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Abstract

Given a smooth Riemannian two-sphere (52, g), consider £, (52, ) defined as the
minimum of all lengths of non-constant closed geodesics. Our main result asserts that
if g is d-pinched for some § > (4 + /7)/8 = 0.8307... then the systolic inequality
lmin(S%,9)? < 7 Area(S?,g) holds, with equality if and only if (S?,g) is Zoll. The
proof is based on Toponogov’s comparison theorem and on a theorem relating the
Calabi invariant to the action of fixed points for certain area-preserving annulus maps
admitting a generating function.
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Introduction

The 1-systole Sys; (M, g) of a Riemannian manifold (M, g) is the infimum of lengths of
non-contractible closed loops. The origin of systolic geometry can be traced back to a
classical result due to Loewner, asserting that for every Riemannian 2-torus (T2, g)

2
Sysl(T27g)2 < — Area‘(T27g)7

V3

and to Pu’s inequality, asserting that the inequality

Sys1(RP?, g)% < g Area(RP?, g)
holds for every Riemannian metric g on the real projective plane RP?.
In the eighties Gromov [Gro83| introduced the filling radius of a Riemannian man-

ifold and showed that there exists a constant C,, > 0 such that
Sys1(M, g)" < Cy,, Vol(M, g)

holds for all n-dimensional closed aspherical Riemannian manifolds. This theorem also
holds on so-called essential manifolds.

The number Sys; is a critical value of the length functional. It is also interesting to
analyze critical values of the length on simply connected Riemannian manifolds, which
may not be attained by local minima.

Given a Riemannian metric g on the two-sphere S2, a relevant quantity is

lmin(S?, g) = minimum of lengths of non-constant closed geodesics on (S?, g).
A deep result by Croke [Cro88] asserts the existence of a number C' > 0 such that
lmin(S%, 9)? < C Area(S?,9),
for every metric g on S2. In other words, the systolic ratio

L gmin(527g)2
psys(g) = m

is bounded from above. The value of the supremum of p is not known, but it was shown
to be not larger than 32 by Rotman [Rot06], who improved the previous estimates due
to Croke [Cro88], Nabutowski and Rotman [NR02], and Sabourau [Sab04].
The naive conjecture that the round metric gyoung On S? maximizes psys is false.
Indeed,
psys(ground) =T,

while, by studying suitable metrics approximating a singular metric constructed by
gluing two flat equilateral triangles along their boundaries, one sees that

SUp Psys > 2V/3 > .

This singular example is known as the Calabi-Croke sphere. Actually, it is conjectured
that the supremum of pgys is 2v/3 and that it is not attained. See [Ball0] and [Sab10]



for two different proofs of the fact that the Calabi-Croke sphere can be seen as a local
maximum of pgys.

The round metric can be seen as a critical point of pgys, and in [Bal06] Balacheff
asked if it is a local maximizer (in [BM13, Question 8.7.2] this question is attributed
to Babenko). Certainly, ground is not a strict local maximiser of pgys, even after mod-
ding out rescaling, because in any neighbourhood of it there are infinitely many non-
isometric Zoll metrics, i.e. Riemannian metrics on S? all of whose geodesics are closed
and have the same length, and pgys is constantly equal to m on them (see [Gui76]).
Evidence in favour of the local maximality of the round metric is given in [APB14],
where Alvarez Paiva and Balacheff prove that psys strictly decreases under infinitesimal
deformations of the round metric which are not tangent with infinite order to the space
of Zoll metrics.

The aim of this paper is to give a positive answer to Balacheff’s question. We recall
that a Riemannian metric g on S? is §-pinched, for some § € (0,1], if its Gaussian
curvature K is positive and satisfies

min K > d max K.

Our main theorem asserts that, if the metric g on S? is sufficiently pinched, then

Psys(g) < psys(ground) =T,

and that the equality holds if and only if g is Zoll. More precisely, we shall prove the
following:

THEOREM. Let g be a §-pinched smooth Riemannian metric on S?, with

4
0> +8\ﬁ = 0.8307...

Then
Emin(Sz, g)2 < Area(SQ, 9),

and the equality holds if and only if g is Zoll.

We conclude this introduction with an informal description of the proof of this
theorem. We start by looking at a closed geodesic v on (S2,g) of minimal length
L = lnin(S?, g), parametrized by arc length. When g is d-pinched for some § > 1/4,
one can show that ~y is a simple curve.

Then we consider a Birkhoff annulus ¥ which is associated to y: ¥ is the set
of all unit tangent vectors to S? which are based at points of v(R) and point in the
direction of one of the two disks which compose 52 \ 7(R). The set ¥ is a closed
annulus, and its boundary consists of the unit vectors 4(¢) and —%(¢), for ¢t € R/LZ.

By a famous result of Birkhoff, the positivity of the curvature K guarantees that
the orbit of any v in the interior part of 2? under the geodesic flow on the unit tangent
bundle 7152 of (52, g) hits again E:f at some positive time. This allows us to consider
the first return time function

7 int(E7) — (0, +00), 7(v) :== inf{t > 0] ¢ (v) € BT},
and the first return time map

P mt(Ei) — int(zj)a (10(,0) = ¢T(v) (U)a
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where ¢; : T1S? — T1S? denotes the geodesic flow induced by ¢g. The function 7 and
the map ¢ are smooth and, as we will show, have a unique smooth extension to the
boundary of ¥

The map ¢ preserves the two-form dA, where A is the restriction to E;r of the
standard contact form on 7152, The two-form d) is an area-form in the interior of Z;“ ,
but vanishes on the boundary, due to the fact that the geodesic flow is not transverse
to the boundary. Indeed, if we consider the coordinates

(x,y) € R/LZ x [0, 7]

on Ej/' given by the arc parameter x on the geodesic v and the angle y which a unit
tangent vector makes with +, the one-form A and its differential have the form

A = cosydx, d\ = sinydx A dy. (1)

By lifting the first return map ¢ to the strip S = R x [0, 7], we obtain a diffeomor-
phism ® : S — S which preserves the two-form dA given by (1), maps each boundary
component into itself, and satisfies

®(x+ L,y) = (L,0) + (x,y), V(z,y) € S.

As we shall see, diffeomorphisms of S with these properties have a well defined flux
and, when the flux vanishes, a well defined Calabi invariant. The fluz of ® is its average
horizontal displacement. We shall prove that, if ¢ is d-pinched with ¢ > 1/4, one can
find a lift ® of ¢ having zero flux. For diffeomorphisms ® with zero flux, the action
and the Calabi invariant can be defined in the following way. The action of ® is the
unique function

c:5 =R,

such that
do = ®*\— A\ on S,

and whose value at each boundary point w € 9S coincides with the integral of A on the
arc from w to ®(w) along 9S. The Calabi invariant of ® is the average of the action,

that is, the number
1
CAL(®) = // od.
2L J Ji0,0)x[0,7]

We shall prove that, still assuming g to be J-pinched with § > 1/4, the action and the
Calabi invariant of ® are related to the geometric quantities we are interested in by
the identities

Top = L+o, (2)
mArea(S%g) = L?+ L CAL(®), (3)

where
p:S=Rx[0,7] » XF =R/LZ x [0,7]

is the standard projection. The §-pinching assumption on g with § > (4 + v/7)/8
implies that the map ® is monotone, meaning that, writing

O(z,y) = (X(z,9), Y (2,9)),
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the strict inequality D2Y > 0 holds on S. This is proved by using an upper bound on
the perimeter of convex geodesic polygons which follows from Topogonov’s comparison
theorem. This upper bound plays an important role also in the proof of some of the
facts stated above, and we discuss it in the appendix which concludes this article.
The monotonicity of ® allows us to express it in terms of a generating function. By
using such a generating function, we shall prove the following fixed point theorem: If
a monotone map ® with vanishing flux is not the identity and satisfies CAL(®) < 0,
then ® has an interior fixed point with negative action.

Our main theorem is now a consequence of the latter fixed point theorem and of
the identities (2) and (3). First one observes that ® is the identity if and only if ¢ is
Zoll. Assume that ¢ is not Zoll. If, by contradiction, the inequality

L? = Emin(SQ,g)2 > ﬂArea(SQ,g)

holds, (3) implies that CAL(®) < 0, so ® has a fixed point w € int(S) with o(w) < 0.
But then (2) implies that the closed geodesic which is determined by p(w) € ¥ has
length 7(p(w)) < L, which is a contradiction, because L is the minimal length of a
closed geodesic. This shows that when g is not Zoll, the strict inequality

Emin(SQ, 9)2 <7 Area(SQ, g)

holds, concluding the proof.

A final remark on the pinching hypothesis. Since the smooth metrics approximating
the Calabi-Croke sphere can be chosen to have positive curvature, the above theorem
cannot hold for every positively curved metric, and it is natural to ask under which
value of the pinching constant ¢ it may fail. Our pinching constant (4 4+ /7)/8 is
most probably not optimal. Indeed, in many of our arguments it is enough to as-
sume that 0 > 1/4, a condition which has clear geometrical implications: For instance,
under this assumption, every geodesic ray emanating from the Birkhoff annulus does
not intersect itself before hitting the annulus again. The stronger pinching assump-
tion & > (4 +1/7)/8 is used only to guarantee that the lift of the first return map is
monotone, and hence has a generating function. Proving a suitable generalization of
our fixed point theorem to non-monotone maps would allow one to prove the systolic
optimality of the round sphere among all §-pinched metrics with § > 1/4.
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1 A class of self-diffeomorphisms of the strip
preserving a two-form

We denote by S the closed strip

S:=Rx[0,7],
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on which we consider coordinates (z,y), z € R, y € [0, 7]. The smooth two-form
w(x,y) :=sinydx A dy

is an area form on the interior of S and vanishes on its boundary. Fix some L > 0,
and let D (S,w) be the group of all diffeomorphisms ® : S — S such that:

(i) ®(z+ L,y) = (L,0) + ®(z,y) for every (z,y) € S.
(ii) ® maps each component of 95 into itself.
(iii) @ preserves the two-form w.

The elements of Dy, (S,w) are precisely the maps which are obtained by lifting to
the universal cover

S — A:=R/LZ x [0, 7]

self-diffeomorphisms of A which preserve the two-form w on A and map each boundary
component into itself.
By conjugating an element ® of Dr,(S,w) by the homeomorphism

S — R x[-1,1], (z,y) — (x,—cosy),

one obtains a self-homeomorphism of the strip R x [—1, 1] which preserves the standard
area form dxz Ady. Such a homeomorpshism is in general not continuously differentiable
up to the boundary. Since we find it more convenient to work in the smooth category,
we prefer not to use the above conjugacy and to deal with the non-standard area-form
w vanishing on the boundary.

1.1 The flux and the Calabi invariant

In this section, we define the flux on Dr(S,w) and the Calabi homomorphism on
the kernel of the flux. These real valued homomorphisms were introduced by Calabi in
[Cal70] for the group of compactly supported symplectic diffeomorphisms of symplectic
manifolds of arbitrary dimension. See also [MS98, Chapter 10]. In this paper we need
to extend these definitions to the surface with boundary S. Our presentation is self-
contained.

DEFINITION 1.1. The flux of a map ® € Dr(S,w), ®(z,y) = (X (z,v),Y (z,y)), is the

real number )

FLUX(®) := Y //[O’L]X[Om] (X (z,y) — ) w(z,y).

