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Abstract. We prove that every C∞-smooth, area preserving diffeomorphism of the closed 2-
disk having not more than one periodic point is the uniform limit of periodic C∞-smooth dif-
feomorphisms. In particular every smooth irrational pseudo-rotation can be C0-approximated
by integrable systems. This partially answers a long standing question of A. Katok regarding
zero entropy Hamiltonian systems in low dimensions. Our approach uses pseudoholomorphic
curve techniques from symplectic geometry.
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1. Introduction

1.1. The main result. In this paper we prove a statement which is a significant first step
towards answering the following general question of Katok.

In low dimensions is every conservative dynamical system with zero topological
entropy a limit of integrable systems?

This is stated as problem 1 in [29], but relates also to the Anosov-Katok constructions [1]
in 1970. Low dimensions means maps on surfaces or flows on 3-dimensional manifolds. The
result in this article is concerned with Katok’s question for area preserving disk maps.

Arguably one of the main obstacles to an affirmative answer to this question is the presence
of ergodic components of positive measure. Indeed, ergodic maps (with respect to Lebesgue
measure) exhibit strongly different dynamical behavior to integrable ones. In particular,
almost every point is the initial condition for a dense orbit.

With regard to area preserving disk maps, the only known ergodic examples with zero
entropy are so called irrational pseudo-rotations. These are the area preserving disk maps
with precisely one periodic point, see definition 3. Using pseudoholomorphic curve methods
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we show that all irrational pseudo-rotations are in some sense limits of integrable systems as
Katok’s question suggests.

More precisely, for each t ∈ R let R2πt : D → D denote the rigid rotation through angle 2πt
on the disk D = {(x, y) |x2 + y2 ≤ 1}. Let Diff∞+ (D) and Diff∞(D,ω0) be the spaces of C∞-
smooth diffeomorphisms of the disk which preserve orientation and the area form ω0 = dx∧dy
respectively.

Theorem 1 (Main result). Suppose ϕ ∈ Diff∞(D,ω0) fixes the origin and has no other
periodic points. Then it is the C0-limit of a sequence of maps of the form ϕk = g−1

k R2πpk/qkgk,
for a sequence of conjugating maps gk ∈ Diff∞+ (D) which fix the origin, and a sequence of
rationals pk/qk converging to an irrational number.

Concerning the convergence of the approximation maps in theorem 1 it is natural to ask
whether C0-convergence is so weak as to allow “almost anything” to be obtained in the limit
A more natural topology to consider Katok’s question, as discussed in [29], is at least a C1,ε-
topology, ε > 0, in which the topological entropy is lower semi-continuous. The author would
therefore like to thank Patrice Le Calvez for pointing out the following and the idea of its
proof using work of Franks. A slightly more general statement is proven in appendix A.1.

Proposition 2. Suppose ϕ ∈ Diff∞(D,ω0) is the C0-limit of a sequence of maps of the form
ϕk = g−1

k R2πpk/qkgk, for a sequence of conjugating maps gk ∈ Diff∞+ (D) fixing the origin,
and a sequence of rationals pk/qk converging to an irrational number. Then ϕ necessarily has
precisely one periodic point. In particular it is an irrational pseudo-rotation.

Thus C0-convergence is still strong enough to guarantee that the limit object is an irrational
pseudo-rotation. In particular that it has zero entropy. (Due, for example, to Katok’s theorem
for C1,ε surface diffeomorphisms [28] that bounds entropy from above by the exponential
growth rate of periodic points.)

The existence of ergodic area preserving disk maps with zero entropy was established back
in 1970 by Anosov and Katok [1]. Previous to their constructions it was even an open
question in the non-conservative setting; Shnirelman 1930 [39] found a (non-area preserving)
homeomorphism of the disk with a dense orbit, a more detailed discussion of which can be
found in [11].

It is interesting to compare the Anosov-Katok construction to the statement of theorem
1. They construct an ergodic map ϕ : D → D as the C∞-limit of a sequence of maps
ϕk : D → D which are inductively constructed with the following form. For each k ∈ N there
exists (pk, qk) ∈ Z×N relatively prime, and gk ∈ Diff∞(D,ω0), also fixing the origin, so that

(1) ϕk = g−1
k ◦R2πpk/qk ◦ gk.

The maps gk are arranged so that the orbits of ϕk increasingly spread out over the disk as
k →∞. Consequently, the sequence {gk} blows up in every Cr topology. But by interatively
choosing qk+1 − qk sufficiently large depending on the size of ‖gk‖Ck , the Ck norm of ϕk can
be controlled. A limiting subsequence converges to a map ϕ with the desired “pathological”
behavior such as a dense orbit, or ergodicity, or even weak mixing. More details of this
method, other results and questions, are in Fayad-Katok [11]. See also Fayad-Saprykina [12].

In some sense then, theorem 1 reverses the limiting process just described above. However
our conclusions are in two respects weaker than a word for word converse to the Anosov-Katok
construction. Firstly, the convergence ϕk → ϕ in [1] is in the C∞-sense. Secondly, each ϕk
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in [1] preserves the standard area form. We do not show this for the approximation maps in
theorem 1. This raises natural questions for further investigation.

A remark on integrability: The notion of integrability for a map on a surface that appears
to be referred to in [29] is that the map should admit a “first integral”, that is, a smooth real
valued function on the surface that is not constant on any open set but is constant on the
orbits of the given map. It is obviously in this sense that each of our approximation maps in
theorem 1 is integrable. A natural question is whether approximation maps can be found that
are integrable in the Liouville-Arnold sense. This would follow if they were area preserving.

1.2. Outline of the proof. Let ϕ : D → D be an irrational pseudo-rotation. That is, ϕ
is a smooth area and orientation preserving diffeomorphism that fixes the origin and has no
other periodic points. As a consequence the circle map on the boundary ϕ : ∂D → ∂D has
irrational rotation number [α] ∈ R/Z say.

We pick a closed loop of Hamiltonians Ht : D → D, over t ∈ R/Z, which generate a
symplectic isotopy whose time-one map is ϕ. Denote the 1-periodic path of Hamiltonian
vector fields on the disk by XHt . For each n ∈ N equip the solid torus

Zn := R/nZ×D
with coordinates (τ, z). Then the vector field Rn(τ, z) = ∂τ + XHτ (z) defines a flow on Zn
with time-one map ϕ and first return map ϕn. For each n ∈ N there is a unique simple
periodic orbit in Zn (corresponding to the unique fixed point of ϕn at the origin). We can
choose t 7→ Ht so that this periodic orbit in Zn passes through the center of each disk slice,
indeed is parameterized by

γn : R/nZ→ Zn

t 7→(t, 0).

Consider the 4-manifold Wn := R× Zn with the unique almost complex structure satisfying

(2)

{
Jn∂R = Rn

Jn|TD = i

where ∂R is the vector field dual to the R-coordinate on Wn. Then (Wn, Jn) is a so called
cylindrical, symmetric, almost complex manifold. That is, it is compatible in a precise way
with the necessary symplectic structures for the compactness framework from symplectic field
theory [4] to apply to Jn-holomorphic curves. In section 7 we adapt techniques developed by
Hofer, Wysocki, and Zehnder [22, 23, 24, 26, 27] to construct, for each n ∈ N, a pair of finite
energy foliations F+

n and F−n of the almost complex manifold (Wn, Jn). In this introduction
we will only need to refer to the sequence (F+

n ) which we therefore abbreviate by (Fn). We
describe these foliations in a moment. However, having constructed the foliations, the proof
of theorem 1 consists of three steps:

(1) For each n ∈ N we use the leaves in Fn to define a disk map ϕn = ϕFn : D → D.
Since this is defined by following a path along the leaves we will refer to it as the
holonomy map of Fn. Each map ϕn inherits the smoothness of the foliation.

(2) A symmetry in the leaves of Fn implies that ϕn is integrable in the sense that (ϕn)n =
idD. Indeed, by classical results this implies that ϕn is at least topologically conjugate
to a rotation R2πq/n : D → D, for some q ∈ {0, 1, . . . , n− 1}.

(3) There exists a subsequence nj such that ϕnj converges to the given irrational pseudo-
rotation ϕ.
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We now outline these steps in more detail.

Step 1: For each n ∈ N, Fn is a 2-dimensional foliation of the 4-manifold R × Zn = R ×
R/nZ ×D by surfaces called the leaves of Fn. Each leaf F ∈ Fn is the image of a properly
embedded, non-compact Jn-holomorphic map satisfying a finite energy condition. For precise
definitions see section 3. Let us here describe the geometric properties of the leaves in Fn.
There is a distinguished leaf Cn ∈ Fn that is homeomorphic to R × S1, which we call the
cylinder in Fn, see Figure 1. This has the following simple description:

Cn =
{

(a, γn(t)) ∈ R× Zn
∣∣ a ∈ R, t ∈ S1

}
.

Thus Cn intersects each slice {c} × Zn in the trace of the unique simple periodic orbit γn.
The other leaves are homeomorphic to [0,∞) × S1 and will be referred to as half cylinders.
Each half cylinder F can be parameterized by a smooth embedding ũ : [0,∞) × R/nZ →
Wn = R × Zn = R × R/nZ × D of the form (s, t) 7→ (s − s0, t, z(s, t)) for some constant s0

depending on F . The loops s 7→ (·, z(s, ·)) begin in the boundary of Zn at s = 0 and converge
in C∞(R/nZ, Zn) to the unique simple periodic orbit γn as s→ +∞.

C3 F

0

R R

0

{0} × Z3

γF

Figure 1. Illustrating n = 3: both figures separately represent leaves in R×Z3

coming from the foliation F3. On the left the leaf is the cylinder leaf C3, on
the right a typical half cylinder leaf F . Both leaves intersect the hypersurface
{0} × Z3 transversely in embedded closed loops.

Infact the half cylinders come in a 2-parameter family. One parameter comes from trans-
lations in the R-direction: if F ∈ Fn is a half cylinder then for each c ∈ R the translated
set

Fc :=
{

(a+ c,m) ∈ R× Zn
∣∣ (a,m) ∈ F

}
will also be a half cylinder in Fn.

For a half cylinder F ∈ Fn consider the intersection

γF := F ∩
(
{0} × Zn

)
.
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Identifying the hypersurface {0} × Zn with Zn we can view

γF ⊂ Zn.

It turns out that γF is either empty or is an embedded circle that closes up after going ”once“
around the solid torus. For any point p ∈ Zn there exists a leaf F ∈ Fn such that p ∈ γF .
Moreover if G is another leaf for which p ∈ γG, then G and F are related by an R-translation
in R× Zn, and so γG = γF . Thus the set

∆(Fn) :=
{
γF ⊂ Zn

∣∣F ∈ Fn}
is some kind of filling of the mapping torus Zn by pairwise disjoint embedded circles. Note
that the trace of the periodic orbit γn also lies in ∆(Fn), since

γCn = image(γn).

It turns out that each circle γ ∈ ∆(Fn) intersects each disk slice {τ} ×D ⊂ Zn transversely
and uniquely. This is a consequence of the positivity of intersections phenomenon between
pairs of distinct pseudoholomorphic curves; the disks {a, τ} ×D ⊂ R×Zn are also images of
embedded Jn-holomorphic maps. We can therefore define a new disk map

ϕn = ϕFn : D → D

which maps the point ξ ∈ D to ξ′ ∈ D if there exists a loop γ ∈ ∆(Fn) connecting the points
(0, ξ) and (1, ξ), see figure 2. We refer to ϕn as the holonomy map associated to Fn.

γF

γC3

0 1 2 3

(0, ξ) (1, ξ′)

Figure 2. Illustrating the definition of the holonomy map ϕ3 : D → D. The
tube represents the mapping torus Z3 opened out. Identify this space with
the hypersurface {0} ×Z3 inside R×Z3. Then the curves γC3 and γF are the
closed loops from figure 1 where the leaves C3 and F respectively intersect
{0} × Z3. We then set ϕ3(ξ) = ξ′.

From the properties above the holonomy map is a bijection between the disks. Since
image(γn) ∈ ∆(Fn) we know that ϕFn fixes the origin. This completes our definition and
geometric description of the holonomy maps.

Step 2: The integrability of ϕn comes from the following symmetry within the foliation Fn.
Our 3-manifold Zn has a natural Zn-action on it given by the deck transformations. The
corresponding Zn-action on Wn generated by the map

(3)
T : R× Zn → R× Zn

(a, τ, z) 7→ (a, τ + 1, z)

also preserves the almost complex structure Jn defined in (2). Thus if F is a leaf in Fn then
T (F ) is the image of another Jn-holomorphic map, and we can ask whether T (F ) is also a
leaf in Fn. This turns out to be the case, the key reason being the positivity of intersections
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0 1

Tc

Figure 3. Illustrating a 2-torus in Zn, which corresponds to an invariant
circle for the n-th holonomy map ϕFn . The shaded strip is a portion of the
projection into Zn of a leaf F ∈ Fn. This strip would close up in time n. For
each c ∈ (−∞, 0] we obtain a 2-torus Tc ∈ Zn of which one is illustrated. The
set Tc is defined as the union of all closed loops γG as G ∈ Fn runs over all
leaves with boundary condition ∂G ∈ {c} × ∂Zn for the given c ∈ (−∞, 0].
(For c > 0 this defines an empty set.) As c → −∞ the tori Tc collapse onto
the periodic orbit γn at the center. Note that although Tc is comprised of n-
periodic loops, Tc itself is 1-periodic due to the deck transformation invariance
of Fn. The concentric circles in the figure on the right illustrate how these
2-tori intersect the disk {0} × D in circles invariant under ϕFn . Each radial
arc would get mapped to another radial arc under ϕFn .

phenomenon for pseudoholomorphic curves, plus certain convenient features of the dynamics.
We conclude then that

T (Fn) :=
{
T (F )

∣∣F ∈ Fn} = Fn
for each n ∈ N. We say that Fn has deck transformation invariance. The deck transformation
invariance of Fn implies that the set of embedded loops ∆(Fn) ⊂ Zn is invariant under

(4)
T̂ : Zn → Zn

(τ, z) 7→ (τ + 1, z).

That is, if γ ∈ ∆(Fn) then T (γ) ∈ ∆(Fn). As a consequence the holonomy map is n-
periodic. That is, (

ϕFn
)n

= idD .

To see this consider the disk maps

ψ0, ψ1, . . . , ψn−1

where for each k ∈ Zn, ψk is defined to take ξ ∈ D to ξ′ ∈ D if the loop γ ∈ ∆(Fn) that
contains (k, ξ) also passes through (k + 1, ξ′). In particular ψ0 = ϕFn . Now fix any point
ξ ∈ D. Consider the unique loop γ ∈ ∆(Fn) that contains (0, ξ) ∈ Zn. Following γ around
the solid torus Zn it must intersect the disk slice {1} × D at the point (1, ψ0(ξ)), the slice
{2} × D at (2, ψ1 ◦ ψ0(ξ)), and so on. Continuing, going around Zn once, γ will intersect
{0} ×D again at the point (0, ψn−1 ◦ . . . ◦ ψ0(ξ)). On the other hand γ closes up after going
once around Zn and so this point is also (0, ξ). Thus,

ψn−1 ◦ . . . ◦ ψ0 = idD .
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However it follows from the deck transformation invariance of ∆(Fn) that each of these maps
is the same, and so

ψk = ϕFn

for all 0 ≤ k ≤ n− 1. Therefore
(
ϕFn

)n
= idD.

