, . . . , γn−3 be the
other sides of D. Let Hbc be the hemisphere containing D whose equator contains γbc,
and let H ′bc be the closure of SH \Hbc. If we continue γab along b and γcd along c till
they first meet at a point e ∈ int(H ′bc). If γbe, γec are the minimal arcs connecting b
to e and e to c, respectively, and T is the convex triangle with sides γbe, γec, γbc, then
we claim that F = D ∪ T is a convex geodesic polygon with n − 1 sides. To see this
the reader will notice that the closed curve α = γab ∪ γbe ∪ γec ∪ γcd ∪ γ1 ∪ · · · ∪ γn−3

is simple since T ⊂ H ′bc and D ⊂ Hbc (D satisfies i)), and α = ∂F . By the induction
step α has length < 2π/

√
H and, since γbc is minimal, the length of ∂D is smaller than

that of α.

A.2 The Relative Toponogov’s Theorem

Toponogov’s triangle comparison theorem is one of the most important tools in global
Riemannian geometry. In the case of convex surfaces, it had been previously proven by
Aleksandrov in [Ale48]. Here we need a relative version for triangles in convex geodesic
polygons sitting inside positively curved two-spheres.

We fix a metric g on S2, a convex geodesic polygon D ⊂ S2, and follow [CE75]
closely. However, we need to work with distances relative to D. For instance given
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points of D, the distance between them relative to D is defined to be the infimum of
lengths of piecewise smooth paths in D connecting these points. Lemma A.5 tells us
that the relative distance is realized by a smooth geodesic arc contained in D. We say
that a (smooth) geodesic arc between two points of D is minimal relative to D if it
realizes the distance relative to D.

A geodesic triangle inD is a triple of non-constant geodesic arcs (c1, c2, c3) parametrized
by arc-length, ci : [0, li] → S2 (li is the length of ci), satisfying ci([0, li]) ⊂ D,
ci(li) = ci+1(0) and the triangle inequalities li ≤ li+1 + li+2 (indices modulo 3). These
arcs may or may not self-intersect and intersect each other. The angle αi ∈ [0, π] is
defined as the angle between −c′i+1(li+1) and c′i+2(0) (indices modulo 3).

Theorem A.10 (Relative Toponogov’s Theorem). Let g be a Riemannian metric on
S2 with Gaussian curvature pointwise bounded from below by a constant H > 0, and
let D ⊂ S2 be a convex geodesic polygon. If (c1, c2, c3) is a geodesic triangle in D such
that c1, c3 are minimal relative to D and l2 ≤ π/

√
H, then for every 0 < ε < H there

exists a so-called comparison triangle (c̄1, c̄2, c̄3) in SH−ε with angles ᾱ1, ᾱ2, ᾱ3 such
that L[ci] = L[c̄i] and ᾱi ≤ αi, where αi are the angles of (c1, c2, c3).

In [Kli82, page 297] Klingenberg observes that the relative version of Toponogov’s
theorem holds, and that this observation is originally due to Alexandrov [Ale48]. A
proof of the above theorem would be too long to be included here, but the reader
familiar with the arguments from [CE75] will notice two facts:

• The proof from [CE75] for the case of complete Riemannian manifolds essentially
consists of breaking the given triangle into many ‘thin triangles’ (these are given
precise definitions in [CE75, chapter 2]), and the analysis of these thin triangles
is done by estimating lengths of arcs which are C0-close to them. Hence all
estimates of the perimeters of these thin triangles are obtained relative to an
arbitrarily small neighborhood of the given convex geodesic polygon.

• Distances relative to the convex geodesic polygon are only at most a little larger
than distances relative to a very small neighborhood of the convex geodesic poly-
gon. This is easy to prove since we work in two dimensions.

Putting these remarks together the relative version of Toponogov’s theorem can be
proved using the arguments from [CE75].

Remark A.11. A geodesic triangle in SH−ε with sides of length at most π/
√
H, either

is contained in a great circle, or its sides bound a convex geodesic polygon.

A.3 The perimeter of a convex geodesic polygon

Theorem A.12. Let (S2, g) be a Riemannian two-sphere such that the Gaussian cur-
vature is everywhere bounded from below by H > 0. If D is a convex geodesic polygon
in (S2, g) then the perimeter of ∂D is at most 2π/

√
H. The same estimate holds for

the perimeter of a two-gon consisting of two non-intersecting simple closed geodesic
loops based at a common point.

This is proved in [Kli82, page 297] for the case ∂D is a closed geodesic (no vertices).
We reproduce the argument here, observing that it also works for the general convex
geodesic polygon.
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Proof of Theorem A.12. Let d > 0 be the perimeter of ∂D. We can parametrize ∂D
as the image of a closed simple curve c : R/dZ → S2 which is a broken unit speed
geodesic. For each n ≥ 1 and k ≥ 0 we denote by γk,2n a (smooth) geodesic arc from
c(kd2−n) to c((k+ 1)d2−n) in D which minimizes length relative to D. We make these
choices 2n-periodic in k, γk+2n,2n = γk,2n , and also choose γ0,2 = γ1,2. We can assume
that L[γ0,2] < d/2 since, otherwise, d/2 ≤ L[γ0,2] ≤ π/

√
H (Lemma A.8) and the proof

would be complete. In particular, γ0,2 is not contained in ∂D, and Lemma A.7 implies
that γ0,2 touches ∂D only at its endpoints c(0), c(d/2).