In other words, the flux of ® is the average shift in the horizontal direction (notice
that 2L is the total area of [0, L] x [0, 7] with respect to the area form w). Using the
fact that the elements of D (S,w) preserve w, it is easy to show that the function
FLUX : Dr(S,w) — R is a homomorphism.

PROPOSITION 1.2. Let oy : [0, 1] — S be the path ag(t) :== (0,t). Then

1
FLUX(®) = / zsiny dy,
®(a0)

for every ® in Dr(S,w).



Proof. Let © : S — S be the covering transformation (z,y) — (x + L,y), and set
Q = [0,L] x [0,7]. With its natural orientation, @ C S is the region whose signed
boundary is ©(ag) — ag plus pieces that lie in 9. Since ® € D (S, w) commutes with
©, we have

Q) -Q=6(R)-R (4)

as simplicial 2-chains in .S, where R C S is an oriented region whose signed boundary
consists of ®(ap) — ap plus two additional pieces in 95 that we do not need to label.
Therefore,

FLUX(@):;L/Q(X—JC)W:;L Q(@*(xw)—xw) :21[//1%(@*(1:w)—xw),

using (4) for the last equality. Since
O*(zw) —zw = Lw = Ld(zsinydy),

by Stokes theorem we conclude that

1 1 1
FLUX(CD):/ xsinydy:/ xsinydyz/ xsiny dy.
2 Jor 2 Jo(ap)—ao 2 Jo(ao)

O]

REMARK 1.3. More generally, it is not difficult to show that if o is any smooth path
in S with the first end-point in R x {0} and the second one in R x {r}, then

1
FLUX(®) = / rsinydy — = / xsiny dy,
P(a) 2 «a

| =

for every ® in Dp(S,w).
Now we fix the following primitive of w on S
A= cosydzx.

Notice that A is invariant with respect to translations in the z-direction. Let ® be an
element of Dr,(S,w). Since ® preserves w = dA, the one-form

O\ — A

is closed. Since S is simply connected, there exists a unique smooth function

c:S—R
such that
do=®"\ -\ on S, (5)
and
(0,0) = / ) — FLUX(®), (6)
Yo

where vp is a smooth path in 95 going from (0,0) to ®(0,0). Of course, the value of
the integral in (6) does not depend on the choice of ~y, but only on its end-points.
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Notice that the function ¢ is L-periodic in the first variable: This follows from
the fact that ®*\ — X is L-periodic in the first variable and its integral on the path
Bo:10,L] = S, Bo(t) = (¢,0), vanishes:

/(‘I)*)\—)\):/ )\—/)\:/ )\—/)\ZO,
o (o) o ©(0,0)+80 o

thanks to the invariance of A with respect to horizontal translations (here, the L-
periodicity of A in the first variable would have sufficed).

Notice also that, thanks to (5), the same normalization condition (6) holds for every
point in the lower component of the boundary of S: For every x in R there holds

o(z,0) :/ A — FLUX(®), (7)

where 7, is a smooth path in 05 going from (x,0) to ®(z,0). Indeed, if &, is a smooth
path in 9S from (0,0) to (z,0), then the paths vo#(® 0 &;) and &, #7, in S have the

same end-points. Thus,
/)\—l—/q)*/\://\—i—/)\,
Yo 627 fz T

and equations (5) and (6) imply

o(,0) = 5(0,0) + /5 do = [ A—FLUX(®) + /g‘(cw )= / A — FLUX(®).

Therefore, we can give the following definitions.

DEFINITION 1.4. Let ® € Dr(S,w). The unique smooth function o : S — R which
satisfies (5) and (6) (or, equivalently, (5) and (7)) is called action of ®.

DEFINITION 1.5. Let ® € ker FLUX and let o be the action of ®. The Calabi invariant
of ® is the real number

1
CAL(®?) = o7 //[O,L}x[o,w] ow.

In other words, the Calabi invariant of ® is its average action. The following remark
explains why we define the Calabi invariant only for diffeomorphisms having zero flux.

REMARK 1.6. The action o depends on the choice of the primitive A of w. Let X' be
another primitive of w, still L-periodic in the first variable. Then one can easily show
that N = X+ df + cdx, where f : S — R is a smooth function which is L-periodic in
the first variable and c is a real number, and that the action o' of ® with respect to N
s given by

o' (x,y) = o(x,y) + fo®(z,y) — f(z,y) + (X (2,y) — ),

where ® = (X,Y). If ® has zero fluz, then the integrals of ¢’ w and of o w on [0, L] X
[0, 7] coincide, so the Calabi invariant of ® does not depend on the choice of the periodic
primitive of w. Moreover, this formula also shows that the value of the action at a
fized point of ® is independent on the choice of the primitive of w. Since ®*\ is



another periodic primitive of w, the above facts imply that CAL : ker FLUX — R is a
homomorphsim. In this paper, we work always with the chosen primitive X of w and
do not need the homomorphsim property of CAL, so we leave these verifications to
the reader. See [Fat80] and [GGI5] for interesting equivalent definitions of the Calabi
invariant in the case of compactly supported area preserving diffeomorphisms of the
plane.

In our definition of the action, we have chosen to normalize o by looking at the
lower component of 0S. The following result describes what happens on the upper
component.

PROPOSITION 1.7. Let ® € Dp(S,w) and let ¢ : S — R be its action. Let 6 be a
smooth path in 0S going from (x,m) to ®(x, 7). Then

o(x,m) = /5 A+ FLUX(®).

Proof. The same argument used in the paragraph above Definition 1.4 shows that it
is enough to check the formula for x = 0. In this case, by integrating over the path
ag : [0,7] = S, ag(t) :== (0,t), we find by Stokes theorem

(0, 7) = 0(0,0) + /da—//\ FLUX(®) + /(@*)\—)\)

—//\—FLUX(q))—i—/ /\+/ /)\ FLUX(® //h*dz\
Y0 (o)

where h : R — § is a smooth map on a closed rectangle R whose restriction to the
boundary is given by the concatenation yo#(® o o) #d, l#aa !, By using again Stokes
theorem with the primitive xsiny dy of w = d\, we get

// h*(dN) :/ a:sinydy:/ xsiny dy.
R Yo#(Poao)#0; ' #ag ! ®(a0)

By Proposition 1.2, the latter quantity coincides with twice the flux of ®, and the
conclusion follows. O

1.2 Generating functions

As it is well known, area-preserving self-diffeomorphisms of the strip which satisfy a
suitable monotonicity condition can be represented in terms of a generating function.
See for instance [MS98, Chapter 9]. Here we need to review these facts in the case of
diffeomorphims preserving the special two-form w = siny dz A dy.

DEFINITION 1.8. The diffeomorphism ® = (X,Y) in Dr(S,w) is said to be monotone
if D2Y (x,y) > 0 for every (z,y) € S.

Assume that ® = (X,Y) € D1(S,w) is a monotone map. Then the map
U:S—S, Uy =(z,Y(zy)

is a diffeomorphism: This follows from the fact that its differential at every point is
invertible, thanks to the monotonicity assumption, and from the fact that ¥ fixes the



boundary. Denoting by y the second component of the inverse of ¥, we can work with
coordinates (z,Y") on S and consider the one-form

n(z,Y) = (cosY —cosy)dx + (X —z)sinY dY on S.
From the fact that ® preserves w we find

dn=sinY der ANdY —sinydx ANdy +sinY dX ANdY —sinY de AdY
= —sinydx Ady +sinY dX AdY =0,

so 1 is closed. Let W = W (z,Y') be a primitive of . Then also (z,y) — W(x + L,y)
is a primitive of n, and hence

W(x+LY)—-W(xY)=c, V(z,Y) €S,

for some real number ¢. Since the integral of n on any path in S connecting (0,0)
to (L,0) vanishes, the constant ¢ must be zero, and hence any primitive W of 7 is
L-periodic. By writing

dW(x,Y) = DiW(z,Y)dx + DoW (z,Y) dY,
and using the definition of 7, we obtain the following:

PROPOSITION 1.9. Assume that ® in Dp(S,w) is a monotone map. Then there exists
a smooth function W : S — R such that the following holds: ®(z,y) = (X,Y) if and

only if
(X —z)sinY = DoW(x,Y), (8)
cosY —cosy = DiW(x,Y). (9)

The function W is L-periodic in the first variable. It is uniquely defined up to the
addition of a real constant.

A function W as above is called a generating function of ®. Equation (9) implies
that W is constant on each of the two connected components of the boundary of S.
The difference between these two constant values coincides with twice the flux of ®:

PROPOSITION 1.10. If W is a generating function of the monotone map ® € Dr(S,w),
then

1
FLUX(®) = B (Wlrxgrr — Wlkx{oy) -

Proof. By Proposition 1.2 and (8) we compute

FLUX(®) = L rsinydy = L XsinY dY = L (X —2)sinY dY
2 2 2
D(ap) o Qg
1 1
=3 DoW(z,Y)dY = 3 (Wlgxirr — Wlrxqo}) »
ao

where we have used the fact that £ = 0 on the path «g which is defined in Proposi-
tion 1.2. O
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By the above proposition, we can choose the free additive constant of the generating
function W in such a way that:

Wlgx oy = —FLUX(®), Wrx{xy = FLUX(®). (10)

We conclude this section by expressing the action and the Calabi invariant of a mono-
tone element of Dr(S,w) in terms of its generating function, normalized by the above
condition.

PROPOSITION 1.11. Let & = (X,Y) € D1(S,w) be a monotone map, and denote by W
the generating function of ® normalized by (10). Then we have:

(i) The action of ® is the function
0($, y) = W(.I, Y(‘T’ y)) + DQW(xv Y(:C, y)) cot Y(‘T’ y)

(i1) If moreover FLUX(®) = 0, then the Calabi invariant of ® is the number
1
caL@) = o [ (W) + WY (@0) wleo).
[0,2]x[0,7]

The formula for ¢ in (i) is valid only in the interior of S, because the cotangent
function diverges at 0 and 7. Since D2W vanishes on the boundary of S, thanks to
(8), this formula defines a smooth function on S by setting

U(CEa 0) = W(.Z‘,O) + D22W(x70)a U(:E77T) = W(:Ea 7T) + D22w($a 7[-),
for every x € R.

Proof. Let us check that the function o which is defined in (i) coincides with the action
of . By (8) we have

o=W+DyWcotY =W+ (X —z)cosY (11)

on int(S). By continuity, this formula for o is valid on the whole S. By differentiating
it and using again (8) together with (9), we obtain
do=dW — (X —z)sinY dY + cosY (dX — dx)
=dW — DoW dY + cosY (dX — dx) = DiW dx + cos Y (dX — dx)
= (cosY —cosy)dzr + cosY (dX — dx) = cosY dX — cosydr = P*\ — \.

Therefore, o satisfies (5). Evaluating (11) in (0,0) we find

a(0,0) = W(0,0) + X(0,0) = —FLUX(®) 4+ X(0,0) = —FLUX(®) +/ A,
0

where 7 is a path in 95 going from (0,0) to ®(0,0). We conclude that o satisfies also
(6), and hence coincides with the action of ®. This proves (i).