Step 3: We claim that there exists a subsequence of the holonomy maps ϕFnk : D → D that
converges to the given pseudo-rotation ϕ as k →∞.

To explain this heuristically, start with any mapping torus (Zn, Rn) and consider the fol-
lowing way in which a trajectory γ : R → Zn, that is a solution to γ̇(t) = Rn(γ(t)), trivially
gives rise to an immersed surface Fγ in Wn = R× Zn by taking the product space

(5) Fγ := R× γ(R) ⊂Wn.

Since Jn couples the R-direction with the Rn-direction this surface is an (immersed but not
in general embedded) Jn-holomorphic curve parameterized by ũ : C→Wn, ũ(s, t) = (s, γ(t)).
Moreover, for two trajectories γ1 and γ2 the surfaces Fγ1 and Fγ2 are either equal or disjoint,
and indeed the union

Fvert :=
{
Fγ

∣∣∣ γ}
over all trajectories is a foliation of R × Zn by Jn-holomorphic curves. We will call this the
(unique) vertical foliation of (Wn, Jn), because each leaf is invariant under translations in the
R-direction in Wn = R × Zn and it is standard to draw the R-axis in this context pointing
vertically. The holonomy map associated to this foliation is clearly just the time-one map of
the flow of Rn which is the irrational pseudo-rotation ϕ. So we may formally write

ϕFvert = ϕ.

Amongst all Jn-holomorphic curves in (Wn, Jn) the ones which take the form of a product
with a trajectory, as in (5), are also distinguished by the vanishing of a certain integral over
the surface. More precisely, let ω be the exact differential 2-form dx ∧ dy + dτ ∧ dH on
Zn = R/nZ×D, where (x, y) are standard coordinates on D, and τ is the R/nZ-coordinate,
and H : Zn → R is the Hamiltonian. Then for any vector v in the tangent space to Wn one
can check that ω(v, Jv) ≥ 0 with equality if and only if v ∈ span{∂R, Rn}. Thus if S ⊂Wn is
an immersed surface with Jn-invariant tangent bundle then the integral∫

S
ω ≥ 0

is non-negative and vanishes if and only if S is tangent to the 2-plane distribution with fibers
span{∂R, Rn}. That is, if and only if S is contained in a ”vertical” surface of the form R×γ(R)
for an Rn-trajectory γ, as in (5).

We can therefore view the value of the ω-integral (also called the ω-energy) of each leaf
in the foliation Fn as a measure of how close to the vertical foliation it is, or alternatively
how close the loop γF is to an Rn-trajectory. Using Stokes’ theorem the ω-integral for the
leaves can infact be calculated. For the cylinder leaf the integral vanishes, while for each half
cylinder leaf F ∈ Fn one gets the more interesting quantity∫

F
ω = π{nα}

where α is the rotation number of the pseudo-rotation on the boundary of the disk, and
{x} ∈ [0, 1) denotes the fractional part of x ∈ R.
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Since α is irrational there exists a subsequence nk ∈ N for which {nkα} → 0. Thus for
the corresponding subsequence of foliations (Fnk) the above integrals over the leaves decays
uniformly to zero as k → ∞. Compactness properties of pseudoholomorphic curves imply
that these foliations converge in some sense to the vertical foliation Fvert, because the latter
is the unique foliation for which the ω-integral vanishes on all leaves. From this one can
conclude that the subsequence of holonomy maps (ϕFnk ) converges to the holonomy map of

Fvert. That is,

lim
k→∞

ϕFnk = ϕFvert .

However, as we observed above, the right hand side is simply the pseudo-rotation ϕ.

1.3. Results in the literature of related interest. Using different techniques, Le Calvez
proved in 2004, see Theorem 1.9 in [32], that every minimal C1-diffeomorphism of the 2-torus
that is homotopic to the identity can be C0-approximated by periodic C1-diffeomorphisms.
Recall that a diffeomorphism is minimal if every point is the initial condition for a dense
orbit. Thus, in this result also strongly non-integrable maps are approximated by, in some
sense, integrable ones.

An interesting result about irrational pseudo-rotations in the class of homeomorphisms of
the open and closed annulus homotopic to the identity, was obtained by Béguin-Crovisier-
LeRoux-Patou [2] and Béguin-Crovisier-LeRoux [3]. Stated for maps on the closed disk this
is as follows. Let ϕ be an orientation preserving, measure preserving, homeomorphism of the
disk with a single periodic point and boundary rotation number α ∈ R/Z. Then the rigid
rotation R2πα is the C0-limit of maps (not necessarily area preserving) conjugate to ϕ. The
authors of these papers note that one does not know from their approach that ϕ is in the
closure of the set of maps conjugate to R2πα.

Note added in Proof. Patrice Le Calvez recently announced in [34] a proof of a version of
theorem 1 using generating functions. The result he obtains is for C1-pseudo-rotations which
satisfy a condition on the boundary.

1.4. Acknowledgements. I would particularly like to thank Helmut Hofer for his interest,
encouragement, and valuable discussions. Also for constructive comments on an earlier version
of this paper. I also wish to thank Anatole Katok for his attention to this work, and for
pointing out to me the relevance of his question to the main result, see problem 1 in [29]. I
thank Patrice LeCalvez for his interest and for pointing out that proposition 2 should hold
and for explaining the idea of its’ proof (also as stated in appendix A.1), and Richard Siefring
and Chris Wendl for many helpful discussions about pseudoholomorphic curves. This article
was written at the IAS in Princeton, it is a pleasure to acknowledge the wonderful working
environment there. Finally I thank the anonymous referees for many helpful comments.

This work is based upon work supported by the National Science Foundation under agree-
ment No. DMS-0635607. Any opinions, findings and conclusions or recommendations in this
material are those of the author and do not necessarily reflect the views of the National
Science Foundation.

2. Irrational pseudo-rotations

Definition 3. A (smooth) irrational, pseudo-rotation is a C∞-diffeomorphism ϕ : D → D of
the closed 2-disk D with the following properties: (1) ϕ preserves the volume form dx ∧ dy.
(2) ϕ(0) = 0. (3) ϕ has no periodic points in D\{0}.



PERIODIC APPROXIMATIONS OF IRRATIONAL PSEUDO-ROTATIONS 9

There are equivalent definitions which admit generalizations to rational pseudo-rotations
which we will not need. See for example [33] and [2].

If ϕ : D → D is an irrational pseudo-rotation, then the restriction of ϕ to the boundary
is an orientation preserving circle diffeomorphism without periodic points. It therefore has
irrational rotation number on the boundary.

More precisely, let π : R → ∂D be the projection map x 7→ e2πix. Then for any lift
f : R→ R of ϕ|∂D via π, the limit

(6) τ(f) := lim
n→∞

fn(x)− x
n

∈ R

exists and is independent of x, see for example [30], and is called the translation number of
f . Furthermore, the element [τ(f)] ∈ R/Z in the quotient space, is even independent of the
choice of lift f , and is called the rotation number of ϕ|∂D.

Definition 4. Let ϕ : D → D be an irrational pseudo-rotation. Then we define the rotation
number of ϕ to be the value on the circle

Rot(ϕ) := [τ(f)] ∈ R/Z

for any lift f : R→ R of the restriction ϕ : ∂D → ∂D.

A preferred homotopy {ϕt}t∈[0,1] from ϕ0 = id∂D to ϕ1 = ϕ|∂D gives us a preferred lift of
ϕ|∂D. Namely the terminal map of the unique lift to a homotopy in the universal covering
space which begins at idR. In particular, any Hamiltonian generating ϕ as its time-one map,
restricts to a homotopy on the boundary of the disk from id∂D to ϕ|∂D and thus determines
a canonical lift of the latter. Using this we define:

Definition 5. Let ϕ : D → D be an irrational pseudo-rotation. Let Ht ∈ C∞(D,R) be a
path of Hamiltonians on (D,ω0 = dx∧ dy) generating ϕ as its time-one map. Then we define
the rotation number of ϕ with respect to H to be the real number

Rot(ϕ;H) := τ(f) ∈ R

where f : R→ R is the canonical lift of ϕ : ∂D → ∂D determined by H.

If ϕ is an irrational pseudo-rotation, then the unique periodic point is non-degenerate in
the sense that for all n ∈ N, the linearization Dϕ(n)(0) does not have eigenvalue 1. The proof
is a well known application of the Poincaré-Birkhoff fixed point theorem. See appendix A.2.

3. Finite energy foliations

For any H ∈ C∞(R/Z×D,R) with Ht := H(t, ·) constant on the boundary of D for each
t ∈ R/Z, the smooth time-dependent vector field XH(t, ·) := XHt on D defined by

ω0(XHt(z), ·) = −dHt(z)

for all z = (x, y) ∈ D is tangent to ∂D and therefore generates a 1-parameter family of
diffeomorphisms φt : D → D over t ∈ R. Using that the disk is simply connected it is well
known that one may find an H for any element ϕ ∈ Diff∞(D,ω0) so that ϕ = φ1. Then H is
said to generate ϕ.

From now on let ϕ : D → D be a fixed irrational pseudo-rotation. Unless stated otherwise
H ∈ C∞(R/Z×D,R) is a 1-periodic time-dependent Hamiltonian generating ϕ.
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Remark 1. By precomposing H with a suitable closed loop in Diff∞(D,ω0) based at the
identity, we may assume that the unique 1-periodic orbit of XHt corresponding to the fixed
point 0 ∈ D of ϕ is the constant trajectory t 7→ 0 ∈ D for all t ∈ R. This is not necessary,
but makes the proof of theorem 8 slightly easier.

Define a smooth vector field RH on the solid torus Z := R/Z×D by

(7) RH(τ, z) := ∂τ +XH(τ, z)

for all τ ∈ R/Z, z ∈ D. The first return map on {0} × D is canonically identified with the
pseudo-rotation ϕ.

For each n ∈ N let Zn be the 3-manifold-with-boundary R/nZ×D, and Rn the vector field
on Zn that projects down to RH under the natural projection πn : Zn → Z. Clearly the first
return map of the flow generated by Rn is the n-th iterate ϕn : D → D. We will refer to
the pair (Zn, Rn) as the mapping torus of length-n associated to H. It will also be useful to
denote by Z∞ := R×D the universal covering of each Zn.

All the dynamical information on (Zn, Rn) can be captured by an almost complex structure
on the 4-manifold R× Zn as follows. For each n ∈ N ∪ {∞} define Jn on R× Zn by

(8)

{
Jn(a, τ, z)∂R = Rn

Jn(a, τ, z)|TzD = i

for all (a, τ, z) ∈ R × Zn. Here, ∂R is the vector field dual to the R-coordinate on R × Zn,
and i denotes the constant almost complex structure on the disk coming from the standard
integrable complex structure on C *. In other words i∂x = ∂y and i∂y = −∂x. Observe
that Jn is independent of the R-coordinate on R × Zn, referred to as R-invariance. This
idea of coupling a suitable conservative vector field in an odd-dimensional manifold with the
R-direction in the product 4-manifold by an almost complex structure is due to Hofer [18].

There is a 1-parameter family of 2-tori

Lc := {c} × ∂Zn
for c ∈ R, that fill the boundary R × ∂Zn of the 4-manifold. Each Lc is totally real with
respect to the almost complex structure Jn, that is

TLc ⊕ JnT (Lc)

is the full 4-dimensional tangent space at each point of Lc. These will form the boundary
conditions for our pseudoholomorphic curves with boundary.

Let us describe the Jn-holomorphic half infinite cylinders with totally real boundary con-
ditions that we are interested in. Let R+ = [0,∞) and R− = (−∞, 0]. For n ∈ N we consider
maps ũ = (a, τ, z) ∈ C∞(R± × R/nZ,R× Zn = R× R/nZ×D) for which there exists c ∈ R
such that

(9)


∂sũ(s, t) + Jn(ũ(s, t))∂tũ(s, t) = 0 for all (s, t) ∈ R± × R/nZ

ũ(0, t) ∈ Lc for all t ∈ R/nZ
τ(0, ·) : R/nZ→ R/nZ has degree + 1,

having so called finite total energy, which we define in a moment.

*For convenience we use this “non-generic” almost complex structure, although it is not necessary. The
pseudoholomorphic curves we encounter are either orbit cylinders or embedded with genus zero, one boundary
component, and Fredholm index 2. Such curves are automatically regular.
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This setting is a special case of that described in [4]. In particular (R×Zn, Jn) is a cylindrical
symmetric almost complex manifold, and the almost complex structure Jn is compatible with
the stable Hamiltonian structure (ωn, λn) on Zn given by

(10)

{
ωn = dx ∧ dy + dτ ∧ dH
λn = dτ

in coordinates (τ, (x, y)) on R/nZ×D. Recall that this means that λn∧ωn > 0 and ker(ωn) ⊂
ker(dλn), see for example [4] or [8]. The compactness theory in [4] leads us to consider the
following two quantities for a solution to (9) which we will refer to as the ω-energy, the λ-
energy, and the sum of them as the total energy. In our context the λ-energy of a solution
ũ = (a, τ, z) ∈ R× R/nZ×D to (9) is the quantity

(11) Eλ(ũ) := sup
ψ∈C

∫
R+×R/nZ

ũ∗
(
ψ(a)da ∧ dτ

)
∈ [0,+∞]

where C is the set of smooth functions ψ : R → [0,∞) for which
∫
R ψ(s)ds = 1. The second

energy, that which in the more general context of [4] is called the ω-energy, is

(12) Eω(ũ) :=

∫
R+×R/nZ

ũ∗ωn ∈ [0,+∞].

In section 6 we will prove the following.

Lemma 6. Let n ∈ N. Suppose ũ ∈ C∞(R+ × R/nZ,R × Zn) is a solution to (9) with
Eλ(ũ) <∞. Then there exists (s0, t0) ∈ R× R/nZ so that

(13) ũ(s+ s0, t+ t0) = (s, t, z(s, t))

for all (s, t) ∈ [−s0,∞) × R/nZ, where z ∈ C∞([−s0,∞) × R/nZ, D) satisfies the Floer
equation

(14) ∂sz(s, t) + i
(
∂tz(s, t)−XH(t, z(s, t))

)
= 0

for all (s, t) ∈ [−s0,∞)× R/nZ.

This is a converse to “Gromov’s trick” [16]. It follows from this lemma that if a solution
ũ = (a, τ, z) to (9) has finite λ-energy then the two energies have rather nice expressions:

(15) Eλ(ũ) = n,

and

(16) Eω(ũ) =
1

2

∫ +∞

s=−s0

∫ n

t=0

∣∣∂sz(s, t)∣∣2 +
∣∣∂tz(s, t)−XH(t, z(s, t))

∣∣2dsdt.
In particular the ω-energy of ũ becomes equal to the Floer energy of z. Let us verify (15) and
(16) now. First,

Eλ(ũ) = sup
ψ∈C

∫
R+×R/nZ

ψ(s− s0)ds ∧ dt

= sup
ψ∈C

∫ ∞
s=−s0

ψ(s)ds ·
∫
R/nZ

dt

≤ n,
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and clearly there exists ψ ∈ C such that
∫∞
s=−s0 ψ(s)ds = 1, so Eλ(ũ) = n. Similarly (16)

follows from lemma 6 as follows. Abbreviating ω0 = dx ∧ dy for the area form on the disk,

Eω(ũ) :=

∫
R+×R/nZ

ũ∗ω =

∫
[−s0,∞)×R/nZ

z∗ω0 − z∗dHt ∧ dt.

