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Course Information

Tentative syllabus:

• Invariant measures of a transformation, ergodicity, Birkhoff ergodic
theorem.

• Oseledec’s theorem (in 2D), subadditive ergodic theorem, Lyapunov
exponents.

• Metric (measure theoretic) entropy and topological entropy.

• Pesin-Ruelle inequality/formula.

• Introduction to Pesin’s theory of non-uniformly hyperbolic systems.

• Interlude on uniform hyperbolicity: basic examples, properties such as
shadowing, closing lemmas.

• Back to non-uniform hyperbolicity: shadowing and closing, Katok’s
theorem relating entropy and periodic points.

Literature:

The course will be based loosely around:

Mark Pollicott: ”Lectures on ergodic theory and Pesin theory on
compact manifolds”.

Here are some other sources:

• Denker: ”Einführung In Die Analysis Dynamischer Systeme”.

• Einsiedler-Schmidt: ”Dynamische Systeme: ergodentheorie und topol-
ogische dynamik”.

• Walters: ”An introduction to ergodic theory”.

• Mañe: ”Ergodic theory and differentiable dynamics”.

• Katok-Hasselblatt: ”Introduction to the modern theory of dynamical
systems”
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• Barreira-Pesin: “Introduction to smooth ergodic theory“

• Fomin-Kornfeld-Sinai: ”Ergodic theory“.

Some ”alternative” sources - more playful or of a survey nature.

• Katok-Hasselblatt: ”A First Course in Dynamics: with a Panorama of
Recent Developments”.

• ”Ergodic theory, symbolic dynamics and hyperbolic space.” edited by
Bedford, Keane, Series.

• Lai-Sang Young: survey papers on entropy at www.cims.nyu.edu/∼lsy/

• Pugh and Shub: A nice survey paper (with lots of pictures). This will
make sense once we have defined ergodicity. www.ams.org/journals/bull/2004-
41-01/S0273-0979-03-00998-4/S0273-0979-03-00998-4.pdf

• Amie Wilkinson: survey papers on hyperbolicity at http://math.uchicago.edu/∼wilkinso/

• David Ruelle: ”Elements of differentiable dynamics and bifurcation
theory“.

• Arnold-Avez: ”Ergodic problems of classical mechanics”.

• Terence Tao’s blog: he has a discussion of the ergodic theorem, al-
though he is heading more in the direction of number theory.
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1 Preliminaries from measure theory and func-

tional analysis

This section is intended to be a quick review. The only thing we prove is how
to use Riesz’ representation theorem to reduce the statement of compactness
of the space of probability measures (in the weak, or vague, topology) to
that of Alaoglu’s theorem about the weak-∗ compactness of the unit ball in
the dual of a Banach space. Bare in mind that for most of the course we
will be working with regular Borel probability measures on smooth compact
manifolds, or at least compact metric spaces, so that many of the following
statements are stated in far less than full generality.

1.1 Measures

First assume X is an arbitrary set.

Definition 1.1. A σ-algebra onX is a collection of subsets B ⊂ X such that
∅ ∈ B and is closed under countable unions, and closed under complements.
We call the pair (X,B) a measurable space.

Definition 1.2. A measure is a function µ : {σ-algebra} → [0,∞] satisfying
µ(∅) = 0 and countable additivity:

B1, B2, . . . ∈ B pairwise disjoint =⇒ µ

(⋃
i

Bi

)
=
∑
i

µ(Bi).

When a σ-algebra is large, it is often useful to establish properties on a
smaller collection of subsets of X.

• An algebra is a collection of subsets O ⊂ X such that ∅, X ∈ X and
is closed under finite unions and finite intersections.

• An algebra O determines/generates a unique σ-algebra B(O) by taking
all possible countable unions and complements of sets in O. Formally,
B(O) is the intersection of all σ-algebras on X that contain O.
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• For example any topology on X is an algebra

O = {U ⊂ X open}.

The σ-algebra B(X) generated by the open sets is called the Borel
σ-algebra on X.

• Any measure defined on the Borel σ-algebra of X is called a Borel
measure on X. We will additionally assume that this includes the
condition µ(X) <∞.

Theorem 1.3. (Caratheodory Extension theorem) Suppose that O is an
algebra on X and B = B(O) is the generated σ-algebra. Then any map
m : O → [0,+∞] such that

1. m(∅) = 0, and

2. A1, . . . An ∈ O pairwise disjoint =⇒ m (∪iAi) =
∑

im(Ai), i.e.
finitely additive,

3. m(X) <∞,

extends uniquely to a measure on X.

Corollary 1.4. If m1,m2 are two finite measures defined on the same σ-
algebra B, then to see if m1 = m2 it suffices to check on any generating
algebra.

To compare measures the following notions are handy.

Definition 1.5. If m1,m2 are two measures on a measurable space (X,B),
then we say:

1. m1 << m2 if m2(B) = 0 implies m1(B) = 0 for all B ∈ B. (Say m1 is
absolutely continuous with respect to m2.)

2. m1 ∼ m2 if m1 << m2 and m2 << m1. (Say m1 and m2 are equiva-
lent.)

3. m1 ⊥ m2 if there exists B ∈ B such that m1(B) = 0 = m2(X\B). (Say
m1 and m2 are mutually singular.)
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Theorem 1.6 (Radon-Nikodym). If µ1 << µ2 are finite measures on (X,B)
then there exists f : X → R µ2-integrable such that

µ1(B) =

∫
B

f dµ2

for all B ∈ B. The function f is unique µ2-a.e, and so determines a unique
element in L1(X,B, µ2) called the Radon-Nikodym derivative and de-
noted f = dµ1/dµ2. Moreover f ≥ 0.

We recall the definition of measurable and integrable functions in the follow-
ing remark:

Remark 1.7.

• A function f : (X,B)→ R is measurable if f−1(U) ∈ B for all U ⊂ R
open. Then f is integrable w.r.t. a given measure µ on (X,B) if∫

X

|f | dµ < ∞.

To recall the definition of the left hand side see your favourite book
on measure theory or analysis. The space of equivalence classes of
µ-integrable functions is denoted

L1(X,B, µ) := {f : X → R integrable w.r.t. µ }/ ∼

where f1 ∼ f2 if they are equal µ a.e. Similarly, for 1 ≤ p < ∞ we
define

Lp(X,B, µ) := {f : X → R integrable w.r.t. µ |
∫
X

|f |p dµ <∞}/ ∼ .

This is a Banach space with norm ‖f‖Lp :=
(∫

X
|f |p dµ

)1/p
.

• L∞(X,B, µ) is defined to be those µ-measurable functions bounded µ-
almost everywhere. This is a Banach space with norm ‖f‖L∞ = inf c
over all c ∈ R for which there exists E ∈ B with µ(E) = 0 and
|f(x)| ≤ c for all x /∈ E.
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1.2 Monotone convergence and approximation theo-
rems

Let (X,B) be a measurable space.

Call a sequence of measurable functions fj : (X,B)→ R ∪ {+∞}, for j ≥ 1,
a monotone increasing sequence if

fj(x) ≤ fj+1(x) ∀x ∈ X, ∀j ≥ 1.

Note that such a sequence converges pointwise to the measurable function
f : (X,B)→ R ∪ {+∞} given by

f(x) = sup
j≥1

fj(x)

for all x ∈ X.

Theorem 1.8 (Monotone convergence theorem). Suppose fj : (X,B) →
[0,+∞], j ≥ 1, is a monotone increasing sequence converging pointwise to
f . Then for any measure µ on (X,B) we have

lim
j→∞

∫
X

fj dµ =

∫
X

f dµ ∈ [0,+∞].

An important point here is that the assumptions on the sequence (fj)j do not
involve a specific choice of measure, only a σ-algebra, while the conclusion
then holds for all measures on the σ-algebra.

This theorem often works well in tandem with:

Theorem 1.9 (Monotone approximation theorem). Suppose f : (X,B) →
[0,+∞] is measurable. Then there exists a monotone increasing sequence of
simple functions ϕj : (X,B)→ [0,+∞] converging pointwise to f . That is,

lim
j→∞

ϕj(x) = f(x)

for all x ∈ X.

Remark 1.10. In both theorems the assumptions of non-negativity of the
functions is essential.
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Remark 1.11. By a simple function we mean a measurable function
ϕ : (X,B)→ R∪{+∞} that takes on only a finite number of values. Equiv-
alently ϕ is a finite linear sum of characteristic functions:

ϕ =
n∑
i=1

aiχAi

some Ai ∈ B and ai ∈ R ∪ {+∞} and n ∈ N.

1.3 Extra structure from a topology

Now suppose that X is a compact metric space and let B be the induced
Borel σ-algebra, i.e. the σ-algebra generated by open sets in X.

The first nice fact is that any continous f : X → R is automatically measur-
able. Secondly, if f is continous and m is a finite measure on (X,B) then f is
m-integrable because continuous functions on compact spaces are bounded.

Definition 1.12. A regular Borel measure on X is a Borel measure µ
such that

µ(E) = inf
U open
E⊂U

µ(U) = sup
K compact

K⊂E

µ(K)

for all E ∈ B. i.e. can be approximated from outside by open sets and inside
by compact sets.

One consequence of regularity is the following:

Theorem 1.13. C(X,R) ⊂ L1(X,B, µ) is a dense subset for any regular
Borel measure µ on (X,B).

In other words, for any f : (X,B) → R measurable with
∫
X
|f | dµ < ∞,

there exists a sequence fj ∈ C(X,R) so that

lim
j→∞

∫
X

|fj − f | dµ = 0.

Sketch Proof. To see where the regularity property of the measure en-
ters let’s look at the proof when X = [0, 1]. One uses the following four
steps: (1) By the monotone convergence and approximation theorems above
it suffices to approximate any characteristic function by continous functions
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in the L1 sense. (2) By regularity of the measure µ any Borel set B ∈ B
can be approximated by an open set U , so it suffices to approximate any
characteristic function χU , with U open, by continous functions, in the L1

sense. (3) After removing a set of measure ε, U has only a finite number of
components, so it suffices to assume U is connected and therefore is just an
interval (a, b) ∈ [0, 1]. (4) It is now easy to approximate χ(a,b) by continous
functions in the L1 sense with the following picture:

Insert picture

For a general compact metric spaceX the argument is similar, see for example
[3].

Remark 1.14. The last theorem generalizes in two directions: for any 1 ≤
p < ∞ the inclusion C(X,R) ⊂ Lp(X,B, µ) is also dense, and is false for
p =∞. One can also replace continuous by C∞-smooth functions.

Definition 1.15. A Probability measure on X is a measure m such that
m(X) = 1 (implicitely X is non-empty). We set

M(X) = {regular Borel probability measures on X}.

Definition 1.16. The support of m ∈ M(X), denoted supp(m), is the
smallest closed set C ⊂ X such that m(C) = 1.

Equivalently, x ∈ supp(m) iff m(U) > 0 for all open U containing x.

Definition 1.17 (Vague/weak-∗ topology). Say that a sequence of prob-
ability measures mk ∈ M(X), k ≥ 1, converges weak-∗, or vaguely, to
m ∈M(X) if ∫

X

f dmk →
∫
X

f dm

for k →∞, for all f ∈ C(X).
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It’s a fact that this indeed defines a metrizable and hence Hausdorff topology
onM(X) when X is compact. Moreover, the spaceM(X) itself is compact
in the vague topology:

Theorem 1.18. To emphasize, X is a compact metric space. Then the space
of regular Borel probability measures M(X) with the weak-∗ topology is:

1. metrizable,

2. compact.

Let us outline how to prove this using Riesz’ representation theorem and
Alaoglu’s theorem from functional analysis. Precise proofs can be found in
[3],[12], [13].

First recall:

• C(X) := C0(X,R), the space of continuous functions from X → R, is
a Banach space with the supremum norm and is separable when X is
compact (i.e. has a countable dense subset).

• A signed measure is a function µ : {σ-algebra} → R ∪ {+∞} satis-
fying the axioms of a measure, i.e. µ(∅) = 0 and countably additive.

• The variation of a signed measure µ is

|µ| := sup
∑
i

µ(Ei)

taken over all finite partitions {Ei}i of X. The notion of regular for a
signed measure is that |µ| <∞.

Theorem 1.19 (Riesz representation theorem). Let X be a compact metric
space. Then

C(X)∗ ' {µ | µ regular signed Borel measure}

with norm ‖µ‖ = |µ| equal to the variation of µ. The isomorphism is given
by

lµ(f) =

∫
X

f dµ.
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Remark 1.20. We observe:

• This isomorphism identifies the measures on X with the positive lin-
ear functionals on C(X); l ∈ C(X)∗ is positive if l(f) ≥ 0 whenever
f(x) ≥ 0 for all x ∈ X.

• The isomorphism identifies the probability measures on X with the
positive functionals l which satisfy l(1) = 1 = ‖l‖.

Theorem 1.21 (Alaoglu). Let V be a separable Banach space. Then the unit
ball B1

V ∗ := {‖l‖ ≤ 1} in the dual space V ∗ is sequentially weak-∗ compact.

Remark 1.22. Recall the comparison of weak versus weak-∗ convergence
in V ∗. Consider a sequence lk ∈ V ∗, k ≥ 1. Then lk converges weakly to
l ∈ V ∗ if λ(lk) → λ(l), as k → ∞, for all λ ∈ V ∗∗. In contrast lk converges
weak-∗ to l ∈ V ∗ if lk(v)→ l(v), as k →∞, for all v ∈ V .

Steps in proof of compactness Theorem 1.18. Let

B1 :=
{
l ∈ C(X)∗ | ‖l‖ ≤ 1

}
be the unit ball in C(X)∗ (with respect to the dual space norm). Then X
compact implies C(X) is separable implies B1 is metrizable and compact in
the weak-∗ topology.

In particular, metrizable means that we don’t have to worry about the dis-
tinction between sequential and topological compactness. The Riesz isomor-
phism takes M(X) bijectively onto

C := {l | l ≥ 0, ‖l‖ = 1, l(1) = 1} ⊂ B1 (1)

Moreover, the isomorphism takes weak-∗ convergent sequences in the space
of measures to weak-∗ convergent sequences in the space of functionals, and
therefore M(X) ' C are homeomorphic with the weak-∗ topologies. In par-
ticular M(X) is metrizable.
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It remains to check that C ⊂ B1 is a closed subspace (in the weak-∗ topology)
and it will follow from Alaoglu that C is compact. We examine the condi-
tions defining the right hand side of (1). The conditions l ≥ 0 and l(1) = 1
are pointwise and therefore closed under weak-∗ convergence. The condition
‖l‖ = 1 alone is not closed under weak-∗ convergence, apriori the norm can
drop under weak-∗ limits. However l(1) = 1 together with ‖l‖ ≤ 1 implies
‖l‖ = 1. This ends our sketch of the proof.

Lemma 1.23. The spaceM(X) is convex. That is, m1,m2 ∈M(X) implies
αm1 + (1− α)m2 ∈M(X) for all α ∈ [0, 1].

Proof. From the definitions. �

1.4 Exploiting convexity

We state two general results from functional analysis which apply to compact
convex subsets of locally convex topological vector spaces. These apply to
the probability measuresM(X) which we can view as a subset of C(X)∗ via
the Riesz isomorphism.

Suppose V is a topological vector space. C ⊂ V is convex.

Definition 1.24.

• An extreme point of C is a point x ∈ C such that C\{x} is still
convex. E.g. the extreme points of a closed convex polygon are the
vertices. (Not the whole boundary).

• Let E ⊂ V be an arbitrary subset. The convex hull of E, denoted
co(E), is the set of all finite convex combinations of points in E:

co(E) :=

{
n∑
i

αiei
∣∣ ei ∈ E, αi ∈ [0, 1],

∑
i

αi = 1, 1 ≤ n <∞

}
.

• It’s an easy exercise to check that an equivalent definition of co(E) is
the intersection of all convex C such that E ⊂ C ⊂ V .
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Finite dimensions. Let C ⊂ Rn be non-empty, compact, convex. Intu-
itively:

A. ex(C) 6= ∅.

B. every point x ∈ C is a finite convex sum of extreme points.

This is true, infact a theorem of Minkowski states that in Rn every point x
in C can be written as a convex sum of n + 1 extreme points. For example
the centre point of an equilateral triangle in R2. One can think of the Krein-
Milman theorem below as a generalisation of A and B to infinite dimensions.

Infinite dimensions. For example, if V is a normed vector space (possibly
dimV = +∞) then the open and closed unit balls

B1 = {v ∈ V | ‖v‖ ≤ 1} Ḃ1 = {v ∈ V | ‖v‖ < 1}

are convex (triangle inequality) and ex(Ḃ1) = ∅ and ex(B1) ⊂ {v ∈ V | ‖v‖ =
1}. In infinite dimensions it is possible that even ex(B1) = ∅. For example,
the closed unit ball in L1([0, 1]) has no extremal points*, while in Lp for
1 < p <∞ every point in the unit sphere is an extremal point!

Remark 1.25. In the two theorems we wish to state below, Krein-Milman
and Choquet, it is convenient to state them in a more general context than
just a normed vector space or Banach space (because the weak-∗ topology
does not come from a norm). Therefore we will use the notion of a locally
convex topological vector space (LCS) without recalling exactly what
this means (see for example [3]). All that is important for us is that, for a
Banach space V , the weak-∗ topology on V ∗ gives it the structure of a locally
convex topological vector space.

Theorem 1.26 (Krein-Milman). Let V be a LCS. Then for any non-empty
compact convex subset C ⊂ V we have:

*It suffices to show that any f ∈ L1 with ‖f‖1 = 1 is a non-trivial convex sum of two
elements g, h ∈ B1. To do this simply partition the domain [0, 1] into two pieces I1, I2
(measurable, e.g. intervals) and consider the restriction of f to I1 and I2. Choose the
partition so that both restricted functions have L1 norm strictly less than 1 (e.g. 1/2),
then normalize both functions to have L1 norm equal to 1. Then f is a (non-trivial) convex
sum of the resulting two functions.
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1. The set of extreme points is non-empty: ex(C) 6= ∅.

2. C equals the closure of the convex hull of its extremal points. That is,
C = co(ex(C)).

For a proof and further discussion and applications see Conway’s book [3].
Note that one nice application is the following: the closed unit ball in the dual
of a Banach space is a non-empty convex and compact subset with respect to
the weak-∗ topology. Since the weak-∗ topology is also a LCS we can apply
Krein-Milman and conclude that the closed unit ball in a dual Banach space
always has many extremal points. By the footnote earlier, the closed unit
ball in L1[0, 1] has no extremal points. We must conclude that there exists
no Banach space V for which V ∗ = L1[0, 1].

In case one is tempted to think that C compact implies ex(C) is compact,
we note that this need not be true even in finite dimensions:

Insert example where C =two cones in R3

Here is an even stronger generalisation of properties A and B to infinite
dimensions.

Theorem 1.27 (Choquet). Let V be a LCS and C ⊂ V a non-empty metriz-
able compact convex subset. Then for each x ∈ C there exists a regular Borel
probability measure µ = µx on C, such that

1. supp(µ) ⊂ ex(C),

2. and

l(x) =

∫
C

l(x′) dµ(x′) (2)

for every l ∈ V ∗.

A proof of Choquet is in [14].
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Remark 1.28.

• How should we think of (2)? We can think of it as giving meaning to
the relation

x =

∫
C

x′ dµ(x′). (3)

The right hand side of (3) is some kind of integral of a function with
values in a locally convex topological vector space and requires some
justification, while (2) is just the usual notion of integral for real valued
functions. We can think of (3) as expressing x as an infinite convex
sum of extremal points of C. Indeed, if x happens to be a finite sum of
extremal points: x = a1e1 + . . .+anen, where ei ∈ ex(C) and ai ∈ [0, 1]
with a1 + . . .+ an = 1, then formally (3) holds with

µ =
n∑
i=1

aiδei

where δei is the delta measure (or ”point mass”) at ei.

• The advantage of Choquet over Krein-Milman is that the measure µ is
supported in ex(C) and not just in the closure ex(C). This comes at
the expense of assuming C is metrizable, without which it is possible
ex(C) is not a Borel set. But in our applications C =M(X), for some
compact metric space X, and we saw that this is metrizable in theorem
1.18.