Notice that if the distance from c(kd2−n) to c((k + 1)d2−n) relative to D is d2−n,
then Lemma A.7 implies that c|[kd2−n,(k+1)d2−n] is a smooth geodesic arc. Therefore,
we are allowed to make the following important choice:

(C) If the distance from c(kd2−n) to c((k + 1)d2−n) relative to D is d2−n, then we
choose γk,2n = c|[kd2−n,(k+1)d2−n].

The above choice forces γl,2n+m to be c|[ld2−n−m,(l+1)d2−n−m] for all k2m ≤ l <
(k + 1)2m, whenever γk,2n = c|[kd2−n(k+1)d2−n].

For n ≥ 2 set Dn to be the subregion of D bounded by the simple closed broken
geodesic ∂Dn = ∪{γk,2n | 0 ≤ k < 2n}. It follows readily from Lemma A.7 that this is
a convex geodesic polygon. Moreover, sides of Dn fall into two classes: either a side is
not contained in ∂D and coincides precisely with γk,2n for some k, or it lies in ∂D is
a union of adjacent γk,2n ∪ γk+1,2n ∪ · · · ∪ γk+m,2n ⊂ ∂D for some k and some m. By
construction

i) Dn ⊂ Dn+1 and L[∂Dn]→ d as n→∞.

ii) The vertices of Dn form a subset of {c(kd2−n) | 0 ≤ k < 2n}.
Fix 0 < ε < H. We would like to construct a sequence of convex geodesic polygons

En ⊂ En+1 in SH−ε such that L[∂En] = L[∂Dn].
Consider geodesic triangles Tk,2n = (γk,2n , γ2k,2n+1 , γ2k+1,2n+1) in the sense of §A.2.

The triangle inequalities hold, since all sides are minimal relative to D.
According to Theorem A.10, associated to T0,2, T1,2 there are comparison triangles

T̄0,2 = (γ̄0,2, γ̄0,4, γ̄1,4), T̄1,2 = (γ̄1,2, γ̄2,4, γ̄3,4) in SH−ε with sides of same length as
the corresponding sides in T0,2, T1,2. The angles of T̄0,2, T̄1,2 are not larger than the
corresponding angles on T0,2, T1,2. Up to reflection and a rigid motion, we can assume
γ̄0,2 coincides with γ̄1,2 (along with vertices corresponding to endpoints of γ0,2 = γ1,2)
on a given great circle e, and T̄0,2, T̄1,2 lie on opposing hemispheres determined by e. Of
course, T̄0,2 and/or T̄1,2 could lie on e, but this forces L[γ0,2] to be d/2, a case we already
treated. Again the angle comparison can be used to deduce that E2 := T̄0,2 ∪ T̄1,2 is a
convex geodesic polygon in SH−ε with the same perimeter as D2 (∂E2 = ∪3

k=0γ̄k,4).
To construct E3, note that each side of D2 not contained in ∂D is of the form

γk,4 for some fixed 0 ≤ k < 4. Moreover, γ̄k,4 is a side of E2 by construction and
angle comparison. By Lemma A.7 γk,4 divides D into two convex geodesic polygons,
only one of which, denoted by Dk,4, contains c([kd/4, (k + 1)d/4]) in its boundary.
By the same lemma, Tk,4 is contained in Dk,4 (and determines a convex geodesic
polygon). By the relative Toponogov theorem, there exists a comparison triangle T̄k,4
which we can assume is of the form (γ̄k,4, γ̄2k,8, γ̄2k+1,8), i.e. one of its sides matches
precisely the side γ̄k,4 of E2 together with corresponding vertices of γ̄k,4. Moreover,
possibly after reflection, we can assume E2 and T̄k,4 lie on the opposing hemispheres
determined by the great circle containing γ̄k,4. This last step strongly uses Lemma A.9
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and Remark A.11. Again by the angle comparison, E2 ∪ T̄k,4 is a convex geodesic
polygon in SH−ε with the same perimeter as the convex geodesic polygon D2 ∪ Tk,4.
Repeating this procedure for another side of D2 not in ∂D, which is of the form γk′,4
for some k′ 6= k, with E2 ∪ T̄k,4 in the place of E2, we obtain a larger geodesic convex
polygon E2 ∪ T̄k,4 ∪ T̄k′,4 in SH−ε with the same perimeter as the geodesic convex
polygon D2 ∪ Tk,4 ∪ Tk′,4. After exhausting all the sides of D2 not in ∂D we complete
the construction of E3.

The construction of En from Dn−1, En−1 follows the same algorithm, since sides
of Dn−1 not in ∂D must be of the form γk,2n−1 for some 0 ≤ k < 2n−1. In this case,
there will be a corresponding side γ̄k,2n−1 of En−1 with the same length as γk,2n−1

along which we fit the comparison triangle T̄k,2n−1 obtained by applying the relative
Toponogov theorem to Tk,2n−1 . Doing this step by step at each side of Dn−1 not in ∂D
we obtain En.

By Lemma A.9 we know that

L[∂Dn] = L[∂En] ≤ 2π/
√
H − ε, ∀n.

Together with (i) above, we deduce that L[∂D] ≤ 2π/
√
H − ε. Letting ε ↓ 0 we get the

desired estimate.
To get the estimate for the two-gon as in the statement note that its perimeter can

clearly be approximated by the perimeter of convex geodesic polygons.
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versitãria - São Paulo SP, Brazil 05508-090

E-mail address: psalomao@ime.usp.br

40