The integrand simplifies to

=
(
ω0(zs, zt)− dHt(z)[zs]

)
ds ∧ dt

=
(
ω0(zs, izs) + ω0(zs, XH(t, z))− dHt(z)[zs]

)
ds ∧ dt

=
(
|zs|2 + dHt(z)[zs]− dHt(z)[zs]

)
ds ∧ dt

= |zs|2ds ∧ dt.

The expression (16) then follows immediately using (13) again.

Definition 7. For a solution ũ = (a, τ, z) ∈ C∞(R± × R/nZ,R × Zn) to (9) we refer to the
degree of the circle map

z(0, ·) : R/nZ→ ∂D

as the boundary index of ũ.

For x ∈ R we write

dxe := min
{
k ∈ Z

∣∣ k > x
}

bxc := max
{
k ∈ Z

∣∣ k ≤ x}.
In section 7 we will prove the following existence result concerning solutions to (9). Each F+

n

is the n-th finite energy foliation referred to in section 1.2.

Theorem 8. Let H ∈ C∞(R/Z × D,R) be a Hamiltonian generating an irrational pseudo-
rotation ϕ. Let (Z1, R1), (Z2, R2), . . . be the corresponding sequence of mapping tori. For
each n ∈ N let γn : R/nZ → Zn be the unique n-periodic orbit of Rn, parameterized so that
γn(0) ∈ {0} × D. Assume H was chosen so that γ(t) = (t, 0) for all t ∈ R/nZ (see remark
1). Let α := Rot(ϕ;H) ∈ R, which is necessarily irrational.

Then for each n ∈ N there exist two foliations F+
n ,F−n of R × Zn by smoothly embedded

surfaces, with the following properties:

• Cylinder leaf: The cylinder Cn := R× γn(R/nZ) ⊂ R×Zn is a leaf in both F+
n and

F−n .
• Pseudo-holomorphic: If F ∈ F+

n (resp. F ∈ F−n ) is not Cn, then F is parameter-
ized by a solution ũ to (9) with Jn as in (8), with Eλ(ũ) + Eω(ũ) <∞ and boundary
index bnαc (resp. dnαe).
• R-invariance: If F ∈ F+

n (resp. F ∈ F−n ) is a leaf and c ∈ R, the set F + c :=
{(a+ c, τ, z) | (a, τ, z) ∈ F} is also a leaf in F+

n (resp. in F−n ).
• Uniqueness: F+

n and F−n are uniquely determined by the above properties.
• Smooth foliation: F+

n and F−n are C∞-smooth 2-dimensional foliations at each
point on the complement of Cn.

This a special case of a much more general result to appear in [5].
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Remark 2. For each leaf F ∈ F+
n (resp. F ∈ F−n ) that is not the cylinder, any parameteri-

zation ũ satisfying (9) has domain R+ × R/nZ (resp. R− × R/nZ). Hence the superscripts
in F±n . In either case, as the unique n-periodic orbit γn is non-degenerate the finite energy
of ũ implies that the Zn component u±(s, ·) : R/nZ → Zn converges to γn uniformly in
C∞(R/nZ, Zn) as s → +∞ (resp. s → −∞). This can be seen in two ways. Either as a
consequence of the compactness results in [18] applied to ũ (as generalized in [20, 4]); or the
original work of Floer [13] applied to the disk component z since, by lemma 6, z is a finite
energy solution to Floer’s equation.

The following formula will be crucial to our application. Recall that α := Rot(ϕ;H) ∈ R.
In particular α is irrational.

Lemma 9. Let n ∈ N. For any half cylinder leaf F ∈ F+
n ,

Eω(F ) = {nα}π
where {·} denotes the fractional part of a real number, that is for x ∈ R {x} := x−bxc ∈ [0, 1).

This is proven in section 5.

4. Proof of theorem 1

We use the finite energy foliations of theorem 8 to define new disk maps.

Definition 10. For each n ∈ N define ϕn : D → D as follows. For ξ ∈ D there is a unique
leaf F ∈ F+

n containing (0, 0, ξ) ∈ R× R/nZ×D. Define ϕn(ξ) = ξ′ where ξ′ ∈ D is unique
such that (0, 1, ξ′) ∈ F . We will refer to ϕn as the holonomy map of the foliation F+

n .

Remark 3. The holonomy maps are well defined. Indeed, for each n ∈ N, by lemma 6 if a leaf
F ∈ F+

n intersects the hypersurface

Ẑn := {0} × Zn
then it does so transversally, and for each τ ∈ R/nZ it will intersect the disk slice {τ}×D ⊂ Ẑn
in a unique point.

Remark 4. We could as easily define maps in terms of the foliations F−n .

Remark 5. The inverse map ϕ−1
n exists and can be defined similarly in terms of F+

n .

Lemma 11. Each holonomy map ϕn : D → D is n-periodic, that is (ϕn)n = idD.

Proof. We could define n many disk maps using F+
n ; say ϕn,i for i = 0, 1, . . . , n − 1, by

requiring that ϕn,i takes the point ξ ∈ D to ξ′ ∈ D if (0, i, ξ) and (0, i+ 1, ξ′) lie on the same
leaf in F+

n . Since each leaf in the foliation closes up after going once around in the R/nZ
direction, it follows that the composition ϕn,n−1◦, . . . , ◦ϕn,0 is the identity map.

We now exploit a symmetry in F+
n to see that each of the maps ϕn,i is equal to ϕn. Consider

the Zn action on R× Zn generated by the deck transformation

T : R× Zn → R× Zn
T (a, τ, z) = (a, τ − 1, z)

which preserves the almost complex structure; T ∗Jn = Jn. From the uniqueness part of
theorem 8 we conclude that the foliation T (F+

n ) := {T (F ) |F ∈ F+
n } is equal to F+

n . Hence
ϕn,i = ϕn for each i. �
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Note that ϕn(0) = 0 as the cylinder Cn passes through the center of the disk slices {0}×D
and {1} ×D in Ẑn = {0} × Zn.

Lemma 12. Each holonomy map ϕn : D → D is C∞-smooth on D\{0}.

Proof. This is basically a consequence of the fact that by theorem 8 F+
n is a C∞-smooth

foliation on the complement of the leaf Cn, not only in the local sense that a neighborhood
of each point admits a foliation chart in which the leaves are “flat”, but in the slightly more
global sense that a neighborhood of each leaf admits a foliation chart.

Fix a point ξ0 ∈ D\{0}. Then the unique leaf F ∈ F+
n that contains the point p0 =

(0, 0, ξ0) ∈ R×Zn cannot be the cylinder Cn. Thus by proposition 38 an open neighborhood
of F is foliated by leaves of F+

n . More precisely, see [25] theorems 1.5 and 5.7, and their
generalizations to surfaces with boundary [45], there exists a C∞-smooth map

Φ : B2
ε × R+× R/nZ→ R× Zn

where ε > 0 and B2
ε denotes the open ε-ball in R2 about the origin, having the following

properties. (1) Φ is an injective immersion. (2) For each c ∈ B2
ε the map Φ(c, ·) parameterizes

a leaf Fc in F+
n where F0 = F . (3) Φ takes the following form:

Φ(c, s, t) = (s− s(c), t, z(c, s, t)) ∈ R× R/nZ×D.

where s(c) depends smoothly on c, and z(c, s, t) depends smoothly on c, s, t. Consider the
two smooth immersions

i0 : B2
ε → D c 7→ z(c, s(c), 0)

i1 : B2
ε → D c 7→ z(c, s(c), 1)

Recall that the holonomy map ϕn : D → D of F+
n is defined by the property that ϕn(ξ) = ξ′

if and only if (0, 0, ξ) and (0, 1, ξ′) lie on the same leaf in F+
n . Observe that for each c ∈ B2

ε ,

(0, 0, i0(c)) = Φ(c, s(c), 0) ∈ Fc
and

(0, 1, i1(c)) = Φ(c, s(c), 1) ∈ Fc.
Thus (0, 0, i0(c)) and (0, 1, i1(c)) lie on the same leaf Fc ∈ F+

n and so ϕn(i0(c)) = i1(c). Thus,
on some neighborhood of i0(0) = ξ0 we have ϕn(c) = i1 ◦ (i0)−1(c) and in particular ϕn is
smooth near ξ0. �

Lemma 13. Each holonomy map ϕn : D → D is continous at the origin.

Proof. Let ξj ∈ D\{0} be a sequence of points converging to 0 ∈ D, and pj := (0, 0, ξj) ∈
R × Zn. By lemma 22 there exists a sequence of parameterizations ũj of the unique leaf
Fj ∈ F+

n containing pj that converges in the C∞loc-topology to Cn. By lemma 6 we may choose
each ũj to take the form ũj : [Sj ,∞)× R/nZ→ R× Zn for some Sj ∈ R, with

ũj(s, t) = (s, t, zj(s, t))

for some sequence zj . It follows that the sequence of points

Fj ∩
(
{(0, 1)} ×D

)
= (0, 1, zj(0, 1))

converges to (0, 1, 0). Which means that ϕn(ξj) = zj(0, 1)→ 0 as j →∞. �
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Fix a subsequence {nj}j∈N for which the sequence of fractional parts

lim
j→∞
{njα} = 0.(17)

From lemma (9) this implies that the ω-energies of the leaves in the foliations F+
nj tends to

zero, as j →∞, uniformly over all leaves.
For maps f, g : D → D, define dC0(f, g) using the linear structure and Euclidean norm on

R2 by
dC0(f, g) := sup

ξ∈D
|f(ξ)− g(ξ)|.

Proposition 14. The subsequence ϕnj converges to the pseudo-rotation ϕ in the following
sense:

dC0(ϕnj , ϕ) + dC0(ϕ−1
nj , ϕ

−1)→ 0

as j →∞.

Proof. We show that dC0(ϕnj , ϕ) → 0 as j → ∞, as the same argument will work for the
inverses.

Arguing indirectly, there exists a sequence of points ξj ∈ D and δ > 0 such that |ϕnj (ξj)−
ϕ(ξj)| ≥ δ for all j ∈ N, where | · | is the Euclidean norm on R2. Restricting to a subsequence
we may assume that ξj → ξ for some ξ ∈ D, and δ ≤ |ϕnj (ξj) − ϕ(ξj)| ≤ |ϕnj (ξj) − ϕ(ξ)| +
|ϕ(ξj)− ϕ(ξ)| for all j ∈ N. Therefore as ϕ is continous,

(18)
1

2
δ ≤ |ϕnj (ξj)− ϕ(ξ)|

for all j sufficiently large.
For each j ∈ N let Fj ∈ F+

nj be the unique leaf containing the point (0, 0, ξj) ∈ R×R/njZ×
D. Let us assume that each Fj is a half cylinder, otherwise the argument is even easier. There
exists a solution ũj to (9) parameterizing Fj . After a holomorphic reparameterization we may
assume that

ũj : [Sj ,∞)× R/njZ→ R× Znj
ũj(0, 0) =(0, 0, ξj)

for some Sj ≤ 0. For each j, Eλ(ũj) <∞, so by lemma 6, ũj takes the form

(19) ũj(s, t) = (s, t, zj(s, t))

some zj : [Sj ,∞)×R/njZ→ D. Moreover, the sequence {ũj}j∈N satisfies all the criterion for
the compactness result theorem 25. In particular

lim
j→∞

Eω(ũj) = 0

due to our choice of subsequence satisfying (17). We conclude that the sequence ũj converges
in the following sense: for each j let ūj : [Sj ,∞) × R → R × Z∞ be the unique lift of ũj to
the universal covering, satisfying

(20) ūj(0, 0) = (0, 0, ξj).

After restricting to a further subsequence we can assume that ūj → ū∞ in the C∞loc(R2,R×Z∞)
topology, that is, uniformly on compact sets, where ū∞ takes the form

ū∞(s, t) = (s, t, γ(t))
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for some γ ∈ C∞(R, D) solving γ̇(t) = XH(t, γ(t)) for all t ∈ R. From (20) we have ū∞(0, 0) =
(0, 0, ξ). We conclude that for all j,

(0, 1, ϕnj (ξj)) = ūj(0, 1).

The right hand side converges to

ū∞(0, 1) = (0, 1, γ(1))

= (0, 1, ϕ(γ(0)))

= (0, 1, ϕ(ξ)).

This contradicts (18) and we are done. �

Combining the results of this section we have proven the following statement which is
almost theorem 1.

Theorem 15. Suppose ϕ ∈ Diff∞(D,ω0) fixes the origin and has no other periodic points.
For each j ∈ N let ϕj : D → D be the holonomy map of the foliation F+

nj . Then for each

j ∈ N, ϕj(0) = 0, ϕj ∈ Homeo+(D) ∩ Diff∞(D\{0}), ϕnjj = idD. Moreover dC0(ϕj , ϕ) +

dC0(ϕ−1
j , ϕ−1)→ 0 as j →∞.

There are presumably nicer ways to go from this conclusion to the final statement. For
example using changes of coordinates from the pseudoholomorphic curves themselves. This
will presumably follow from a more serious analysis of the asymptotic properties of the curves.

Proof of theorem 1. It is a classical result [7, 10, 31] that if f ∈ Homeo+(D) satisfies fn = idD
for some n ∈ N, then there exists g ∈ Homeo+(D) and q ∈ {0, 1, . . . , n− 1} so that

g ◦ f ◦ g−1 = R2πq/n.

If moreover f(0) = 0 then g(0) = 0. Indeed, if q = 0 then f = idD, while if q 6= 0 then R2πq/n

has a unique fixed point at the origin and so g(0) = g(f(0)) = R2πq/n(g(0)) implies g(0) = 0.

Applying this result to each holonomy map ϕj we find gj ∈ Homeo+(D), fixing the origin,
and pj ∈ Z such that

ϕj = g−1
j ◦R2πpj/nj ◦ gj .

Now we replace gj by a C0-close smooth approximation. More precisely, let (ĝj) be a sequence

in Diff∞(D), each map fixing the origin, with dC0(ĝj , gj)+dC0(ĝ−1
j , g−1

j )→ 0 as j →∞. Then

the maps ϕ̂j := ĝ−1
j ◦ R2πpj/nj ◦ ĝj are C∞-diffeomorphisms which converge in the C0-sense

to the irrational pseudo-rotation ϕ. The maps ϕ̂j satisfy the conclusions of theorem 1. �

5. Calculation of the ω-energy

The aim of this section is to prove lemma 9, recalled as lemma 18.
It is convenient to fix a 1-form λ0 on the disk so that dλ0 = ω0 = dx ∧ dy. For each n ∈ N

define the action functional An : C∞(R/nZ, Zn)→ R (associated to λ0) by

An(σ) :=

∫
R/nZ

σ∗λ0 −
∫ n

0
H(σ(t))dt.

We may rewrite this as

An(σ) :=

∫
R/nZ

σ∗ηn
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where ηn := λ0−Hdτ is a primitive of ωn the 2-form used to define the ω-energy. Note that ηn
restricts to a closed 1-form on ∂Zn since Rn is tangent to ∂Zn and dηn(Rn, ·) = ωn(Rn, ·) = 0.
Hence An restricted to C∞(R/nZ, ∂Zn) descends to a map on homology.