• In general the measure µx in the Choquet theorem will not be unique.
(Think of a convex set in R2 having lots of extremal points such as
the closed unit ball w.r.t. the Euclidean norm, and take any x with
|x| < 1; each straight line through x gives us a different way to write x
as a convex sum of two points on the boundary.)
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2 Invariant measures and the Birkhoff ergodic

theorem

Now we begin the course in earnest.

The starkest definition of a (discrete) dynamical system is a set X and a
transformation T : X → X, and one is interested in how points and subsets
of X get moved around the space by T . Even if T itself can be described in
very simple terms the behavior of orbits of points

x, Tx, T 2x, . . . T nx,

or more generally of subsets A ⊂ X,

A, TA, T 2A, . . . T nA

can be so complicated as to be seemingly impossible to describe.

In ergodic theory the basic idea is to examine the orbits of T on (probability)
measures M(X) on X. We can think of measures as a generalization of the
points and subsets of X (there’s a natural inclusion X ↪→M(X) taking x to
its point mass δx). For example suppose T has a periodic point x ∈ X such
that

T nx = x

for some n ∈ N. Then it’s easy to see that there is a (unique) T -invariant
probability measure µ supported on the orbit of x, namely

µ =
1

n

(
δx + δTx + · · ·+ δTn−1x

)
.

It turns out, under very general assumptions, that even if T has no periodic
points at all it will still have invariant probability measures and often these
tell us interesting things about the long term behavior of T .

To explore this approach seriously we need some structure on our space X
and on our transformation T .

17



2.1 Invariant measures

Throughout, unless stated otherwise, X = a compact metric space, and B =
the Borel σ-algebra on X. Then we say T : X → X is a measurable
transformation if

T−1B ∈ B

for all B ∈ B. Let

M(X) = {regular probability measures on (X,B)}.

Then T determines a map
T ∗ :M→M

by (T ∗m)(B) = m(T−1B).

Lemma 2.1 (Change of variables). Suppose T : X → X is a measurable
transformation, f : (X,B) → R ∪ {+∞} is a measurable function, and
m ∈ M(X). Then, f ◦ T ∈ L1(X,B,m) if and only if f ∈ L1(X,B, T ∗m),
and in either case we have the relation∫

f ◦ T dm =

∫
f d(T ∗m). (4)

Proof. Any measurable f can be written as a difference f = f+ − f− of
two positive (meaning non-negative) measurable functions, and relation (4)
is linear in f . It therefore suffices to prove that for any measurable f :
(X,B)→ [0,+∞] we have∫

f ◦ T dm =

∫
f d(T ∗m) ∈ [0,+∞] (5)

meaning that one side is finite iff both sides are finite and equal. Notice that
it’s much easier to work with positive measurable functions because their
integrals are always well defined - even if infinite.

To prove (5) we follow the usual steps: (1) verify for f = χB, B ∈ B, (2) by
linearity for f = ϕ a simple function, (3) by the monotone approximation
theorem and the monotone convergence theorem (see Section 1) we can take
limits and extend to f : (X,B)→ [0,+∞] measurable. Check the details. �
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The fixed points of T ∗ are of particular interest:

Definition 2.2. A probability measurem on (X,B) is T -invariant ifm(T−1B) =
m(B) for all B ∈ B. Equivalently T ∗m = m.

We will denote the set of all T -invariant probability measures by

Minv(X,B, T )

or just Minv when the rest is clear.

Lemma 2.3 (Characterizing invariant measures). For T : X → X measur-
able and m ∈M(X), the following are equivalent.

1. m ∈Minv(X,T ).

2. For all f ∈ C0(X,R) ∫
f ◦ T dm =

∫
f dm. (6)

3. For all f : (X,B)→ R ∪ {+∞} measurable both of the following hold:

(a) f ∈ L1(X,B,m) ⇐⇒ f ◦ T ∈ L1(X,B,m).

(b) For all f ∈ L1(X,B,m),∫
f ◦ T dm =

∫
f dm. (7)

Proof.
3. =⇒ 2. Because a continuous function f on X is bounded, so f ◦ T is
bounded, and so both are in L1(X,B,m).

2. =⇒ 1. Let B ∈ B. Since m is regular we can approximate B by an open
set U . By suitably approximating χU by continuous functions in the L1 sense
we conclude that (6) holds for f = χU and then for f = χB. This means
that m(T−1B) = m(B).
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1. =⇒ 3. Suppose m ∈ Minv(X,T ). Since every measurable function
is a difference of two positive measurable functions, and (7) is linear in f ,
3.(a) and 3.(b) together are equivalent to the following: for every measurable
f : (X,B)→ [0,+∞] we have∫

f ◦ T dm =

∫
f dm ∈ [0,+∞] (8)

meaning that one side is finite iff both sides are finite and equal. To prove
(8) we use ∫

f ◦ T dm =

∫
f d(T ∗m) =

∫
f dm ∈ [0,+∞]

where the first equality is from lemma 2.1, and the second because T ∗m = m.
�

Example 2.4. X = T 2 = R2/Z2 the 2-torus, and T : T 2 → T 2 is

T (x, y) = (x+ α mod 1, y + β mod 1).

Clearly the “Lebesgue” measure m inherited from R2 is an invariant (regular
Borel) probability measure. Suppose α 6= 0. Then,

• β/α =irrational =⇒ no further invariant measures.

• β/α =rational =⇒ many invariant measures. (Every point is periodic,
each periodic orbit supports an invariant measure. Also each line in R2

with slope β/α descends to an invariant closed curve in T 2, which will
also support an invariant measure. The invariant annulus inbetween
two invariant closed curves supports an invariant measure, etc.)

Example 2.5 (Bernoulli processes). Fix a probability vector p = (p1, . . . , ps)
of length s ∈ N, meaning each pi ∈ [0, 1] and

∑
i pi = 1. Set

X :=
{
x = (xi)i∈N

∣∣ xi ∈ {1, . . . , s}}
be the space of one-sided sequences in {1, . . . , s}, and let T : X → X be the
shift operator

T (x1, x2, x3 . . .) = (x2, x3, . . .).
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Give X the product topology from the discrete topology on {1, . . . , s}, and
let B := the Borel σ-alegbra. (Note that this is the topology of a metric
d that makes X a compact metric space, and T is continuous.) There is a
unique Borel measure m on (X,B) which satisfies

m
({

x | x1 = i
})

= pi

for i = 1, . . . , s, and

m
({

x | x1 = i, x2 = j
})

= pipj

etc. These are the so called “cylinder sets“, they form a semi-algebra S
meaning that X, ∅ ∈ S and S is closed under finite intersections and for
all A ∈ S we can write Ac as a finite disjoint union of elements of S. For
example, the collection of all intervals in R forms a semi-algebra but is not
an algebra since it’s not closed under finite unions. One checks that m is
additive under finite disjoint unions and therefore extends uniquely to the
whole Borel σ-algebra B by Caratheodory’s extension theorem, see Theorem
1.3. m is called the Bernoulli (p1, . . . , ps)-measure.

m is a T -invariant measure, for example consider

T−1
({

x | x1 = i
})

=
{
x | x2 = i

}
.

Let us verify that the measure of A := {x | x2 = i } is indeed pi. A is not a
cylinder set, but

A =
s⋃
l=1

{
x | x1 = l, x2 = i

}
is a disjoint union of cylinder sets, so

m(A) =
s∑
l=1

plpi = pi

as we require.

Question: when does a transformation T have invariant measures
in general?
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Exercise 2.6. Show that the following dynamical system has no invariant
probability measures: T : [0, 1]→ [0, 1] given by

T (x) =

{
1 if x = 0

x/2 if x 6= 0.

In this example T is not continuous. We will prove in a moment that T must
have an invariant probability measure if it is continuous. First a lemma.

Lemma 2.7. If T : X → X is continuous then the induced map T ∗ :
M(X)→M(X) is continous in the weak-∗ topology.

Proof. Consider a sequence mj ∈ M(X), j ≥ 1, converging to m ∈ M(X).
We wish to show that T ∗mj → T ∗m.

Fix f ∈ C(X). Then f ◦ T is also continous, so mj → m implies∫
X

f ◦ T dmk →
∫
X

f ◦ T dm as k →∞.

By lemma 2.1 this is equivalent to∫
X

f d(T ∗mk)→
∫
X

f d(T ∗m) as k →∞.

Hence by definition T ∗mj → T ∗m. �

Remark 2.8. It looks like the converse is also true. Check!

Theorem 2.9. (Existence of invariant measures) Let X be a non-empty
compact metric space. Then a continuous map T : X → X has at least one
invariant probability measure. More precisely, Minv(X) 6= ∅.

Proof. Recall thatM(X), the set of regular Borel probability measures on X,
is non-empty and compact with the weak-∗ topology/convergence. Moreover
it is convex, so starting from any m ∈M(X) each convex sum

mk :=
1

k

(
m+ T ∗m+ (T ∗)2m+ · · ·+ (T ∗)k−1m

)
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is an element in M(X). By compactness we find a weak-∗ convergent sub-
sequence

mkj → m̂

to some m̂ ∈ M(X). It is now easy to check that T ∗m̂ = m̂. Indeed, by
continuity of T ∗ (lemma 2.7)

T ∗m̂ = lim
j→∞

T ∗mkj .

And,

T ∗mkj =
1

kj

(
T ∗m+ (T ∗)2m+ · · ·+ (T ∗)kjm

)
=

1

kj

(
m+ T ∗m+ (T ∗)2m+ · · ·+ (T ∗)kj−1m

)
+

1

kj

(
−m+ (T ∗)kjm

)
.

Sending j →∞ this converges to m̂+ 0. Thus T ∗m̂ = m̂. �

Exercise 2.10. Assume (X,B) is a compact metric space equipped with the
Borel σ-algebra. T : X → X is a continuous transformation.

1. If T is a homeomorphism show that supp(m) is a T -invariant set for
each m ∈Minv.

2. If T is only continuous prove the same or find a counterexample.

What can we do with invariant measures?

Theorem 2.11 (Poincaré recurrence). Let (X,B) be an arbitrary measur-
able space, and T : X → X a measurable transformation with an invariant
probability measure m. Then for any set B ∈ B almost all points x ∈ B
return to B under some (positive) iterate of T .
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Remark 2.12. Note that “almost all” in this statement cannot be improved
to “all”. Consider for example the following Hamiltonian system (modelling
the motion of a pendulum) on the cylinder C = R × R/2πZ. H : C → R
is the smooth map H(x, y) = y2 − cos(x). The corresponding Hamiltonian
vector field XH on R2 is defined by

XH(x, y) = J∇H(x, y)

where J is the 2× 2 matrix

i =

(
0 −1

1 0

)
that rotates vectors in R2 anti-clockwise by 90 degrees. The flow generated
by XH is the 1-parameter family of diffeomorphisms φt : C → C, t ∈ R,
satisfying φ0 = id and for each (x, y) ∈ R2 solving the equation

d

dt
φt(x, y) = XH

(
φt(x, y)

)
.

Each path t 7→ φt(x, y) remains in a level curve of H. A theorem due to
Liouville states that for any smooth H the induced diffeomorphisms will
preserve the area form dx ∧ dy on C. We can easily convert this into an
invariant probability measure by setting

m(E) :=

∫
E

f(H(x, y)) dx ∧ dy

for an appropriate smooth function f : R→ [0,∞) chosen so that m(C) = 1.
The level curves of H look like:

Let p ∈ C be a point on one of the homoclinic connections, and B be any
small ball about p. Then the path t 7→ φt(p) never returns to B for t > 0.
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However, for any point q ∈ B that does not lie on a homoclinic connection
the path t 7→ φt(q) will return to B for infinitely many values of t > 0. All of
this fits in with Poincaré’s recurrence theorem, because the two homoclinic
connections fill up a set of measure zero with respect to the measure m.

Proof. (Of Poincaré’s recurrence theorem) Fix B ∈ B and let F be the points
in B that “never return”:

F =
{
b ∈ B

∣∣∣ T nb /∈ B for all n ≥ 1
}
.

We wish to show m(F ) = 0.
Observe that for each n ≥ 1, T−nF ∩B = ∅ by choice of F . In particular,

T−nF ∩ F = ∅

for all n ≥ 1 (as F ⊂ B). Applying inverses of T to both sides we find that
the sequence of sets T−nF for n ≥ 1 are pairwise disjoint. Since they must
all have equal measure and m(X) = 1 <∞ it follows that m(F ) = 0. �

Now we turn our attention to a particularly important type of invariant
measure, namely the ergodic ones.

2.2 Ergodic invariant measures

To motivate this important definition let’s consider the following example.

Example 2.13. X = D = closed unit disk in R2. T : D → D is rotation
through irrational angle α ∈ R\Q:

Tz = e2πiαz.

Clearly mleb := 1
π
(Lebesgue measure) is an invariant (regular Borel) prob-

ability measure on D. The fixed point at the origin supports an invariant
delta measure. The disk is filled by invariant circles Cr := {z | |z| = r}.
Each Cr also supports an invariant measure in M.

25



Clearly we can find many more invariant probability measures, for ex-
ample on the the disk-like regions enclosed by Cr, the annular-like regions
imbetween, etc. However, one gets the feeling that all further invariant mea-
sures we can cook up are merely “built up“ out of the invariant measures
sitting on the circles {Cr}r∈(0,1] and the invariant point mass at the origin.
Moreover, we get the feeling that we cannot ”build“ one of these measures
merely from the others, except perhaps by taking limits. That is, they are
in some sense indecomposable.

What is special about the measures supported on circles in this example?
The abstract answer is contained in the next definition.

Definition 2.14 (Ergodicity). An invariant measure m ∈ Minv(X) is said
to be ergodic (w.r.t. T ) if whenever T−1B = B we have m(B) = 0 or
m(B) = 1.

We will denote the set of ergodic invariant measures in M(X) by

Merg(X) :=
{
m ∈Minv(X)

∣∣∣ m is ergodic w.r.t. T
}

Example 2.15. Find (without details) the ergodic measures in example 2.13.

Exercise 2.16. Show that m is ergodic if and only if it satisfies the following
apriori weaker condition: every B ∈ B for which m(T−1B∆B) = 0 has either
m(B) = 0 or m(B) = 1. (Where A∆B denotes the symmetric difference.)

Here is a cute statement that uses the notion of an ergodic invariant measure,
that strengthens the Poincaré Recurrence theorem. It is unusual in that it
does not require one of the ”ergodic theorems“.

Let (X,B) be an arbitrary measurable space and T : X → X a measurable
transformation with an invariant measure m ∈Minv(X). Fix any set B ∈ B
with m(B) > 0 and define the “first return time function”

rB : B → N ∪ {+∞}
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to take each point x ∈ B to the minimal n ≥ 1 for which T nx ∈ B. Note that
rB is measureable (check). The Poincaré recurrence theorem is equivalent to
the statement that rB is finite almost everywhere (for every B ∈ B). The
following argument shows that infact rB is also integrable. If we assume
moreover that m is ergodic then we obtain a stronger quantitative statement:

Theorem 2.17 (Kac’s formula). If m ∈Merg(X,T ) then∫
B

rB dm = 1.

In other words the expected first return time for a point starting in B is
1/m(B).

Proof. Let us prove this under the additional assumption that T is invertible.
For the proof without assuming invertibility see Sarig’s notes [17] (Inciden-
tally, Sarig references Royden’s book on Real Analysis).

Set X0 equal to the collection of points which came from B at some point in
the past and which return to B at some point in the present or future. More
precisely

X0 :=
{
x ∈ X

∣∣∣ ∃n ≥ 0 s.t. T nx ∈ B and ∃m ≥ 1 s.t. T−mx ∈ B
}
.

Then clearly T−1X0 = X0 and m(X0) ≥ m(B) > 0 so by ergodicity m(X0) =
1.

We partition B according to first return time. Set

Bn :=
{
x ∈ B

∣∣∣ rB(x) = n
}
.
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Then ∫
B

rB dm =
∞∑
n=1

∫
Bn

rB dm

=
∞∑
n=1

nm(Bn)

=
∞∑
n=1

(
m(TBn) +m(T 2Bn) + · · ·+m(T nBn)

)
=

∞∑
n=1

n∑
j=1

m(T jBn).

We claim that the sets {T jBn}j,n in the double sum are disjoint. Before
examining this, it is clear that the union is equal to X0. Indeed, the union
of {T jBn}j,n is precisely those points x ∈ X for which x = T kb some b ∈ B,
k ≥ 1, and for which T lx ∈ B, some l ≥ 0. Thus the double sum is
≤ m(X0) = 1 with equality if the sets in the double sum are pair wise dis-
joint. It only remains then to show that the sets {T jBn}j,n in the double
sum are disjoint.

Arguing indirectly suppose that there exist integers 1 ≤ n1 ≤ n2 and 1 ≤
j1 ≤ n1 and 1 ≤ j2 ≤ n2 with (j1, n1) 6= (j2, n2) such that

T j1Bn1 ∩ T j2Bn2 6= ∅.

Consider a point p in this intersection. Then the minimal k ≥ 0 such that
T kp ∈ B is both n1 − j1 and n2 − j2. Thus n1 − j1 = n2 − j2. On the other
hand, the minimal k ≥ 1 such that T−kp ∈ B is both j1 and j2. Thus j1 = j2.
We conclude that (j1, n1) = (j2, n2) after all. �

Example 2.18. We include the following trivial example to illustrate a dif-
ference between using preimages T−1E instead of images TE when T is not
invertible: take T : [0, 1)→ [0, 1) to be

Tx = 4x mod 1.
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Let mleb denote Lebesgue measure on [0, 1). Then the pushforward of T does
not preserve mleb due to the “stretching” factor of 4. However the pullback
of T does preserve mleb. That is, for every Borel set E ⊂ [0, 1)

mleb

(
T−1E

)
= mleb

(
E
)
.

See the figure.

Before proving that ergodic measures exist, let us note the following refor-
mulation of ergodicity for later.

Lemma 2.19 (Characterizing ergodic measures). The following are equiva-
lent.

1. m ∈Merg.

2. The only invariant measurable functions are constant almost every-
where. i.e. for all f : (X,B)→ R ∪ {+∞} measurable,

f ◦ T = f m-a.e. =⇒ f is constant m-a.e. (9)

Proof.
2. =⇒ 1. Suppose B ∈ B is invariant, i.e. T−1B = B. Then f ◦ T = f
where f = χB. Therefore χB is constant m-a.e. which means that m(B) = 0
or m(B) = 1. Since B ∈ B was arbitrary, m is ergodic.

1. =⇒ 2. Suppose m ∈ Merg. Let f : (X,B) → R ∪ {+∞} be a fixed
measurable function with

f ◦ T = f m-a.e.
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We wish to show that f is constant m-a.e. Arguing indirectly we find some
c ∈ R such that

Bc =
{
x ∈ X

∣∣∣ f(x) ≥ c
}

(10)

satisfies 0 < m(Bc) < 1. However Bc is m-“almost” T -invariant. More
precisely

T−1Bc =
{
x ∈ X

∣∣∣ f(Tx) ≥ c
}
. (11)

Since f(Tx) = f(x) outside of a null set, comparing (10) and (11) we conclude
that m(T−1Bc ∆Bc) = 0. Thus by ergodicity (see exercise2.16) m(Bc) = 0
or m(Bc) = 1 giving a contradiction. �

Corollary 2.20. If T is continuous then the non-empty set of invariant mea-
sures Minv(X) besides being convex is also compact in the weak-∗ topology.

Proof. T : X → X continuous implies T ∗ :M(X)→M(X) continuous im-
plies that the set of fixed pointsMinv(X,T ) of T ∗ is a closed subset ofM(X).
Thus compactness of Minv(X,T ) follows from compactness of M(X). Con-
vexity is also obvious. �

Thus by Krein-Milman Minv(X) has extremal points (if T is continuous).
What are they? It turns out that these are the ergodic invariant measures.
To prove this we will use:

Lemma 2.21. Let (X,B) be an arbitrary measurable space and T : X → X
a measurable transformation. If ν, µ ∈ Minv and ν << µ then the Radon-
Nikodym derivative f = dν/dµ is T -invariant in the sense that

f ◦ T = f (12)

holds µ-almost everywhere.