We now use (i) in order to compute the integral of the two form o w on [0, L] x [0, 7].
We start from the identity

J[ e[ WweYepean
[0,L]x[0,7] [0,L]x[0,]

(12)
+ // DoW (2,Y (z,y)) cot Y (x,y) siny dz A dy,
[0,L]x[0,]
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and we manipulate the last integral. By differentiating (9), that is, the identity
cosY (x,y) —cosy = D1W(z,Y (z,v)),

we obtain
sinydy =sinY dY + D11Wdx + D1osW dY.

By the above formula, the integrand in the last integral in (12) can be rewritten as

DoW cotY sinydx Ady = DoW cotY dz A (sinY dY + D1oW dY)

13
= DoWecosY dr ANdY + DoW D1oW cotY dx A dY. (13)

We integrate the above two forms separately. By the L-periodicity in «, the integral
of the first two-form can be manipulated as follows:

// DoW (z,Y (z,y)) cos Y (x,y) dz AN dY (x,y)
[0,L]x[0,m]
= // DoW(z,Y)cosY de ANdY
[0,L]x[0,m]
L T
:/ (/ DoW (z,Y) cosYdY) dx
0 0
L Y=n T
:/ <[W(m,Y) COSY} +/ W(z,Y) sinYdY) dx (14)
0 =0 Jo
= _L(W|R><{7r} + W’RX{O}) + // W(z,Y)sinY de AdY
[0,L]x[0,7]
= —L(—FLUX(®) + FLUX(®)) + // W(z,y) sinydx A dy
[0,L]x[0,7]

= // W(z,y)w(z,y),
[0,L]x[0,m]

where we have used the normalization condition (10). The integral of the second form
in the right-hand side of (13) vanishes, because

// DoWDioW cotY dz A dY
[0,L]x[0,7]

_! // Di(DaW)2 cot Y da A dY (15)
2 ) Jjo,L)x[0,x]

1 T L
— 2/ cotY (/ Dl(DQW)2da:> dy =0,
0 0

by L-periodicity in z. By (12), (13), (14) and (15) we obtain

/ /[O,L]X[O,ﬂ rw= | /[O,L]X[Om] (W, Y (@,9)) + W(z,y)) wiz,y),

and (ii) follows. O
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1.3 The Calabi invariant and the action at fixed points
We are now in the position to prove the main result of this first part.

THEOREM 1.12. Let ® be a monotone element of Dr(S,w) which is different from the
identity and has zero flux. If CAL(®) < 0, then ® has an interior fized point with
negative action.

Proof. Let W be the generating function of ® normalised by the condition (10). Since
® has zero flux, this condition says that W is zero on the boundary of S. Since ®
is not the identity, W is not identically zero. Then the condition CAL(®) < 0 and
the formula of Proposition 1.11 (ii) for CAL(®) imply that W is somewhere negative.
Being a continuous periodic function, W achieves its minimum at some interior point
(z,Y) € int(S). Since the differential of W vanishes at (x,Y), equations (8) and (9)
imply that (z,y) := (x,Y) is a fixed point of ®. By Proposition 1.11 (i),

o(x,y) =W(z,Y) <0.

Therefore, (z,y) is an interior fixed point of ® with negative action. O

2 The geodesic flow on a positively curved two-
sphere

Throughout this section, a smooth oriented Riemannian two-sphere (52, g) is fixed.
The associated unit tangent bundle is

T'S? .= {’U € TS? | gw(v)(fU?v) = 1}’

where 7 : TS? — S? denotes the bundle projection. For each v € T'5?%, we denote by
vl e TW(U)S2 the unit vector perpendicular to v such that {v,v"} is a positive basis of
Tre()S?.
We shall deal always with Riemannian metrics g having positive Gaussian curvature
K and shall often use Klingenberg’s lower bound on the injectivity radius inj(g) of the
metric g from [Kli59], that is,
T

inj(g) > ———m 16
i(9) = —— (16)

see also [Kli82, Theorem 2.6.9].

2.1 Extension and regularity of the Birkhoff map

Let v : R/LZ — S? be a simple closed geodesic of length L parametrized by arc-length,
i.e. satisfying g,(¥,7) = 1. The smooth unit vector field 41 along v determines the
Birkhoff annuli

— . : oL 1¢q2
31 = {cosy A(x) +siny ¥ (z) € T'S? | (x,y) € R/LZ x [0,7]},

¥, = {cosy y(z) +siny 4 (x) € TVS? | (x,y) € R/LZ x [—m,0]}.

(17)

These sets are embedded closed annuli and (z,y) are smooth coordinates on them.
The annuli ¥¥ and ¥ intersect along their boundaries %% = 9%~ . This common
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boundary has two components, one containing unit vectors 4 and the other containing

unit vectors —3. We denote the open annuli by
int(X3) =¥\ oxt,  int(X]) = X7\ 0%,
Let ¢; be the geodesic flow on 7152, We define the functions

Ty int(Zj
-

) — (0, +o0], T4 (v) :==1inf{t > 0| ¢¢(v) € int(X7)},
7 int(X5) — (0, +o0], 7_(v) :=inf{t > 0 | ¢(v) € int

where the infimum of the empty set is +o00. The functions 7 and 7_ are the transition
times to go from the interior of 23; to the interior of X7 and the other way round. The

first return time to Zj is instead the function

7 int(2F) — (0, 400], 7(v) := inf{t > 0| ¢¢(v) € int(X7)}.

Recall the following celebrated theorem due to Birkhoff (see also [Ban93]):

THEOREM 2.1 (Birkhoff [Bir27]). If the Gaussian curvature of g is everywhere positive

then the functions 7+, 7— and T are everywhere finite.

Thanks to the above result, we have the transition maps

P t(EF) = nt(37),  91(v) 1= bp () (v),
e int(3)) = mt(E]), - (v) = ¢ _()(v),

and the first return map
P mt(Z;“) — int(z't)v SO(U) = (b'r(v) (’U)
By construction,

Y = P-0¥4,
T = T4 +T_0@y.

(18)
(19)

Using the implicit function theorem and the fact that the geodesic flow is transverse
to both int(X¥) and int(X7), one easily proves that the functions 7, 7_ and 7 are
smooth. These functions have smooth extensions to the closure of their domains. More

precisely, we have the following statement.

PROPOSITION 2.2. Assume that the Gaussian curvature of (S%,g) is everywhere posi-

tive. Then:

(i) The functions T4+ and 7— can be smoothly extended to E;r and X

respectively,

as follows: 7+ (¥(x)) = 7—(§(x)) is the time to the first conjugate point along the
geodesic ray t € [0,+00) — y(z + 1), and 74 (—%(z)) = 7—(—(x)) is the time to

the first conjugate point along the geodesic ray t € [0, +00) — y(x — t).

(ii) The function T can be smoothly extended to XF as follows: 7(¥(x)) is the time
to the second conjugate point along the geodesic ray t € [0,+00) — ~y(x + t),
and T(—%(x)) is the time to the second conjugate point along the geodesic ray

t € [0,400) = y(z —t).

14



The smooth extensions of 71, 7_ and 7 are denoted by the same symbols. The
above proposition has the following consequence:

COROLLARY 2.3. Suppose that the Gaussian curvature of (S?, g) is everywhere positive.
Then the formulas

Vi G )(V), v b () (v)  and v Gry)(v)
define smooth extensions of the maps w1, p— and ¢ to diffeomorphisms
g0+:2;r—>2;, go_:E;—>Efyr and @:Ej%Ej,
which still satisfy (18) and (19).

Proof. The smoothness of the geodesic flow ¢ and of the functions 74, 7— and 7 imply
that ¢4, v_ and ¢ are smooth. Since the inverses of these maps on the interior of
their domains have analogous definitions, such as for instance

et (v) = D2, (v) (V) where 74 (v) :==sup{t < 0| ¢s(v) € int(Zj)},

the maps cp;l, ©~! and ¢! have also smooth extensions to the closure of their domains,
and hence ¢, ¢_ and ¢ are diffeomorphisms. O

For sake of completeness, we include a proof of Proposition 2.2. A proof of statement

(ii) has recently appeared in [Sch14]. This proof is based on a technical lemma about

return time functions of a certain class of flow, which we now introduce. Consider

coordinates (z,q,p) € R/Z x R? and a smooth tangent vector field X on R/Z x R?
satisfying

X (z,0,0) = (1,0,0), Vx € R/Z. (20)

If we denote by 1, the flow of X then
Yi(2,0,0) = (x +t,0,0), Ve € R/Z,

and P :=R/Z x 0 is a 1-manifold invariant by the flow. We assume also that for every
r € R/Z and t € R the subspace {0} x R? C R? is preserved by the differential of the
flow, i.e.

Dyyy(2,0,0)[{0} x R*] = {0} xR%,  Vz e R/Z, VteR. (21)
For each § € (0, c0] consider the annuli
AL =R/Z % [0,0), Ay =R/Z x (=0,0],

both equipped with the coordinates (z,y). To each point (z,y) € int(A]) one may try
to associate the point ¢ (z,y) € int(Ay) given by the formula

P+ (.ZL‘, y) - wﬁr(z‘,y) (JJ, Y, 0) (22)

where 7 (z,y) is a tentative “first hitting time of Ay ", that is,

Ti(z,y) =inf {t >0 | (2, y,0) € int(A5) x {0}}. (23)

Of course, in general 7 and ¢4 may not be well-defined, even for small §. Our purpose
below is to give a sufficient condition on the vector field X to guarantee that, if ¢ is
small enough, 7 and ¢, are well-defined smooth functions on int(Aj{) which extend
smoothly to A(}F. In the following definition and in the proof of the lemma below, we
identify R? with C.
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DEFINITION 2.4. Fix some x € R/Z and v € R?\ {0}. By (21) the image of (0,v) by
the differential of ¢ at (x,0,0) has the form

Dijy(x,0,0) [(0, v)] = (0, p(t)ew(t)),

for suitable smooth functions p > 0 and 6, where p is unique and 0 is unique up to the
addition of an integer multiple of 2w. We say that the linearized flow along P has a
positive twist if for every choice of x € R/Z and v € R?\ {0} the function 0 which is
defined above satisfies €' (t) > 0 for all t € R.

LEMMA 2.5. If the linearized flow along P has a positive twist, then there exists §g > 0
such that 7+ is a well-defined smooth function on int(Ag:)) which extends smoothly as
a positive function on Agg. Moreover, this extension is described by the formula

7(2,0) =inf {t >0 | Dyx(x,0,0)[0,] € R™9,}, (24)
where 0, := (0,1,0).

Proof. Write w = y + iz and Y = Xo + X3, where (X7, X2, X3) are the components
of the vector field X. Then

X(z,w) = (X1(z,w),Y (z,w)).

By (20) we have X;(x,0) =1 and Y (z,0) = 0. Consider W (z,w) € Lx(C) defined by
1
W(z,w) = / DyY (x, sw) ds,
0

where D>Y denotes derivative with respect to the second variable. Then
W(z,0) = DsY (x,0), Y(z,w) =W(z,w)w.

We shall now translate the assumption that the linearized flow along P has a
positive twist into properties of W(z,0). Choose vg € C\ 0. Using (21) we find a
smooth non-vanishing complex valued function v such that

Dipy(x,0)[(0, v0)] = (0, v(t)).