It is convenient to introduce the closed loops

1R/nZ : R/nZ→ ∂Zn t 7→ (t, 1)

1∂D : R/nZ→ ∂Zn t 7→ ([0], e2πit/n)

which represent homology classes that generate H1(∂Zn).

Lemma 16. For each n ∈ N

An(1R/nZ) + bnαcAn(1∂D) ≤ An(γn) ≤ An(1R/nZ) + dnαeAn(1∂D).

Proof. Let ũ± = (a±, u±) : R± × R/nZ → R × Zn be parameterizations of leaves F± ∈ F±n
respectively which satisfy (9). In either case u±(s, ·) converges uniformly in C∞(R/nZ, Zn)
to a parameterization γn(const± + ·) as s→ ±∞ respectively. Applying Stokes theorem,

Eω(ũ+) =

∫
R+×R/nZ

u∗+ωn = An(γn)−An(u+(0, ·)),

and

Eω(ũ−) =

∫
R−×R/nZ

u∗−ωn = An(u−(0, ·))−An(γn).

Therefore, as the energies are non-negative,

An(u+(0, ·)) ≤ An(γn) ≤ An(u−(0, ·)).

We observed that the action An of a closed loop in ∂Zn depends only on its homology class.
From theorem 8 u+(0, ·) : R/nZ → R/nZ × ∂D and u−(0, ·) : R/nZ → R/nZ × ∂D are

homologous to R/nZ 3 t 7→ (t, e2πi(bnαc/n)t) and R/nZ 3 t 7→ (t, e2πi(dnαe/n)t) respectively.
This gives us the desired inequalities. �

Corollary 17. The unique 1-periodic orbit γ1 : R/Z→ Z1 has action

(21) A1(γ1) = A1(1R/Z) + αA1(1∂D).

Proof. From the definition of An,

An(γn) = nA1(γ1)

An(1R/nZ) = nA1(1R/Z)

An(1∂D) = A1(1∂D)

for all n ∈ N. Substituting these into the inequalities in lemma (16), and dividing through by
n and letting n→ +∞ gives (21). �

Lemma 18. Let n ∈ N. Every leaf F ∈ F+
n with boundary has ω-energy

Eω(F ) = {nα}π

where {·} applied to any real number denotes its fractional part.
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Proof. By Stokes theorem as in the last lemma,

Eω(F ) = An(γn)−An(u(0, ·))
where ũ = (a, u) : R+ × R/nZ → R × Zn is a parameterization of F . Using corollary 17

and that u(0, ·) : R/nZ → R/nZ × ∂D is homologous to R/nZ 3 t 7→ (t, e2πi(bnαc/n)t), this
becomes

Eω(F ) = n
(
A1(1R/Z) + αA1(1∂D)

)
−(

An(1R/nZ) + bnαcAn(1∂D)
)

=
(
nA1(1R/Z) + nαA1(1∂D)

)
−(

nA1(1R/Z) + bnαcA1(1∂D)
)

= (nα− bnαc)A1(1∂D)

= {nα} ·
∫
D
dx ∧ dy.

�

6. Compactness

Here we prove some compactness statements that were used in the proof of theorem 1.
Our tool for doing so are straightforward versions of the rescaling arguments of Gromov [16]
that were inspired by Sacks-Uhlenbeck [38]. As we are dealing with non-compact domains
and targets we use the concept of energy originating with Hofer [18]. We encounter one small
novelty here however, which is that the sequence of target manifolds are symplectizations of
a sequence of Hamiltonian energy surfaces Znj = R/njZ×D which also lose compactness as
j →∞. As a result the pseudoholomorphic curves we consider have unbounded total energy
which means that the standard compactness theory does not immediately apply. The purpose
of this section then is largely to handle this difficulty.

Let us briefly recall how ellipticity of the Cauchy-Riemann equations reduces compactness
questions for sequences of pseudoholomorphic maps to local uniform bounds on their gradi-
ents. The fundamental elliptic estimates for the linear operator ∂̄ = ∂s + i∂t on maps from a
2-dimensional domain into R2d, d ∈ N, are as follows, see [9]. For each p ∈ (1,∞) and k ∈ N
there exists a constant c = c(k, p) ∈ (0,∞) such that

‖∇ϕ‖Wk,p(D) ≤ c‖∂̄ϕ‖Wk−1,p(D)

for all ϕ ∈ C∞c (D,R2d), where the latter means that ϕ has compact support in the interior of
the closed unit 2-disk D. These estimates can be used to prove the following interior estimates
for the non-linear Cauchy-Riemann equation. For a self contained exposition of this see [19]
Theorems 2.1 and 2.3. For r > 0 we denote by Dr ⊂ C the closed disk of radius r.

Theorem 19. Let J be a smooth almost complex structure on R2d, d ∈ N, and let C0, C1 ∈
(0,∞) be constants. Let Ω(J,C0, C1) ⊂ C∞(D1,R2d) be the set of maps f which satisfy

∂sf(s, t) + J(f(s, t))∂tf(s, t) = 0 for all (s, t) ∈ D
|f(0)| ≤ C0

‖∇f‖C0(D) ≤ C1.
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Then there exists a sequence (ck) ⊂ (0,∞) over k ∈ N, such that for all f ∈ Ω(J,C0, C1),

‖∇f‖Ck(D1/2) ≤ ck
for all k ∈ N.

Remark 6. Replacing D1, D1/2 by half disks D+
1 , D

+
1/2, where D+

r := {(x, y) ∈ R2|x2 + y2 ≤
r, y ≥ 0}, the same statement holds for maps f that take the boundary points [−1, 1]× {0}
into a smooth path of J-totally real subspaces in R2d. A straightforward reflection argument
reduces this to the statement above.

Remark 7. Norms, such as ‖∇ũ‖L∞ , ‖∇ũ‖Cr etc, will be implicitely with respect to the
Riemannian metric dx2 + dy2 + dτ2 + da2 on R×Zn, where (x, y) are the standard Euclidean
coordinates on the disk, τ is the “coordinate” on R/nZ and a is the R-coordinate. This metric
is Jn-invariant.

We divide the rest of this section into two parts. In 6.1 we consider the situation when
nj = n is fixed and the total energy of the curves is uniformly bounded. In section 6.2 we
consider situations when nj → +∞ and the total energy of the curves is also unbounded.

6.1. Compactness when n is uniformly bounded. The aim of this section is to prove
lemma 6 stated earlier. We break this into the following two lemmas.

Lemma 20 (The Floer equation from the Cauchy-Riemann equations). Let ũ = (a, τ, z) :
R+×R/nZ→ R×R/nZ×D be a solution to (9) for which ‖∇a‖L∞ <∞ (or ‖∇τ‖L∞ <∞).
Then there exist (a0, τ0) ∈ R× R/nZ such that

(22)

{
a(s, t) = s+ a0

τ(s, t) = t+ τ0

for all (s, t) ∈ R+ × R/nZ, and moreover z : R+ × R/nZ → D satisfies the following Floer
equation:

(23) ∂sz(s, t) + i
(
∂tz(s, t)−XH(t+ τ0, z(s, t))

)
= 0

for all (s, t) ∈ R+ × R/nZ.

Proof. Writing out in coordinates what it means for ũ to satisfy (9) gives us

(24) (as − τt)∂a + (at + τs)∂τ +
(
atXH(τ, z) + zs + i

(
zt − τtXH(τ, z)

))
= 0.

The boundary condition on ũ in (9) implies at(0, t) = 0 for all t ∈ R/nZ. From (24),

(25)
as(s, t) = τt(s, t)

at(s, t) = −τs(s, t)

for all (s, t) ∈ R+ × R/nZ. In particular both functions a, τ lift to harmonic functions on
the upper half plane with gradient bounded in L∞. The boundary conditions on a allow a
smooth extension by reflection to the whole plane, still with gradient in L∞, and therefore
by Liouville the partial derivatives of a are constant. So there exists b, c, a0 ∈ R so that
a(s, t) = cs + bt + a0 for all (s, t) ∈ R+ × R/nZ. Putting this into (25) there exists τ0 ∈ R
so that τ(s, t) = ct − bs + τ0 for all (s, t) ∈ R+ × R/nZ. The n-periodicity of a in the t
variable implies b = 0. By assumption the degree of the map τ(0, ·) : R/nZ→ R/nZ is 1, and
therefore c = 1. This proves (22).
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From (24) we also have atXH(τ, z) + zs + i
(
zt − τtXH(τ, z)

)
= 0. But we have shown that

τt ≡ 1 and at ≡ 0. Substituting these in we obtain

zs + i
(
zt −XH(t+ τ0, z)

)
= 0

as required. �

The next statement says that we can use the above relation between the Cauchy-Riemann
and Floer equations if (and only if) the λ-energy is finite.

Lemma 21. Let ũ = (a, τ, z) be a solution to (9). Then Eλ(ũ) < ∞ implies ‖∇a‖L∞ < ∞
(equivalently ‖∇τ‖L∞ <∞).

Proof. The equations (25) in the last lemma are valid here as they did not require the bounds
on the gradient. Therefore, bounding ∇a is equivalent to bounding ∇τ , and the map f :
R+×R/nZ→ R×R/nZ given by f(s, t) := (a(s, t), τ(s, t)) in terms of the a and τ components
of ũ, is holomorphic with respect to the obvious complex structure on R × R/nZ. This is
useful because the λ-energy of ũ depends only on f , indeed we may write

Eλ(ũ) = sup
ψ∈C

∫
R+×R/nZ

f∗
(
ψ(a)da ∧ dτ

)
.

We can therefore view this as an energy of the map f . Recall from (11) that C is the set of
all ψ ∈ C∞(R, [0,∞)) for which

∫
R ψ(x)dx = 1.

Arguing indirectly suppose that the gradient of a, equivalently the gradient of f , is un-
bounded. Then there exists a sequence (ξj) ⊂ R+ × R/nZ for which |∇f(ξj)| → ∞. Clearly
the points ξj leave every compact subset of the domain, in particular they do not converge
to the boundary. Therefore a standard rescaling argument applied to f yields a holomorphic
plane g : C→ R× R/nZ for which

0 < ‖∇g‖L∞(C) ≤ 2(26)

sup
ψ∈C

∫
C
g∗
(
ψ(a)da ∧ dτ

)
<∞.(27)

The first property implies that g has constant, non-zero gradient through Liouville’s theorem
(after for example considering a lift g̃ : C→ C). It therefore follows from a direct calculation
that each integral

∫
C g
∗(ψ(a)da ∧ dτ), with ψ ∈ C, is non-finite, contradicting the second

conclusion. Thus no such sequence (ξj) can exist and the lemma is proven.
Let us briefly elaborate on the rescaling procedure that produced g. Applying a well known

lemma due to Hofer (see for example [36] Lemma 4.6.4) we may slightly modify the sequence
(ξj) to a sequence (ξ′j) which retains the gradient blow-up property Rj := |∇f(ξ′j)| → ∞ and
aquires the additional property that there exists a sequence of positive numbers εj → 0 such
that

lim
j→∞

εjRj =∞

‖∇f‖L∞(Bεj (ξ′j))
≤ 2Rj .

Define a sequence of maps

gj :BεjRj (0)→ R× R/nZ
gj(ξ) := f(ξ′j + ξ/Rj)− (a(ξ′j), 0).
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These “rescaled maps” are also holomorphic, and moreover satisfy |gj(0)| ≤ n + 1 and
‖gj‖L∞ ≤ 2 uniformly in j ∈ N. Hence the sequence (gj) has uniformly bounded C1-norm on
each compact subset of C. From the ellipticity of the Cauchy-Riemann equations in the form
of theorem 19, we deduce uniform bounds on (gj) in the Cr(K) norm for each r ∈ N and
K ⊂ C compact. By the Arzela-Ascoli theorem there exists a subsequence, which we denote
also by (gj), which converges in a C∞loc-sense to a holomorphic map g : C→ R×R/nZ also sat-
isfying ‖∇g‖L∞(C) ≤ 2. Since |∇g(0)| = limj→∞ |∇gj(0)| = 1 we have that g is non-constant.
Another consequence of the Cauchy-Riemann equations is that for each ψ ∈ C the integrand
g∗j (ψ(a)da ∧ dτ) = |∇gj |2(ψ ◦ gj)ds ∧ dt which we see has non-negative density. Therefore,∫

C
g∗(ψ(a)da ∧ dτ) ≤ lim inf

j→∞

∫
BεjRj

g∗j (ψ(a)da ∧ dτ).

Each term on the right hand side is bounded above by Eλ(ũ) <∞. We have verified that the
map g satisfies (26) and (27). �

In our proof that the maps ϕn are continuous we used the following compactness property
of each foliation.

Lemma 22. For n ∈ N. Suppose that (Fj) ⊂ F+
n is a sequence of leaves, and pj ∈ Fj is a

sequence of points, over j ∈ N. Suppose that pj → p some p ∈ R× Zn and let F ∈ F+
n be the

unique leaf containing p. Then there exists a sequence of Jn-holomorphic parameterizations
φj of Fj which converge in a C∞loc-sense to a Jn-holomorphic parameterization of F .

Proof. This is a standard property of finite energy foliations from positivity of intersections,
used many times in [26]. The uniform bounds on the λ-energy and ω-energy ensure existence
of a convergent subsequence. Positivity of intersections ensures that the limit is a leaf in the
foliation (the whole leaf as all leaves are connected and have no nodal points). �

6.2. Compactness as n → ∞. In our proof of convergence of the holonomy maps ϕn in
proposition 14, we used a compactness statement for a sequence of Jn-holomorphic maps
ũn : [Sn,∞)× R/nZ→ R× Zn for which

Eλ(ũn) = n→ +∞
Eω(ũn) = {nα}π

for some irrational real number α. Hence the total energy E(ũn) = Eλ(ũn) +Eω(ũn) diverges
to +∞. In general, for a sequence of maps {ũn} for which the total energy is unbounded
one cannot expect uniform bounds on the gradient in L∞. However if the λ-energy grows at
most linearly with n, and the ω-energy is bounded then indeed uniform bounds on ‖∇ũn‖L∞
can be achieved. (Actually much weaker assumptions suffice, but we will not need to explore
these here.) Our arguments will be further simplified since we restricted to a subsequence for
which the ω-energy of the sequence decays to zero.