Recall that f : (X,B)→ [0,∞) is a measurable function such that

ν(B) =

∫
B

f dµ (13)

for all B ⊂ B.
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Proof. Consider the sublevel sets

Bc :=
{
x
∣∣ f(x) < c

}
for c ∈ R. Clearly (12) holds if µ(T−1Bc ∆Bc) = 0 for all c ∈ R. Since
Bc = ∅ for all c ≤ 0 we need only consider c > 0. So fix B = Bc for some
c > 0. We have T−1B∆B = T−1B\B ∪B\T−1B. Observe that

µ
(
T−1B\B

)
= µ

(
B\T−1B

)
. (14)

Indeed µ(T−1B\B) = µ(T−1B)− µ(T−1B ∩B) while µ(B\T−1B) = µ(B)−
µ(B ∩ T−1B) and the T -invariance of µ. Now let us explain from the figure
why “obviously“ µ(T−1B∆B) = 0. (It is straight forward to convert the
picture into a string of rigorous equations, but hopefully easier to remember
this way.)

In view of (13) the area under the graph of f over a region E ∈ B is ν(E).
Thus T ∗ν = ν means that the area (under f) over B equals the area over
T−1B. Thus the regions Ω1 and Ω2 have equal areas in X × R, that is∫

T−1B\B
f dµ =

∫
B\T−1B

f dµ.

However in the one region f ≥ c while in the other f < c, so from (14)
the only possibility is that both areas vanish, that is both integrals are zero.
Since f is strictly positive on the left hand side this means µ(T−1B\B) = 0.
Thus by (14) µ(B\T−1B) = 0 also and we are done. �

Proposition 2.22 (Extremal invariant measures are ergodic). The extremal
points of Minv(X) are precisely the ergodic invariant measures Merg(X).
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Proof.
One direction: m /∈Merg =⇒ m /∈ ex

(
Minv

)
.

If m is not ergodic there exists B ∈ B with T−1B = B and 0 < m(B) < 1.
Define measures m1,m2 by

m1(E) :=
m(E ∩B)

m(B)
m2(E) :=

m(E ∩Bc)

m(Bc)

for all E ∈ B. Then m1,m2 are T -invariant probability measures and
m = m(B)m1 + (1−m(B))m2. Thus m is not an extremal point.

The other direction: m /∈ ex
(
Minv

)
=⇒ m /∈Merg.

Since m is not extremal we can write

m = αm1 + (1− α)m2

for some m1,m2 ∈Minv both distinct from m, and some 0 < α < 1. Observe
that m(N) = 0 implies m1(N) = 0 so that m1 << m. Thus by Radon-
Nikodym there exists a measurable “density“ function f : X → [0,∞) so
that

m1(E) =

∫
E

f dm

for all E ∈ B. By lemma 2.21 f is T -invariant m-a.e.

Claim: f is not constant m-a.e.

From the claim we will be done because we will have produced a non-constant
T -invariant function (everything m-a.e.) which by lemma 2.19 means m is
not ergodic. We prove the claim indirectly: suppose f is constant m-a.e.
Then the constant must be 1 since∫

X

f1 dm = m1(X) = 1.

But f = 1 m-a.e. =⇒ m1 = m which is impossible. �

Corollary 2.23 (Existence of ergodic measures). Merg(X,T ) 6= ∅ if T :
X → X is a continuous transformation on a compact metric space.
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Proof. Since Minv is a non-empty compact convex set, by Krein-Milman
it has extremal points. We just saw that the extremal points are ergodic
invariant measures. �

Remark 2.24. It also follows from Krein-Milman that the invariant (prob-
ability) measures are equal to the closure of the convex hull of the ergdodic
invariant measures. Therefore there is only one invariant measure iff there
is only one extremal point iff there is only one ergodic invariant measure. A
transformation T is called uniquely ergodic if it has precisely one invariant
measure, (equivalently exactly one ergodic invariant measure). For example
the discrete version of any irrational flow on a torus is uniquely ergodic with
Lebesgue being the unique invariant measure. Uniquely ergodic transforma-
tions enjoy some surprisingly strong properties and have stronger relations
to the topology of the space. For example, if the topology of X forces every
continuous T to have at least two fixed points then as any such T would
support at least two invariant measures (delta’s at the fixed points) it could
not be uniquely ergodic.

Applying Choquet instead of Krein-Milman yields the Ergodic Decomposi-
tion Theorem. (Which in particular captures precisely our discussion of the
irrational rotation in example 2.13.)

Theorem 2.25 (Ergodic decomposition theorem). Let (X,B) be a compact
metric space with the Borel σ-algebra, and T : X → X a continous transfor-
mation. Given m ∈ Minv there exists a regular Borel probability measure µ
on Minv such that

1. supp(µ) ⊂Merg, and

2. for all f ∈ C0(X,R),∫
X

f dm =

∫
m′∈Merg

(∫
X

f dm′
)
dµ. (15)

Proof. We saw that the ergodic invariant measures are precisely the extremal
points of Minv. Thus by Choquet’s theorem there exists a regular Borel
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probability measure µ on Minv with support in Merg such that

l(m) =

∫
m′∈Merg

l(m′) dµ

for all continuous linear functionals l : {reg. Borel signed prob. measures on X} →
R. In particular, to each f ∈ C0(X,R) we have the associated functional

lf (m
′) =

∫
X

f dm′.

Applying this for each f yields (15). �

2.3 Birkhoff’s ergodic theorem

We will first prove a special case of the ergodic theorem, theorem 2.26, as a
warm up. This is conceptually easier and contains the main idea in the proof
of the general result, theorem 2.30. Infact it also contains the main idea of
the proof of the yet more general ”subadditive ergodic theorem” which we
will encounter in the next section.

Let (X,B) be an arbitrary measurable space, T : X → X a measurable
transformation, and µ ∈ Minv(X,T ). Suppose B ∈ B. For each x ∈ X and
n ≥ 1 consider the total and average number of visits to B:

Sn(x) := #
{

0 ≤ i ≤ n− 1
∣∣∣ T ix ∈ B }

and

An(x) :=
1

n
Sn(x) =

1

n
#
{

0 ≤ i ≤ n− 1
∣∣∣ T ix ∈ B }.

So 0 ≤ An(x) ≤ 1 for all x, n. It is sometimes useful to write

An(x) =
1

n

n−1∑
j=0

χB
(
T jx

)
. (16)
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Theorem 2.26 (Birkhoff’s ergodic theorem: version I). The pointwise limit

A(x) := lim
n→∞

An(x) (17)

exists µ-almost everywhere, and defines a T -invariant function. More pre-
cisely, the full measure set of points E on which the above limit exists satisfies
TE = E = T−1E, and A(Tx) = A(x) for all x ∈ E. Moreover,∫

X

Adµ = µ(B). (18)

Remark 2.27. It follows from the point wise convergence plus the dominated
convergence theorem that An → A in Lp(X,B, µ) for all 1 ≤ p < ∞. (The
function x 7→ 1 serves as a dominating function.)

Remark 2.28. Integrating (16) term by term gives∫
X

An dµ = µ(B)

for each n ≥ 1.

Proof. (Of the Birkhoff ergodic theorem, version I) Set A(x) := lim sup
n→∞

An(x)

A(x) := lim inf
n→∞

An(x)

for each x ∈ X. Since A ≥ A the limit A(x) = limn→+∞An(x) will exist
precisely at those x ∈ X for which

A(x) ≤ A(x). (19)

It is easy to see that the set of points for which A(x) exists is T invariant.
Indeed, for each x ∈ X and n ≥ 1 we have

n+ 1

n
An+1(x) = An(Tx) +

1

n
χB(x). (20)
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Thus the limit A(x) exists if and only if A(T (x)) exists and they are equal.

Therefore, to prove the theorem, it suffices only to prove that (19) holds µ-
a.e and the rest of the statement will follow from Remarks (2.27) and (2.28)
above.

One final remark, before we properly begin the proof, is that the inequalities

A ◦ T ≥ A (21)

A ◦ T ≤ A (22)

hold pointwise everywhere. Indeed, for fixed x ∈ X let nj → +∞ be so
that Anj

(x) → A(x). Then from (20) we have Anj−1(Tx) → A(x), thus

A ◦ T (x) ≥ A(x). The same argument shows (22)*.

Now we begin the proof properly, our goal being to establish (19) µ-almost
everywhere. Fix ε > 0. By definition of A we have that ∀x ∈ X ∃n ≥ 1 such
that

An(x) ≤ A(x) + ε.

Let τ(x) denote the minimum such n. More precisely, define τ : X → N by

τ(x) := min
{
n ≥ 1

∣∣∣ An(x) ≤ A(x) + ε
}
.

(τ is everywhere defined and measurable.) Now we consider two cases.

Case 1: Suppose ∃N ∈ N such that τ(x) ≤ N for all x ∈ X. To prove (19)
we argue as follows.

Consider any x ∈ X, and the length-n orbit of x for some large n.

Decompose the orbit into pieces with initial points x0 = x, x1, x2, . . . , xq, so

*We could at this point argue that (21) and (22) are equalities µ-almost everywhere
since the integrals of both sides over X yield the same values. We won’t require this here,
but it will be useful in our proof of the subadditive ergodic theorem in section 3.5.
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for 0 ≤ j ≤ q − 1 the orbit piece starting at xj has length τ(xj) and the last
piece (which starts at xq) has length 0 ≤ l ≤ τ(xq).

This means that on each piece, with the possible exception of the last one,
the average number of visits to B is ≤ A(xj) + ε ≤ A(x) + ε by (22). For the
last piece we don’t have this upper bound, on the other hand we know that
its length is l ≤ N .

Using this decomposition we can estimate the average number of visits to B
along the whole orbit from x to T nx by

Sn(x) =

q−1∑
j=0

Sτ(xj)(xj) + Sl(xq) (23)

=

q−1∑
j=0

τ(xj)Aτ(xj)(xj) + lAl(xq)

≤
q−1∑
j=0

τ(xj)
(
A(x) + ε

)
+ N

≤ n
(
A(x) + ε

)
+ N. (24)

Dividing by n yields

An(x) ≤ A(x) + ε +
N

n

for all x ∈ X and n ≥ 1. Taking lim sup of both sides we have shown

A(x) ≤ A(x) + ε

for all x ∈ X and all ε > 0. In particular (19) follows everywhere i.e. the
limit An → A exists point wise everywhere!

Case 2: In which τ is unbounded. Pick N ∈ N large enough that

µ
({

x
∣∣ τ(x) > N

})
< ε.

(Which we can do because the sets EN := {x | τ(x) > N} for N ≥ 1 are
nested and the intersection of all of them is empty because τ is everywhere
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finite, so µ(EN)→ 0 as N → +∞.)

Naively one would like to throw out these points to use the proof in case
1. But this obviously doesn’t work because we need T to be a dynamical
system. Instead modify B to be

B′ := B ∩
{
x
∣∣ τ(x) ≤ N

}
so µ(B′) ≥ µ(B) − ε. Then define the modified averages A′n (which counts
visits to B′) and its liminf function A′. Clearly A′ ≤ A so the function

τ ′(x) := min
{
n ≥ 1

∣∣∣ A′n(x) ≤ A(x) + ε
}

is everywhere finite. Note that since this uses A(x)+ε, rather than A′(x)+ε,
the function τ ′ is not precisely analogous to τ but some hybrid of the original
data (associated to B) and the unmodified data (associated to B′).

Now we observe that τ ′ is bounded! (by N). Indeed, since A′n ≤ An for each
n ≥ 1, we have τ ′ ≤ τ . Thus for x ∈ B′ we have τ ′(x) ≤ τ(x) ≤ N , while for
x /∈ B′ we have τ ′(x) = 1 because A′1(x) = 0 ≤ A(x) + ε.

Following the proof of Case 1 we decompose an arbitrary orbit x, Tx, . . . , T nx
into pieces whose length is determined by the function τ ′. This leads to the
estimate

A′n(x) ≤ A(x) + ε +
N

n

for all x ∈ X and n ≥ 1. To relate the left hand side with the unmodified
data we integrate before letting n→ +∞ to get

µ(B′) ≤
∫
X

Adµ + ε.

But µ(B′) and µ(B) differ by at most ε, so µ(B) ≤
∫
X
Adµ + 2ε, and

letting ε→ 0 we have

µ(B) ≤
∫
X

Adµ. (25)

To complete the proof observe that it suffices to establish the inequality

µ(B) ≥
∫
X

Adµ. (26)
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Indeed it would then follow that∫
X

A− Adµ ≤ 0

and since the integrand is non-negative, that A = A µ-almost everywhere as
we require.

There are two ways to show (26). One way is to follow the proof of (25)
reversing the roles of A and A. The proof is not absolutely identical, but no
additional issues arise. Alternatively, one can deduce (26) by applying (25)
to the set Bc = X \ B. In either case, this completes the proof of our first
version of the Birkhoff ergodic theorem. �

Corollary 2.29. If µ is an ergodic invariant measure for T : X → X and
B ∈ B then the averages

An(x) :=
1

n
#
{

0 ≤ i ≤ n− 1
∣∣ T ix ∈ B }

converge point wise µ-a.e. to the value µ(B).

Proof. The limiting function A is T -invariant so by ergodicity it must be
constant µ-a.e. Since it also has integral over X equal to µ(B) this constant
must be µ(B). �

Question 1. What is wrong with the following argument? Suppose that
µ ∈ Merg(X,T ). Let B ∈ B. By the ergodic theorem (in the form of
corollary 2.29), the functions An (which at x equals the average number of
visits of the orbit x, Tx, . . . , T nx to B) converges µ-almost everywhere to the
constant µ(B). But now suppose that ν ∈ Merg(X,T ) is a second ergodic
invariant measure. Then by the same reasoning the averages converge almost
everywhere to the constant ν(B). The functions An are independent of µ and
ν, and therefore they must converge to the same limit and we conclude that
µ(B) = ν(B). Since this holds for all B ∈ B we must have µ = ν and so
there is always at most 1 ergodic invariant measure.
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Theorem 2.26 is just a special case of the ”real” Birkhoff ergodic theorem.
We discuss this now.

Let (X,B) be an arbitrary measurable space, T : X → X a measurable
transformation, and µ ∈Minv(X,T ).

Theorem 2.30 (Birkhoff’s ergodic theorem: version II). For f : (X,B)→ R
representing an element of L1(X,B, µ) we define average functions

fn(x) :=
1

n

n−1∑
k=0

f(T kx) (27)

for n ≥ 1. Then the limit

f∗(x) := lim
n→∞

1

n

n−1∑
k=0

f(T kx) (28)

exists µ-almost everywhere. Moreover,

1. f∗ ∈ Lp(X,B, µ) and ‖fn − f∗‖Lp(X,B,µ) → 0 for all 1 ≤ p <∞.

2. f∗ is T -invariant. Indeed, if f∗(x) exists then so does f∗(Tx), and
f∗(Tx) = f∗(x).

3.
∫
X
f∗ dµ =

∫
X
f dµ.

Remark 2.31. Our first version of the Birkhoff ergodic theorem follows by
setting f = χB, since then the average of f along an orbit segment is simply
the average number of visits to B;

fn(x) =
1

n

n−1∑
k=0

χB(T kx) = An(x).

Moreover
∫
X
f dµ = µ(B).
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Proof. (Of the Birkhoff ergodic theorem, version II) First observe that with-
out loss of generality f ≥ 0 since every L1 function is a difference of two
non-negative L1 functions. Set f(x) := lim sup

n→∞
fn(x)

f(x) := lim inf
n→∞

fn(x)

for each x ∈ X. Since f ≥ f the limit f∗(x) = limn→+∞ fn(x) will exist
precisely at those x ∈ X for which

f(x) ≤ f(x). (29)

Therefore we will prove that (29) holds µ-a.e. Before doing so, observe the
inequalities

f ◦ T ≥ f (30)

f ◦ T ≤ f (31)

hold point wise everywhere, which can be shown analogously to the functions
A and A in the proof of theorem 2.26.

Fix ε > 0. By definition of f we have that ∀x ∈ X ∃n ≥ 1 such that

fn(x) ≤ f(x) + ε.

Let τ(x) denote the minimum such n. More precisely, define τ : X → N by

τ(x) := min
{
n ≥ 1

∣∣∣ fn(x) ≤ f(x) + ε
}
.

(τ is everywhere defined and measurable.) Now we consider two cases*.

Case 1: Suppose ∃N,M ∈ N such that τ(x) ≤ N and f(x) ≤ M for all
x ∈ X.

*It is actually not necessary to split the proof into two cases, but I think it is concep-
tually helpful. Indeed the simpler case 1 conveys the one key idea which is contained in
lines (32) to (33). In case 2 one has to use more epsilons to get essentially the same idea
to work.
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Consider any x ∈ X, and the length-n orbit of x for some large n. Decompose
the orbit into pieces with initial points x0 = x, x1, x2, . . . , xq, such that the
average of f along the piece of orbit with initial point xj is ≤ f(xj) + ε ≤
f(x) + ε (using (31)), with the exception of the last piece beginning at xq,
which may not be long enough. To summarize, for 0 ≤ j ≤ q−1, the average
of f along the piece of orbit with initial point xj is ≤ f(x) + ε.

From this decomposition we can estimate the average of f along the whole
orbit from x to T nx, just as we did in the proof of theorem 2.26, by

n−1∑
k=0

f(T kx) =

q−1∑
j=0

τ(xj)−1∑
k=0

f(T kxj) +
l−1∑
k=0

f(T kxq) (32)

≤
q−1∑
j=0

τ(xj)

 1

τ(xj)

τ(xj)−1∑
k=0

f(T kxj)

 + lM

≤
q−1∑
j=0

τ(xj)
(
f(x) + ε

)
+ NM

≤ n
(
f(x) + ε

)
+ NM. (33)

Divide by n:

fn(x) ≤ f(x) + ε +
NM

n
for all x ∈ X and n ≥ 1. Taking lim sup of both sides, as n→ +∞, yields

f(x) ≤ f(x) + ε

for all x ∈ X. We conclude that f = f everywhere, and Case 1 follows.
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Case 2: In which τ and or f are unbounded. In this case, rather than
directly proving (29), we will prove the two integral inequalities∫

X

f dµ ≤
∫
X

f dµ and

∫
X

f dµ ≤
∫
X

f dµ. (34)

Indeed together these will imply that
∫
X
f − f dµ = 0 and therefore that

f = f µ-a.e. as we require.

We concentrate first on the left hand inequality in (34), which is slightly the
more involved of the two. Fix ε > 0, we will show that∫

X

f dµ ≤
∫
X

f dµ + ε.

There are two kinds of potential “bad” points for us which prevent us from
directly applying the argument in case 1; those for which τ is large, and those
for which f are large. In our first version of the ergodic theorem the function
f corresponded to χB for some subset B, which is bounded by 1, and so only
one kind of “bad“ point entered the proof.

With this in mind pick N,M ≥ 1 sufficiently large that the set

E :=
{
x ∈ X

∣∣ τ(x) > N or f(x) > M
}

is small in the sense that ∫
E

f dµ < ε.

We can do this because f, f ∈ L1(X,B, µ) and τ is almost everywhere finite.
Now modify f on the “bad“ set E by setting

f ′(x) :=

{
f(x) if x /∈ E
min

{
f(x), f(x),M

}
if x ∈ E.

Observe that f ′ ≤ f , and moreover f ′ is uniformly bounded since on the
”bad” set E it is now bounded (by M). It is less transparent why we also
asked for f ′ to be bounded by f on E. The reason for this will appear in a
moment (it will imply τ ′ = 1 on E). For n ≥ 1 let f ′n denote the sequence of
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average functions corresponding to f ′. Clearly f ′ ≤ f implies f ′n ≤ fn, which
means that the function τ ′ : X → N given by

τ ′(x) := min
{
n ≥ 1

∣∣∣ f ′n(x) ≤ f(x) + ε
}

is everywhere finite since τ ′ ≤ τ . However, unlike τ , the modified function
τ ′ is uniformly bounded! (by N) since for every x ∈ E there holds

f ′(x) ≤ f(x)

implying τ ′(x) = 1. Thus for our modified data f ′ and τ ′ there are no “bad“
points, and we can fairly closely follow the argument from case 1.

Decomposing an arbitrary orbit x, Tx, . . . , T nx into pieces whose length is
determined by the function τ ′ leads to the estimate

f ′n(x) ≤ f(x) + ε +
NM

n

for all x ∈ X and n ≥ 1. Taking lim sup as we did in case 1 is awkward
because we have the modified function on the left hand side. However, inte-
grating first and then letting n→ +∞ gives∫

X

f ′ dµ ≤
∫
X

f dµ + ε

(note that
∫
f ′ndµ =

∫
f ′dµ for all n). It is now easy to compare the left

hand side with the unmodified data, arriving at∫
X

f dµ ≤
∫
X

f dµ + 2ε.