From p
ﬁDUJt = (DX o) Dy,

and from (21) we get the linear ODE
0(t) = DY (xz +t,0)v(t) = W(x +t,0)v(t).
Writing v(t) = r(t)e?® with smooth functions 7 > 0 and 6, we know that
¥ — Re <v> Re <W(:c7ut,0)u w>
i v 1w
(W(x+1t,0)v,iv)

= mE = <W(m+t, O)eie,z’ei9>,
v
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where (-, -) denotes the Hermitian product on C. Since z,t and v(¢) can take arbitrary
values, we conclude from the above formula and the assumptions of the lemma that

(W (x,0)u,iu) > 0, Vu € C\ {0}, Vx € R/Z. (26)

Consider polar coordinates (r,0) € [0,4+00) x R/27Z in the w-plane given by w =
y + iz = re?. The map ‘
(z,7,0) — X (x,re?)
is smooth. Using the formulas

z

z
0, =2o,— 28y, 0.=0,+ 2o,
r T r r

we obtain that the vector field X pulls back by this change of coordinates to a smooth
vector field
Z = <Z17 Z27 Z3)7

which is given by
Zy(z,7,0) = X1 (z,re?),
Zo(x,7,0) = cos O Xo(x,7e) 4 sinf X3(z,re?), (27)
Zs(z,r,0) = % <cos<9 X3(z,re?) —sinf X2(.%',T’€i9>) .

Indeed, the smoothness of Z7 and Zy follows immediately from the above formulas,

while that of Z3 needs a little more care. Since X3, X3 vanish on R/Z x {0}, we can
find smooth functions X3 2, X2 3, X329, X33 such that

Xg(aj, Yy + iZ) = ngg(:U, y + iZ) + ZX273(1‘, y + iz),
X3(z,y +iz) = yXgo(z,y + iz) + 2X33(x,y +i2),

where

Xo2(x,0) = Dy X5(z,0,0), Xo3(x,0) = D3Xo(x,0,0),
Xg 2(3:, 0) = DQXg(:L',0,0), X373(33, 0) = D3X3($,0,0),

and

W(z,w) = [XZ?(%“’) X2,3(l‘7w)] ‘

Xzo(r,w) Xz3(z,w)

)

Substituting y = rcos#, z = rsinf we find
Zs(x,r,0) = <W(x,rei9)ei9,iei9> . (28)
Thus Z3 is a smooth function of (x,r,§) and
Z5(2,0,0) >0, Ve R/Z, V0 € R/21Z, (29)

thanks to (26).

From now on we lift the variable 6 from R/277Z to the universal covering R and
think of the vector field Z as a smooth vector field defined on R/Z x [0,+0c0) x R,
having components 27-periodic in . Clearly this vector field is tangent to {r = 0}.
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Let (; denote the flow of Z. After changing coordinates and lifting, we see that the
conclusions of the lemma will follow if we check that

T4 (z,r) =inf{t >0] 0o (x,r0) ="} (30)

defines a smooth function of (z,7) € R/Z x [0,d) when ¢ is small enough. By (29) we
see that if dg is fixed small enough then 7, (x,r) is a well-defined, uniformly bounded
and strictly positive function of (x,r) € R/Z x [0,0). Here we used that Z is tangent
to {r = 0}. Perhaps after shrinking Jy, we may also assume that

Z3(¢(z,7,0)) > 0, V(z,7) € R/Z x [0,dp), Vt € [0, 74+ (2,7)]. (31)

Continuity and smoothness properties of 7 remain to be checked. This is achieved
with the aid of the implicit function theorem. In fact, consider the smooth function

F:RxR/Zx[0,+00) =R,  F(r,z,r):=00((z,1,0).

Since
D1F(1,z,r) = df [Z(CT(I',T, 0))] = Z3(¢r(z,1,0)),

it follows from (31) and from the implicit function theorem that the equation
F(ry,z,r)=m

determines 74 = 74 (x,7) as a smooth function of (z,r) € R/Z x [0, do).
We now check formula (24) for 74 (z,0). From the above equations one sees that
0(t) = 0 o (4(x,0,0) satisfies the differential equation

0(t) = (DaY (x +1,0)”, ie”)

with initial condition §(0) = 0. Thanks to (25), this is exactly the same initial value

problem for the argument () of the solution v(t) = p(t)eié(t) of the linearized flow
starting at the base point (z,0) applied to the vector d,,. O

In order to prove Proposition 2.2, it is enough to show that coordinates can be
arranged in such a way that the geodesic flow near a simple closed geodesic v meets
the assumptions of Lemma 2.5 when the Gaussian curvature is positive along ~v. We
will assume for simplicity, and without loss of generality, that L = 1. We start by
recalling basic facts from Riemannian geometry and fixing some notation.

Given v € TS?, let V, C T,TS? be the vertical subspace, which is defined as
Vy :=kerdm(v). The isomorphism

Ty, - TW(U)S2 — WV

is defined as

. d
v, (w) 1= 5 (04 tw)|

The Levi-Civita connection of g determines a bundle map K : TTS? — T'S? satisfying
VyX = K(dX oY), where X,Y are vector fields on S? seen as maps S? — TS

Yw € TS,
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The horizontal subspace H, := ker K|, rg2 satisfies T;,T S%2 =V, ® H,. Thereis an
isomorphism

. ) d
1, T7r(v)S2 — Ho, Z’HU(UJ) = %V(t) 0’ Vw € TT((’U)S2’

where V' is the parallel vector field along the geodesic [(t) satisfying 6(0) = w with
initial condition V(0) = v, seen as a curve in TT'S?. The isomorphism iy, satisfies

dr(v) iy, (w)] = w, Yw € TW(U)SQ. (32)
For each v € T1S? we have
T,7"8* = span{iv, (v), i, (), in, (0)}-
The Hilbert form Ay on T'S? is given by
A (0)[C] = grgy (v, dn(0)[C]), V¢ € T,82, (33)

and restricts to a contact form « on T1S2. The contact structure ¢ := ker « is trivial
since

& = span{iy, (v1), i, (v7)}.

The Reeb vector field R, of a coincides with iz, (v), and {iy, (v
symplectic basis for dale,, because

da(v) [iy, (v), ig, (0)] = 1.

L), iy, (v1)} forms a

If (z,y) are the standard coordinates on Z$ given by

v = cosy y(z) +siny §(z)",
then the tangent vectors 0, and 9, in T, UZf are
Oy = in, (§(w)) = cosy i, (v) = siny iz, (v")
ay - ivu (UJ—)'

)

(34)

Proof of Proposition 2.2. It is enough to prove statement (i) for the function 7. In
fact, the case of 7_ follows by inverting the orientation of 7, and statement (ii) is then
a direct consequence of the identity (19).

By (34) the vector field R, = iz, (v) is transverse to the interior of Eff. The smooth
vector field

L

in, () = siny iy, (v) + cosy iz, (v)

along Zj U X7 is transverse to it near 7. To obtain the desired coordinates near ¥ we
proceed as follows: let g be the Riemannian metric on TS? defined by

G0(C1, G2) == a(Gr)a(Co) + da(me(Cr), Ime(C2)),

where J : £ — £ is the d\-compatible complex structure determined by
J(ZV’L) (’UL)) = ZH’U (UL)7
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e T'S? — ¢ is the projection along Ry, and (1, (s € T, T'S? are arbitrary. Note that
¢ is orthogonal to RR,, with respect to g and g(iy, (v'), ix, (v)) = 0.

Denote by Exp the exponential map of g. Then for all § > 0 sufficiently small, the
map

R/Z x (—0,0) x (=6,8) = U
((L’, Y, Z) = Eva:cosy"y(x)—&-siny"yl(:L‘) (Z(Siny i, ('U) + cosy i, (UL)))

is a diffeomorphism, where & C T1S? is a small tubular neighborhood of 4. In coordi-
nates (x,y, z), we have
¥ =R/Z x {(0,0)}
ST={2=0,y >0}
¥, ={#=0,y <0}
Raly = (1,0,0)|r/zx (0,0} (35)
€y = {0} x R?|/zx{(0,0)}

i, (Y7) = Oylr/zx{(00))

Z"Hﬁ

Denote by X = (X1, X3, X3) the Reeb vector field R, in these coordinates and by
1y its flow. Then X (x,0,0) = (1,0,0) and since v, preserves the contact structure, we
have

O
(1) = 0:lr/zx{(0,0)}-

Dy(2,0,0)[{0} x R?] = {0} x R
A linearized solution ((t) = a1(t)0y + a2(t)0, along 1 (x,0,0) = (x +¢,0,0) satisfies

ar(t) \ _ (0 —K(@) ax(t)

a(t) 1 0 as(t) )’
where K (t) is the Gaussian curvature at y(z+t). Writing in complex polar coordinates
a1 (t) + ias(t) = p(t)e?®®, for smooth functions p > 0 and 6, we can easily check that

0'(t) = cos® O(t) + K(t) sin® 0(t), vVt e R.

Therefore, the positivity of the Gaussian curvature along ~ implies the twist condi-
tion. We have finished checking that X meets all the assumptions of Lemma 2.5.
Proposition 2.2 follows readily from an application of that lemma. O

2.2 The contact volume, the return time and the Rieman-
nian area

As we have seen in the previous section, the Hilbert form Ay defined in (33) induces
by restriction a contact form a on 7152, A further restriction produces the one-form
A on the Birkhoff annulus X¥. By using the standard smooth coordinates (z,y) €
R/LZ x [0, 7] on ¥, we express a vector v € X1 as

v = cosy F(z) +siny §(z)*, (36)
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and we find, using ( ) and (34), together with (32),

)
A(v) = Gn(v) (v dm(v)[cosy iy, (v) —siny iy, (vj‘)])
= Gn(v)(v,cO8y v —siny UJ‘)

AW)[0y] = Gr(w) (v, dr(v)[iv, (0)]) = Gr(w)(v,0) =0

Therefore, the expression of A in the coordinates (x,y) is

= cosy,

A =cosydr,
and its differential reads
d\ = sinydx A dy.
Thus, the forms A and w = d\ are the ones considered in part 1 on the universal cover
S of R/LZ x [0, 7).
Since the geodesic flow ¢; preserves « for all ¢, we have for any v in int(2 ) and ¢
in 7,57
(@ N)()[¢] = Mp(v)) [de(v)[¢]]
= )\(ng(v)(U)) [dqu(v)(v)[d + dT(U)[dRa(d)T(U) (U))]
= A()[¢] + dr(v)[¢]

on int(E;r ), and hence on its closure E,‘Y“ since all the objects here are smooth. Here,
R, is the Reeb vector field on the contact manifold (7152, «), which coincides with
the generator of the geodesic flow. Therefore,

dr ="\ — A onEj{’.

Now let
U int(S5) x R — 7187\ ($(R) U —(%(R))

be defined as ¥(v,t) := ¢(v). Then

Va0, )[(C, )] = a(6e(v)) [d6e(v)[(] + sRa(4(v))]
= a(0)[¢] + 5 = AW)[¢] + 5,

that is,
U = \ + dt.