Consider a sequence {ũn}n∈N of smooth Jn-holomorphic maps, for Jn as in (8), with num-
bers cn, Sn ∈ R, Sn ≤ 0, satisfying for each n,

(28)


ũn = (an, τn, zn) : [Sn,∞)× R/nZ→ R× Zn,
∂sũn(s, t) + Jn(ũn(s, t))∂tũn(s, t) = 0

ũn(Sn, t) ∈ Lcn
τn : (Sn, ·) : R/nZ→ R/nZ has degree 1



22 BARNEY BRAMHAM

for all (s, t) ∈ [Sn,∞)× R/nZ.

Lemma 23. Suppose that Eλ(ũn) <∞ for each n ∈ N, and limn→∞Eω(ũn) = 0. Then there
exists C ∈ (0,∞) such that

‖∇ũn‖L∞([Sn,∞)×R/nZ) ≤ C
for all n ∈ N.

Note that we do not assume uniform bounds on the λ-energy.

Proof. Since Eλ(ũn) <∞ for each n, lemma 21 implies ‖∇an‖L∞ <∞ (for each n). Therefore,
since also each τn has degree 1, lemma 20 applies so{

an(s, t) = s+ an

τn(s, t) = t+ τn

for all (s, t) ∈ [Sn,∞)× R/nZ, some constants (an, τn) ∈ [Sn,∞)× R/nZ. Thus

‖∇an‖L∞ ≤ 1 and ‖∇τn‖L∞ ≤ 1

for all n ∈ N.
It therefore remains to show that the gradients of the map zn : [Sn,∞) × R/nZ → D are

uniformly bounded. Arguing indirectly we find a sequence ξn ∈ [Sn,∞) × R/nZ for which
|∇ũn(ξn)| ≥ |∇zn(ξn)| → ∞ as n → ∞. A standard rescaling argument produces a J∞-
holomorphic plane or half plane in R×Z∞. For example, suppose the sequence ξn is uniformly
bounded away from the boundary, that is, ξn = (sn, tn) where lim inf sn − Sn > 0. Then one
produces a pseudoholomorphic plane as follows. After possibly modifying the sequence (ξn)
to (ξ′n) using Hofer’s lemma (see proof of lemma 21), one obtains a sequence (εn) ⊂ (0,+∞)
with εn → 0 such that Rn := |∇ũn(ξ′n)| → ∞ and

lim
n→∞

εnRn =∞

‖∇ũn‖L∞(Bεn (0)) ≤ 2Rn.

Define “rescaled maps”

ṽn : BεnRn(0)→ R× R/nZ×D
ṽn(ξ) :=ũn(ξ′n + ξ/Rn)− (an(ξ′n), bτn(ξ′n)c, 0)

for each n ∈ N. Each ṽn is Jn-holomorphic because the almost complex structure Jn on
R × R/nZ × D is invariant under R-translations and under the Zn-action on the R/nZ-
coordinate generated by the deck transformation [τ ] 7→ [τ + 1]. Moreover each ṽn satisfies
‖∇ṽn‖L∞ ≤ 2 and |ṽn(0)| ≤ 1, and therefore has C1-bounds on each compact K ⊂ C uniform
in n. Ellipticity in the form of theorem 19 allow these C1-bounds to be bootstrapped to
Cr(K)-bounds for each fixed r ∈ N, and K ⊂ C compact, uniform in n. Therefore there
exists a convergent subsequence ṽnj → ṽ in the C∞loc(C)-topology to a J∞-holomorphic map

ṽ : C→ R× Z∞.
Let us write ṽ = (a, τ, z) ∈ R × R × D. Since each |∇ṽnj (0)| = 1 we have |∇ṽ(0)| = 1
and so ṽ is non-constant. Moreover, as a result of the rescaling process the uniform bounds
‖∇anj‖L∞ ≤ 1 and ‖∇τnj‖L∞ ≤ 1 are “killed” in the limit and so ∇a ≡ 0 ≡ ∇τ . Finally,

each integrand ṽ∗nω = |∂szn|2ds∧dt has non-negative density, and so for each Ω ⊂ C bounded,

0 ≤
∫

Ω
ṽ∗ω ≤ lim inf

n→∞

∫
Ω
ṽ∗nω ≤ lim

n→∞
Eω(ũn) = 0.
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Thus Eω(ṽ) = 0.
If the sequence (ξn) instead converged to the boundary, and sufficiently fast, then a similar

rescaling procedure would produce a J∞-holomorphic map on the upper half plane

ṽ : H→ R× Z∞
with totally real boundary conditions ṽ(∂H) ⊂ {c}×∂Z∞ for some c ∈ R, and similar features
to the plane above. In either case our limiting map ṽ = (a, τ, z), with domain H or C, has
the following properties:

∇a ≡ 0

∇τ ≡ 0

|∇ṽ(0)| > 0

Eω(ṽ) = 0.

Thus there exist constants a0, τ0 ∈ R such that

ṽ(s, t) = (a0, τ0, z(s, t)) ∈ R× R×D
for all (s, t) ∈ C (resp. all (s, t) ∈ H). That ṽ is J∞-holomorphic translates into z : C → D
or z : H→ D satisfying the equation atXH(τ, z) + zs + i

(
zt − τtXH(τ, z)

)
= 0, see (24). So a

and τ constant implies zs + izt = 0. (We could alternatively have just rescaled the sequence
of maps {zn} as in Floer theory, to get the same conclusion.) Therefore,

0 = Eω(ṽ) =

∫
ṽ∗ω =

∫
1

2

(
|zs|2 + |zt|2

)
dsdt

and so z is also constant. Thus we have shown that ṽ is constant, contradicting |∇ṽ(0)| >
0. �

Corollary 24. Suppose that {ũn}n∈N is a sequence of solutions to (28) such that Eλ(ũn) <∞
for each n ∈ N, and limn→∞Eω(ũn) = 0. Then there exists a sequence ck ∈ (0,∞) over k ∈ N,
such that

(29) ‖∇ũn‖Ck([Sn,∞)×R/nZ) < ck

for all k ∈ N and n ∈ N.

Proof. From lemma 23 the first bound c1 exists. The remaining bounds then follow from
theorem 19. Because the latter is a local result it is important to use that the almost complex
structures Jn satisfy: (1) they are invariant under the R and Zn actions on R × R/nZ ×D,
and (2) they each lift to the same almost complex structure J∞ on the universal covering
R× R×D. �

We can now prove the goal of section 6.2.

Theorem 25. Let ūn : [Sn,∞)× R→ R× Z∞ be a sequence of J∞-holomorphic maps over
n ∈ N, where each ūn is a lift of a solution ũn to (28). Suppose that ūn(0, 0) is uniformly
bounded in n and that Eλ(ũn) <∞ for each n ∈ N, and that limn→∞Eω(ũn) = 0. Then there
exists a subsequence {ũnj}j∈N such that ūnj converges in C∞loc(C,R×Z∞) to a J∞-holomorphic
map ũ∞ having domain either Σ = C or Σ = [S,∞)×R ⊂ C for some S ∈ (−∞, 0]. Moreover
ũ∞ takes the following form: there exist constants a0, τ0 ∈ R such that

(30)
ũ∞ :Σ→ R× R×D

ũ∞(s, t) = (s+ a0, t+ τ0, γ(t))
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for all (s, t) ∈ Σ, where γ ∈ C∞(R, D) satisfies

γ̇(t) = XHt+τ0
(γ(t))(31)

for all t ∈ R.

Proof. Taking a subsequence we may assume that ũnj (0, 0) converges, and that Snj converges
to some S ∈ (−∞, 0]∪ {−∞}. The assumptions on the two energies allow us to use corollary
24 and obtain uniform bounds on ‖∇ūn‖Ck for each k ∈ N, and therefore also C0-bounds
on ūn on compact subsets, uniform in n. Repeated use of the Arzela-Ascoli theorem yields
a subsequence converging uniformly with all derivatives on each compact subset of C to a
smooth map ũ∞ : Σ → R × Z∞ where Σ = [S,∞) × R if S is finite and Σ = C otherwise.
From lemma 20 each map in the sequence ūnj takes the form

ūnj (s, t) = (s+ aj , t+ τj , zj(s, t))

for constants aj , τj ∈ R, with zj : [Snj ,∞)× R→ D satisfying

∂szj(s, t) + i
(
∂tzj(s, t)−XH(t+ τj , zj(s, t))

)
= 0

for all (s, t) ∈ [Snj ,∞)× R. Therefore ũ∞ takes the form

ũ∞(s, t) = (s+ a∞, t+ τ∞, z∞(s, t))

for constants a∞, τ∞ ∈ R and some z∞ : Σ→ D satisfying

∂sz∞ + i
(
∂tz∞ −XH(t+ τ∞, z∞)

)
= 0.

Let ω∞ := dx ∧ dy + dτ ∧ dH on Z∞. Then

0 ≤
∫
R2

ũ∗∞ω∞ ≤ lim
j→∞

Eω(ũnj ) = 0.

Thus

1

2

∫∫ ∣∣∣∣∂z∞∂s (s, t)

∣∣∣∣2 +

∣∣∣∣∂z∞∂t (s, t)−XH(t+ τ∞, z∞(s, t))

∣∣∣∣2 dsdt =∫
R2

ũ∗∞ω∞ = 0.

Hence z∞(s, t) = γ(t) for some solution γ : R→ D to (31). �

7. Construction of the finite energy foliations

In this final section we give a terse proof of theorem 8. The approach is along by now
fairly standard lines, the only minor complication arises from the presence of the boundary
of the almost complex manifold. A more general construction will appear in [5]. We will
assume more familiarity with terminology from [4] than elsewhere in this article, and with
the intersection theory in [41].

To recall the statement of theorem 8 let H ∈ C∞(R/Z×D,R) be a Hamiltonian generating
an irrational pseudo-rotation ϕ. Let (Z,R) be the corresponding Hamiltonian mapping torus.
That is, Z = R/Z×D with coordinates (τ, z = (x, y)), and R is the vector field

R(τ, z) = ∂τ +XHτ (z).
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Denote by γ : R/Z → Z the unique 1-periodic orbit of R for which γ(0) ∈ {0} × D, and
assume H was chosen so that γ(t) = (t, 0) for all t ∈ R/Z (see remark 1). Let

α := Rot(ϕ;H) ∈ R
denote the real valued, irrational, rotation number of ϕ with respect to the isotopy between
ϕ and idD induced by H, see definition 5. Let J be the the associated R-invariant almost
complex structure on the 4-manifold W := R× Z characterized by the conditions

(32)

{
J∂R = R

J |TD = i.

We will now prove theorem 8 for n = 1, the general case being identical*, which states the
following.

Theorem 26. With the above assumptions on H ∈ C∞(R/Z×D,R) there exist two foliations
F+,F− of R× Z by J-holomorphic curves with the following properties:

• Cylinder leaf: The cylinder C := R×γ(R/Z) ⊂ R×Z is a leaf in both F+ and F−.
• Pseudo-holomorphic: If F ∈ F+ (resp. F ∈ F−) is not C, then F is parameterized

by a solution ũ to (9), with Eλ(ũ) +Eω(ũ) <∞ and boundary index bαc (resp. dαe).
• R-invariance: If F ∈ F+ (resp. F ∈ F−) is a leaf and c ∈ R, the set F + c :=
{(a+ c, τ, z) | (a, τ, z) ∈ F} is also a leaf in F+ (resp. in F−).
• Uniqueness: F+ and F− are uniquely determined by the above properties.
• Smooth foliation: F+ and F− are C∞-smooth foliations at each point on the com-

plement of C.

In section 7.1 we prove the statement for F+ assuming restrictions on the boundary. Section
7.2 removes the boundary restrictions. In section 7.3 we explain how the construction of F−
differs from F+. We defer to the end two technical points: section 7.4 fills in a detail regarding
compactness. In section 7.5 we explain how to find the filling of the boundary used in section
7.1.

Remark 8. In our proof of theorem 26 we do not actually use that ϕ is a pseudo-rotation.
We only use the much weaker assumption that ϕ has only a single fixed point, and that it is
non-degenerate. We will exploit this in section 7.2.

7.1. Construction of F+ when ϕ|∂D is conjugate to a rigid rotation. In this section
suppose that there exists g ∈ Diff∞+ (∂D) so that

(33) g ◦ ϕ|∂D ◦ g−1 = R2πα

where R2πα : ∂D → ∂D is the rigid rotation z 7→ ze2πiα.
Let H−, H+ ∈ C∞(Z,R) be as follows. Define H− = H where H is as in the statement of

theorem 26. Define H+ by

(34) H+(τ, z) := πα|z|2 + C

for some constant C ≤ 0 chosen so that maxH+ < minH−.
The function H+ on the solid torus defines a closed loop of Hamiltonians on the disk which

we denote by Ht
+ := H+(t, ·) : D → R, over t ∈ R/Z. Similarly H− defines Ht

− := H−(t, ·) :

*For maps more general than irrational pseudo-rotations the proof for n > 1 is a little more involved as the
almost complex structure has additional symmetry which makes transversality less obvious. But for irrational
pseudo-rotations automatic transversality suffices and the same proof works for all n ≥ 1.
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D → R, over t ∈ R/Z. Let XHt
+

(z) and XHt
−

(z) be the corresponding time-dependent

Hamiltonian vector fields on the disk D, with respect to the symplectic form ω0 = dx ∧ dy.
The time-one map generated by XHt

+
(z) is the rigid rotation R2πα, while the time-one map

generated by XHt
−

(z) is the pseudo-rotation ϕ. From (34), Rot(R2πα, H+) = α, and therefore

Rot(R2πα, H+) = Rot(ϕ,H−).
The two pairs of differential forms H± = (ω±, λ±), on Z, given by

ω± = dx ∧ dy + dτ ∧ dH± λ± = dτ

define stable Hamiltonian structures on Z. Their associated (stable Hamiltonian) Reeb vector
fields R+ and R− are defined by the conditions ω±(R±, ·) = 0 and λ±(R±) = 1. These are
calculated to be

R±(τ, z) = ∂τ +XHτ
±

(z).

Thus, the first return map of R+ on the initial disk slice {0} × D ⊂ Z is the rigid rotation
R2πα, while the first return map of R− on this disk slice is the pseudo-rotation ϕ. The
flows generated by R+ and R− each have a unique 1-periodic orbit. Let γ± : R/Z → Z
be the parameterization of each, uniquely satisfying γ±(0) ∈ {0} × D. These have equal
Conley-Zehnder indices (using any conventions).

Along similar lines to [22], we construct a “cobordism” between the two Hamiltonian energy
surfaces (Z,XH+) and (Z,XH−) on the 4-manifold W := R × Z. To do this we choose a
function H ∈ C∞(R× Z,R) interpolating between H+ and H− in the following way:

H(a,m) = H+(m) for all a ≥ 1

∂aH(a,m) < 0 for − 1 < a < 1

H(a,m) = H−(m) for all a ≤ −1.

For example, let us assume we chose H(a,m) = χ(a)H+(m) + (1 − χ(a))H−(m) for some
χ ∈ C∞(R, [0, 1]) with χ ≡ 0 on (−∞,−1] and χ ≡ 1 on [1,∞) and such that χ′(a) > 0 for
all a ∈ (−1, 1).