This now holds for all ε > 0, proving the left hand inequality in (34).

It remains to prove the right hand inequality in (34). Essentially the same
argument works, that is one fixes ε > 0 and defines τ : X → N by

τ(x) := min
{
n ≥ 1

∣∣∣ fn(x) ≥ f(x) − ε
}
.

This time we are no longer troubled if f is unbounded from above, but rather
whether it is unbounded from below. But this is trivially the case because
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from the outset we can assume that f is non-negative. In this small sense
then things are a fraction easier.

The proof continues almost word for word as above but with all the inequal-
ities reversed. Roughly, one modifies f to a new function f ′ if necessary (i.e.
if τ is unbounded) so that a corresponding τ ′ is uniformly bounded by N
say. Then the most important estimate, corresponding to lines (32) to (33),
becomes

n−1∑
k=0

f ′(T kx) ≥
q−1∑
j=0

τ ′(xj)

 1

τ ′(xj)

τ ′(xj)−1∑
k=0

f ′(T kxj)


≥

q−1∑
j=0

τ ′(xj)
(
f(x)− ε

)
≥ (n−N)

(
f(x)− ε

)
,

and on dividing by n we get

f ′n(x) ≥
(

1− N

n

)(
f(x)− ε

)
for all x ∈ X and n ≥ 1. Integrating and letting n→ +∞ gives∫

X

f ′ dµ ≥
∫
X

f dµ − ε.

By construction the integral over X of the modified function f ′ differs from
that of f by at most ε. This leads to the right hand inequality in (34). �

Corollary 2.32. If µ is an ergodic invariant measure for T : X → X and
f ∈ L1(X,B, µ) then the average functions fn, for n ≥ 1, given by

fn(x) :=
1

n

n−1∑
k=0

f(T kx) ∀x ∈ X,

converge point wise µ-a.e. and in L1 to the value
∫
X
f dµ.
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Proof. The limiting function f∗ is T -invariant so by ergodicity it must be
constant µ-a.e. Since its’ integral over X equals

∫
X
f dµ this must be the

constant. �

Exercise 2.33. Let (X,B) be a compact metric space with the Borel σ-
algebra, and suppose there exists µ ∈ Merg(T,X) where µ(U) > 0 for every
non-empty open U ⊂ X. Show that T has a dense forward orbit. Show
moreover that almost every orbit is dense, i.e. that the set of initial conditions
x ∈ X for which the forward orbit x, Tx, T 2x, . . . is dense in X has measure
1.

Exercise 2.34. Suppose Q = [0, 1] × [0, 1] is the unit ”box” and QL, QR

denote the left and right halves (which half shares the boundary is unimpor-
tant). Let T : Q → Q be a measurable transformation preserving Lebesgue
measure µleb. Suppose that we find a subset A ⊂ QL of strictly positive
(Lebesgue) measure such that for all x ∈ A the asymptotic average number
of visits of the orbit x, Tx, . . . to QL is less than 1/4.

By the ergodic theorem it would follow that µleb is not ergodic for T ,
(because 1/4 < 1/2 = µleb(QL)). Therefore by definition there must exist
a non-trivial T -invariant subset B ⊂ Q (i.e. one having Lebesgue measure
strictly between 0 and 1). The question is, how could be ”find” such a set
B - not in a constructive or explicit way, but how do we see a set B existing
(e.g. extract it from the proof)? In particular it is not A or any of the other
subsets mentioned.

3 Liapunov exponents

To describe roughly what we hope to accomplish in this section consider a
(positive) hyperbolic fixed point x ∈ R2 of a smooth map f : R2 → R2.
This means that Df(x) has only real, positive, eigenvalues µ1 ≤ µ2 ∈
(0, 1) ∪ (1,+∞). Suppose for example the eigenvalues are e10, e3. (I de-
liberately chose 10 and 3 to have the same sign; this is not necessary but
better illustrates the general behavior.) Then Df(x) can be represented by
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the matrix (
e10 0

0 e3

)
with respect to a basis v1, v2 of TxR

2. This gives us a splitting

TxR2 = E1 ⊕ E2

where Ei is spanned by vi. Clearly

Df(x)(E1) = E1 Df(x)(E2) = E2

and for all n ≥ 1 {
Dfn(x)v1 = e10nv1 ∀v1 ∈ E1

Dfn(x)v2 = e3nv2 ∀v2 ∈ E2.

These latter imply
lim

n→+∞

1

n
log ‖Dfn(x)v1‖ = 10 ∀v1 ∈ E1\{0}

lim
n→+∞

1

n
log ‖Dfn(x)v2‖ = 3 ∀v2 ∈ E2\{0}.

How about in directions not in E1 or E2? Clearly if v ∈ TxR2 has a non-zero
E1 component then ‖Dfn(x)v1‖ will blow up asymptotically exponentially
like e10n. Thus we arrive at the following for non-zero v ∈ TxR2:

lim
n→+∞

1

n
log ‖Dfn(x)v‖ =

{
10 if v /∈ E2

x

3 if v ∈ E2
x.

(35)

Liapunov exponents generalize this concept of an invariant filtration of the
linear space on which the linearized dynamics behaves asymptotically expo-
nentially at different rates, to points x that are not necessarily fixed points
or periodic points of the diffeomorphism f .

What could this mean? Roughly speaking, given almost any point x we
will find a 1-dimensional linear subspace of the tangent space at each point
along the orbit of x:

Efn(x) ⊂ Tfn(x)R2 ∀n ≥ 0,
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that is invariant under f , meaning that,

Dfn(x)(Ex) = Efn(x)

for all n ≥ 0, (and hence by chain rule Dfn(x)(Efk(x)) = Efn+k(x) for all
n, k ≥ 0) such that there exist real numbers λ1 > λ2 so that for non-zero
v ∈ TxR2 there holds

lim
n→+∞

1

n
log ‖Dfn(x)v‖ =

{
λ1 ∀v /∈ Ex
λ2 ∀v ∈ Ex.

(36)

When such structure can be found we say that λ1, λ2 are the Liapunov ex-
ponents for f at the point x, and Ex ⊂ TxR2 the Liapunov filtration. (Note:
if x is a periodic point then we easily find such splittings along the orbit of
x and real numbers λ1, λ2.) There is another possibility, namely that there
is a single real number λ ∈ R and for all non-zero v ∈ TxR2

lim
n→+∞

1

n
log ‖Dfn(x)v‖ = λ. (37)

In this case λ is called the Liapunov exponent for f at x and the filtration is
simply the whole space TxR2.

It turns out to be a difficult question whether for a given x ∈M the Liapunov
exponents at x exist. However a theorem of Oseledec basically says that the
set of such points has full measure with respect to any f -invariant probability
measure µ ∈Minv.

3.1 The subadditive ergodic theorem: statement and
discussion

In this chapter and for most of the course, we will work with a transformation
that is at least C1 so that the differential makes sense and varies continu-
ously. Let M be a smooth manifold, f : M → M a C1-diffeomorphism. Fix
an auxilliary Riemannian metric on M , all lengths of tangent vectors etc will
implicitly be with respect to this metric.
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Suppose x ∈ M . A limit resembling those in (36) drops easily out of the
Birkhoff ergodic theorem as follows: By the chain rule, for n ≥ 1, Dfn(x) =
Df(fn−1(x)) ◦Df(fn−2(x)) ◦ · · · · · · ◦Df(x). Thus,

‖Dfn(x)‖ ≤ ‖Df(fn−1(x))‖ · ‖Df(fn−2(x))‖ · · · ‖Df(x)‖

and so

log ‖Dfn(x)‖ ≤
n−1∑
j=0

log ‖Df(f j(x))‖. (38)

Let µ ∈Merg(M, f). By Birkhoff’s ergodic theorem 1/n times the right hand
side converges µ-almost everywhere. Moreover, as the invariant measure is
also ergodic we get

lim
n→+∞

1

n

n−1∑
k=0

log ‖Df(fkx))‖ =

∫
M

log ‖Df‖ dµ.

How about 1/n times the left hand side of (38), i.e. does the limit

lim
n→+∞

1

n
log ‖Dfn(x)‖ = ? (39)

exist µ-almost everywhere? We’ve just seen that the Birkhoff ergodic theorem
implies

lim sup
n→+∞

1

n
log ‖Dfn(x)‖ ≤

∫
M

log ‖Df‖ dµ

µ-almost everywhere.

This is about as far as we can go with the Birkhoff ergodic theorem. To handle
(39) we need a stronger result known as the subadditive ergodic theorem. To
motivate this first observe that the sequence of functions

Fn(x) := log ‖Dfn(x)‖ ∀n ≥ 1

have the following important property, known as subadditivity.

Fk+n(x) = log ‖Dfk+n(x)‖
= log ‖Dfk(fn(x)) ◦ ‖Dfn(x)‖
≤ log ‖Dfk(fn(x))‖ + log ‖Dfn(x)‖
= Fk(f

n(x)) + Fn(x). (40)
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Theorem 3.1 (Subadditive ergodic theorem). Suppose T : (X,B)→ (X,B)
is a measurable transformation on an arbitrary measurable space, and µ ∈
Merg(X,T ). Let (Fn)n≥1 be a sequence of functions in L1(X,B, µ) satisfying
the subadditivity condition

Fn+k(x) ≤ Fn(x) + Fk(T
n(x)) µ− a.e. (41)

for all n, k ≥ 1. Then there exists λ ∈ R ∪ {−∞} such that

lim
n→+∞

1

n
Fn(x) = λ (42)

µ-almost everywhere. Moreover,

λ = inf
n≥1

1

n

∫
X

Fn dµ. (43)

This was first proved by Kingman in 1963. We postpone the proof to section
3.5. Let us prove the following useful fact for later.

Lemma 3.2. Suppose that an ∈ R, for n ≥ 1, is a sequence satisfying the
subadditivity condition an+m ≤ an + ak for all n,m ∈ N. Then

lim
n→+∞

1

n
an = inf

n≥1

1

n
an

exists in [−∞,∞).

Proof. Fix k ∈ N arbitrary. Then subadditivity implies that ank ≤ nak for
all n ≥ 1, and so

ank
nk
≤ ak

k

for all n ≥ 1. Now for arbitrary m ∈ N we can write m = nk + l for some
l ∈ {0, 1, . . . , k − 1}. Then

am
m
≤ ank
nk + l

+
al

nk + l
≤ ak

k
+

al
nk + l

.

Letting m→ +∞ implies n→ +∞, so that

lim sup
m→+∞

am
m
≤ ak

k
(44)
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for all k ≥ 1. Hence

lim sup
m→+∞

am
m
≤ lim inf

k→+∞

ak
k
.

Therefore the limit limn→+∞ an/n = L exists within [−∞,∞). Moreover by
(44) L = infn≥1 an/n. �

Remark 3.3. The Birkhoff ergodic theorem 2.30 corresponds to the “addi-
tive” case of theorem 3.1. That is, given f ∈ L1(X,B, µ), the sequences of
functions Fn(x) :=

∑n−1
j=0 f(T jx) satisfy

Fn+k(x) = Fn(x) + Fk(T
n(x)) µ− a.e.

for all n, k ≥ 1.

Now we show how the existence of the limit in (39), almost everywhere,
follows from the subadditive ergodic theorem.

Corollary 3.4. Suppose f : M → M is a C1-diffeomorphism of a compact
Riemannian manifold, and µ ∈ Merg(M, f). Then there exists λ ∈ R such
that

lim
n→+∞

1

n
log ‖Dfn(x)‖ = λ

for µ-almost all x ∈M .

Proof. Let Fn(x) := log ‖Dfn(x)‖ and T = f : M → M . Then by the
sub-additive ergodic theorem

lim
n→+∞

1

n
log ‖Dfn‖ = lim

n→+∞

1

n
Fn(x) = λ

µ-almost everywhere, for some λ ∈ R∪ {−∞}. It remains only to show that
for this particular choice of Fn we have λ > −∞. This follows using the
chain rule:

1 = ‖Dfn(x) ◦Dfn(x)−1‖ ≤ ‖Dfn(x)‖‖Dfn(x)−1‖
= ‖Dfn(x)‖‖Df−n(fn(x))‖
≤ ‖Dfn(x)‖‖Df−n‖C0

≤ ‖Dfn(x)‖‖Df−1‖nC0 .
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Thus
1

n
log ‖Dfn(x)‖ ≥ log ‖Df−1‖C0 > −∞.

�

Remark 3.5. Corollary 3.4 does not depend on the choice of equivalent
metric on M . Indeed, if ‖ · ‖′x is a norm on each tangent space varying
continuously with x ∈ M (i.e. a Finsler metric on M) equivalent to the
given one, then there exist constants such that c1‖ · ‖ ≤ ‖ · ‖′ ≤ c2‖ · ‖ on all
of M . Thus

log c1 + log ‖Dfn(x)‖ ≤ log ‖Dfn(x)‖′ ≤ log c2 + log ‖Dfn(x)‖

for all x ∈ M and n ≥ 1. Dividing by n and letting n→∞ we see that the
c1 and c2 terms disapear.

To conclude this subsection: we have seen that the exponential growth rates
of the norms of the linearized maps exist almost everywhere (corollary 3.4)
as a consequence of the subadditive ergodic theorem (which we have yet to
prove). The direction dependent asymptotic estimates in (36), which we are
aiming for, require more work and will be the content of Oseledec’s theorem
whose statement we discuss in the next subsection.

3.2 Oseledec’s theorem: statement and examples

Recall M is a smooth compact Riemannian manifold and f : M → M is a
C1-diffeomorphism. Let x ∈M and consider the sequence of linear maps

Dfn(x) : TxM → Tfn(x)M.

Corollary 3.4 tells us something about the growth rate of the norms ‖Dfn(x)‖,
n ≥ 1, of these maps. Oseledec’s theorem gives us information about the
growth rate in each direction; i.e. about the sequence ‖Dfn(x)v‖ for each
fixed v ∈ TxM , as n→ +∞.

We examine the statement first in dimension 2.
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Theorem 3.6 (Oseledec for surfaces). Suppose f : M → M is a C1-
diffeomorphism* of a compact Riemannian surface. There exists an f -invariant
set Λ ⊂ M with µ(Λ) = 1 for all µ ∈ Merg(M, f), such that one of the fol-
lowing two possibilities occurs: either

1. ∃λ ∈ R such that for all x ∈ Λ,

lim
n→+∞

1

n
log ‖Dfn(x)v‖ = λ

for all non-zero v ∈ TxM . Or,

2. ∃λ1 > λ2 ∈ R and for all x ∈ Λ a 1-dimensional subspace Ex ⊂
TxM (with the map x 7→ Ex measurable) that is f -invariant, meaning
Df(x)Ex = Ef(x) for all x ∈ Λ, and moreover for all non-zero v ∈
TxM ,

lim
n→+∞

1

n
log ‖Dfn(x)v‖ =

{
λ1 if v /∈ Ex
λ2 if v ∈ Ex

for all x ∈ Λ.

Definition 3.7 (Liapunov exponents). The numbers λ, respectively λ1, λ2,
occurring in theorem 3.6 are called the Liapunov exponents of f : M →M
with respect to the measure µ ∈Merg(M, f).

Remark 3.8. It is not necessary that the invariant measure µ in Oseledec’s
theorem be ergodic. Then the Liapunov exponents λ1, λ2 are no longer con-
stants and have to be replaced by measurable functions

x 7→ λ1(x) and x 7→ λ2(x)

which are f invariant.

Remark 3.9. The following will come out of the proof of Oseledec’s theorem.
Fix µ ∈Merg(M, f) and x ∈M with Liapunov exponents λ1 ≥ λ2.

*See the footnote to Theorem 3.10 regarding the assumption of invertibility.
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• λ1 will correspond to the growth rate of the norms ‖Dfn(x)‖ in the
sense that

λ1 = lim
n→+∞

1

n
log ‖Dfn(x)‖,

while λ2 will be the growth rate of 1/‖Dfn(x)−1‖, that is

λ2 = − lim
n→+∞

1

n
log ‖Dfn(x)−1‖.

• Hence,

lim
n→+∞

1

n
log | detDfn(x)| = λ1 + λ2.

On the other hand, since detAB = detA detB the functions Fn(x) =
log | detDfn(x)| are additive (earlier we considered Fn(x) = log ‖Dfn(x)‖
which is only sub additive because ‖AB‖ ≤ ‖A‖‖B‖), and therefore
we can apply the Birkhoff ergodic theorem and deduce that if m is an
ergodic invariant measure for f : M →M then

lim
n→∞

1

n
log | detDfn(x)| =

∫
M

log | detDf(x)| dm(x)

for m-almost all x ∈M . It follows that∫
M

log | detDf(x)| dm(x) = λ1 + λ2. (45)

• Consider the special case that the Riemannian surface (M, g) is oriented
and f : M → M is volume/area preserving (with respect to a volume
form induced by g). Suppose also that the corresponding invariant
probability measure µvol is ergodic. Then volume preserving means
that detDf ≡ 1. Thus the integral in (45) vanishes, and we conclude
that the Liapunov exponents with respect to µvol satisfy

λ1 = −λ2.

For completeness here is the statement of Oseledec’s theorem in arbitrary
dimensions.
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Theorem 3.10 (Oseledec, for arbitrary dimensions). Suppose f : M → M
is a C1-diffeomorphism* of a compact d-dimensional Riemannian manifold.
There exists Λ ⊂M with µ(Λ) = 1 for all µ ∈ Merg(M, f), such that for all
x ∈ Λ there exist:

1. real numbers λ1 > · · · > λk, (k ≤ d);*

2. positive integers d1, · · · , dk ∈ N such that d1 + · · ·+ dk = d;

3. nested linear subspaces (a “filtration“)

Ek
x ⊂ · · · ⊂ E1

x = TxM

with dimEi
x = dk + · · ·+ di, and Df(x)Ei

x = Ei
f(x), such that for non-

zero v ∈ TxM there holds

lim
n→+∞

1

n
log ‖Dfn(x)v‖ = λi (46)

whenever v ∈ Ei
x, but v /∈ Ei+1

x . Finally, the maps x 7→ Ei
x are mea-

surable.

Let us look at a few examples.

I need to update the notation in the following examples !

Example 3.11. M = T 2 = R2/Z2 the 2-torus with the flat metric, and
f : T 2 → T 2 is

f(x, y) = (x+ α mod 1, y + β mod 1).

Recall that the Lebesgue measure µleb in an invariant measure for f , and is
ergodic if α/β is irrational. With respect to the global trivialization {∂x, ∂y}

*Actually f need not be invertible, and when it is invertible one can conclude a signif-
icantly stronger statement. Compare Theorems 2.1.1 and 2.1.2 in [18].

*When I get time I will probably reverse the order of the indices here, I think the other
direction is easier to follow.
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of TM →M we find that the differential Df(p) at each point is represented
by (

1 0

0 1

)
and in particular Dfn(p)v = v, for all n ≥ 1 and p ∈ M and v ∈ TpM .
Therefore

lim
n→+∞

1

n
log ‖Dfn(p)v‖ = lim

n→+∞

1

n
log ‖v‖ = 0

for all non-zero v ∈ TpM , and so λ1 = λ2 = 0 and the filtration is trivial.

Example 3.12 (Arnold’s “cat map”, see book by Arnold-Avez). Again M =
T 2 = R2/Z2 with the flat metric, now f : T 2 → T 2 is given by

f(x, y) = (2x+ y mod 1, x+ y mod 1).

Thus f is the projection of the linear map f̃ : R2 → R2 represented by the
matrix

A :=

(
2 1

1 1

)
with respect to the (1, 0) and (0, 1). Hence detA = 1 implies that f preserves
the “Lebesgue“ measure µleb on T 2. It turns out moreover that µleb is ergodic
(see for example [9]). The eigenvalues for A are 3 ±

√
5/2, let v1, v2 be

respective eigenvectors. Since all of these are for TpM independent p, we
easily see that the Liapunov exponents of f are

λ1 = log

(
3 +
√

5

2

)
> 0, λ2 = log

(
3−
√

5

2

)
< 0

(notice that λ1 = −λ2 because f is volume preserving), and the splitting

E1
p ⊕ E2

p = TpM

is the translate of the splitting at the origin p = (0, 0) given by the span of
v1 and v2.
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Example 3.13. Obviously if M is any surface and x ∈ M we can find a
diffeomorphism f : M → M such that f(x) = x and so that Df(x) is
represented by (

eλ1 0

0 eλ2

)
for any choice λ1 > λ2. Then the point mass at x: µ = δx is ergodic
for f and the Liapunov exponents for f are λ1, λ2. We see that if there
are multiple such fixed points for f then different (delta) measures lead to
different Liapunov exponents.