Again, we used the preservation of « by ¢;. Since A A d\ = 0, being a three-form on a
two-dimensional manifold, we deduce that

U (a Ada) = dt AdA.
Denoting by K the subset
K :={(v,t) eint(X7) x R | v € int(XT), t € [0,7(x)]},

we can relate the contact volume Vol(T1S?, o) with the function 7 as follows

Vol(T' 52, a ///TISQ ) a/\da_/// (o day)
/// drndr= //E+ (/( d’f) dA(v //EJer)\.

Summarizing, we have proved the following:
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PROPOSITION 2.6. The restriction A of the contact form o of T*S? to Ej has the form
A =cosydr

in the standard coordinates (x,y) € R/LZ x [0,7]. The first return map ¢ : ¥5 — ¥F
preserves d\. Moreover, the first return time T : Ei — R satisfies

dr = "X — A on Zj.

Vol(T1S?, a / / T d\.
E+

For completeness we state and prove below a well known fact.

Finally

PROPOSITION 2.7. The contact volume of (T1S?, &) and the Riemannian area of (S?, g)
are related by the identity

Vol(T'S?, o) = 21 Area(S?, g).

Proof. Take isothermal coordinates (z,y) € U C R? on an embedded closed disk
U’ C 52. In these coordinates, the metric ¢ takes the form

ds? = a(w,y)*(da? + dy?),

for a smooth positive function a. Any unit tangent vector v € T'U’ C T'5? can be

written as

0 in o
v="""5,+™%,  with 0eR/21Z,
a a

where a = |0z|g = |0yly. Thus (z,y,0) € U x R/2nZ can be taken as coordinates on
T'U’, and the bundle projection becomes 7(z,y,q) = (x,y). With respect to these
coordinates, the contact form

Oé(U)[C] = Gn(v) (’U, dﬂ(v)[d)

has the expression
a = a(cosf dx + sin 6 dy).

Differentiation yields
do = da A (cos@dx + sinfdy) + a(—siné df A dx + cos 0 do A dy).

Hence
aNda=adaA (cosfsinfdx A dy+ sinf cosd dy A dx)
+ a?(cos® O dx A df A dy — sin® 0 dy A df A dx)
=a?dz NdO Ady = —a®dx A dy A d.

Therefore, the orientation of 71U’ which is induced by aAda is opposite to the standard
orientation of U x R/27Z, and we get

Vol(T'U, o /// a/\da—/// a’dx A dy A df
Ty UxR/2r7Z
2w
= // a*(x,y) (/ d0) dxdy = 27 // a®(x,y) dzdy
U 0 U

=27 // \det(g) dedy = 2w Area(U’, g).
U
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Taking two embedded disks U’,U” C S? with disjoint interiors and coinciding bound-
aries, we get
Vol(T1S?, o) = Vol(TU’, o) + Vol(T'U”, o)
= 2m(Area(U’, g) + Area(U”, g))
= 21 Area(S?, g).

O

2.3 The flux and the Calabi invariant of the Birkhoff re-
turn map

By using the standard smooth coordinates (z,y) given by (36), we can identify the
Birkhoff annulus X3 with R/LZ x [0, 7]. Its universal cover is the natural projection

) +
p:S— X7,

where S is the strip R x [0,7]. The first return map ¢ : nyr — Zf{ preserves the
two-form w = d\ and maps each boundary component into itself. Therefore, ¢ can be
lifted to a diffeomorphism in the group Dy (S,w) which is considered in part 1. The
aim of this section is to prove the following result, which relates the objects of this part
with those of part 1.

THEOREM 2.8. Assume that the metric g on S? is §-pinched with § > 1/4. Let v be a
simple closed geodesic of length L on (S2,g). Then the first return map ¢ : Z;" — ij'
has a lift ® : S — S which belongs to Dr(S,w) and has the following properties:

(i) ® has zero flux.
(ii) The first return time T : Ej — R is related to the action o : S — R of ® by the
identity
Top=L+o on S.

(iii) The area of (S?,g) is related to the Calabi invariant of ® by the identity

7 Area(S?,g) = L> + L CAL(®).

The proof of this theorem requires an auxiliary lemma, which will play an important
role also in the next section.

LEMMA 2.9. Assume that (S?,g) is d-pinched for some § > 1/4. Fix some v in Eiﬁ
and denote by o the geodesic satisfying &(0) = v. Then the geodesic arc i =) i3
mjective.

Proof. We consider the case of Ej , the case of ¥ being completely analogous. Up to
the multiplication of g by a positive number, we may assume that 1 < K < 4.

Let * € R be such that a(0) = y(z*) and let y* € [0, 7] be the angle between 5(z*)
and v = &(0). Consider the family of unit speed geodesics «, with oy (0) = «(0) =
v(z*) such that the angle from (z*) to v, := ¢&,(0) is y, for y € [0, n]. In particular,
ay+ = o and vy = v. By Proposition 2.2 (i),

{aylo,ry (v, Hyero.n]
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is a smooth family of geodesic arcs, parametrized on a family of intervals whose length
varies smoothly.

We claim that 74 (vg) < L and 74 (v;) < L. In order to prove this, first notice that
the length L of the closed geodesic vy satisfies

> 27 - 27
~ Vmax K V4
thanks to the lower bound (16) on the injectivity radius and to the inequality K < 4.

Moreover, by Proposition 2.2 (i) the number 74 (vg) is the first positive zero of the
solution u of the Jacobi equation

=m, (37)

u”(t) + K(y(x* +t)u(t) = 0, u(0) =0, u'(0) = 1.

Writing the complex function u’ 4 iu in polar coordinates as u’ +iu = re?, for smooth
real functions r > 0 and € satisfying r(0) = 1, 6(0) = 0, a standard computation gives

0'(t) = cos? O(t) + K (y(z* 4 1)) sin® O(¢).

Since K > 1, we have #’ > 1 and hence §(L) > L > 7. This implies that 74 (vg) < L.
The case of 74 (vs) follows by applying the previous case to the geodesic t — ~v(—t).

Let Yy be the subset of [0, 71| consisting of those y for which ayj.7, (»,)) Is injective.
The set Yj is open in [0, 7], and by the above claim 0 and 7 belong to Yp. Let Y;
be the subset of (0,7) consisting of those y for which ay|jo -, (v,)) has an interior self-
intersection: There exist 0 < s < t < 74.(vy) such that ay(s) = oy (t). Such an interior
self-intersection must be transverse, so the fact that S? is two-dimensional implies that
also Y7 is open in [0, 7]. It is enough to show that Yp UY; = [0, 7]: Indeed, if this is
so, the fact that [0, 7] is connected implies that only one of the two open sets Y, and
Y1 can be non-empty, and we have already checked that Y; contains 0 and w. The
conclusion is that [0, 7] = Yp, and in particular a = ay+ is injective.

If y belongs to the complement of Yy UY; in [0, 7], then y € (0,7) and ay|or, (v,)]
has a self-intersection only at its endpoints: alg -, (,)) is injective and ay (74 (vy)) =
ay(0). Denote by I > 0 the length of the geodesic loop ayljo.7, (»,)]- Together with the
closed curve -, this geodesic loop forms a two-gon with perimeter equal to L 4+ [. By
Theorem A.12 and the inequality K > 1, its perimeter L + [ satisfies

L+1< L < 2.
min K
By using the bound (37) and the analogous bound [ > 7 for the geodesic loop ay\[
we obtain

0,7+ (vy)]s

L+1>2m.

The above two estimates contradict each other, and this shows that the complement
of Yo UY] is empty, concluding the proof. O

Proof of Theorem 2.8. Given v € T'S?, we denote by a, the geodesic parametrised
by arc length such that ¢,(0) = v. Let v € X with 7(v) = y(2). Then we know
from Lemma 2.9 that the geodesic arc ayljg 7, (1)) is injective. In particular, o, (74 (v))
is distinct from ay,(0) = (), so there exists a unique number

p+(v) € (0,L)
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such that
oy (14 (v)) = (2 + p1(v)).
By the continuity of the geodesic flow and of the function 7, the function
Pt Ej — (0,L)

is continuous. The restriction of 74 to the boundary of E;” satisfies
p+(Y(2) =74 ((x))  and  py(=4(2)) = L -7 (=(2)), VeeR. (38
Similarly, there exists a unique continuous function
p— 3, —(0,L)
such that, if v € X7 is based at y(x), we have

ay(7-(v)) = 7(x + p—(v))-

As before,

p-(§(x)) =7 (y(x))  and  p(—4(z)) =L -7 (=(x)), VeeR. (39)

Define the function

p: X5 —(0,2L0)

by
p =Pyt p- 0Py
By construction, we have for every v € X1 with 7(v) = (x),

m(p(v)) =z + p(v)), (40)

and, by (38) and (39), together with (19),

p(¥(2)) =7(¥(z))  and  p(=4(x)) =2L —7(=(x)), VzeR (41)

Using the standard coordinates (z,y) € R/LZ x [0,7] on ¥, we can see p and 7 as

functions on R/LZ x [0, 7] or, equivalently, as functions on R x [0,7] which are L-
periodic in the first variable. Thanks to (40) we can fix a lift & = (X,Y) € D (S,w)
of ¢ by requiring its first component to be given by

X(z,y) =x+ p(z,y) — L. (42)
By (41) we have
X(z,0) —z =1(z,0) — L, X(x,m)—xz=L—71(z,7), vV € R. (43)
By definition, the action o : § — R of ® is uniquely determined by the conditions
do = ®*\ — ),
o(x,0)+ FLUX(®) = / A= X(z,0) —z, Vz € R.

T
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where v, is a path in 95 connecting (z,0) to ®(z,0) = (X(«,0),0). By the first identity
in (43) we have

o(z,0) + FLUX(®) = 7(z,0) — L,  Vz € R.

By Proposition 2.6, also the (L, 0)-periodic function 7 : S — R satisfies d7 = ®*\ — A,
so the above identity implies that

o(xz,y) + FLUX(®) = 7(x,y) — L, Y(z,y) € S. (44)

By Proposition 1.7 and the second identity in (43) we have

o(z,7) — FLUX(®) = / A= —X(@ )4z =r(a,m)— L  VreR,
0z
where 0, is a path in dS connecting (z,7) to ®(z,7) = (X (z,7), 7). Together with
(44) this implies that FLUX(®) = 0, thus proving statement (i). Statement (ii) now
follows from (44).
By Propositions 2.7 and 2.6, we have

7 Area(S?, g) = 1Vol(TlSQ,a) = 1// Td\ = 1// (L+0)dX
2 2 JJr/Lzx[0,7) 2 J Jjo,L)x[0,4]

:L2+;// od\ = L* + L CAL(®),
[0,L] x[0,7]

and (iii) is proved. O

2.4 Proof of the monotonicity property

As we have seen, the first return map ¢ can be lifted to a diffeomorphism ® in the
class Dr(S,w). The aim of this section is to prove that, if the curvature is sufficiently
pinched, then this lift is a monotone map, in the sense of Definition 1.8 (notice that
the monotonicity does not depend on the choice of the lift).

PROPOSITION 2.10. If g is §-pinched for some § > (4++/7)/8, then any lift & : S — S
of the first return map ¢ : ¥ — XT is monotone.

Proof. We may assume that the values of the curvature lie in the interval [4, 1], where
§> (4+V7)/8.