Define an almost complex structure Ĵ on W := R× Z by{
Ĵ(a, τ, z)∂R = ∂τ +XHτ

a
(z)

Ĵ |TD = i

where XHτ
a

is the Hamiltonian vector field of Hτ
a := H(a, τ, ·) : D → R. Then (W, Ĵ) is an

almost complex manifold with cylindrical ends E+ = [1,∞) × Z and E− = (−∞,−1] × Z,
adjusted to the stable Hamiltonian structuresH± = (ω±, λ±) on these ends. In the “cobordim

region” (−1, 1)× Z, Ĵ tames the exact symplectic 2-form

Ω := dx ∧ dy + dτ ∧ dH.

Although Ĵ is not R-invariant, the R-invariant cylinder

(35) C := {(a, τ, 0) ∈ R× R/Z×D | a ∈ R, τ ∈ R/Z}

is a pseudoholomorphic curve in (W, Ĵ). Its positive puncture is asymptotic to γ+ and its
negative puncture is asymptotic to γ−. Although C is not an orbit cylinder, it has the
following properties in common with one:

(36) C · C = −1,
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where · refers to the generalized intersection number in the sense of Siefring [41], C is embed-
ded, has Fredholm index ind(C) = 0, and is Fredholm regular. Indeed (36) follows from the
adjuntion formula, theorem 4.6, in Siefring [41].

We will show in section 7.5 that after a small perturbation of Ĵ on a neighborhood of the
boundary points [−1, 1]×∂Z in W , that Ĵ is Levi-flat on the boundary of W . More precisely,

R×∂Z is filled by a set S of immersed Ĵ-holomorphic planes which in the ends E±∩(R×∂Z)
coincide with the product of the R-component and a Reeb trajectory of R±. Let us assume
that such a perturbation has been made.

We proceed to construct F+ in four steps.
Step 1: The almost complex structure Ĵ on W satisfies Ĵ |E+ = J+|E+ where J+ is the

cylindrical almost complex structure

(37)

{
J+∂R = ∂τ + 2πα∂θ

J+|TD = i

on R × Z, in standard polar coordinates (r, θ) on the disk. For each c ∈ R and z ∈ ∂D, the
map

ũc,z :R+ × R/Z→ R× Z(38)

ũc,z(s, t) = (s+ c, t, ze2π(bαc−α)se2πibαct)

is J+-holomorphic. The combined images of these maps along with the cylinder

(39) C+ := {(a, τ, 0) ∈ R× R/Z×D | a ∈ R, τ ∈ R/Z}
defines an R-invariant finite energy foliation for (R × Z, J+) with boundary index bαc. A
direct calculation shows that if F1 and F2 are the images of two curves in (38), then

(40) F1 · F2 = 0 and F1 · C+ = 0.

See appendix A.3 for a discussion of the generalized intersection number for pairs of curves
with boundary.

Step 2: We return to the manifold (W = R×Z, Ĵ) with cylindrical ends. LetM denote the

moduli space of all finite energy Ĵ-holomorphic curves F ⊂W which admit a Ĵ-holomorphic
parameterization by a map ũ = (a, τ, z) ∈ C∞(R+ × R/Z,R× Z) satisfying

(41)


ũ(0, ·) ∈ Lc
τ(0, ·) : R/Z→ R/Z has degree + 1

z(0, ·) : R/Z→ ∂D has degree bαc

for some c ∈ R. Equip M with the topology coming from convergence in C∞loc ∩ C0([0,∞)×
R/Z,W ). Note that M is non-empty as it contains the image of each curve ũc,z from (38)

for which c ≥ 1, as Ĵ = J+ on the positive end E+ = [1,∞)× Z. Let

M0 ⊂M
be the connected component containing the curves ũc,z from (38) for which c ≥ 1.

Recall that the boundary of W has a filling S by injective immersed Ĵ-holomorphic planes.
Positivity of intersections between the curves in M0 and those in S imply the following.

Lemma 27. Suppose F ∈M0. Then
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(1) F meets ∂W transversely along ∂F .
(2) F\∂F lies in W\∂W .
(3) ∂F is an embedded closed loop.

Remark 9. Note that property (3) in the lemma implies that F is also embedded near the
boundary. That is, is parameterized by a solution ũ : R+ × R/Z → R × Z to (41) which
restricts to an embedding on some neighborhood [0, ε)×R/Z. This is because the differential
can only have even dimensional kernel, and by (3) dim kerDũ(0, t) ≤ 1 for all t ∈ R/Z.

Proof. The three conditions are open in the topology on M. It suffices to show then that
they are also closed. That is, suppose that Fk ∈ M0 is a sequence converging to F ∈ M0,
and that each Fk satisfies conditions (1), (2), and (3). We wish to show that F also satisfies
these properties.

Take any point q ∈ ∂F . This is a limit of points qk ∈ ∂Fk. By assumption each qk is an
isolated transverse intersection point between Fk and a leaf Sk ∈ S. The local intersection
index at qk is +1 (or +1/2 depending on conventions) as transverse intersections immersed
curves.

Let S ∈ S be the unique leaf containing q. It is not too hard to show from this that q must
also be an isolated intersection point of F with S, and that the local intersection index is
+1. Indeed, as each leaf in S is locally embedded, one can get away with using the similarity
principle after viewing each Fk as a graph over Sk near qk. The only slightly tricky point is to
show that other intersections between Fk and Sk do not accumulate at q. In the target they
will indeed accumulate, but in the domains of the curves they will remain isolated uniformly
in k. This latter can be seen by considering the pairs of 1-dimensional parameterized curves
fk and sk in ∂Z where Fk and Sk intersect Lck respectively. The curves fk and sk intersect
transversely and all intersections have the same sign, because each Fk is assumed to be in
M0. For purely topological reasons this makes it impossible for intersections between fk and
sk to accumulate, from the point of view of their domains.

The local intersection index of +1 at q ∈ ∂F , between F and S, then implies that F ,
viewed locally as a graph over S, corresponds to a zero of the graph of order 1. This implies
that F is immersed at q and is transverse to S at q, and therefore also transverse to ∂W at q.

Similar arguments, again using positivity of intersections between the curves in M0 and
those in S allow to conclude that F can have no boundary-boundary double points, and that
F\∂F is disjoint from ∂W . This shows that F satisfies conditions (1),(2), and (3). �

Now that our curves have these nice properties in relation to the boundary of W , we can
use the homotopy invariant intersection number and adjunction formula from the appendix
A.3.

The explicit curves ũc,z from step 1 have Fredholm index 2 and are clearly embedded.
Therefore by the adjunction formula (62) ũc,z · ũc,z = 0. For all F ∈ M0, F is homotopic
to the image of ũc,z, for any c ≥ 1. More precisely, homotopic through curves in the space
C∞(γ+, ∂W,A) described in appendix A.3 where in this case A ∈ H1(∂Z,Z) is represented

by R/Z 3 t 7→ (t, e2πibαct) because for any G ∈M, A is represented by ∂G, see (41). Thus

F · F = 0

for each F ∈M0. Hence by proposition 38 each F ∈M0 is globally embedded.

Lemma 28. The set E := {w ∈ W |w ∈ F for some F ∈ M0} is a non-empty open and
closed subset of W\C.
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Proof. By definition M0 is non-empty.
Openness: each curve F in M0 has Fredholm index ind(F ) = 2. The last lemma showed

that F is embedded on its boundary, see remark 9, and meets ∂W transversely. Moreover we
just saw that F · F = 0. Thus proposition 38 applies, and the curves in M0 fill up an open
neighborhood of F in W .

Closedness: suppose that pk ∈ E is a sequence of points converging to a point p∞ ∈W\C.
Let Fk ∈ M0 be a curve containing pk, and view pk as the image of a marked point. The
total energy of Fk is uniformly bounded in k and we find a converging subsequence in the
sense of [4]. In proposition 32 the limit is found to be a height-1 building F∞ say, that is also
a curve in M0. F∞ must contain p∞, so p∞ ∈ E . �

Thus each point in W\C contains a curve in M0.
Step 3: Let pk ∈ W\C be a sequence of points which converge to a point p∞ ∈ C. Let

Fk ∈ M0 be a sequence of curves with pk ∈ Fk. As in step 2 these curves have uniformly
bounded total energy because the asymptotic data γ+ is fixed, as is the homology class in
∂W in which the boundaries of the curves lie in. View each pk as the image of a marked point
of Fk. Applying the compactness theory in [4] we get a convergent subsequence to a stable
nodal holomorphic building F̄ say. By proposition 32 F̄ is a height-2 building, with non-
empty lower level a half cylinder F− in the cylindrical manifold (R×Z, J−). The half cylinder
F− is asymptotic to γ− as a positive puncture and has boundary index bαc. Moreover,

F− · F− = 0 and F− · C− = 0

where C− is the orbit cylinder in (R × Z, J−) over γ−. From lemma 6 F− is embedded and
transverse to R× ∂Z.

Step 4: We may now argue in the manner of step 2, and conclude that F− lies in a non-
empty moduli space of half cylindersM− which fills an open and closed subset of (R×Z)\C−.
By lemma 6 each curve in M− is embedded and meets the boundary R × ∂Z transversely.
By the homotopy invariance of the generalized intersection number, the properties

(42) F0 · F1 = 0 and F0 · C− = 0

for all F0, F1 ∈M−, are inherited from F−. By proposition 38 then,M− is a smooth foliation
of (R× Z)\C− by embedded curves. Now we set F+ :=M− ∪ C−.

It remains to show that F+ is R-invariant and unique in the sense of theorem 26. Both
properties follow from (42). Indeed, the moduli space M− is by definition R-invariant, and
to prove uniqueness it suffices to show that if G is any J−-holomorphic half cylinder in R×Z
that is asymptotic to γ− as a positive puncture, and has boundary behavior as in (41), then
G is in M−. First, by lemma 6 G is embedded and transverse to R × ∂Z. Therefore it is
homotopic to any leaf F inM− through curves along which the intersection number remains
constant. Thus,

F ·G = F · F = 0

for all F ∈ M−. In particular choose F ∈ M− sharing a point with G. Then F and G are
not disjoint but have F ·G = 0. Therefore they are equal, and so G ∈ F+.

7.2. Construction of F+ without boundary restrictions. This completes the construc-
tion for any irrational pseudo-rotation ϕ : D → D which restricts to a circle diffeomorphism
ϕ|∂D on the boundary that is smoothly conjugate to a rigid rotation. A deep result of Her-
man implies that the set of such boundary conditions is dense, and a further limiting step
can remove these restrictions. We explain how this works now.
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Theorem 29 (Herman [17]). There is a subset D ⊂ R/Z of irrational numbers of full measure
with the following property. If f ∈ Diff∞+ (∂D) has rotation number in D then there exists
g ∈ Diff∞+ (∂D) such that g−1fg = R where R : ∂D → ∂D is a rigid rotation.

Denote by DiffD(∂D) those orientation preserving C∞-smooth circle diffeomorphisms that
have rotation number in D. The following would hold for any dense subset D ⊂ R/Z of
irrational numbers.

Lemma 30. DiffD(∂D) is dense in Diff∞+ (∂D) with the C∞-topology.

Proof. Fix any f ∈ DiffD(∂D). Consider the continuous path ft := R2πt ◦ f ∈ Diff∞+ (∂D)
over t ∈ [0, 1/2]. The rotation numbers Rot(ft) vary continuously with t. Moreover, there

is a continuous family of lifts f̃t : R → R with the monotonicity property that for t > 0,
f̃t(x) > f̃0(x) for all x ∈ R. Therefore, since Rot(f0) is irrational, it follows that for all
t ∈ (0, 1/2], Rot(ft) > Rot(f0). See for example proposition 11.1.9 in [30]. As D is dense in
R/Z, we find a sequence tj ∈ (0, 1/2] converging to zero such that Rot(ftj ) ∈ D. �

Now suppose that ϕ ∈ Diff∞(D,ω0) is any smooth irrational pseudo-rotation. Let H ∈
C∞(R/Z × D,R) be a Hamiltonian with time-one map ϕ. Using the lemma one can find
smooth perturbations Hj ∈ C∞(R/Z×D,R) of H near the boundary R/Z× ∂D, so that

Hj → H in C∞

Rot(ϕj |∂D) ∈ D
for all j, where ϕj is the time-one map of Hj . For j sufficiently large ϕj has no fixed points
besides the origin, which of course remains non-degenerate.

Remark 10. We do not claim that we can find perturbed disk maps which are also irrational
pseudo-rotations. In general a perturbation will create new periodic points with high period.

By Herman’s theorem ϕj |∂D is smoothly conjugate to a rigid rotation. Therefore, by steps
1 to 4 in section 7.1 we can find a finite energy foliation FHj of the cylindrical almost complex
manifold (R× Z, JHj ).
Remark 11. Note that we are applying remark 8 here. To know that each foliation FHj exists
even though ϕj is not exactly an irrational pseudo-rotation.

The almost complex structures JHj converge uniformly to JH in the C∞-topology as j →
∞. The energies of leaves in FHj will be uniformly bounded in j: indeed the λ-energy of
each leaf will remain 1, and the ω-energy will be bounded above, for example, by π{α} + ε
for some ε > 0. These are sufficient conditions to obtain a limiting finite energy foliation
for (R× Z, JH). For example we can take a limit of a single sequence of half cylinder leaves
Fj ∈ FHj to obtain a single JH -holomorphic half cylinder F∞ disjoint from the orbit cylinder
C and with vanishing self intersection number. The same argument as in step 4 then shows
that a moduli space containing F∞ fills up the complement of C by embedded curves that
combine to form a smooth R-invariant foliation. Uniqueness is also as in step 4.

7.3. Constructing F−. The construction of F− is along exactly the same lines as for F+,
but beginning with a different model foliation in step 1. Indeed, in place of the curves in (38),
each of which is bounded from below, we use curves of the form

vc,z :R− × R/Z→ R× Z(43)

vc,z(s, t) = (s+ c, t, ze2π(dαe−α)se2πidαet)
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over c ∈ R and z ∈ ∂D. (These maps are also pseudoholomorphic with respect to the almost
complex structure in (37).) Each vc,z has image bounded from above, so we have to insert

one of them into the negative end of our almost complex manifold (W = R × Z, Ĵ). So the
main difference is that from the start we reverse the roles of H− and H+, this time picking a
positive constant C in (34) so that minH− > maxH+ still holds. Then the remaining steps
are exactly analogous, and in the final foliation the curves with boundary have boundary
index dαe instead, as the curves in (43) do.

7.4. Compactness. In section 7.1 we applied the compactness theory in [4] in the form of
proposition 32 below. We state and justify this now.

Recall that (W = R × Z, Ĵ) from section 7.1 has cylindrical ends; that the Reeb flow on
the positive and negative ends each has a unique simply covered periodic orbit γ+ and γ−
respectively. Although Ĵ is not R-invariant, the cylinder

C = {(a, τ, 0) ∈ R× R/Z×D | a ∈ R, τ ∈ R/Z}

is a pseudoholomorphic curve in (W, Ĵ). Its positive puncture is asymptotic to γ+ and its
negative puncture is asymptotic to γ−. We observed in (36) that

(44) C · C = −1.