Here is a more interesting example. We will work on R2 for simplicity, strictly
speaking we should compactify at infinity and work in S2 to be consistent
with our framework.

Example 3.14 (Smale’s horse-shoe). f : R2 → R2 is a C1-diffeomorphism
with the following property: let Q ⊂ R2 be a box, i.e. some kind of rectangle
as in the figure. f : Q→ R2 is the map composed of a ”squash” map S and
a “fold“ map B.

So some points don’t get mapped into Q (escape), and some points do. We
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see that f(Q) ∩Q has two components

which are horizontal strips H0 and H1. Tracing the map f backwards we
find the points in Q which get mapped into H0 and H1, i.e. the points which
don’t escape under one forward iterate:

So the points in Q which get mapped back to Q, namely f−1Q∩Q, has two
components, and forms two vertical strips we label V0 and V1.

Consider what happens under forwards iteration of H0 and H1 under f suc-
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cessively:

Thus f maps H0 and H1 again into H0 and H1 (ignoring escaping points)

f : Q ∩ f(Q) −→ Q ∩ f(Q) ∩ f 2(Q)

and continuing successively applying f , we get a nested sequence of horizontal
strips. Eventually

H :=
+∞⋂
k=0

fk(Q)

which intuitively is equal to [0, 1] × C where C is the middle thirds Cantor
set. Note also that

H =
{
x ∈ Q

∣∣∣ f−k(x) ∈ Q ∀k ≥ 1
}
.

Now consider what happens to Q under backwards iterates of f . We’ve seen
that f−1(Q) ∩Q = V0 ∪ V1. Under the next iterate we get

f−2(Q) ∩ f−1(Q) ∩Q =
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Successively applying f−1 we get nested vertical strips, and in the limit

V :=
−∞⋂
k=−1

fk(Q)

which intuitively is equal to C × [0, 1]. Observe that

V =
{
x ∈ Q

∣∣∣ fk(x) ∈ Q ∀k ≥ 0
}
.

Thus we obtain a non-empty closed invariant set

Ω := H ∩ V =
{
x ∈ Q

∣∣∣ fk(x) ∈ Q ∀k ∈ Z
}
' C × C

There is a natural bijection between the restriction of f to Ω and the so
called Bernoulli process given by the shift operator T : X → X on the space
of sequences in {0, 1},

σ : (f,Ω)→ (T,X)

where

X :=
{

(xi)i∈Z
∣∣ xi ∈ {0, 1}} and T (xi) = (xi+1).

Give X the product topology from the discrete topology on {0, 1}, then a
basis for the resulting σ-algebra B are the so called cylinder sets [x0, . . . , xk]
defined by

[xk1 , . . . , xkr ] :=
{

(yi)i∈Z

∣∣∣ yk1 = xk1 , . . . , ykr = xkr

}
.

By the extension theorem the function µ : {Cylinder sets} → [0,∞) given
by

µ (C) = (1/2)l

where l ≥ 1 is the length of the cylinder C, extends to a unique Borel measure
on B. With respect to this so called Bernoulli measure T is invariant and

60



ergodic. (This is not difficult to prove but we won’t get sidetracked into this
right now.)

fill in more here....

It turns out that if the ”squash“ map S contracts in the vertical direction
by a factor 0 < α < 1, and expands in the horizontal direction by a factor
1/α > 1, then there is a ”natural“ ergodic invariant measure µ supported on
Ω. For each point p ∈ Ω, we have

Df(x) =

(
α 0

0 1/α

)

and we find that the Liapunov exponents are

λ1 = log

(
1

α

)
> 0, λ2 = log (α) < 0

and that the splitting TxR2 = E1
x ⊕ E2

x corresponds to the horizontal and
vertical directions.

Example 3.15 (Non-uniform horse-shoes). The previous example can be
made more interesting if we arrange that the ”squashing” map in the con-
struction of f : R2 → R2 has varying contraction and or expansion rates.

As before we obtain a closed invariant set Ω ⊂ Q homeomorphic to a product
of Cantor sets C × C. There is a dense set of periodic points in Ω, and in
particular always two fixed points. We can arrange our squashing map so that
the contraction/expansion rate degenerates at one of the two fixed points,
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call it p, so that Df(p) = id. From the Oseledec theorem with respect to
the Bernoulli measure on Ω, which is ergodic, it is not hard to believe that
we pick up non-zero Liapunov exponents (for example using the relations
to entropy via integrals that we consider in the next section). On the other
hand due to the degenerate fixed point p it must be the case that the support
of the Bernoulli measure is Ω minus a non-empty subset!

Complete!

3.3 Proof of Oseledec’s theorem in 2D

Recall that f : M → M is a C1-diffeomorphism of a smooth compact Rie-
mannian 2-manifold (M, g).

Definition 3.16. Call x ∈M a Lyapunov-regular point for f if the limits

lim
n→+∞

1

n
log ‖Dfn(x)‖ = λ1(x) ∈ R (47)

and

− lim
n→+∞

1

n
log ‖Dfn(x)−1‖ = λ2(x) ∈ R (48)

both exist (the minus sign in the second limit is not a typo). We denote the
set of Lyapunov-regular points of f by Λ = Λf . The values λ1(x), λ2(x) are
called the Lyapunov exponents of x.

Remark 3.17. From the definition

λ1(x) ≥ λ2(x)

because for any invertible matrix M we have 1 = ‖MM−1‖ ≤ ‖M‖‖M−1‖.

Remark 3.18. Note that x regular for f does not imply that x is regular
for f−1. Indeed, many sources refer to forward and backward regular points,
but we will not worry about the distinction here.

62



Lemma 3.19. The set of Lyapunov-regular points, and the values of the
Lyapunov exponents, are f -invariant. That is, x ∈ Λ iff f(x) ∈ Λ, and
x ∈ Λ implies λi(f(x)) = λi(x) for i = 1, 2.

Proof. Let x ∈M and set y := f(x). Then by the chain rule, for all n ≥ 1,

Dfn(y)M = Dfn+1(x)

where M = Df(x) is an invertible linear map. Thus there exist positive
constants C1, C2 depending only on x such that

C1‖Dfn+1(x)‖ ≤ ‖Dfn(y)‖ ≤ C2‖Dfn+1(x)‖

for all n ≥ 1. Taking logarithms etc it follows that the limit (47) exists for
x iff it exists for y, and then the limiting values are the same. Similarly for
the limit in (48). Thus x ∈ Λ if and only if y ∈ Λ, and λi(x) = λi(y) for
i = 1, 2. �

Oseledec’s theorem will follow by combining the next two propositions.

Proposition 3.20. If m ∈Merg(f,M) then m-almost every point x ∈M is
Lyapunov regular.

Proof. This follows immediately from the subadditive ergodic theorem as in
the proof of corollary 3.4. Indeed, this corollary showed that the limit (47)
exists for all points in some Borel set Λ0 ⊂ M with m(Λ0) = 1. Essentially
the same argument shows that the limit (48) exists on some Λ1 ⊂ M also
with m(Λ1) = 1. Then we can take Λ = Λ0 ∩ Λ1. �

Proposition 3.21. Suppose x ∈ Λ, that is x is a regular point for f : M →
M . Let λ1 = λ1(x) and λ2 = λ2(x) denote the two Lyapunov exponents, in
particular λ1 ≥ λ2. Then:

1. If λ1 = λ2 then

lim
n→+∞

1

n
log ‖Dfn(x)v‖ = λ1

for all v ∈ TxM\{0}.
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2. If λ1 > λ2 then there exists a unique 1-dimensional subspace Ex ⊂ TxM
such that for all non-zero v ∈ TxM ,

lim
n→+∞

1

n
log ‖Dfn(x)v‖ =

{
λ1 if v /∈ Ex
λ2 if v ∈ Ex

Remark 3.22. Observe that in general if x ∈ Λf , i.e. if λ1 and λ2 exist as
in (47) and (48), then for any non-zero v ∈ TxM ,

λ2 ≤ limn→∞
1

n
log ‖Dfn(x)v‖ ≤ limn→∞

1

n
log ‖Dfn(x)v‖ ≤ λ1. (49)

Indeed, in any dimension d ≥ 1, take M ∈ Gl(R, d), then

1

‖M−1‖
≤ ‖Mv‖ ≤ ‖M‖

for all v ∈ Rd with ‖v‖ = 1. (For the left hand inequality use 1 = ‖M−1Mv‖ ≤
‖M−1‖‖Mv‖.) Applying this to the linear map Dfn(x) and taking loga-
rithms etc

− 1

n
log ‖Dfn(x)−1‖ ≤ 1

n
log ‖Dfn(x)v‖ ≤ 1

n
log ‖Dfn(x)‖.

By assumption of x being a regular point, as n → +∞ the left and right
sides converge to λ2 and λ1 respectively.

This remark proves case 1. of the proposition. To prove case 2. we will first
use the following fact from linear algebra to make the linear maps “nicer”.

Lemma 3.23. If B ∈ Gl(R, d) then there exists a (unique) symmetric, pos-
itive definite, A ∈ Gl(R, d) such that A2 = BTB. It follows that

1. ‖Bv‖ = ‖Av‖ for all v ∈ Rd,

2. ‖B‖ = ‖A‖

3. ‖B−1‖ = ‖A−1‖.
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Proof. M := BTB is symmetric, so can be diagonalized. That is, there ex-
ists P ∈ Gl(R, d) so that M = P−1DP where D is diagonal. Taking the
positive square-roots of the diagonal entries gives us a diagonal matrix D1/2

whose square equals D. (Indeed, D has only positive entries on the diagonal
because M is positive definite: 〈Mv, v〉 = ‖Bv‖2 > 0 for all v 6= 0.) Then
set A = P−1D1/2P . This gives us existence of A.

The relation in 1. is obvious, and 2. follows immediately. It remains to check
3. that ‖B−1‖ = ‖A−1‖. Abbreviate M−T := (MT )−1 = (M−1)T for general
invertible matrices. Then

(A−T )2 = CTC

where C := B−T . Thus A−T has the same relation to C that A has to
B. Hence ‖C‖ = ‖A−T‖. But the norm is unchanged by the operation of
transpose, so ‖B−1‖ = ‖C‖ = ‖A−T‖ = ‖A−1‖. �

Proof. (Of proposition 3.21.) We are given a regular point x ∈ M , and a
sequence of linear maps Dfn(x) : TxM → Tfn(x)M . Picking an arbitrary
orthonormal basis of each tangent space Tfn(x)M with respect to the given
Riemannian metric g, we obtain a sequence of matrices Bn ∈ Gl(R, 2), n ≥ 1,
and the inner product becomes the standard Euclidean one on R2. Our
assumption that x is regular becomes the condition that

lim
n→+∞

1

n
log ‖Bn‖ = λ1

− lim
n→+∞

1

n
log ‖B−1

n ‖ = λ2

where λ1 > λ2 ∈ R are the Lyapunov exponents of f at the point x. Using
the lemma we find symmetric, positive definite 2× 2 matrices An, for n ≥ 1,
such that A2

n = BT
nBn. From the lemma we have

lim
n→+∞

1

n
log ‖An‖ = λ1

− lim
n→+∞

1

n
log ‖A−1

n ‖ = λ2.
(50)

The advantage of using the An’s is that they have real, strictly positive,
eigenvalues and orthogonal eigenspaces.
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The rest of the proof will go as follows.

Step 1 The eigenspaces of the matrices An converge! (This seems to me
the most unobvious part). Denote the limiting orthogonal subspaces
E∞1 , E

∞
2 ⊂ R2 (where E∞1 is the limit of the eigenspaces with greatest

eigenvalue).

Step 2 That if vi ∈ Ei is non-zero, then

lim
n→+∞

1

n
log ‖Anvi‖ = λi

for i = 1, 2. This will be split into two substeps: Step (2a) to prove
the limit for λ1, and Step (2b) to prove the limit for λ2.

This will complete the proof by setting Ex := E∞2 , since ‖Dfn(x)v‖ =
‖Bnv‖ = ‖Anv‖ for all v.

Before carrying out the above steps, let us give names to objects and choose
convenient eigenvectors. Denote by µn1 ≥ µn2 > 0 the eigenvalues of An for
n ≥ 1. Then since An is symmetric (and positive) its norm is achieved by
the highest eigenvalue (similarly for A−1

n ), so

µn1 = ‖An‖ and µn2 = 1/‖A−1
n ‖.

Thus, in view of (50) 
lim

n→+∞

1

n
log µn1 = λ1

lim
n→+∞

1

n
log µn2 = λ2.

Hence, for all ε > 0
en(λi−ε) ≤ µni ≤ en(λi+ε) (51)

for all n sufficiently large, for i = 1, 2. In particular for n large µn1 > µn2 and
An has orthogonal eigenspaces which we denote by En

1 and En
2 (corresponding

to µn1 and µn2 respectively). To show that these spaces converge as n→ +∞
it suffices to find unit eigenvectors en1 ∈ En

1 and en2 ∈ En
2 that converge. For

each n ≥ 1 choose en1 (the choice is just up to ±1) so that

〈en+1
1 , en1 〉 ≥ 0
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(this makes sense if we want to show the sequence en1 converges; en+1
1 and en1

are far apart if 〈en+1
1 , en1 〉 < 0.) Then choose en2 = ien1 where i here denotes

complex multiplication, i.e. (en1 , e
n
2 ) is positively oriented.

Step 1 In this step we will show that the sequence of eigenvectors (en1 )n is
(exponentially) Cauchy. More precisely, that there exists C, δ > 0 so that

‖en+k
1 − en1‖ ≤ Ce−δn (52)

for all n, k ≥ 1.
It suffices to show such an estimate for k = 1 due to the formula for the

sum of a geometric series. Now observe that

‖en+1
1 − en1‖ ≤

√
2|〈en+1

1 , en2 〉| (53)

for each n ≥ 1. Indeed, draw a picture and you’ll see that for any unit vectors
v, w ∈ R2 with 〈v, w〉 > 0 we have ‖v − w‖ ≤

√
2|〈v, iw〉| where i denotes

complex multiplication. Taking v = en+1
1 and w = en1 gives us (53).

Thus to complete step 1 it suffices for us to show that there exists C, δ > 0
so that ∣∣〈en+1

1 , en2 〉
∣∣ ≤ Ce−δn (54)

for all n ≥ 1. To prove this we argue as follows.∣∣〈en+1
1 , en2 〉

∣∣ =
1

µn+1
1

∣∣〈An+1e
n+1
1 , en2 〉

∣∣
=

1

µn+1
1

∣∣〈en+1
1 , An+1e

n
2 〉
∣∣

≤ 1

µn+1
1

‖An+1e
n
2‖

=
1

µn+1
1

‖Bn+1e
n
2‖

=
1

µn+1
1

‖Df(fn(x))Bne
n
2‖

≤ C0
1

µn+1
1

‖Bne
n
2‖
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where C0 = ‖Df‖C0(M),

= C0
1

µn+1
1

‖Anen2‖

= C0
µn2
µn+1

1

.

In view of (51), we therefore find that for all ε > 0∣∣〈en+1
1 , en2 〉

∣∣ ≤ C0
en(λ2+ε)

en(λ1−ε)

if n is sufficiently large. In particular, taking ε < (λ1 − λ2)/2,∣∣〈en+1
1 , en2 〉

∣∣ ≤ C0e
−nδ

(where δ = (λ1− λ2)/2 − ε > 0) for all n sufficiently large. This proves (54)
and hence step 1.

Remark 3.24. For step 2b later we will need to observe that the argument
in step 1 actually leads to more precise estimates, namely that δ can be
chosen smaller than, but arbitrarily close to, the difference ∆ := λ1− λ2 > 0
of the two limiting eigenvalues. That is, there exists C > 0 so that for all
0 < ε < ∆

‖en+k
1 − en1‖ ≤ Ce−(∆−ε)n (55)

for all n, k ≥ 1.

Step 2a As a result of step 1 we know that the sequences of unit eigenvectors
en1 and en2 converge to some orthogonal unit vectors in R2. (Note that this
corresponds to a limit of certain orthonormal vectors in TxM .) Let us denote
the limits by

e∞i := lim
n→+∞

eni

and set
E∞i := Span e∞i

for i = 1, 2. So E∞1 and E∞2 are orthogonal 1-dimensional subspaces of R2.
In step 2a we will show that

lim
n→+∞

1

n
log ‖Ane∞1 ‖ = λ1.
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By remark (3.22) it suffices to show

lim inf
n→+∞

1

n
log ‖Ane∞1 ‖ ≥ λ1. (56)

To prove this, first observe that

lim
n→+∞

1

n
log ‖Anen1‖ = λ1

by construction, because ‖Anen1‖ = µn1 for each n ≥ 1. Thus it is natural to
compare ‖Anen1‖ with ‖Ane∞1 ‖ as n → +∞, indeed it suffices to show that
the difference grows at most exponentially at a rate strictly less than λ1. We
have, ∣∣∣‖Anen1‖ − ‖Ane∞1 ‖∣∣∣ ≤ ‖Anen1 − Ane

∞
1 ‖

≤ ‖An‖ ‖en1 − e∞1 ‖. (57)

From step 2, letting k → +∞ in (52), we have ‖en1 − e∞1 ‖ ≤ Ce−nδ for some
C, δ > 0 and all n ≥ 1. Moreover, for all ε > 0 we have ‖An‖ ≤ en(λ1+ε) if n
is sufficiently large. Thus if ε < δ/2 then∣∣∣‖Anen1‖ − ‖Ane∞1 ‖∣∣∣ ≤ Cen(λ1−δ/2). (58)

That is, there exists C > 0 so that (58) holds for all n ≥ 1. In particular, for
all n ≥ 1,

‖Ane∞1 ‖ ≥ ‖Anen1‖ − Cen(λ1−δ/2).

So, ∀ε > 0,∃N s.t. for all n ≥ N

‖Ane∞1 ‖ ≥ en(λ1−ε) − Cen(λ1−δ/2). (59)

Therefore for 0 < ε < δ/2,

lim inf
n→+∞

1

n
log ‖Ane∞1 ‖ ≥ λ1 − ε

proving (56).
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Step 2b In this step we will show that

lim
n→+∞

1

n
log ‖Ane∞2 ‖ = λ2.

By remark (3.22) it suffices to show

lim sup
n→+∞

1

n
log ‖Ane∞2 ‖ ≤ λ2. (60)

We begin with

lim
n→+∞

1

n
log ‖Anen2‖ = λ2

because ‖Anen2‖ = µn2 for each n ≥ 1. As in step 2a,∣∣∣‖Anen2‖ − ‖Ane∞2 ‖∣∣∣ ≤ ‖An‖ ‖en2 − e∞2 ‖. (61)

Now we use the improved version of step 1, see Remark 3.24. Indeed, fix
ε ∈ (0,∆), where ∆ = λ1 − λ2. Letting k → +∞ in (55) we have C > 0
(independent of ε) such that ‖en2 − e∞2 ‖ ≤ Ce−n(∆−ε) for all n ≥ 1. Thus for
n sufficiently large∣∣∣‖Anen2‖ − ‖Ane∞2 ‖∣∣∣ ≤ en(λ1+ε) Ce−n(∆−ε)

= C en(λ2+ε). (62)

Hence,

‖Ane∞2 ‖ ≤ ‖Anen2‖ + Cen(λ2+ε)

≤ en(λ2+ε) + Cen(λ2+ε) (63)

if n is sufficiently large. Thus,

lim sup
n→+∞

1

n
log ‖Ane∞2 ‖ ≤ λ2 + ε.

This proves (60) and completes the proof of step 2b and therefore proposition
3.21. �

Completing the proof of Oseledec: To complete the proof, given the last
two propositions, it suffices to show that the map Λ 3 x 7→ E1(x) ⊂ TxM is
measurable and that Df(x)E1(x) = E1(f(x)) for all x ∈ Λ.
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3.4 Cocycles: an introduction

Fill in.
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3.5 Proof of the subadditive ergodic theorem

Recall that the subadditive ergodic theorem is a generalization of the Birkhoff
ergodic theorem that was crucial in our proof of Oseledec’s theorem. More
precisely we used it to show that the set of Liapunov-regular points of a C1-
diffeomorphism f : M → M on a compact surface M has full measure with
respect to any f -invariant probability measure on M .