Fix some z* € R. In order to simplify the notation in the next computations, we
set for every y € [0, 7]

ly = T(x*a y)a 7fy = X(.’E*, y)a g(y) = Y(l’*,y),

where 7 is seen as a (L, 0)-periodic function on S and X and Y are the components of
the fixed lift ® = (X,Y") of ¢. Our aim is to show that the derivative of the function
g is positive on [0, 7.

Consider the 1-parameter geodesic variation

ay(t) := expy g [t(cos y F(2*) + siny F(z*) )],
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where y € [0, 7]. For each y € (0,), [, is the second time a,(t) hits v(R) or, equiva-
lently, the first time dy,(t) hits ¥F. Moreover, ag(t) = y(z* +t), and Iy is the time to
the second conjugate point to ag(0) along «ag; analogously, o, (t) = y(z* —t), and [ is
the time to the second conjugate point to a,(0) along a,. By construction

and
dry(ly) = cosy Y(ty) +sing y(ty )

(1))t = —sing 4(t,) + cos§ A(t,)*,

for every y € [0, 7], where the function g is evaluated at y. Since v is a geodesic,

(45)

D D, oty
dvt (t)ay 0,

and since the vector field 41 along 7 is parallelly transported,

DJ— D'ti—%

Notice that V(y) := dy(l,) is a vector field along the smooth curve y — 7(t,). Using
that 7 is a geodesic we obtain from (45)
Z;/(y) = —¢'sing ¥(t,) + cosy Z*’y oty + ¢ cos§ A(t,)t +sing d,i/ﬁj_ oty
= —§'sing A(ty) +§ cosF ()"
=7 (y) dy(ly)" (46)
The geodesic variation {ay} at y = y* corresponds to the Jacobi field J along o~ given
by

0
J(t) i = — (). 47
(0= 5| el (47)
From the initial conditions J(0) = 0 and
DJ D ) d . L
—(0) = — oy(0) = — Ay (0) = ay+(0)—,
T O= 2] &0=g]  a0=a0)
we find a smooth real function u such that
DJ
J(t) = u(t)oy- (t)L, 7 —() = u’(t)dy* (t)L, vVt € R,
and
u(0) =0, u'(O) =1. (48)
Moreover D
J( ) = (t)dy* (t)L, Vvt € R. (49)

dy y:y* dy(t) = dt

Recall that the covariant derivative of a vector field v along a curve § on S? is the
full derivative of the corresponding curve (8,v) on T'S? projected back to T'S? by the
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connection operator K : TTS? — T'S%2. More precisely, K projects this full deriva-
tive (4,v)" onto the vertical subspace Visw) C T(M)TS2 along the horizontal subspace
Hsw) C T (5,U)T52, and then brings it to 7552 via the inverse of the isomorphism iy, ,
see the discussion after the proof of Lemma 2.5. In (46) we find the covariant derivative
of the vector field y — ¢, (l,) along the curve y — oy (l,). In (49) we see the covariant
derivative of the vector field y — d,(t) along the curve y — ay(t) for fixed ¢. Since a
is a geodesic for all ¢, by using the above description of the covariant derivative we get
from (46) and (49)

. o D )
O‘y(ly*) + lg,;(y ) dt Qryy (t)
t=l,*

DV D

~1 (0 %\ - 1 *

W) = o = )
D

N diyyfy

dy(ly*) = Ul(ly*)dy* (ly* )L,

for every y* € [0, 7], from which we derive the important identity
7)) =4 ), Yy €0 ] (50)

Write
Ly« =1+ U

where [ > 0 is the first time o« (¢) hits ~, that is,

[=74(dy(0),  1'=7(p4(6y(0)))-

By Lemma 2.9, v« |jo) is injective and, in particular, its end-points are distinct points
of ~, dividing it into two segments 1,72 with lengths l1,ls > 0, respectively, and
l1 + 13 = L. Therefore, oy ] and y; determine a geodesic two-gon. The same holds
with ay«|joy and 72. It follows from Theorem A.12 that

2
L+l<2Z  and  lh+l<

Vs \f

Theorem A.12 also implies that L < 27/v/5. From Klingenberg’s lower bound (16) on
the injectivity radius of g, we must have I; +1 > 27, lo +1 > 27, and L > 27w. Putting
these inequalities together, we obtain

2
2 <L +1 < —, 1 =1,2, 51
7 (51)
2

27T§L=l1+l2§%. (52)

By adding the inequalities (51), we obtain

47
Ar <2+ L< X 53
NG (53)

Together with (52), the above inequality implies
2 — <[ < — .
VR
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Arguing analogously with the geodesic arc ;- [« =1+1]> We obtain the similar estimate

Qﬂ_1<y<21_w,

VT TG

concluding that the length [, of o+ satisfies

2 47
— <=1+ <= —2r. 54
N Nz (54)

The Jacobi equation for the vector field J along o~ which is defined in (47) can be
written in terms of the scalar function u as

4

u"(t) + K (o= (8))u(t) = 0.

Writing
u(t) +iu(t) = re’

for smooth real functions r» > 0 and 6, we get
0" = cos® 0 + K (av,+ ) sin? . (55)
The initial conditions (48) imply that 7(0) = 1 and 6(0) = 0. From (55) we have

§ <6 < 1. Hence, from the estimate for l,» given in (54), we find

27 4
1) (47r — \/S> <O(ly) < % — 27. (56)

From 6 > (4 4+ /7)/8 we get

2 3
(5 (471' — \/5) > ?,

and since a fortiori § > 64/81, we have also

Therefore, (56) implies that cosf(l,) is positive. By the identity (50), we conclude
that
7(y) = u/(ly*) = r(ly) cosO(ly+) > 0,

as we wished to prove. O

2.5 Proof of the main theorem

Two more lemmata are needed for the proof of the main theorem of the introduction.

LEMMA 2.11. Assume that the metric g on S? is §-pinched for some 6 > 1/4. Then
any closed geodesic y of minimal length on (S2,g) is a simple curve.
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Proof. If a closed geodesic v of minimal length is not simple, then it contains at least
two distinct geodesic loops. By the lower bound (16) on the injectivity radius, each of
these two geodesic loops has length at least

max K

and we deduce that 4
™
L> ——. 57
 Vmax K (57)
A celebrated theorem due to Lusternik and Schnirelmann implies the existence of
simple closed geodesics on any Riemannian S?. By Theorem A.12 any simple closed

geodesic has length at most
2

min K
By the pinching assumption,
2w < 2T < 41
Vmin K =~ VimaxK  Vmax K

so by (57) any simple closed geodesic is shorter than L. This contradicts the fact that
L is the minimal length of a closed geodesic and proves that v must be simple. O

Assume the metric g on S? to be J-pinched for some § > 1/4. Let v be a closed
geodesic on (52, g) of minimal length, which by the above lemma is a simple curve. We
denote by L its length, so that

lmin(S?,g) = L.

Let ¢ : X7 — ¥ be the associated Birkhoff first return map and let ® € Dr(S,w) be
the lift of ¢ with zero flux whose existence is guaranteed by Theorem 2.8. Here is a
first consequence of Theorem 2.8:

LEMMA 2.12. Assume that the metric g on S? is §-pinched for some § > 1/4. Then g
1s Zoll if and only if ® = id.

Proof. Assume that ® = id. Then the action ¢ of ¢ is identically zero, so by Theorem
2.8 (ii) the first return time function 7 is identically equal to L. Therefore, all the
vectors in the interior of Zf{ are initial velocities of closed geodesics of length L. Since
also the vectors in the boundary of E;L are by construction initial velocities of closed
geodesics of length L, we deduce that all the geodesics on (52, g) are closed and have
length L.

Conversely assume that (S?,g) is Zoll. Since v has length L, all the geodesics on
(52, g) are closed and have length L. Then every v in int(E:Yr ) is a periodic point of ¢,
i.e. there is a minimal natural number k(v) such that ¢*)(v) = v, and the identity

k(v)—1

S @) =1L

Jj=0
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holds on int(E;r ). Thanks to the continuity of 7 and ¢ and to the positivity of 7, the
above identity forces the function k to be constant, k = kg € N. By continuity, the
above identity holds also on the boundary of Ef{ , and we have in particular

ko—1

Y @)=L  VteR/LZ
=0

By the above identity, there exists tg € R/LZ such that

that is, the time to the second conjugate point to v(tg) along 7 is at most L/kg. Since
this time is at least twice the injectivity radius of (52, g), we obtain from (16)

LS 2 Git)) = 2imi(g) = 2
-— T m —_—
ko — Moy = g T vVmax K

On the other hand, by Theorem A.12 and by the pinching assumption, the length L of
the simple closed geodesic vy satisfies

(58)

2 27 47

L< < < .
Vmin K Vo max K vVmax K

(59)

Inequalities (58) and (59) imply that the positive integer kg is less than 2, hence ko = 1
and ¢ = id. Then ® is a translation by an integer multiple of L and, having zero flux,
it must be the identity. O

We can finally prove the theorem which is stated in the introduction: If g is -
pinched with ¢ > (4 4+ /7)/8, then the bound

L? = lin(S?, 9)* < 7w Area(S?, g) (60)
holds, with the equality holding if and only if (52, g) is Zoll.

Proof. 1f (52, g) is Zoll, then by the above lemma ® = id, so CAL(®) = 0, and Theorem
2.8 (iii) implies that
7 Area(S?, g) = L%

This shows that if g is Zoll, then the equality holds in (60).
There remains to show that if (2, g) is not Zoll, then the strict inequality holds in
(60). Assume by contradiction that

L* > 7 Area(S?, g).
Then by Theorem 2.8 (iii) we have
L CAL(®) = 7 Area(5?,g) — L?> <0,

and CAL(®) is non-positive. Since (52, g) is not Zoll, by Lemma 2.12 the map ® is not
the identity. Therefore, ® satisfies the hypothesis of Theorem 1.12, which guarantees
the existence of a fixed point (z,y) € int(S) of ® with action o(z,y) < 0. The geodesic
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which is determined by the corresponding vector in Zj is closed and, by Theorem 2.8,
has length
T(x,y) =L+ o(z,y) <L

This contradicts the fact that L is the minimal length of a closed geodesic. This
contradiction implies that when (S2, g) is not Zoll, then the strict inequality

L? < 7 Area(S?, g)

holds. The proof is complete. ]

A Toponogov’s theorem and its consequences

This appendix is devoted to explaining how to estimate lengths of convex geodesic
polygons using a relative version of Toponogov’s theorem.

A.1 Geodesic polygons and their properties

For this discussion we fix a Riemannian metric g on S?. The following definitions are
taken from [CET75].

DEFINITION A.1. Let X C S2.

i) X is strongly convex if for every pair of points p,q in X there is a unique minimal
geodesic from p to q, and this geodesic is contained in X.

ii) X is convex if for every p in X there exists r > 0 such that B,(p) N X is strongly
convez.

When p € S? and u,v € TpS2 are non-colinear vectors, consider the sets

Au,v) ={su+tv|s,t>0} (61)
A (u,v) ={w € A(u,v) | lw| < r}. (62)
When u € T,5% \ {0} consider also
H(u) = {v € T,8% | g(v,u) > 0} (63)
Hy(u) ={w € H(u) | |w| < r}. (64)

A corner of a unit speed broken geodesic v : R/LZ — S? is a point v(t) such that
Y (t) € RT+7(t), where 7/, denote one-sided derivatives.