Consider a sequence Fk of Ĵ-holomorphic curves in (W, Ĵ) with a single marked point whose

image we denote by pk ∈ W . We suppose that each Fk is the image of a Ĵ-holomorphic
embedding ũk = (ak, τk, zk) ∈ C∞(R+ × R/Z,R × Z) that is asymptotic to γ+ and has the
boundary conditions described by (41). Furthermore, we assume that

Fk · Fk = 0 and Fk · C = 0

for each k.
Suppose that Fk converges to a generalized nodal holomorphic building F̄ in the sense of

[4].

Lemma 31. The building F̄ has no disk components.

Proof. Arguing indirectly suppose that F̄ has a disk component D. Suppose first that D is
in the middle level (W, Ĵ). Then ∂D must be a closed loop in one of the totally real surfaces
Lc ' ∂Z say. As ∂D is contractible in W it must lie in a homology class m1∂D ∈ H1(∂Z)
for some m ∈ Z. The topological count of intersections between D and the cylinder C is m.
The building is stable with at most one marked point implies that the component D is not
just a point. Therefore it has non-zero energy, which implies that m 6= 0. Therefore D and
C are distinct holomorphic curves with interior intersections. Therefore Fk and C intersect
for large k, contradicting that they are infact disjoint for all k.

If instead D is in an upper or lower level a similar argument proves that D has isolated
interior intersections with the unique orbit cylinder in the relevant level. This again implies
that Fk and C intersect for large k. �

Proposition 32. Suppose the marked points pk converge to p∞ ∈W .

(1) If p∞ /∈ C, then F̄ is a height-1 building (i.e. there is no breaking). This building

has a single component, F . This component F is a Ĵ-holomorphic half cylinder with
positive puncture asymptotic to γ+ and the same boundary index as each Fk.
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(2) If p∞ ∈ C, then F̄ has precisely two non-empty levels. The middle level is equal
to the cylinder C, the top levels are empty, and the lower level is a single component
curve F−. The component F− is a J−-holomorphic half cylinder with positive puncture
asymptotic to γ− and the same boundary index as each Fk. Moreover, F− · C− = 0
where C− is the orbit cylinder over γ−, and F− · F− = 0.

Proof. Any bubbling off on the boundary would result in F̄ having a disk component, which
is ruled out by lemma 31. Any interior bubbling would result in a component of F̄ that is
a finite energy plane, which is impossible as there are no contractible periodic orbits. Any
nodes in F̄ would imply F̄ has a component that is a plane or a closed curve. But any closed
curve would be constant as the symplectic form Ω in the cobordism region is exact. However,
there are not enough marked points for F̄ to have any constant components and yet be stable.

We are therefore reduced to the following two scenarios.
Case 1: Suppose no breaking occurs. Then F̄ is a height-1 holomorphic building, with

a single component, and this component must be a half cylinder asymptotic to γ+. The
boundary index must be the same for each Fk as no disks bubbled off.

It follows that each Fk is homotopic to the limiting curve F (through curves asymptotic to
γ+). Thus F · C = Fk · C = 0. Similarly F · F = Fk · Fk = 0 for all k.

Case 2: Suppose breaking does occur. Then, as there is only one periodic orbit in the
negative end, the middle level F0 of F̄ must be a single component that is a cylinder with
punctures of opposite sign. The positive puncture is asymptotic to γ+ and the negative
puncture asymptotic to γ−. Therefore F0 is homotopic to C through curves with fixed end
points, and so F0 · C = C · C = −1 by (44), which implies that F0 is a covering of C and
therefore equals C.

The marked point must be on F0. Therefore there are no orbit cylinders in the lower or
upper levels. Thus, F̄ is a height-2 holomorphic building, with middle level F0 as described
and lower level F− a single component that is a half cylinder asymptotic to connecting orbit
γ− as a positive puncture. Again the boundary index of F− must be the same as for each Fk
as no disks bubbled off.

By assumption Fk converges to the building F̄ in the sense of [4]. The constant sequence
Ck := C also converges to the (unstable) building C̄ which consists of a single middle level
equal to the cylinder C and a single lower level equal to the orbit cylinder C− and empty
upper level. In particular both buildings have a unique connecting orbit γ−, and this is simply
covered.

The proof of Proposition 4.3, part (4), in Siefring [41] yields

lim
k→∞

Fk · Ck = C · C + F− · C− + p(γ−)(45)

where p(γ−) ∈ {0, 1} denotes the parity of the Conley-Zehnder index of γ−. Due to lemma
36, γ− is elliptic, so p(γ−) = 1. By assumption Fk · Ck = 0 for each k, and we observed in
(44) that C · C = −1. We conclude then from (45) that F− · C− = 0.

The formula that we applied to Fk and Ck to obtain (44) holds equally well for self inter-
sections. Applied to Fk this yields

0 = lim
k→∞

Fk · Fk = C · C + F− · F− + p(γ−).(46)

The left hand side vanishes, C · C = −1 (44), and p(γ−) = 1. So F− · F− = 0. �
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7.5. Foliating the boundary. Finally we prove the existence of the foliation S of the bound-
ary of R× Z that was used in section 7.1.

For each a ∈ R, consider for a fixed value of a the resulting time-dependent Hamiltonian
on the disk Ha given by

Ht
a := H(a, t, ·) : D → R

over t ∈ R/Z. By modifying Ha on any arbitrarily small neighborhood of the boundary of
the disk we may arrange that the time-one map of the path of generated Hamiltonian disk
maps is any prescribed orientation preserving diffeomorphism on the boundary of the disk.
By extension, given any smooth path a 7→ fa ∈ Diff∞+ (∂D) over a ∈ R, satisfying

(47) fa =

{
R2πα|∂D if a ≥ 1

ϕ|∂D if a ≤ −1,

the function H : R× Z → R may be modified on any small neighborhood of [−1, 1]× ∂Z so
that for each a ∈ R the time-one map of the modified Hamiltonian Ha now coincides with fa
on the boundary of the disk.

Suppose that we can find a smooth path a 7→ fa ∈ Diff∞+ (∂D) satisfying (47), and which
additionally has the property that each fa is smoothly conjugate to the rigid rotation R2πα|∂D.
More precisely, suppose that we find a smooth map g ∈ C∞(R × ∂D, ∂D), so that for each
a ∈ R the map ga := g(a, ·) is an element of Diff∞+ (∂D), and with the property that the path
fa := gaR2παg

−1
a satisfies (47). Then we may modify H ∈ C∞(R × Z,R) near [−1, 1] × ∂Z

so that for each a ∈ R the time-one map of the time-dependent Hamiltonian Ha := H(a, ·)
equals fa on the boundary of the disk. For each a ∈ R let

φa :R× ∂Z → ∂Z

(t, z) 7→ φta(z)

denote the 1-parameter family of maps generated by XHa,t on ∂D. So in particular φ1
a = fa

for all a ∈ R. Now for each z ∈ ∂D,

Sz :=
{(
a, t, ga(φ

t
a(z))

)
∈ R× R/Z× ∂D | a ∈ R, t ∈ R

}
is an immersed surface in R× ∂Z, and the union

S :=
⋃
z∈∂D

Sz

is a foliation of R× ∂Z. As α is irrational each Sz is dense in R× ∂Z. However, the relation

(48) fa := gaR2παg
−1
a

for all a ∈ R enables us to find a C∞-smooth almost complex structure J ′ on R×Z, prescribed
at points on R× ∂Z so that each Sz has J ′-invariant tangent bundle. Indeed, differentiating
the expression

(
a, t, ga(φ

t
a(z))

)
in a gives a vector field V1 say, while differentiating it in t

results in a vector field V2. Both are non-vanishing and transverse as we will see, so we can
set J ′V1 = V2. That V1 is indeed a well defined vector field uses (48). Moreover, one finds
that:

V2 = ∂τ +XHτ
a
,

while

V1 = ∂a + V3,
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for some V3 on R× ∂Z that has no ∂a component, and tends to zero in C0 as ‖∂afa‖C0 tends
to zero. We can arrange that ‖∂afa‖C0 is as small as we wish by “slowing everything down”,
that is, replacing the interval [−1, 1]× Z by [−N,N ]× Z for sufficiently large N > 0. Then,
from these expressions for V1, V2 we see that J ′ extends to an almost complex structure J ′′

on R× Z with the following properties if ‖∂afa‖C0 is sufficiently small:

(1) J ′′ coincides with the almost complex structure J outside of a small neighborhood of
[−N + 1, N − 1]× ∂Z.

(2) Each surface Lc := {c} × ∂Z is totally real with respect to J ′′.
(3) J ′′ is tamed by the symplectic form Ω on (−N,N)× Z.

And finally of course S is a J ′′-holomorphic filling of the boundary R× ∂Z.
The only remaining question is when the relation (48) can be arranged for all a ∈ R. But

this holds if and only if the circle maps ϕ|∂D and R2πα|∂D are conjugate by an orientation
preserving C∞-smooth diffeomorphism. Necessity is obvious, let us show sufficiency. Suppose
that there exists g ∈ Diff∞+ (∂D) such that ϕ|∂D = gR2πα|∂Dg−1. Since g has degree +1 it
is smoothly isotopic to the identity and we may find a smooth isotopy ga ∈ Diff∞+ (∂D) over
a ∈ R, satisfying ga = id for all a ≥ 1, and ga = g for all a ≤ −1. Thus the smooth path
fa ∈ Diff∞+ (∂D) over a ∈ R defined by fa := gaR2παg

−1
a satisfies

fa =

{
R2πα if a ≥ 1

ϕ|∂D if a ≤ −1

and therefore has the properties we require.

Appendix A.

A.1. Proof of proposition 2. In this appendix we prove the following statement, which
implies proposition 2. The idea of the proof was explained to me by Patrice LeCalvez.

We write Rθ : D → D to denote the rigid rotation z 7→ eiθz through angle θ ∈ R.

Proposition 33. Consider a sequence ϕk ∈ Homeo+(D) converging in the C0-topology to
ϕ ∈ Homeo+(D), where all maps fix 0 ∈ D. Under the following additional assumptions it
follows that ϕ has no periodic points in D\{0}.

(1) For each k ∈ N, there exists gk ∈ Homeo+(D), fixing the origin, such that ϕk =
g−1
k R2πθkgk, some θk ∈ R.

(2) θk → θ as k →∞, where θ is irrational.

Remark 12. Regarding proposition 33, note that it is sufficient for us to prove the weaker
statement that under conditions (1) and (2) the limiting map ϕ has no fixed points in D\{0}.
Indeed, this weaker statement will then apply to each iterate of ϕ and we will be able to
conclude that each iterate of ϕ has no fixed points in D\{0}, and therefore that ϕ has no
periodic points in D\{0}.

To prove this we need to recall the notions of positively and negatively returning disks due
to Franks [14]. Let D̊ := D\∂D. Denote by A := D̊\{0} and Ã := (0, 1)×R the open annulus
and its universal covering via the covering map

π : (0, 1)× R→ D̊\{0}
(x, y) 7→ xe2πiy.
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Let T : Ã → Ã be the deck transformation T (x, y) = (x, y + 1). By an open disk U ⊂ Ã is

meant an open subset homeomorphic to D̊ with the subspace topology.

Definition 34. Let f : A→ A be a homeomorphism homotopic to the identity, and f̃ : Ã→ Ã
a lift via π. Consider an open disk U ⊂ Ã for which

f̃(U) ∩ U = ∅.(49)

If there exist integers n > 0, p 6= 0, such that

f̃n(U) ∩ T pU 6= ∅(50)

then U is called a positively, resp. negatively, returning disk for f̃ if p > 0, resp. p < 0.

Remark 13. Consider a disk U ⊂ Ã satisfying (49) and (50). If moreover the closure of the

disk satisfies (49), that is, f̃(Ū)∩ Ū = ∅, then for any sufficiently C0-small perturbation of f̃ ,
U will satisfy (49) and (50) for the perturbed map also.

The key result for us is the following strong generalization of the Poincaré-Birkhoff fixed
point theorem, theorem 2.1 in [14].

Theorem 35 (Franks). Let f : A→ A be a homeomorphism of the open annulus homotopic

to the identity, and for which every point is non-wandering. If there exists a lift f̃ : Ã → Ã
having a positively returning disk which is a lift of a disk in A, and a negatively returning
disk that is a lift of a disk in A, then f has a fixed point.

Recall that a point x ∈ A is non-wandering for f if for every open neighborhood U of x
there exists n > 0 such that fn(U) ∩ U 6= ∅. Using Poincaré’s Recurrence Theorem every
point is non-wandering for a homeomorphism f if f preserves a finite measure that is positive
on open sets.

We now use theorem 35 to prove the proposition.

Proof of proposition 33. Arguing indirectly, suppose that ϕ has a periodic point z0 ∈ D\{0}.
Indeed by remark 12 we may assume that z0 is a fixed point of ϕ. Then we will show that
some iterate ψ = ϕn has a lift via the covering map

π : (0, 1]× R→ D\{0}
(x, y) 7→ xe2πiy

to a map of the half closed infinite strip ψ̃ : (0, 1] × R → (0, 1] × R, having disks U−, U+ ⊂
(0, 1)× R which satisfy the following:

(1) U+ is a positively returning disk for ψ̃. U− is a negatively returning disk for ψ̃.

(2) The closures satisfy ψ̃(Ū+) ∩ Ū+ = ∅ and ψ̃(Ū−) ∩ Ū− = ∅.
(3) U+ and U− are lifts of disks in D̊\{0}.

Suppose for a moment that we have established this. Let us write ψk := (ϕk)
n : D → D.

Then ψk converges uniformly in the C0-topology to ψ = ϕn as k →∞. Therefore there exists
a sequence of lifts

ψ̃k : (0, 1]× R→ (0, 1]× R

of ψk which converges uniformly in the C0-topology to the given lift ψ̃. Hence by remark 13
there exists K ∈ N such that for all k ≥ K, U+ is a positively returning disk for ψ̃k, and U−
is a negatively returning disk for ψ̃k.
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Recall that U+ and U− lie in the interior (0, 1) × R, and both are lifts of disks in D̊\{0}.
Every point is non-wandering for ψk because it is conjugate to a rigid rotation. Therefore
we may apply Franks’ theorem, theorem 35, to each map of the open annulus ψk : D̊\{0} →
D̊\{0} for k ≥ K. We conclude that for all k ≥ K, ψk has a fixed point in D\{0}. But
ψk = (ϕk)

n is conjugate to the rigid rotation (R2πθk)n = R2πnθk . It follows that for this fixed
n ∈ N we have nθk ∈ Z for all k ≥ K, which contradicts the convergence of the sequence θk
to an irrational number.

With this contradiction we will be done, and so it remains to establish that some iterate
of ϕ has a lift for which we can find disks U+, U− ⊂ (0, 1)× R satisfying conditions (1), (2),
and (3) listed above.

We are assuming that ϕ has a fixed point z0 ∈ D\{0}. From assumption (2) in Proposition
33 we know that the rotation number of ϕ on the boundary is irrational, and so ϕ has no
periodic points on the boundary of the disk. Thus z0 ∈ D̊\{0} and ϕ has no fixed points on
∂D.