In this section we revert to an arbitrary measurable space (X,B) with T :
X → X a measurable transformation, and µ ∈Minv(X,T ).

For comparison, recall that our first version of the Birkhoff ergodic theorem
stated the following. Consider a set B ∈ B fixed, and for x ∈ X and n ≥ 1
consider the total number of visits of the orbit x, Tx, . . . , T nx to the set B:

Sn(x) := #
{

0 ≤ i ≤ n− 1
∣∣∣ T ix ∈ B }.

Then the Birkhoff theorem stated that the averages

An(x) :=
1

n
Sn(x)

converge for µ-almost all x.

Examining the proof carefully, we see that all we use is that the sequence of
functions (Sn)n≥1 is additive, that is, for almost all x ∈ X,

Sn+k(x) = Sn(x) + Sk(T
nx)

for all n, k ≥ 1. We also used the property of the averages An that they are
uniformly bounded from above (by 1) and are non-negative. These latter
two assumptions can be reduced to each Sn being integrable, and this gave
us the second version of the Birkhoff ergodic theorem. Thus we really proved
a statement about additive sequences of integrable functions.

In contrast, the subadditive ergodic theorem draws the same conclusion for
a subadditive sequence (Sn) of integrable functions, where subadditive means
that the equalities above are merely the inequalities

Sn+k(x) ≤ Sn(x) + Sk(T
nx)
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for all n, k ≥ 1. If one goes through the proof of the Birkhoff theorem care-
fully and tries to remove any use of addivity, i.e. only using subadditivity,
then one arrives at the following proof that we explain now*.

First let us recall the precise statement of the subadditive ergodic theorem
using the suggestive notation that we used in theorem 2.26.

Theorem 3.25. Let Sn : (X,B)→ R, for n ≥ 1, be a sequence of measurable
functions representing elements in L1(X,B, µ)* and satisfying the subadditiv-
ity condition

Sn+k(x) ≤ Sn(x) + Sk(T
nx) µ-a.e.

for all n, k ≥ 1. Let An := 1
n
Sn for each n ≥ 1. Then the pointwise limit

A(x) := lim
n→∞

An(x) (64)

exists µ-almost everywhere, and defines a T -invariant function. That is, the
full measure set of points Ω on which the above limit exists satisfies TΩ =
Ω = T−1Ω, and A(Tx) = A(x) for all x ∈ Ω. Moreover,∫

X

Adµ = inf
n≥1

∫
X

An dµ. (65)

Proof. We concentrate on proving (64), since then (65) follows using the
Lebesgue dominated convergence theorem plus the following observations:
consider the sequence of extended real numbers In =

∫
X
Sn dµ ∈ R∪ {−∞}.

Integrating the subadditivity condition gives us In+k = In+Ik for all n, k ≥ 1,
so by Lemma 3.2 the limit of the averages limn→∞ In/n exists in R ∪ {−∞}
and coincides with infn In/n. It remains then to prove (64), and this is where
the work begins.

*Having said this, we will also use the statement of the Birkhoff ergodic theorem (version
II) at the end of our proof. For a proof of the subadditive ergodic theorem that doesn’t
use Birkhoff’s theorem see Avila and Bochi’s notes [2].

*Actually it suffices to assume that S+
1 (the positive part of S1) is in L1. Then it

follows from the subadditivity that S+
n is in L1 for all n ≥ 1. With this the proof goes

through - I need to check this.
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Set  A(x) := lim sup
n→∞

An(x)

A(x) := lim inf
n→∞

An(x)

for each x ∈ X. Since A ≥ A the limit A(x) = limn→+∞An(x) will exist
precisely at those x ∈ X for which

A(x) ≤ A(x). (66)

Let us now show that A and A are T -invariant almost everywhere, this will be
useful shortly. Since A◦T and A integrated with respect to µ over X yield the
same values it suffices to show an inequality such as A ◦ T ≥ A. Similarly it
suffices to show A◦T ≥ A. Subadditivity gives us Sn+1(x) ≤ Sn(Tx)+S1(x)
and therefore

n+ 1

n
An+1(x) ≤ An(Tx) +

1

n
S1(x) µ− a.e. (67)

for each n ≥ 1. Fix x for which (67) holds for all n ≥ 1. Choose nj → +∞
so that Anj+1(x)→ A(x). Then using (67),

A(x) ≤ lim
j→+∞

Anj
(Tx) ≤ A(Tx)

giving us one of the required inequalities for A. For the other inequality (for
A) choose instead nj → +∞ so that Anj

(Tx)→ A(Tx). Then from (67),

A(x) ≤ lim
j→+∞

Anj+1(x) ≤ A(Tx).

Thus we have shown that

A ◦ T = A (68)

A ◦ T = A (69)

hold pointwise µ-almost everywhere. It follows of course thatA is T -invariant.

Therefore, to prove the theorem, it suffices only to prove that (66) holds µ-a.e
and the rest of the statement will follow. As in the proof of theorems 2.26
and 2.30 we split the proof into two cases, the first essentially being a “warm
up” to the second.
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Fix ε > 0. By definition of A we have that ∀x ∈ X ∃n ≥ 1 such that

An(x) ≤ A(x) + ε.

Thus the measurable function τ : X → N defined by

τ(x) := min
{
n ≥ 1

∣∣∣ An(x) ≤ A(x) + ε
}

is everywhere finite. Consider first the following simpler case.

Case 1: Suppose ∃N,M ∈ N such that τ(x) ≤ N and S1(x) ≤ M for all
x ∈ X. To prove (66) holds µ-a.e. we argue as follows.

Let x ∈ X be in the full measure set of points on which A is T -invariant, and
n ≥ 1. Consider the length-n orbit x, . . . , T nx. Decompose the orbit into
pieces with initial points x0 = x, x1, x2, . . . , xq, so for 0 ≤ j ≤ q− 1 the orbit
piece starting at xj has length τ(xj) and the last piece (which starts at xq)
has length 0 ≤ l ≤ τ(xq) < N .

This means that on each piece, with the possible exception of the last one,
the average number of visits to B is ≤ A(xj) + ε = A(x) + ε µ-a.e. using
(69). For the last piece we don’t have this upper bound but we know that
its length is l ≤ N .

The subadditivity of the functions (Sn)n≥1 allows us to mimick the crucial
lines (23) to (24) in the proof of Birkhoff’s ergodic theorem version I (compare
also lines (32) to (33) in version II) and estimate Sn(x) as follows,

Sn(x) =

q−1∑
j=0

Sτ(xj)(xj) + Sl(xq) (70)

≤
q−1∑
j=0

τ(xj)Aτ(xj)(xj) + lM (71)

≤
q−1∑
j=0

τ(xj)
(
A(x) + ε

)
+ NM

≤ n
(
A(x) + ε

)
+ NM.
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To go from line (70) to (71) we used that S1 ≤ M implies that Sn ≤ nM
for all n ≥ 1. Indeed this follows easily from the subadditivity condition by
induction using Sn+1(x) ≤ Sn(x) + S1(T nx).

Now, dividing through by n yields

An(x) ≤ A(x) + ε +
NM

n
(72)

for all x ∈ X and n ≥ 1. Taking lim sup of both sides we have

A(x) ≤ A(x) + ε

for all x ∈ X and all ε > 0. In particular (66) follows (in fact everywhere),
which completes the proof of Case 1.

Case 2: In which τ and or S1 are unbounded from above.

The “bad” points which prevent us from directly applying the argument in
case 1 are those for which τ is large or for which S1 is large.

Remark 3.26. Note the following general fact comes in useful here. For
any subadditive sequence of functions (Fn)n≥1 it suffices that F1 is uniformly
bounded from above by a constant C say, and it follows that all the averages
also satisfy 1

n
Fn ≤ C. Indeed this follows easily by induction since Fn+1(x) ≤

Fn(x) +F1(T nx). Thus it suffices to modify our sequence (Sn)n≥1 to another
subadditive sequence (S ′n)n≥1 for which S ′1 is bounded from above, and it will
follow automatically that the averages A′n := 1

n
S ′n are uniformly bounded

from above for all n.

With these points in mind pick N,M ≥ 1 sufficiently large that the set

E :=
{
x ∈ X

∣∣ τ(x) > N or S1(x) > M
}

is small in the sense that ∫
E

S1 dµ < ε.

We can do this because S1 ∈ L1(X,B, µ) and τ is almost everywhere fi-
nite. Now modify the subadditive sequence (Sn)n≥1 to another subadditive
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sequence (S ′n)n≥1 on the “bad“ set E as follows. Indeed, mimicking the proof
of theorem 2.30 we modify S1 to

S ′1(x) :=

{
S1(x) if x /∈ E
min

{
S1(x) , A(x) ,M

}
if x ∈ E.

(73)

Observe that S ′1 ≤ S1, and moreover S ′1 is uniformly bounded since on the
”bad” set E it is now bounded (by M). Now how to modify Sn for n > 1 ?
First rewrite the above as

S ′1 = S1 − h

for some h. Indeed, we see that h : (X,B)→ [0,+∞) is given by

h =
(
S1 − min

{
S1, A, M

})
χE.

Now the sequence of functions generated by h

hn(x) :=
n−1∑
j=0

h
(
T jx

)
is an additive sequence. The pointwise sum of an additive with a subadditive
sequence gives a subadditive sequence, thus the functions

S ′n := Sn − hn (74)

for n ≥ 1 is a subadditive sequence of functions, and S ′1 coincides with our
original definition in (73). We will see that S ′n has advantages over Sn allow-
ing us to draw nice conclusions about S ′n. At the end of the day, we can then
draw nice conclusions about Sn because the two sequences differ just by the
sequence hn for which we have already proved existence of a pointwise limit
almost everywhere by the Birkhoff ergodic theorem.

Set A′n := 1
n
S ′n for n ≥ 1. In view of remark (3.26) we have the uniform

bound
A′n ≤ M

for all n ≥ 1, since S ′1 ≤M . Thus the sequence (S ′n)n≥1 has no ”bad” points,
in the sense that the averages are uniformly bounded from above. It remains
to modify τ so that it too is uniformly bounded. Observe that

S ′n ≤ Sn
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for all n ≥ 1, in view of (74) and the fact that h ≤ 0. Thus the function
τ ′ : X → N defined by

τ ′(x) := min
{
n ≥ 1

∣∣∣ A′n(x) ≤ A(x) + ε
}

is finite everywhere, and indeed τ ′ ≤ τ . Moreover we see that τ ′ is uniformly
bounded (by N) since on the “bad” set E we have τ ′ = 1. Indeed, if x ∈ E,
then

A′1(x) = S ′1(x) ≤ A(x).

Thus for our modified data (S ′n)n≥1 and τ ′ there are no “bad“ points, and we
can follow the argument from case 1.

Indeed, decomposing an arbitrary orbit x, Tx, . . . , T nx into pieces whose
length is determined by the function τ ′ leads to an estimate analogous to
(72). Indeed one obtains

A′n(x) ≤ A(x) + ε +
NM

n

for all x ∈ X and n ≥ 1. Therefore,

An(x) ≤ A(x) + ε +
NM

n
+

1

n
hn(x)

for all x ∈ X and n ≥ 1. By the Birkhoff ergodic theorem, version II, we
know that 1

n
hn → h∗ almost everywhere, for some integrable function h∗

satisfying ∫
X

h∗ dµ =

∫
X

h dµ.

Therefore,
A(x) ≤ A(x) + ε + h∗(x)

for all x ∈ X. Now, integrating gives∫
X

Adµ ≤
∫
X

Adµ + 2ε

because
∫
h∗dµ =

∫
hdµ ≤

∫
E
S1dµ < ε by construction. This holds for all

ε > 0, so ∫
X

A− Adµ ≤ 0.

Combining with A − A ≥ 0 we must have A − A = 0 almost everywhere.
This completes the proof of the subadditive ergodic theorem. �
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4 Metric and topological entropy

We are studying the dynamics of a transformation T on a measurable space
(X,Ω) in terms of invariant probability measures Minv(T ). According to
Katok [] the single most important real number one can associate to µ ∈
Minv(T ) is the so called measure theoretic entropy hµ(T ) ∈ [0,+∞]*. This
number is often described as a measure of the orbit complexity of the dynam-
ical system, as seen/weighted through the measure µ. Another useful notion
we will discuss is the topological entropy htop(T ) ∈ [0,+∞] which does not
require an invariant measure.

Before we dive into the definitions here are two important theorems in the
subject. The first, known as the variational principle, relates the metric and
topological entropies via

htop(T ) = sup
µ
hµ(T )

where the supremum is taken over all invariant (Borel) probability measures
for T . We will probably not prove the variational principle, although we may
well make use of it. However we will prove the following famous theorem
which is rather a statement in smooth ergodic theory, and relates the metric
entropy of µ to its Lyapunov exponents. One version of this, known variously
as the Ruelle or Margulis-Ruelle or the Pesin-Ruelle inequality, states that
for a sufficiently smooth transformation (C1,ε suffices) f : M → M on a
smooth compact manifold there holds

hµ(f) ≤
∫
M

Σλ≥0λ dµ (75)

where the integrand at each point (defined µ-almost everywhere) is the sum
of the positive Lyapunov exponents for f (counted with multiplicity) with
respect to µ. More difficult to prove is the result that equality holds when µ
is a smooth volume form on M (and f is a diffeomorphism), this is known
as Pesin’s formula. This raises the following natural question: for which
measures in general is (75) equality? This leads to the concept of Sinai-
Ruelle-Bowen measures (SRB-measures).

*Also called the metric entropy. The word ”metric” here has nothing to do with
distance, it’s just an adjective from the noun ”measure”.
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4.1 Motivation through the information function

The definition of metric entropy is complicated and its’ motivation far from
apparent. To explain the definition roughly let α = A1, . . . , Ar be a finite
measurable partition of X. Then one first defines hµ(T, α) ∈ [0,+∞] the
“entropy with respect to the partition α” and then we set

hµ(T ) := sup
α
hµ(T, α)

over all partitions. It remains to give and motivate the definition of hµ(T, α).
One frequently used motivation for the definition leads to the interpretion of
hµ(T, α) as follows: suppose x ∈ X is chosen at random. Then hµ(T, α) will
be a measure of the asymptotic amount of information, per iterate of T , you
would expect to gain about the location of the points

x, Tx, . . . , T nx

as n → ∞, if you know the α-address of each point on the orbit, that is
you know the sequence of sets Ak0 , . . . , Akn ∈ α so that T jx ∈ Akj for each
0 ≤ j ≤ n. We will explain this shortly.

The information function

Let us begin by discussing, purely for motivation, what the concept of “in-
formation” gain could mean. At this point there is no dynamical system.

Suppose that (X,Ω, µ) is a probability space (X =a non-empty set, Ω =a
σ-algebra on X, µ : Ω → [0, 1] is a probability measure.) An “experiment“
or “process“ on this space means that a point in X is selected at random.
A subset A ∈ Ω can be identified with the ”event” that this process picks a
point in A, and µ(A) is the probability that this event actually occurrs when
the experiment is run once. Here is an interesting informal question we can
ask about a given fixed A ∈ Ω:

Suppose x is a point randomly selected from X. How much
information about its precise location do we gain on learning
that x ∈ A?

(1)
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For example, if A = X then we don’t learn anything new about x, we could
say that the amount of information gain is zero. If A is a single point,
this point must be x and we learn the precise location of x, so we could
say that the amount of information gain is maximal. Question (1) will be
especially interesting when we consider a partition A1, . . . , Ar of X and ask
the following:

Suppose x will be randomly selected from X and we will be told
which Ai it lies in. How much information about the precise
location of x would we expect to gain? (i.e. on average)

(2)

On the one hand the smaller µ(Ai) is the more information we would gain
from being told that x ∈ Ai, but on the other hand if µ(Ai) is small then it
seems less likely that x should turn up in Ai.

Let’s address the first question. We are looking for a function I = Iµ : Ω→
[0,+∞] so that informally

I(A) = the amount of information gained on learning that x ∈ A.

The following properties of I, with the possible exception of (5), seem rea-
sonable:

1. µ(A) = µ(B) =⇒ I(A) = I(B) (information depends only on the
measure of a set).

2. µ(A) = 1 =⇒ I(A) = 0 (no information is gained about the location
of x).

3. µ(A) = 0 =⇒ I(A) = M where M := sup I ∈ [0,+∞] (we have
maximum information about location of x).

4. µ(A) < µ(B) =⇒ I(A) > I(B) (the smaller A is the better we can
pinpoint the location of x).

5. µ(A ∩ B) = µ(A)µ(B) (i.e. A and B are independent) =⇒ I(A ∩
B) = I(A) + I(B).

Property (1) means that we are really looking for a function φ : [0, 1] →
[0,+∞] so that

I(A) = φ(µ(A))
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for all A ∈ Ω. Let us boldly assume further that the function φ is universal
in the sense that it is independent of the probability space (X,Ω, µ). Then
we seek a function

φ : [0, 1]→ [0,+∞]

that is strictly decreasing, with φ(1) = 0 and achieving a unique maximum
at 0. Moreover by property (5) φ satisfies

φ(ab) = φ(a) + φ(b) (76)

for all a, b ∈ [0, 1] since given any such a, b it is easy to cook up a probability
space having two independent sets of measure a and b. It follows of course
that φ is uniquely given by

φ(x) = − log x

up to a positive multiple (or base of logarithm).

Let us attempt to justify property (5). First recall how one defines conditional
probability: namely given two elements A,B ∈ Ω what is the natural model
for the probability that event A happens given that B has occurred, i.e. a
reasonable definition of

µ(A |B) = the probability of A, given B. ?

Suppose a point z ∈ X is selected at random and we are told that z ∈ B.
What is the probability that z ∈ A also? Since we know z ∈ B we can regard
B as a probability space whose measurable sets are of the form E = F ∩ B
for F ∈ Ω, and with probability measure

µB(E) :=
µ(E)

µ(B)
.

Then the probability that z lies in A ∩ B with respect to this measure is
µB(A ∩B) = µ(A ∩B)/µ(B). Therefore it seems reasonable to set

µ(A |B) :=
µ(A ∩B)

µ(B)
. (77)

Similarly, it makes sense to define conditional information gain: given A,B ∈
Ω we may ask what is a reasonable definition of

I(A |B) = the info gain on learning z ∈ A, given z ∈ B ?
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where z ∈ X is selected at random. Since we know z ∈ B we can work
on the probability space obtained by restricting µ to measurable subsets
of B and renormalizing so as to have a probability measure. That is, we
obtain a measure space (B,ΩB, µB) with measurable sets E = F ∩ B for all
B ∈ Ω, and measure given by renormalizing µ to the probability measure
µB(E) := µ(E)/µ(B) as above. Let IB denote the information function
associated to (B,ΩB, µB), that is,

IB(E) = φ(µB(E)).

Then the information gain on learning that z ∈ A∩B on this measure space
is IB(A∩B) = φ(µB(A∩B)) = φ(µ(A∩B)/µ(B)) = φ(µ(A|B)). It therefore
seems reasonable to set

I(A |B) := φ(µ(A |B)). (78)

Now consider two measurable sets A,B, and we ask what is the information
about a randomly selected point x ∈ X we would gain on learning that
x ∈ A ∩B ? Can we express this in terms of I(A) and I(B) ? Intuitively,

Info gained
learning x∈A∩B

= Info gained
learning x∈B

+ Info gained learning
x∈A∩B given x∈B

in other words,
I(A ∩B) = I(B) + I(A |B). (79)

The left hand side is symmetric in A and B but it’s not clear that the right
hand side is, with our definition (78). A natural class of sets for which the
right hand side is symmetric in A and B is when they are independent. Recall
that A,B ∈ Ω are called independent events in (X,Ω, µ) if µ(A|B) = µ(A),
i.e. any information that the eventB has occurred is irrelevant in determining
the probability that A occurs. Now from our definition (77) A and B are
independent iff µ(A ∩B) = µ(A)µ(B). In this case, (78) becomes

I(A |B) = φ(µ(A)) = I(A)

and therefore (79) becomes

I(A ∩B) = I(B) + I(A)

which is also symmetric in A and B. All of this discussion hopefully moti-
vates property (5) of the information function I.