DEFINITION A.2. D C S? is said to be a geodesic polygon if it is the closure of an open
disk bounded by a simple closed unit speed broken geodesic vy : R/LZ — S%. We call D
convez if for every corner p = (t) of v we find 0 < r < inj, small enough such that
DN B(p) = expy(Ar(—72(t),7(t))). The corners of v are called vertices of D, and
a side of D is a smooth geodesic arc contained in 0D connecting two adjacent vertices.

Jordan’s theorem ensures that every simple closed unit speed broken geodesic is
the boundary of exactly two geodesic polygons. At each boundary point which is not
a vertex the inner normals to the two polygons are well-defined and opposite to each
other.

It is well-known that B,(p) is strongly convex when r is small enough. By the
following lemma the same property holds for exp, (A (u,v)) and exp,(H(u)).
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LEMMA A.3. Choose p in S? and let 0 < r < inj(g). If B.(p) is strongly convex
then exp,(Ar(u,v)) and exp,(H,(u)) are strongly convex for all pairs u,v € TpS* of
non-colinear vectors.

Proof. There is no loss of generality to assume that u,v are unit vectors. We argue
indirectly. Assume that y,z € exp,(A;(u,v)) are points for which the minimal geodesic
7 from y to z (with unit speed) is not contained in exp,(A;(u,v)). Let v, and v, be
the geodesic segments exp,(Tu), exp,(Tv) respectively, 7 € (—r,7). Note that v is
contained in B,(p) and, consequently, v must intersect one of the geodesic segments
Yy OF 7, in two points @ # b. Thus we have found two geodesic segments from a to b
which are length minimizers in S? (one is contained in v and the other is contained in
~Yu O Yy). This contradicts the fact that B,(p) is strongly convex. The argument to
prove strong convexity of exp,(H,(u)) is analogous. O

As an immediate consequence we have the following:
COROLLARY A.4. A convex geodesic polygon D C S? is convex.
Let d(p,q) denote the g-distance between points p,q € S.

LEMMA A.5. Let D be a convexr geodesic polygon. Then there exists a positive number
€1 < inj(g) such that if p,q are in D and satisfy d(p,q) < €1, then the (unique) minimal
geodesic from p to q lies in D.

Proof. If not we find py,, g, € D such that d(pn, ¢,) — 0 and the minimal geodesic 7,
in S? from p, to g, intersects S2\ D. Thus, up to selection of a subequence, we may
assume that p,,q, — x € 9D. If x is not a corner of 0D then we consider the unit
vector n € T,S? pointing inside D normal to the boundary and note that, for some
r > 0 small, D N B,(x) = exp,(H(n)) is strongly convex. Here we used Lemma A.3.
This is in contradiction to the fact that p,, ¢, € D N B,(x) when n is large. Similarly,
if 2 is a corner of @D then, in view of the same lemma, we find unit vectors u,v € 1,52
and r very small such that D N B,(z) = exp, (A, (u,v)) is strongly convex. This again
provides a contradiction. O

The next lemma shows that a convex geodesic polygon is ‘convex in the large’.

LEMMA A.6. Let D be a convex geodesic polygon. Then for every p and q in D there
is a smooth geodesic arc v from p to q satisfying

i) v C D.

it) v minimizes length among all piecewise smooth curves inside D from p to q.

Proof. The argument follows a standard scheme. Consider a partition P of [0, 1] given
bytg=0<t; <--- <ty_1 <ty =1, with norm

IPI| = max{ti1 — t:}.

Let Ap be the set of continuous curves o : [0,1] — S such that each aly,,,,) is
smooth, a(0) = p, a(1) = ¢. On Ap we have the usual length and energy functionals

Lla] = [ [a/(t)|dt,  Ela] =1 [ |o/(t)]?dt. (65)

33



Set

Bp ={a € Ap | aly, 1., is a geodesic Vi},
AP(D) = {a € Ap | a([O, 1]) C D}, Bp(D) = Bp OAP(D).

As usual, we use superscritps < a to indicate sets of paths satisfying £ < a.

If o is in A5 and /[[P[| < e1/v/2a, then d(a(t;), a(tiy1)) < €1 Vi, where ¢ > 0 is
the number given by Lemma A.5. Thus, for every a € AISD“(D) we find v € Bp(D) such
that each |, ¢, 41] 1s a constant-speed reparametrization of the unique minimal geodesic
arc from a(t;) to a(t;+1). Here we have used Lemma A.5 to conclude that ([0, 1]) C D.
Clearly L[] < L[a], so minimizing L on A3*(D) amounts to minimizing L on B5"(D).
Now pick a > 0 and a partition P such that A5"(D) # 0 and /[[P[| < e1/v/2a. By
the above argument, B;a(D) # () and, as usual, the map v — (y(¢t1),...,v(tn-1)) is a
bijection between Bga(D) and a certain closed subset of D=1, The topology which
BEQ(D) inherits from this identification makes L continuous. Thus, by compactness,
we find 7, € Bga(D) which is an absolute minimizer of L over AISD“(D).

We claim that 7, is smooth, i.e., it has no corners. In fact, arguing indirectly,
suppose it has a corner, which either lies on int(D) or on dD. In both cases we can
use the auxiliary claim below to find a variation of 7, through paths in Bga(D) that
decreases length; the convexity of D is strongly used. This is a contradiction, and the
smoothness of v, is established.

Auxiliary Claim. Consider a < x < b and a broken geodesic f3 : [a,b] — S?, which is
smooth and non-constant on [a, ] and on [z, b], satisfying 3/, (z) ¢ RT3’ (z). Let o :
(—¢,€) x [a,b] — S? be a piecewise smooth variation with fixed endpoints of 3 («(0, ) =
B) by broken geodesics such that « is smooth on (—e¢,€) x [a, z] and on (—e€, €) x [z, D].
If Dia(0,2) is a non-zero vector in A(—A"(z), 3, (x)), then 4|,_L[a(s, )] < 0. In
fact, the first variation formula gives us

Bl B
@ HB’+($)H> <0

as desired. O

d b
L Dya(s, t dt‘ — st | Drar(0,
& [ 1patenld] = g (Drato.0

It remains to be shown that ~, is an absolute length minimizer among all piecewise
smooth curves in D joining p to q. Let a be such a curve, which must belong to Agb(D)
for some positive number b and some partition Q. Up to increasing b and refining @,
we may assume that b > a, Q O P, and \/||Q]| < €1/v/2b. By the previously explained
arguments we can find a smooth geodesic 4 from p to ¢ in D which is a global minimizer

of L over Aéb(D). Since A%a(D) is contained in Aéb(D), we must have L[y] < L[v.].

Noting that ~,,7 are smooth geodesics, we compute E[7] = $L[¥]*> < $L[.]? = E[y4]

and conclude that 7 € A%“(D). Thus L[vs] = L[] < L[a] as desired. O

LEMMA A.7. If D is a convex geodesic polygon in (S?,g), p and q are distinct points
of 0D, and d is the distance from p to q relative to D then the following holds: a
unit speed geodesic v : [0,d] — D from p to ¢ minimal relative to D (which exists and
is smooth in view of Lemma A.6) is injective, and satisfies either v((0,d)) C int(D)
or v([0,d]) € dD. In the former case vy divides D into two convex geodesic polygons
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D', D" satisfying D = D" U D", v = D' D"; moreover, a geodesic between two points
of D' (D") which is minimal relative to D is contained in D' (D" ). In the latter case
there are no vertices of D in v((0,d)).

Proof. If there exists t in (0,d) such that ~(¢) belongs to 9D, then either ~(¢) is a
vertex or not. But it can not be a vertex since in this case +/(¢) would be colinear to
one of the tangent vectors of D at ~(t), allowing us to find ¢’ close to ¢ such that (')
is not in D. Not being a vertex, (t) is a point of tangency with 9D. By uniqueness of
solutions of ODEs, we must have ([0, d]) C 0D, hence D has no vertices in v((0,d)).
By minimality v has to be injective. If ', 6" are the two distinct arcs on 9D from p to q
and v((0,d))NID = ) then ¢’ U~y and 6” U~ bound disks D', D” C D which are clearly
geodesic convex polygons. Let o« C D be a (smooth) geodesic arc connecting distinct
points of D’ minimal relative to D. If o ¢ D’ then « intersects v((0,d)) transversally
at (at least) two distinct points x # y. By minimality, there are subarcs of « and of
~v from x to y with the same length. Thus, one can use these transverse intersections
in a standard fashion to find a smaller curve in D connecting the end points of «,
contradicting its minimality. O

LEMMA A.8. If the Gaussian curvature of g is everywhere not smaller than H > 0 then
any two points p,q € D can be joined by a smooth geodesic arc v satisfying v C D,

Ly < =/VH.

Proof. According to Lemma A.6 we can find a smooth geodesic arc v : [0,1] — D
from p to g which is length minimizing among all piecewise smooth curves from p to
q inside D. If L[y] > 7/vH then for every ¢ > 0 small enough we can find ¢, € (e, 1)
such that v(t.) is conjugated to 7(e) along 7|;). Note that either v is contained in
a single side of D or v maps (0,1) into int(D). In latter case we use a Jacobi field J
along 7|(c4,) satisfying J(e) = 0, J(tc) = 0 to construct an interior variation of v which
decreases length, a contradiction. In the former note that, perhaps up to a change of
sign, J can be arranged so that it produces variations into D which decrease length,
again a contradiction. O

Before moving to Toponogov’s theorem and its consequence, we take a moment to
study convex geodesic polygons on the 2-sphere equipped with its metric of constant
curvature H > 0. This space is realized as a spherical shell of radius H~/? sitting
inside the euclidean 3-space, and will be denoted by Sp.

LEMMA A.9. Let D be a convex geodesic polygon in Sg. Then the following hold.

i) D coincides with the intersection of the hemispheres determined by its sides and
the corresponding inward-pointing normal directions.

ii) The total perimeter of D is not larger than 2m/~/H.
i11) If D has at least two sides then all sides of D have length at most W/\/ﬁ

Proof. Assertion iii) is obvious. The argument to be given below to prove i) and ii) is
by induction on the number n of sides of D. The cases n = 1,2, 3 are obvious.

Now fix n > 3 and assume that i), ii) and iii) hold for cases with j < n sides. Let
p, ¢, 7 be three consecutive vertices of D, so that minimal geodesic arcs vpq, Y4 from p
to ¢ and from ¢ to r, respectively, can be taken as two consecutive sides of D. Here we
used that sides have length at most m/vH. Let v1,...,Y,_2 be the other sides of D
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and denote by H,,, Hyr, H1,. .., H,_2 the corresponding hemispheres determined by
these sides and D.