Fix a lift z̃0 ∈ (0, 1) × R, meaning that π(z̃0) = z0. Let ϕ̃ : (0, 1] × R → (0, 1] × R be the
unique lift of ϕ satisfying ϕ̃(z̃0) = z̃0. Then for each n ∈ N, (ϕ̃)n is the unique lift of ϕn that
fixes z̃0. Let h : R→ R be the map characterized by

ϕ̃(1, y) = (1, h(y))

for all y ∈ R. In particular h is a lift of the circle map ϕ : ∂D → ∂D. Since ϕ has no fixed
points on ∂D it follows that h has no fixed points. Thus there exists ε > 0 such that one of
the following two cases occurs: (A) h(y) > y + ε for all y ∈ R, or (B) h(y) < y − ε for all
y ∈ R. From here on let us assume we are in case (A), as the argument for case (B) is the
same with obvious modifications. It follows inductively that for each n ∈ N, hn(y) > y + nε.
Fix now n0 ∈ N sufficiently large that

(51) hn0(y) > y + 3

for all y ∈ R. Note that it follows that hn(y) > y + 3 for all n ≥ n0. Consider the lift
ϕ̃n0 : (0, 1] × R → (0, 1] × R. We have ϕ̃n0(1, y) = (1, hn0(y)) for all y ∈ R. Thus, for each
y ∈ R and n ≥ n0,

ϕ̃n(1, y) = (1, y′)

for some

y′ > y + 3.(52)

As ∂D is a compact invariant set for ϕn0 there exists a point z1 ∈ ∂D that is non-wandering
for the circle map ϕn0 : ∂D → ∂D (e.g. take any point in the ω-limit set of another point
in ∂D). We write d for the Euclidean metric on D or [0, 1] × R. Let I ⊂ ∂D be an open
neighborhood of z1 sufficiently small that for some ε0 > 0 the set

V0 := {z ∈ D̊\{0} | d(z, I) < ε0}

is an open disk. That z1 is non-wandering for ϕn0 : ∂D → ∂D means that there exists m ∈ N
such that

(53) ϕmn0(I) ∩ I 6= ∅.
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Let z̃1 = (1, y1) ∈ (0, 1]×R be a lift of z1, and Ĩ ⊂ {1} ×R the lift of I that contains z̃1. We

chose I sufficiently small above that Ĩ will be disjoint from all of its translates. That is,

(54) Ĩ ∩ T q(Ĩ) = ∅
for all q ∈ Z\{0}. From (53) we know that ϕ̃mn0(Ĩ) must intersect one of the translates of Ĩ.
That is, there exists p ∈ Z such that

(55) ϕ̃mn0(Ĩ) ∩ T p(Ĩ) 6= ∅.
From (52) we have p ≥ 3.

Now set ψ := ϕn0 and let ψ̃ : (0, 1]× R→ (0, 1]× R be the lift

(56) ψ̃ := T−1 ◦ ϕ̃n0 .

It is for this iterate ϕn0 , and with respect to this lift ψ̃, that we will construct positively and
negatively returning disks U+, U− ⊂ (0, 1)× R.

Let us begin by listing the following properties of ψ̃ which follow immediately from the
properties of ϕ̃n0 we accumulated above.

(i) ψ̃(z̃0) = T−1(z̃0).

(ii) For each y ∈ R, ψ̃(1, y) = (1, y′) where y′ > y + 2.
(iii) There exists m ∈ N and an integer p ≥ 2 such that

(57) ψ̃m(Ĩ) ∩ T p(Ĩ) 6= ∅.
Note that a consequence of the second property is that

(58) ψ̃(cl(Ĩ)) ∩ cl(Ĩ) = ∅
where cl(Ĩ) is the closure of Ĩ in (0, 1]× R.

First the negatively returning disk. Write (x, y) := z̃0 ∈ (0, 1)×R. Then ψ̃(x, y) = (x, y−1)
by (i). Thus any sufficiently small disk neighborhood U− ⊂ (0, 1) × R of (x, y) is a lift of

a disk in D̊\{0} that satisfies ψ̃(Ū−) ∩ Ū− = ∅. Moreover ψ̃(U−) ∩ T−1(U−) is non-empty

as it contains the point (x, y − 1). Thus U− is a negatively returning disk for ψ̃ satisfying
conditions (1), (2), and (3) listed at the beginning.

It remains to find a suitable positively returning disk for ψ̃. Consider the open neighbor-
hoods of Ĩ in (0, 1]× R of the form

V := {z ∈ (0, 1]× R | d(z, I) < ε}
for ε > 0. From (57) there exist integers p ≥ 2 and m ≥ 1 such that

(59) ψ̃m(V ) ∩ T p(V ) 6= ∅.
For ε > 0 sufficiently small we have

(60) ψ̃(V̄ ) ∩ V̄ = ∅.
This is because ψ̃ moves points on {1} × R in one direction a distance greater than 2, and

Ĩ ⊂ {1} × R was chosen sufficiently small.

Set U+ := V ∩ Ã = V ∩
(
(0, 1)× R

)
. From (59), and baring in mind that ψ̃m(V ) ∩ T p(V )

is also open in (0, 1]× R, we must have

ψ̃m(U+) ∩ T p(U+) 6= ∅.
From (60)

ψ̃(Ū+) ∩ Ū+ = ∅
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as Ū+ ⊂ V̄ . Moreover, if we chose 0 < ε ≤ ε0 then U+ is a disk in Ã = (0, 1) × R and is a

lift of a disk in D̊\{0}. Thus, as p ≥ 2, U+ is a positively returning disk for ψ̃ satisfying the
required conditions (1), (2), and (3). �

A.2. Nondegeneracy. Let ϕ : D → D be an irrational pseudo-rotation as in definition 3.
In this appendix we prove that the unique periodic point is non-degenerate for every iterate.
More precisely:

Lemma 36. For each n ∈ N, the linearization Dϕn(0) does not have eigenvalue 1.

Remark 14. Infact the eigenvalues of Dϕn(0) are {e2πinα, e−2πinα}, where [α] ∈ R/Z is the
rotation number of ϕ. We see these are distinct from 1 for each n because α is irrational.

Proof. By applying the statement to iterates it suffices to prove the statement for n = 1.
Arguing indirectly we find v ∈ ∂D ⊂ R2 such that Dϕ(0)v = v. Blowing up the fixed point

ϕ(0) = 0 we obtain a map ϕ̂ : [0, 1] × ∂D → [0, 1] × ∂D that is an orientation preserving
homeomorphism, and whose restriction to (0, 1]× ∂D is a diffeomorphism that preserves the
area form dt ∧ dθ and is smoothly conjugate to ϕ : D\{0} → D\{0}, and which on the circle
{0} × ∂D is the projection of the linear map Dϕ(0) : R2 → R2, more precisely

ϕ̂(0, x) =

(
0 ,

Dϕ(0)[x]

|Dϕ(0)[x]|

)
for each x ∈ ∂D ⊂ R2. For example one can take the unique continuous extension of the
map π−1 ◦ ϕ ◦ π : (0, 1] × ∂D → (0, 1] × ∂D where π : (0, 1] × ∂D → D\{0} is the smooth
diffeomorphism π(t, x) :=

√
tx.

It follows that ϕ̂(0, v) = (0, v) and so the rotation number of ϕ̂ on the boundary component
{0}×∂D is [0] ∈ R/Z. The rotation number of ϕ̂ on the other boundary component {1}×∂D is
the irrational number [α] ∈ R/Z because it must equal the rotation number of ϕ : ∂D → ∂D.
Thus ϕ̂ has distinct rotation numbers on the two boundary circles. Therefore some iterate
has a twist in the sense of Poincaré and Birkhoff and so their fixed point theorem applies. We
conclude that ϕ̂ has periodic points in the interior (0, 1) × ∂D and so ϕ has periodic points
in D\(∂D ∪ {0}) contradicting that ϕ is an irrational pseudo-rotation. �

A.3. Intersection theory. The intersection number F ·G between pairs of closed oriented
surfaces F and G in a closed four manifold is of course a homological invariant. For pseudo-
holomorphic curves it is especially useful since its vanishing implies the two curves are either
equal or disjoint due to the positivity phenomenon in [37]. Moreover, via the so called ad-
junction formula, the embeddedness properties of a surface are related to its self-intersection
number which is homotopy invariant.

Siefring showed that a homotopy invariant intersection number can also be associated to
pseudoholomorphic curves with punctures asymptotic to nondegenerate periodic orbits [41],
that retains many of the properties that hold for closed curves.

In this appendix we state without proof the properties of an intersection number that we
used in section 7 for curves with a boundary component. We also state a corresponding
adjunction formula. A more detailed explanation will appear in [5].

We use the notation from section 7.1. Fix an homology class A ∈ H1(∂Z,Z). Let
C∞(γ+, ∂W,A) denote the set of maps ũ ∈ C∞(R+ × R/Z,W ) equipped with the C∞loc ∩ C0

topology which satisfy:

• ũ(0, ·) ∈ Lc for some c ∈ R (not fixed), and represents A.
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• ũ is asymptotically cylindrical in the sense of [41], with asymptotic orbit γ+.
• ũ takes interior points to W\∂W .
• ũ meets ∂W transversely along the loop ũ(0, ·).

Remark 15. Recall that γ+ lies in the positive end of (W, Ĵ), and that it is nondegenerate
and simply covered.

The homotopy invariant intersection index of Siefring can be extended to these curves with
boundary. This allows us to associate to any pair of curves ũ, ṽ ∈ C∞(γ+, ∂W,A) a half
integer ũ · ṽ ∈ 1

2Z with the following properties:

(1) Symmetry: ũ · ṽ = ṽ · ũ.
(2) Homotopy invariance: For a continous path ũτ in C∞(γ+, ∂W,A), ũτ · ṽ is inde-

pendent of τ .
(3) Positivity: Suppose ũ and ṽ are also Ĵ-holomorphic, embedded on their boundary

circles, and do not have identical images. Then, ũ · ṽ ≥ 0, and equality implies that
the two curves have disjoint images.

Remark 16. This is more delicate for pairs of curves ũ ∈ C∞(γ+, ∂W,A) and ṽ ∈ C∞(γ+, ∂W,B)
for which A 6= B. We will not consider these cases.

Following [43, 44], which is for curves without boundary, we define the normal Chern

number of a Ĵ-holomorphic map ũ ∈ C∞(γ+, ∂W,A), to be the integer

(61) cN (ũ) = ind(ũ)− 1− p(γ+).

Here p(γ+) denotes the parity of the Conley-Zehnder index of γ+, and ind(ũ) is the Fred-
holm index of the linearized Cauchy-Riemann operator at ũ viewed as a solution of the free
boundary problem.

In our simple situation expression (61) seems hardly to warrant a name. But it allows us
to draw parallels with the general situation for curves without boundary. The terminology
arises, see [43], because if ũ is immersed then cN (ũ) has an interpretation as a relative first
Chern number of a normal bundle over ũ. In the case at hand this can be described as follows.

Let ζ ⊂ T (∂W ) denote the unique Ĵ-invariant 2-plane distribution in the boundary of W .
Each 2-torus L ⊂ ∂W is totally real and therefore transverse to ζ. To the non-degenerate
periodic orbit γ+ one can associate an operator, the so called asymptotic operator [21], with
discrete real spectrum. Each eigenspace of this operator yields a homotopy class of sections of
γ∗+TD → R/Z. Let Φ+ denote the class associated to the maximal negative eigenvalue of this
operator. Let Φ0 denote the homotopy class of sections of ũ(0, ·)∗ζ → R/Z that corresponds

to the orientable line bundle l := ζ ∩ TLc. Let Nũ → R+ × R/Z be a Ĵ-invariant normal
bundle to ũ in W which, outside of a compact set, is equal to the tangent planes to the disks,
and which over the boundary points of ũ coincides with ζ. Then (61) can be interpreted

as the first Chern number of the complex line bundle (Nũ, Ĵ) → R+ × R/Z relative to the
homotopy classes Φ+ and Φ0.

With this interpretation of the normal Chern number, the adjunction formula in our situ-
ation for curves with embedded boundary takes the following form.

Theorem 37. Suppose ũ ∈ C∞(γ+, ∂W,A) is Ĵ-holomorphic and embedded on its boundary
circle. Then

(62) ũ · ũ = 2δ(ũ) + cN (ũ) ∈ Z
where δ(ũ) ≥ 0 is an integer that vanishes if and only if ũ is embedded.
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Remark 17. δ(ũ) is the count of double and singular points of ũ as defined in Siefring [41]
and up to a factor of 2 is the same as in Micallef-White [37]. (There is no contribution to
δ(ũ) from the periodic orbit because it is simply covered.) Note that there are no additional
contributions to consider from singular or double points on the boundary as we assume ũ
is embedded on the boundary. There are no interior-boundary double points because ũ ∈
C∞(γ+, ∂W,A).

Remark 18. For general punctured pseudoholomorphic curves the adjunction formula is due
to Siefring [41]. The expression above in (62) is however closer to (A.6) in [44]. The additional
terms there have vanished here because the asymptotic periodic orbit γ+ is simply covered.

Remark 19. The adjunction formula usually requires the curve to be somewhere injective.
This is automatically the case here.

The utility of this formula is most apparent when cN (ũ) ≥ 0. Then the vanishing of the left
hand side guarantees that ũ is embedded. This is convenient as ũ · ũ is a homotopy invariant.

Proposition 38. Suppose that ũ ∈ C∞(γ+, ∂W,A) is Ĵ-holomorphic, embedded on its bound-
ary circle, that ind(ũ) = 2 as a solution to the free boundary problem, and that ũ · ũ = 0.
Then

(1) ũ is embedded.
(2) ũ is Fredholm regular.
(3) An open neighborhood of the image of ũ in W is foliated by a smooth family of em-

bedded Ĵ-holomorphic curves in C∞(γ+, ∂W,A).

By Fredholm regular we mean that the linearized Cauchy-Riemann operator at ũ, viewed
as a solution of the free boundary problem, is surjective.

Proof. It follows from (61) that cN (ũ) = 0. Since ũ is embedded on the boundary we can
apply the adjunction formula, theorem 37, and conclude from ũ · ũ = 0 that ũ is embedded.

Automatic transversality arguments in [42, 45] then show that ũ is Fredholm regular. More
precisely this is because ũ is immersed and cN (ũ) < ind(ũ).

Thus ũ is embedded and Fredholm regular, has Fredholm index 2, meets the boundary
transversely in an embedded totally real submanifold, and has interior disjoint from ∂W .
These conditions suffice to apply an implicit function theorem in [42, 45] (a slight generaliza-

tion of the result in [25]) to produce a local 2-dimensional family of Ĵ-holomorphic curves in
C∞(γ+, ∂W,A). Finally, the condition cN (ũ) = 0 implies that these curves foliate an open
neighborhood of the image of ũ. �
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Études Sci. Publ. Math. No. 51 (1980), 137-173.
[29] A. Katok, Open problems in elliptic dynamics, www.math.psu.edu/katok a/problems.html
[30] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems. With a sup-

plementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Ap-
plications, 54. Cambridge University Press, Cambridge, 1995. xviii+802 pp.

[31] B. Kerekjarto, Sur la structure des transformations topologiques des surfaces en elles-mêmes, En-
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