83



Now, any function I : Ω → [0,+∞] satisfying properties (1) to (5) above
must take sets of measure x to −c log x, where c > 0 is any fixed constant (or
base for logarithm). Setting this constant equal to 1 motivates the following
definition.

Definition 4.1. Let (X,Ω, µ) be a probability space. We call I : Ω →
[0,+∞] given by

I(A) := − log µ(A)

the information function on (X,Ω, µ). We can think of I(A) as the amount
of information one gains about the precise location of a point x chosen at
random in X, if told that x ∈ A.

4.2 Entropy of a partition

Throughout (X,Ω, µ) is a probability space, at this stage there is still no
dynamical system. A (finite) partition α of X is a finite collection of mea-
surable sets A1, . . . , Ak ∈ Ω that are disjoint and whose union equals X.
The α-address of a point x ∈ X is the unique Ai such that x ∈ Ai. Recall
question (2) above,

Suppose a point x will be randomly selected from X and we
will be told its α-address. How much information about the
precise location of x would we expect to gain (on average)?

(3)

We are basically asking for the expectation of the random variable I(α) :
X → R which takes x ∈ Ai to

I(α)(x) := Prob(x ∈ Ai) ·
(
Info gained on learning x ∈ Ai

)
= µ(Ai)I(Ai).

That is, I(α) := −
∑

i log(µ(Ai))χAi
. Recall that the expectation of a ran-

dom variable X : X → R is defined to be E(X) :=
∫
X

Xdµ. Thus the answer
to the above question should be

∫
X
I(α)dµ, and we call this the entropy of

the partition.
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Definition 4.2. The entropy of a finite partition α = {A1, . . . , Ak} of the
probability space (X,Ω, µ) is

H(α) := −
∑
i

log(µ(Ai))µ(Ai).

We can interpret H(α) as the expected information gain on learning the
α-address of a randomly selected point in X, i.e. an answer to Question 3.

It is sometimes convenient to think of H as a function of probability vectors
(i.e. of p = (p1, . . . , pk) with pi ∈ [0, 1] and

∑
i pi = 1) given by

H :
{

probability vectors
of all lengths

}
−→ [0,+∞). H(p) = −

∑
i

pi log pi

Lemma 4.3. H satisfies the following four conditions:

1. H is continuous on vectors of fixed length, and H(0, p1, . . . , pk) =
H(p1, . . . , pk).

2. Symmetric under permutations of entries.

3. H(1) = 0 is the unique minimum.

4. H(1/k, . . . , 1/k) = log k is the unique maximum over vectors of length
k.

Proof. Properties (1)-(3) are obvious. To prove (4) set φ : [0, 1] → [0,+∞)
x 7→ −x log x. Then φ′′(x) = −1/x < 0 so φ is strictly convex downwards.

Now Jensen’s inequality applied to φ gives

1

k

∑
i

φ(pi) ≤ φ

(
1

k

∑
i

pi

)
= φ(1/k) =

1

k
log k

as required. �
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Note that the fourth property in the above Lemma is equivalent to

H(α) ≤ log card(α) (80)

for each partition α of X.

4.3 Entropy of a transformation

Now we can define the entropy of a transformation T . Suppose T : (X,Ω)→
(X,Ω) is a measurable transformation on a measurable space, and µ ∈M(T ),
i.e. is an invariant probability measure for T .

First, define the join of two partitions α and β to be the partition

α ∨ β :=
{
A ∩B

∣∣ A ∈ α, B ∈ β }.
For a partition α of X define the pull-back partition

T−1α :=
{
T−1A

∣∣∣ A ∈ α }.
Definition 4.4. For α a finite partition of X we define the entropy of T
with respect to µ and α as the quantity

hµ(T ;α) := lim
n→+∞

1

n
H

(
n−1∨
i=0

T−iα

)
. (81)

The measure theoretic entropy of T with respect to µ is

hµ(T ) := sup
α
hµ(T ;α) ∈ [0,+∞].

We will justify shortly, see Corollary 4.18, that the limit in (81) exists in
[0,+∞).

Definition 4.5 (Measure-theoretic isomorphism). Suppose Ti : (Xi,Ωi, µi)→
(Xi,Ωi, µi) are measure preserving transformations for i = 1, 2. We say T1

and T2 are measure-theoretically isomorphic if there exists an invertible
measure preserving transformation between invariant subsets of full measure
ϕ : X ′1 → X ′2 with ϕ ◦ T1 = T2 ◦ ϕ. In this case, by invariant is meant that
TiX

′
i ⊂ X ′i.
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Lemma 4.6. The metric entropy is an invariant under measure theoretic
isomorphism.

Proof. From the definitions. �

Exercise 4.7. Show that hµ(T k) = khµ(T ) for all k ∈ N. This is actu-
ally very straightforward from the definition. If T is invertible show that
hµ(T−1) = hµ(T ).

Dynamical interpretation of entropy

Let’s pause for a moment to think about what the value of hµ(T ;α) (and
hence also hµ(T ), is measuring, with a view to heuristically justifying the
slogan that higher entropy of T implies more unpredictable dynamics.

First observe that knowing the ∨n−1
i=0 T

−iα-address of x is equivalent to know-
ing the α-addresses of x, Tx, . . . , T n−1x. Indeed,

x ∈ Ai0 ∩ T−1Ai1 ∩ . . . ∩ T−(n−1)Ain−1 ∈
n−1∨
i=0

T−iα

if and only if

x ∈ Ai0 , Tx ∈ Ai1 , . . . T (n−1)x ∈ Ain−1 . (82)

Now we give two interpretations of the entropy of T .

Interpretation 1 From (82) we can interpret Hµ

(
∨n−1
i=0 T

−iα
)

as

the expected information gain regarding (the precise locations
of) the points x, Tx, . . . , T n−1x, for a randomly chosen x ∈ X, on
learning of the α-addresses of the points x, Tx, . . . , T n−1x.

Thus hµ(T ;α) is the asymptotic expected information gain per iterate for
the partition α, and hµ(T ) the maximum information gain one could hope
to obtain, per iterate, for large iterates.
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Interpretation 2 Another way to interpret the entropy of T is as an
amount of uncertainty with which one expects to be able to predict its or-
bits. Indeed, consider a partition α = {A1, . . . , Ak} of a probability space
(X,Ω, µ). One could ask the following question.

Suppose a point x is randomly selected from X. How much
uncertainty is there predicting its α-address?

(4)

I feel that the meaning of this question is less clear than questions (1),(2),(3)
above so let me try to explain more, even though it is all only heuristic.
Think of α as modelling the outcome of an experiment; the experiment is
modelled by randomly picking a point x ∈ X. The outcome is the α-address
of x, and the probability that the outcome is Ai is of course µ(Ai). If for
example α is a single element then the outcome is certain and we can say
that the uncertainty of α is zero. To see what the uncertainty could be more
generally, we note that it is reasonable that the uncertainty in predicting the
outcome of the experiment is the same as the amount of information one
would expect to gain by learning the outcome of the experiment!

Uncertainty predicting
outcome of an experiment = Info gained

on learning outcome (83)

(For a simple minded example, if we throw a die that has the number 5 on
every side then the outcome can be predicted with complete certainty to
be 5, that is the uncertainty in the outcome is 0. Clearly we also gain no
information on learning the outcome is a 5, that is the information gained is
also 0.) If we accept (83), then we can interpret the entropy of a partition
α as the amount of uncertainty in predicting the α-address of a randomly
selected point x ∈ X. It then follows that Hµ

(
∨n−1
i=0 T

−iα
)

is

the amount of uncertainty in predicting the α-addresses of the
points x, Tx, . . . , T n−1x for a randomly chosen x ∈ X.

Thus we can interpret hµ(T ) as the asymptotic rate at which the unpre-
dictability of the length-n orbits of T increases with n.
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First examples

Example 4.8. T = Rot : S1 → S1, which preserves lebesgue measure µ. Let
α be any partition of S1. Then card(α ∨ T−1α) ≤ card(α) + card(T−1α) =
2card(α) (draw a picture).

Thus card(α ∨ T−1α ∨ · · · ∨ T−(n−1)α) ≤ n card(α), so by (80),

Hµ

(
n−1∨
i=0

T−iα

)
≤ log(n card(α)).

Thus hµ(Rot;α) = 0 for all α, so hµ(Rot) = 0.

Example 4.9 (Homeomorphisms of S1). If T : S1 → S1 is a homeomor-
phism then it has a rotation number ρ(T ) ∈ R/Z. If ρ(T ) is rational then
hµ(T ) = 0 because.... If ρ(T ) = ω is irrational then T may not be topologi-
cally conjugate to the rotation R2πω but it will be uniquely ergodic, i.e. has a
unique invariant probability measure µ, and it is measure theoretically conju-
gate to R2πω with lebesgue measure. Consequently by the previous example
hµ(T ) = 0.

Example 4.10 (Angle-doubling map). Let T : S1 → S1 be the non-invertible
map z 7→ z2. This is the same as T : [0, 1]→ [0, 1] x 7→ 2x mod 1 which we
saw before preserves µ =lebesgue measure. Let us see why hµ(T ) > 0.

Take α =
{

[0, 1/2), [1/2, 1)
}

. Then

α ∨ T−1α = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)}

and more generally α ∨ T−1α ∨ · · · ∨ T−(n−1)α is a partition of [0, 1] into 2n

intervals of equal length 1/2n .
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Thus

H

(
n−1∨
i=0

T−iα

)
= log card

(
n−1∨
i=0

T−iα

)
= n log 2

so that
hµ(T ;α) = log 2.

Hence hµ(T ) ≥ hµ(T ;α) = log 2 > 0. We will shortly show the reverse
inequality also to find hµ(T ) = log 2.

Example 4.11 (Entropy of Bernoulli shift). Let us show that the entropy
of the (1/2, 1/2)-Bernoulli process is at least log 2. Recall

• X is the set of sequences x = (x1, x2, . . .) where xi ∈ {0, 1},

• T : X → X takes (x1, x2, x3 . . .) to (x2, x3 . . .),

• m
(
Ai1,...,ir

)
= 1/2r where

Ai1,...,ir :=
{
x
∣∣ x1 = i1, x2 = i2 . . . , xr = ir

}
= 1/2r

for each r ∈ N.

As our partition of X let us take

α = {A0, A1}.

Then for example

α ∨ T−1α =
{
Ai ∩ T−1Aj

}
i,j

=
{
Ai,j

}
i,j
.

More generally

α ∨ T−1α ∨ · · · ∨ T−(n−1)α =
{
Ai1,...,in

}
i1,...,in

,

so

H

(
n−1∨
k=0

T−kα

)
= n log 2

giving the lower bound

h(T ) ≥ h(T ;α) ≥ log 2.

We will see shortly that h(T ) = log 2.
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Example 4.12. More generally a similar calculation shows that the (p1, . . . , ps)-
Bernoulli process has entropy at least

∑
i pi log pi, and again this can be

shown to be equality when we have another lemma or two.

Lemma 4.13. The angle-doubling map S1 7→ S1 z 7→ z2, where S1 is the
boundary of the unit disk and equipped with the Lebesgue measure, is measure-
theoretically isomorphic to the Bernoulli-(1/2, 1/2) process.

Proof. Exercise. �

4.4 Conditional entropy

We return to a further study of the definition of entropy for a partition and
also that of a transformation, now that we have some motivation.

First let us extend the definition of entropy of a partition to that of condi-
tional entropy. It’s a useful definition. For example it allows us to compare
the entropy of different partitions. It also allows us to rephrase the definition
of entropy of a transformation in a convenient manner.

Throughout, (X,Ω, µ) is a probability space, and α = {A1, . . . , Ak} and
β = {B1, . . . , Bl} are finite partitions.

Definition 4.14. The conditional entropy of β given α is the quantity

H(β |α) := −
∑
i

µ(Ai)
∑
j

µ(Bj|Ai) log(µ(Bj|Ai)).

One can arrive at this expression by interpreting H(β |α) as the expected
information gain from the partition β that you didn’t already know from α.
Or more precisely; suppose that a point x ∈ X is selected at random by
someone else and you can’t see which point it is. They then tell you of the
α-address of x, and this gives you some information regarding its location.
Then they tell you of the β-address of x, and this gives you possibly some
additional information about its location. If you did this repeatedly then
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H(β|α) is the amount of additional information you would expect to gain,
on average, when told of the β-address.

For example, if β = α then we learn nothing new from the β-address so intu-
itively H(α |α) = 0 as is easily verified. More generally if α is a refinement
of β meaning that for all Ai ∈ α there exists Bj ∈ β with Ai ⊂ Bj, then we
learn nothing more from β so that intuitively H(β |α) = 0.

Definition 4.15. Let α, β, be two (finite) partitions of (X,Ω, µ). We write:

• α < β if for all B ∈ β there exist A ∈ α with B ⊂ A mod 0 (meaning
µ(B ∩ Ac) = 0). We call β a refinement of α.

• α ⊥ β if µ(A ∩ B) = µ(A)µ(B) for all A ∈ α and B ∈ β. We say α
and β are independent.

• α $ β if for all A ∈ α there exists B ∈ β so that µ(A∆B) = 0. We say
α and β are equivalent.

Lemma 4.16. For (finite) partitions α, β, γ,

1. H(α ∨ β) = H(α) +H(β |α), and more generally

H(α ∨ β | γ) = H(α | γ) +H(β |α ∨ γ).

2. H(β |α) ≤ H(β) with equality iff α ⊥ β.

3. α < β implies H(α) ≤ H(β) with equality iff α $ β.

4. More generally, H(β |α) is “increasing“ in β and “decreasing“ in α, in
the sense that

β < β′ =⇒ H(β |α) ≤ H(β′ |α)

α < α′ =⇒ H(β |α) ≥ H(β |α′).
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Proof. We prove the first part of (1) and leave the others as exercises.

H(β |α) = −
∑
i

µ(Ai)
∑
j

µ(Bj|Ai) log(µ(Bj|Ai))

= −
∑
i,j

µ(Ai ∩Bj) log

(
µ(Ai ∩Bj)

µ(Ai)

)
= −

∑
i,j

µ(Ai ∩Bj) log(µ(Ai ∩Bj)) +
∑
i,j

µ(Ai ∩Bj) log(µ(Ai))

= H(α ∨ β) +
∑
i

∑
j

µ(Ai ∩Bj) log(µ(Ai))

= H(α ∨ β) +
∑
i

µ(Ai) log(µ(Ai))

because the sets {(Ai ∩Bj)}j form a partition of Ai,

= H(α ∨ β) − H(α).

A couple of remarks on (2)-(4). The proof of (2) uses Jensen. Observe
that the inequality makes intuitive sense, since both H(β) and H(β|α) mea-
sure the expected information gain on learning the same fact, namely the
β-address of a random point. However in H(β|α) we start off with addi-
tional information, namely the α-address. So the amount of information
gained cannot be more than if we knew nothing before hand. The equality
part of (2) is straightforward. Intuitively α ⊥ β means that any information
from α is irrelevant in determining the uncertainty of the outcome of β, so
H(β |α) = H(β).

Note (3) follows immediately from (1) using that α < β implies β = α∨β. �

As promised, we can now prove that the limit in (81) exists, so that hµ(T ;α)
is well defined.

Lemma 4.17. The sequence

an := H

(
n−1∨
i=0

T−iα

)
is subadditive, that is an+k ≤ an + ak for all n, k ∈ N.
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Proof.

an+m = H
(
∨n+m−1
i=0 T−iα

)
= H

(
∨m−1
i=0 T

−iα
)

+ H
(
∨n+m−1
i=m T−iα

∣∣ ∨m−1
i=0 T−iα

)
.

The first term is am, and for the second term we have

H
(
∨n+m−1
i=m T−iα

∣∣ ∨m−1
i=0 T−iα

)
≤ H

(
∨n+m−1
i=m T−iα

)
= H

(
∨n−1
i=0 T

−iα
)

= an.

�

Corollary 4.18. hµ(T ;α) is well defined and is equal to infn≥1
1
n
H
(∨n−1

i=0 T
−iα
)
.

Proof. The sequence an = H
(
∨n−1
i=0 T

−iα
)

is subadditive and bounded from
below (by zero), so the statement follows from Lemma 3.2. �

We can now express the entropy of a transformation in terms of conditional
entropy.

Proposition 4.19 (Equivalent definition of hµ(T ;α)).

hµ(T ;α) = lim
n→+∞

H

(
α
∣∣∣ n∨

1

T−iα

)
. (84)

Moreover the sequence on the right hand side is monotonic decreasing.

Proof. Decreasing is easy: as n increases the partitions ∨n1T−iα get finer, so
by property (4) in Lemma 4.16 H(α| ∨n1 T−iα) decreases.

Now to prove (84). Let k ∈ N be arbitrary.

H
(
∨k0 T−iα

)
= H

(
α ∨

(
∨k1 T−iα

))
= H

(
α
∣∣∣ ∨k1 T−iα) + H

(
∨k1 T−iα

)
.
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Thus,

H
(
α
∣∣∣ ∨k1 T−iα) = H

(
∨k0 T−iα

)
− H

(
∨k1 T−iα

)
= H

(
∨k0 T−iα

)
− H

(
∨k−1

0 T−iα
)
.

Summing both sides over k, the right hand side ”telescopes“ to give

n∑
k=1

H
(
α
∣∣∣ ∨k1 T−iα) = H

(
∨n0 T−iα

)
− H

(
α
)

for all n ∈ N. Dividing through by n and letting n → +∞ the left hand
side converges in the Cesaro sense to limn→∞H(α | ∨n1 T−iα), while the right
hand side converges to the definition of hµ(T ;α). �

How to interpret this alternative definition of entropy? For each n ∈ N,

H

(
α
∣∣∣ n∨

1

T−iα

)

is the expected additional information we would gain about the location of a
random point x ∈ X on learning its α-address, if we already knew in advance
the α-addresses of the points Tx, T 2x, . . . , T nx.

In particular, we can interpret hµ(T ;α) = 0 as saying that the future, as
given by T , determines the present. This suggests that zero entropy of T im-
plies that T is somehow invertible? Indeed this is almost true provided the
measurable space is not pathological, for example a Borel measure space on
a reasonable metric space or a so called Lebesgue space. For the statement
we say that a measure preserving transformation on a probability space is
invertible- mod 0 if it restricts to an invertible transformation on some in-
variant subset of full measure.

Theorem 4.20. hµ(T ) = 0 implies that T is invertible- mod 0 if (X,Ω) is
a complete, separable metric space with the Borel σ-algebra.

Proof. See Corollary 4.14.3 in [19]. �
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Conversely, if T is not invertible- mod 0 then hµ(T ) > 0.

For later let us record a couple of basic properties of the conditional entropy.

Lemma 4.21. For (finite) partitions α, β there holds,

1. h(T, α) ≤ H(α).

2. α < β implies h(T, α) ≤ h(T, β).

3. h(T, α ∨ β) ≤ h(T, α) +H(β |α).

4. h(T, α) = h(T,∨ki=0T
−iα) for any k ∈ N.

We suppressed the dependence of h and H on the invariant probability mea-
sure µ.

Proof. (1) follows easily from the equivalent definition of entropy using condi-
tional entropy, Proposition 4.19, plus the fact that H(α | β) ≤ H(α) for all β.

(2) follows from the definition of h(T, α) and h(T, β) and that α < β implies
∨n0T−iα < ∨n0T−iβ for all n.

(3) is slightly tricky: from the definition h(T, α ∨ β) = limn→∞
1
n
H
(
∨n−1

0

T i(α ∨ β)
)
. Examining the right hand side we have

H
(
∨n−1

0 T i(α ∨ β)
)

= H
((
∨n−1

0 T iα
)
∨
(
∨n−1

0 T iβ
))

= H
(
∨n−1

0 T iα
)

+ H
(
∨n−1

0 T iβ
∣∣∣ ∨n−1

0 T iα
)
.

Since 1
n

times the first term converges to h(T, α), it remains to show that 1
n

times the second term is bounded above by H(β |α). From Lemma 4.16 (1)
H(α1 ∨ α2 | β) ≤ H(α1 | β) +H(α2 | β). Thus

H
(
∨n−1

0 T iβ
∣∣∣ ∨n−1

0 T iα
)
≤

n−1∑
j=0

H
(
T jβ

∣∣∣ ∨n−1
0 T iα

)
for all i,

≤
n−1∑
j=0

H
(
T jβ

∣∣∣T jα)
= nH

(
β
∣∣α).
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And (3) follows.