We argue indirectly to show that D C Hy, N Hy,. If x € D\ (Hpq N Hy,), consider
a smooth geodesic arc v from x to g inside D which minimizes length among piecewise
smooth paths in D. v exists by Lemma A.6 and, by the Lemma A.8, L[y] < 7/vH.
Since z is not antipodal to ¢ we have L[y] < m/v H which implies that + is the unique
minimal geodesic from x to ¢ in Sy. Combining « € H,, N Hy and Definition A.2 one
concludes that v is not contained in D, a contradiction. Repeating this argument for
all triples of consecutive vertices we find that

DCHpqﬂHqTﬂHlﬂ”-ﬁHn_g. (66)

Now let v, C D be the smooth geodesic arc from p to r which is minimal relatively
to D. This arc exists by Lemma A.6. Moreover, vy, \{p, r} C int(D) since otherwise, by
the previous lemma, v, C 0D contradicting the fact that n > 3. Note that ~,, divides
D into D = D'"UT, where D' is a convex geodesic polygon with sides vpr, 71, - - ., Tn—2,
and 7' is the convex geodesic triangle bounded by 4, Ygr, Vpr- Finally, let Hy, be the
hemisphere determined by ~,, and D', and let H;,q is the closure of Sy \ Hy,. By the
induction step D" = Hp, N Hy N --- N Hy g, and T = Hyg N Hye 0 Hy,.. Thus

Hypy O Hyp N H O -0 Hyy
= pqﬂquﬂHlﬂ“'ﬂHn_gﬁSH

= HpyNHy NHi NN Hy o0 (Hp UH),) (67)
C (Hp NHiN---NHy ) U (Hpg N Hyr N Hp,.)
=D'UT =D.

Hence (66) and (67) prove that i) holds for all convex geodesic polygons with at most
n sides.

To prove ii) we again assume n > 3 and consider a, b, ¢, d four consecutive vertices
of D, the consecutive sides Yap, Voe, Ved cOnnecting them, and let ~q,...,v,—3 be the
other sides of D. Let Hj. be the hemisphere containing DD whose equator contains .,
and let Hj_ be the closure of Sy \ Hp.. If we continue v, along b and .4 along c till
they first meet at a point e € int(Hj.). If Ype,Vec are the minimal arcs connecting b
to e and e to ¢, respectively, and T' is the convex triangle with sides 7Vpe, Yec, Ve, then
we claim that F' = D UT is a convex geodesic polygon with n — 1 sides. To see this
the reader will notice that the closed curve o = Y45 U Ype U Yee U Yeqg U1 U -+ - U Y3
is simple since T' C Hj_. and D C Hy, (D satisfies 1)), and a = 9F. By the induction
step a has length < 27/+/H and, since v, is minimal, the length of D is smaller than
that of a. O

A.2 The Relative Toponogov’s Theorem

Toponogov’s triangle comparison theorem is one of the most important tools in global
Riemannian geometry. In the case of convex surfaces, it had been previously proven by
Aleksandrov in [Ale48]. Here we need a relative version for triangles in convex geodesic
polygons sitting inside positively curved two-spheres.

We fix a metric g on S2, a convex geodesic polygon D C S?, and follow [CET75]
closely. However, we need to work with distances relative to D. For instance given
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points of D, the distance between them relative to D is defined to be the infimum of
lengths of piecewise smooth paths in D connecting these points. Lemma A.5 tells us
that the relative distance is realized by a smooth geodesic arc contained in D. We say
that a (smooth) geodesic arc between two points of D is minimal relative to D if it
realizes the distance relative to D.
A geodesic triangle in D is a triple of non-constant geodesic arcs (¢, ¢2, ¢3) parametrized

by arc-length, ¢; : [0,1;] — S? (I; is the length of ¢;), satisfying ¢;([0,1;]) C D,
¢i(l;) = ¢i+1(0) and the triangle inequalities I; < ;41 + li+2 (indices modulo 3). These
arcs may or may not self-intersect and intersect each other. The angle a; € [0, 7] is
defined as the angle between —cj ;(l;+1) and ¢, ,(0) (indices modulo 3).

THEOREM A.10 (Relative Toponogov’s Theorem). Let g be a Riemannian metric on
S? with Gaussian curvature pointwise bounded from below by a constant H > 0, and
let D C S? be a conver geodesic polygon. If (c1,c2,c3) is a geodesic triangle in D such
that c1,c3 are minimal relative to D and Iy < W/\/E, then for every 0 < € < H there
exists a so-called comparison triangle (¢1,¢a,¢3) in Sg—. with angles &y, g, as such
that Llc;] = L[¢;| and &; < o, where a; are the angles of (c1,ca,c3).

In [K1i82, page 297] Klingenberg observes that the relative version of Toponogov’s
theorem holds, and that this observation is originally due to Alexandrov [Ale48]. A
proof of the above theorem would be too long to be included here, but the reader
familiar with the arguments from [CET75] will notice two facts:

e The proof from [CET75] for the case of complete Riemannian manifolds essentially
consists of breaking the given triangle into many ‘thin triangles’ (these are given
precise definitions in [CET75, chapter 2]), and the analysis of these thin triangles
is done by estimating lengths of arcs which are C°-close to them. Hence all
estimates of the perimeters of these thin triangles are obtained relative to an
arbitrarily small neighborhood of the given convex geodesic polygon.

e Distances relative to the convex geodesic polygon are only at most a little larger
than distances relative to a very small neighborhood of the convex geodesic poly-
gon. This is easy to prove since we work in two dimensions.

Putting these remarks together the relative version of Toponogov’s theorem can be
proved using the arguments from [CET75].

REMARK A.11. A geodesic triangle in Sg_. with sides of length at most w/v/ H, either
s contained in a great circle, or its sides bound a convex geodesic polygon.

A.3 The perimeter of a convex geodesic polygon

THEOREM A.12. Let (S2,g) be a Riemannian two-sphere such that the Gaussian cur-
vature is everywhere bounded from below by H > 0. If D is a convex geodesic polygon
in (S2,g) then the perimeter of OD is at most 2 /v/H. The same estimate holds for
the perimeter of a two-gon consisting of two non-intersecting simple closed geodesic
loops based at a common point.

This is proved in [Kli82, page 297] for the case dD is a closed geodesic (no vertices).
We reproduce the argument here, observing that it also works for the general convex
geodesic polygon.
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Proof of Theorem A.12. Let d > 0 be the perimeter of dD. We can parametrize 0D
as the image of a closed simple curve ¢ : R/dZ — S? which is a broken unit speed
geodesic. For each n > 1 and k > 0 we denote by 75 2n a (smooth) geodesic arc from
c(kd2™™) to ¢((k+1)d2™™) in D which minimizes length relative to D. We make these
choices 2"-periodic in K, Yi42n 2n = Y27, and also choose 792 = 71,2. We can assume
that L[yoz2] < d/2 since, otherwise, d/2 < L[yp2] < /v H (Lemma A.8) and the proof
would be complete. In particular, v 2 is not contained in 9D, and Lemma A.7 implies
that o2 touches D only at its endpoints ¢(0), c(d/2).

Notice that if the distance from c¢(kd2™") to ¢((k + 1)d27") relative to D is d27",
then Lemma A.7 implies that ¢|qa-n (k41)d2-»] 13 @ smooth geodesic arc. Therefore,
we are allowed to make the following important choice:

(C) If the distance from c(kd2™™) to c((k + 1)d2™™) relative to D is d27", then we
choose Y20 = |jpaa—n (k+1)d2-7]-

The above choice forces v;ontm to be clgge—n—m (141)g2-n-m) for all k2™ < 1 <
(k +1)2™, whenever v 2n = ¢|jpaa—n (k+1)d2-n]-

For n > 2 set D,, to be the subregion of D bounded by the simple closed broken
geodesic 0D,, = U{yp2n | 0 < k < 2"}. It follows readily from Lemma A.7 that this is
a convex geodesic polygon. Moreover, sides of D,, fall into two classes: either a side is
not contained in D and coincides precisely with 7 9n for some k, or it lies in 9D is
a union of adjacent vy on U Ygq1,20 U -+ - U Vpqmon C 0D for some k and some m. By
construction

i) D,, C D41 and L[OD,] — d as n — oc.
ii) The vertices of D,, form a subset of {c(kd2™") |0 < k < 2"}.

Fix 0 < € < H. We would like to construct a sequence of convex geodesic polygons
E, C E,41 in Sg_. such that L[OE,| = L[OD,,].

Consider geodesic triangles Ty on = (Yr,27, Yok 2n+1, Yag41,27+1) in the sense of §A.2.
The triangle inequalities hold, since all sides are minimal relative to D.

According to Theorem A.10, associated to Ty 2,712 there are comparison triangles
T0’2 = (’7072,’7074,"—)/1’4), TLQ = (’_)/1’2,’_)/2’4,’_)/3’4) in SH:e Wl_th sides of same length as
the corresponding sides in Tp2,712. The angles of Tp2,712 are not larger than the
corresponding angles on Tp 2,71 2. Up to reflection and a rigid motion, we can assume
0,2 coincides with 77 o (along with vertices corresponding to endpoints of 792 = v1,2)
on a given great circle e, and T(],Q, Tl,g lie on opposing hemispheres determined by e. Of
course, T2 and/or T} 2 could lie on e, but this forces L[yp 2] to be d/2, a case we already
treated. Again the angle comparison can be used to deduce that Ey := TQQ U TLQ is a
convex geodesic polygon in Sy_. with the same perimeter as Dy (0F; = Ui:(ﬁk,@-

To construct E3, note that each side of Dy not contained in 9D is of the form
Yk,a for some fixed 0 < k < 4. Moreover, 74 is a side of Fy by construction and
angle comparison. By Lemma A.7 74 divides D into two convex geodesic polygons,
only one of which, denoted by Dy 4, contains c([kd/4, (k + 1)d/4]) in its boundary.
By the same lemma, T} 4 is contained in Dj4 (and determines a convex geodesic
polygon). By the relative Toponogov theorem, there exists a comparison triangle Tk74
which we can assume is of the form (%4, Yor.8, J2k+1,8), i.e. one of its sides matches
precisely the side 4 4 of Eo together with corresponding vertices of 4j 4. Moreover,
possibly after reflection, we can assume Fy and Tk74 lie on the opposing hemispheres
determined by the great circle containing 7 4. This last step strongly uses Lemma A.9
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and Remark A.11. Again by the angle comparison, Es U T) 4 is a convex geodesic
polygon in Sy_. with the same perimeter as the convex geodesic polygon Dy U T}, 4.
Repeating this procedure for another side of Dy not in 9D, which is of the form 7 4
for some k' # k, with Eo U T, k4 in the place of Eo, we obtain a larger geodesic convex
polygon FEy U Tk,4 U Tk/74 in Sy_. with the same perimeter as the geodesic convex
polygon Do UTj, 4 UTj 4. After exhausting all the sides of Do not in D we complete
the construction of Es.

The construction of E, from D, 1, F, 1 follows the same algorithm, since sides
of Dy—1 not in 9D must be of the form 7 gn—1 for some 0 < k < 27=1 In this case,
there will be a corresponding side 7 9n—1 of Ej, 1 with the same length as 7y gn—1
along which we fit the comparison triangle Tk,2"71 obtained by applying the relative
Toponogov theorem to Tj, on—1. Doing this step by step at each side of D, 1 not in 9D
we obtain F,.

By Lemma A.9 we know that

L[0D,)| = L[OE,] <27 /VH — e, Vn.

Together with (i) above, we deduce that L[0D] < 27 /v/H — €. Letting € | 0 we get the
desired estimate.

To get the estimate for the two-gon as in the statement note that its perimeter can
clearly be approximated by the perimeter of convex geodesic polygons. O
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