(4) follows easily from

H

(
n−1∨
j=0

T−j

(
k∨
i=0

T−iα

))
= H

(
n+k−1∨
j=0

T−jα

)
.

Dividing by n and sending n→∞ the left hand side goes to h(T,∨ki=0T
−iα).

This is the same as dividing by N := n + k − 1 and sending N → ∞, in
which case the right hand side goes to h(T, α). �

4.5 The Kolmogorov-Sinai theorem on generating σ-
algebras

This is a useful tool to avoid taking a supremum over all partitions when
calculating the entropy. Recall that any collection of subsets S of X generates
a σ-algebra σ(S) that is the smallest σ-algebra containing S. In particular,
if α is a finite partition of X then

σ(α) := the σ-algebra generated by α

is a finite σ-algebra on X. If α1 < α2 < · · · is a sequence of (finite) partitions
of X, let us write

+∞∨
i=0

αi := the smallest σ-algebra containing all the αn’s.

Remark 4.22. Obviously this definition would be fine for any sequence of
finite partitions {αn}n∈N, but if they are increasingly finer then ∨+∞

i=mαi =
∨+∞
i=0αi for all m ≥ 0 and so we can think of ∨+∞

i=0αi as the limit of the
σ-algebras σ(αn).

Remark 4.23. Note that there is an obvious 1− 1 correspondence between
finite partitions and finite sub-σ-algebras on (X,Ω):{

finite
partitions

}
←→

{
finite

σ−algebras

}
α ←→ σ(α)
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(To go from right to left take all non-empty intersections from sets in σ(α)
and the complement of these). However it’s better to take the limit in the
sense of σ-algebras; we risk losing information if we take a limit of partitions
because while each σ-algebra gives rise to a unique partition, an infinite
partition can come from many different σ-algebras.

As before, throughout T is a measurable transformation on the probability
space (X,Ω, µ).

Proposition 4.24 (Kolmorgorov-Sinai). Let α1 < α2 < · · · be a sequence of
partitions of (X,Ω, µ) with ”limit” ∨∞i=0αi $ Ω. Then

hµ(T ) = lim
n→∞

hµ(T ;αn). (85)

Note that since the sequence in (85) is monotonic we also have hµ(T ) =
supn≥1 hµ(T ;αn). To prove this Proposition we will use:

Lemma 4.25 (Approximation Lemma). Fix r ∈ N. Then for all ε > 0 there
exists δ = δ(r) > 0 so that if α = {A1, . . . , Ar} and β = {B1, . . . , Br} are
partitions of X with µ(Ai ∆Bi) < δ for all 1 ≤ i ≤ r, then H(β |α) < ε.

The conclusion implies thatH(α) andH(β) are close becauseH(α)+H(β |α) =
H(α ∨ β) = H(β) + H(α | β) ). But smallness of H(β |α) is stronger than
closeness of H(α) and H(β), as it says that α and β are close as partitions.

Proof. The trick is to observe that there is a partition γ so that H(β |α) =
H(γ |α) and where H(γ) < ε. Of course γ need not have cardinality r. From
this the Lemma will follow as H(γ |α) ≤ H(γ).

Take γ to be the following partition of X:

γ :=
{
C
}
∪ {Ai ∩Bj

∣∣ i 6= j
}

where

C :=
r⋃
i=1

Ai ∩Bi.
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That is, γ is the partition obtained from α ∨ β by combining all the Ai ∩Bj

sets for which i = j into one set. Now clearly α ∨ β = α ∨ γ, and therefore
H(β |α) = H(γ |α) because

H(β |α) +H(α) = H(β ∨ α) = H(γ ∨ α) = H(γ |α) +H(α).

It remains then to see why γ has small entropy; this is because it consists of
a single set C of almost full measure, and all the other sets have very small
measure, and the function x 7→ −x log x is small near both 0 and 1. More
precisely, since µ(Ai ∩Bj) < δ for all i 6= j, and µ(C) > 1− rδ,

H(γ) ≤ −µ(C) log µ(C) −
∑
i 6=j

µ(Ai ∩Bj) log µ(Ai ∩Bj) (86)

≤ −(1− rδ) log(1− rδ) − r(r − 1)δ log δ. (87)

For fixed r the right hand side goes to zero as δ → 0. �

We can now prove the theorem of Kolmogorov and Sinai:

Proof. (Of Proposition 4.24) Fix ε > 0. Pick a finite partition β so that

hµ(T, β) ≥ hµ(T ) − ε.

Set r := card(β) and let δ = δ(r) > 0 be as in the approximation lemma.
Claim: it follows from ∨∞i=0αi $ Ω that there exists n ∈ N and α < αn that
is a δ-good approximation of β, meaning that card(α) = r and

µ(Ai ∆Bi) < δ

for all 1 ≤ i ≤ r, where α = {A1, . . . , Ar}. (Think about this). It follows by
the approximation lemma that H(β |α) < ε. Thus,

hµ(T, β) ≤ hµ(T, α ∨ β) ≤ hµ(T, α) +H(β |α) ≤ hµ(T, αn) + ε.

The second from last inequality here used Lemma 4.21. So

hµ(T, αn) ≥ hµ(T )− 2ε.

This establishes (85). �
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We now have the following useful corollary to the Kolmogorov-Sinai theorem,
which sometimes allows to avoid taking a supremum over all partitions when
calculating the entropy of a transformation. First we need:

Definition 4.26 (Generating partition). Say that a (finite) partition α of X
is a generator for T if

+∞∨
n=0

αn $ Ω

where αn := ∨ni=0T
−iα.

Corollary 4.27. If α is a (finite) generating partition for T then

hµ(T ) = hµ(T ;α). (88)

Proof. For each n ∈ N set αn := ∨n0T−iα. Then by Proposition 4.24

h(T ) = lim
n→+∞

h(T, αn). (89)

However, for each fixed n ≥ 1 we have

h(T, αn) = h
(
T, ∨ni=0T

−iα
)

= h(T, α)

by (4) of Lemma 4.21. So the sequence in (89) is constant and equal to
h(T, α). �

Example 4.28. Let T : [0, 1] → [0, 1] be x 7→ 2x mod 1 which we saw
before preserves µ =lebesgue measure. Then we claim that

α =
{

[0, 1/2), [1/2, 1)
}

is a generating partition. Indeed, the ambient σ-algebra is the Borel-σ-
algebra on [0, 1]. Thus it suffices to generate every open interval (a, b) ⊂ [0, 1].

For each n ∈ N, we saw before that

αn :=
n∨
i=0

T−iα =
{

[0, 1/2n), [1/2n, 2/2n), . . .
}
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is the partition of [0, 1] into 2n intervals of length 1/2n. Thus if (a, b) ⊂ [0, 1]
is an arbitrary open interval we easily find intervals of the form

(an, bn) ∈ σ(αn)

with an decreasing to a and bn increasing to b as n → ∞. Thus (a, b) =
∪∞n (an, bn) lies in ∨∞i=0T

−iα.

Let us use a generating partition to calculate the entropy of Bernoulli pro-
cesses precisely, showing that the lower bound we got in Example 4.11 is
infact equality.

Example 4.29 (Entropy of Bernoulli shift again). Let us now show that the
entropy of the (p1, . . . , ps)-Bernoulli process equals

∑
i pi log pi, in particular

the (1/2, 1/2)-shift has entropy log 2.

Recall that X is the space of half infinite sequences x = (x1, x2, . . .) with val-
ues in {1, . . . , s}. Take α = {A1, . . . , As} to be the partition of X determined
by the 1-st coordinate:

Ar :=
{
x = (x1, x2, . . .)

∣∣ x1 = r
}
.

Arguing along the lines of Example 4.28 one can show that α is a generator,
and so

hµ(T ) = hµ(T ;α) = lim
n→+∞

1

n
H

(
n−1∨
k=0

T−kα

)
.

Now one can calculate directly that for each n, H
(
∨n−1
k=0T

−kα
)

= n
∑

i pi log pi.
Alternatively we can use the definition of entropy in terms of conditional en-
tropy

hµ(T ;α) = lim
n→+∞

H
(
α
∣∣ ∨n1 T−kα).

The partitions α and ∨n1T−kα are independent for each n, and so

H
(
α
∣∣ ∨n1 T−kα) = H(α) =

∑
i

pi log pi.
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4.6 Ruelle’s inequality

In preparation for proving inequality (75) we prove two lemmas.

Lemma 4.30. Suppose α = {A1, . . . , Ak} and β = {B1, . . . , Bl} are parti-
tions of (X,Ω, µ). Then

H(β |α) ≤
k∑
i=1

µ(Ai) log rβ(Ai)

where rβ(Ai) is the cardinality of the set
{
B ∈ β

∣∣B ∩ Ai 6= ∅}.

Proof. From the definition of H(β |α) it suffices to show that for each Ai ∈ α
having nonzero measure,

−
∑
j

µ(Bj |Ai) log(µ(Bj |Ai)) ≤ log rβ(Ai).

Observe that the left hand side is nothing other than the entropy of the
partition γ of Ai given by all non-empty intersections with elements of β,
when we view Ai as a probability space with measurable sets E ∩ Ai for all
E ∈ Ω, and measure µ̃(E ∩Ai) := µ(E ∩Ai)/µ(Ai). Then the lemma follows
from

H(γ) ≤ log card(γ) = log rβ(Ai).

�

By a (v1, . . . , vd)-parallelogram in Rd we mean the image of a Euclidean
isometry of the set R(v1, . . . , vd) spanned by these vectors;

R(v1, . . . , vd) :=
{

(s1v1, . . . , sdvd) ∈ Rd
∣∣∣ 0 ≤ si ≤ 1, for all i = 1

}
.

Clearly the d-dimensional volume vol(R) is bounded by the product of the
lengths |v1| · · · |vd|. For any r ≥ 0, consider the r-neighborhood Rr of R =
R(v1, . . . , vd) in Rd. Draw a picture and you’ll see that

vol(Rr) ≤
d∑

k=0

∑
σ∈R

dimσ=k

(2r)d−k vol(σ) (90)
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where on the right hand side σ runs over all the k-dimensional parallelograms
consisting of k-tuples formed from the vectors v1, . . . , vd, and vol(σ) means
the k-dimensional volume.

For ε > 0 let Pε = Pε(Rd) be the partition of Rd into ε-cubes, that is Pε
consists of all sets of the form

{
kiε ≤ xi < (ki + 1)ε

∣∣ i = 1, . . . , d
}

, over all
d-tuples of integers (k1, . . . , kd). Note that each element of Pε has Euclidean
diameter ε

√
d.

Lemma 4.31. Let d ∈ N, and R be a (v1, . . . , vd)-parallelogram in Rd. Then
for all ε > 0,

card
{
P ∈ Pε

∣∣∣P ∩R 6= ∅} ≤ d∑
k=0

∑
(i1,...,ik)

(2
√
d)d−k

|vi1 |
ε
· · · |vik |

ε

where the inner sum is over all k-tuples of non-repeated indices in {1, . . . , d}.

Proof. The diameter of an ε-cube in Rd is ε
√
d. Thus if P ∈ Pε and P∩R 6= ∅

then P lies in R′ = the ε
√
d-neighborhood (in the Euclidean metric) of R.

Hence

card
{
P ∈ Pε

∣∣∣P ∩R 6= ∅} ≤ card
{
P ∈ Pε

∣∣∣P ⊂ R′ 6= ∅
}

≤ 1

εd
· Euclidean volume of R′.

Now we estimate the volume of R′ using (90), with r = ε
√
d, and then bound

the volume of each face σ of R by the product of the lengths of the vectors
determining σ. �

Now we can prove the inequality. There is nothing to be gained by working
in dimension 2, so the dimension d ≥ 1 of M is assumed to be arbitrary.

Theorem 4.32 (Ruelle’s inequality). Let f : M →M be a C1-diffeomorphism*

of a compact smooth manifold. Then for any f -invariant Borel probability

*f need not be invertible and there is nothing to be gained by assuming this. However,
to dispence with this assumption we need to use the non-invertible version of Oseledec.
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measure µ there holds

hµ(f) ≤
∫
M

λ+ dµ

where λ+ : M → [0,∞) is the measurable function, defined µ-almost every-
where, taking x ∈ M to the sum of the non-negative Lyapunov exponents
(counted with multiplicity) of (f, µ) at x.

We will follow the original proof in ([16]) and the outline in ([18]). If α is a
partition of M into small sets then for A ∈ α the set f jA has small measure
but could still intersect a large number of elements in α. If however we can
bound the ”shape“ of f jA, by bounding its diameters in different ”directions“
then we can hope to bound the number of intersections with elements in α.
The proof of the inequality is along the following lines: for a fine partition
α of M and j large, the Oseledec theorem applies to most elements A ∈ α
and tells us that f−jA is distorted in different directions according to the
Lyapunov exponents. This allows to control the number of elements in α
which intersect f−jA in terms of the exponents, leading to a bound on the
entropy.

In the proof, let Λ ⊂ M be the full measure set of Lyapunov regular points
given by Oseledec, and let λ1(x) > · · · > λk(x) be the Lyapunov exponents
at x ∈ Λ, (k ≤ d), and let Ek

x ⊂ · · · ⊂ E1
x = TxM denote the filtration

at x.

Proof. Every smooth manifold, compact or not, admits a smooth triangula-
tion. We fix a finite triangulation for M and denote it by T and its cells by
∆. Let Y denote the ”skeleton“ of T , that is,

Y :=
⋃

∆∈T

∂∆.

Without loss of generality µ(Y ) = 0 by perturbing Y . By definition each
∆ ∈ T is the image of a smooth diffeomorphism from the standard d-simplex
in Rd:

∆d :=
{

(x1, . . . , xd)
∣∣∣ 0 ≤ xi ≤ 1,

∑
i

xi ≤ 1
}
.

For each ε > 0 let aε denote the partition of the standard simplex ∆d into
ε-”boxes” (plus some triangles) obtained by intersecting elements in Pε with
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∆d. This determines a partition of each cell in the triangulation and there-
fore a partition of the whole manifold M , which we denote by αε. Clearly
for any sequence ε1 > ε2 > . . . decreasing to zero, the partitions αεn get finer
as n → 0 and the limit σ-algebra ∨nαεn coincides with the Borel σ-algebra
on M .

Fix numbers δ1, δ2, δ3, δ4 > 0. Now:

1. Let B ⊂ M be an open neighborhood of the skeleton Y , sufficiently
small that µ(B) < δ1.

2. Choose N ∈ N sufficiently large that the set G of “good points” x
for which DfN(x) is δ2-close to its Lyapunov representation, satisfies
µ(G) > 1− δ3. Meaning that if x ∈ G then

‖DfN(x)v‖ ≤ ‖v‖e(λi+δ2)N

for all v ∈ Ei
x. We also assume that N is so large that every λi > 0

satisfies eλiN > 2
√
d, and every λj ≤ 0 satisfies eλjN < 2

√
d.

3. Choose ε > 0 sufficiently small that all of the following hold:

(a) h(f ;αε) ≥ h(fN) − δ4. (Can do by the Kolmogorov-Sinai theo-
rem.)

(b) For each A ∈ αε, either fN(A) ⊂ B or there exists ∆ ∈ T so
that fN(A) ⊂ ∆. (To avoid dealing with fN(A) being spread over
different cells in the triangulation.) Moreover, in the latter case,
for each x ∈ A ∩G

DfN(x)
(
Bε(x)

)
⊂ R

for some R = Rx ⊂ ∆ corresponding to a parallelogram with side
lengths εe(λ1+δ2)N , . . . , εe(λd+δ2)N . To show this we use that the
pull back of the Riemannian metric g on each cell in the triangu-
lation to the standard simplex in Rd is equivalent to the Euclidean
metric.

Now in view of

h(f) =
1

N
h(fN) ≤ 1

N
h
(
fN ;αε

)
+
δ4

N
,
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it suffices for us to show that

lim
N→+∞

lim
ε→0

1

N
h
(
fN ;αε

)
≤
∫
M

λ+ dµ. (91)

We have

h
(
fN ;αε

)
= inf

n≥1
H

(
αε

∣∣∣ n∨
j=1

(fN)−jαε

)
≤ H

(
αε
∣∣f−Nαε)

≤
∑
A∈αε

µ(A) log r(A) (92)

by lemma 4.30, where

r(A) := card
{
B ∈ αε

∣∣ fNA ∩B 6= ∅}.
For “most“ A ∈ αε we have fN(A) lies in a single simplex ∆ and satisfies
A ∩ G 6= ∅. For such A, by (3)b) we can estimate r(A) by the number of
elements in aε which meet an εe(λ1+δ2)N × · · · × εe(λd+δ2)N -parallelogram. So
by lemma 4.31,

r(A) ≤
d∑

k=0

∑
(i1,...,ik)

(2
√
d)d−ke(λi1+δ2)N · · · e(λik+δ2)N .

This sum is bounded by some constant multiple C, depending only on d,
of the maximal term. The maximal term clearly comes from the unique
tuple that picks out those λi for which e(λi+δ2)N > 2

√
d. We arranged N is

sufficiently large that this corresponds precisely to the strictly positive λi’s.
Thus we get an estimate of the form

1

N
log r(A) ≤

∑
λi>0

(λi + δ2) +
C0

N
(93)

for some large constant C0 > 0 depending only on d.

The remaining A ∈ αε satisfy either fN(A) ⊂ B or A∩G = ∅. For such sets
we use a cruder estimate on r(A). Fix an auxilliary Riemannian metric g on
M . Let Diamg(E) denote the diameter of E ⊂ M with respect to g, and if
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E lies in a single cell in the triangulation write Diam(E) for the Euclidean
diameter of the corresponding subset of the standard simplex ∆d. Then,
Diamg(f

NA) ≤ ‖Df‖NC0(M)Diamg(A), and therefore there is some constant

C1 > 0 so that Diam
(
fN(A)∩T

)
≤ CN

1 Diam(A) for each face ∆ ∈ T . Hence
for all A ∈ αε we have

1

N
log r(A) ≤ C2 (94)

for some constant C2 > 0. Now we will use the better estimate (93) whenever
A permits, and otherwise use (94), but the latter will only be for sets A ∈ αε
taking up very little measure in M .

More precisely, combining (92), (93), and (94) we have

1

N
h
(
fN ;αε

)
≤
∑
A∈αε

µ(A)
1

N
log r(A)

≤
∑
A∈αε

µ(A)

[∑
λi≥0

(λi + δ2) +
C0

N

]
+

∑
A∈αε

A⊂f−NB

µ(A)C2 +
∑
A∈αε

A⊂M\G

µ(A)C2.

Letting ε→ 0 gives

lim
ε→0

1

N
h
(
fN ;αε

)
≤
∫
M

λ+ dµ + dδ2 +
C0

N

+ C2µ(B) + C2µ(M\G).

So

lim
N→∞

lim
ε→0

1

N
h
(
fN ;αε

)
≤
∫
M

λ+ dµ + dδ2 + C2δ1 + C2δ3.

This proves (91) and therefore theorem 4.32. �

For comparison, let us state a couple of results without proof. First Pesin’s
formula [15], see also [11], or the discussion in [18]:
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Theorem 4.33 (Pesin). Let f : M → M be a C2-diffeomorphism of a
compact smooth manifold, and µ an f -invariant Borel probability measure
equivalent to the volume (meaning ). Then

hµ(f) =

∫
M

λ+ dµ.

So what is the bridge between these two statements? Of course if µ is ergodic
then the right hand side is simply

∫
M
λ+ dµ =

∑
λi>0 λimi where mi ∈ N is

the multiplicity of λi. In the case where λi = λ > 0 for all i, this becomes
λ · m where m = dimM . For a measure µ define its dimension dim(λ) to
be the infimum of the Hausdorff dimensions of all supports of µ. Then the
following is a theorem of Ledrappier and Young [10] from 1985.

Theorem 4.34 (Ledrappier-Young). Let f : M → M be a C2-mapping of
a compact smooth manifold, and µ an f -invariant ergodic Borel probability
measure with all Lyapunov exponents λi = λ for all i. Then

hµ(f) = λ · dim(µ).

It is not necessary that µ be f -ergodic, but makes it easier to state. See [18]
for an outline of the proof.
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