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  An auditory model "PhyBAM" is presented which in the long term aims at reproducing the human auditory perception. In recent years the
awareness has grown that many perceptive features have their origin in the peripheral ear, above all in the cochlea. In the present stage
PhyBAM is actually just a model of the peripheral ear. To simulate the perception of arbitrary sound signals, the signal processing occurring in
the cochlea has to be formulated close to the physiological basis. Even so the model must be kept as simple as possible for the given aim. As a
compromise PhyBAM is set up as an ordinary circuit model. In this first of two associated papers the model structure and the computational
methods are presented. The model covers ear canal, middle ear, and cochlea. The cochlea model is by far the most sophisticated part. To include
the unsymmetrical conditions at both cochlear windows and the resulting common and differential modes, a two-canal circuit is used. The main
challenge is the implementation of the cochlear amplifier on the basis of measured tuning curves and otoacoustic emissions. Finding an
appropriate model structure and proper parameters turns PhyBAM into an instrument of cochlear research.
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1. INTRODUCTION 

Models of the auditory system can be developed for very different applications. When mainly the auditory percep-
tion is to be simulated, it can be reasonable to use a fairly simple model of the peripheral ear and to focus on the 
signal processing in the auditory pathway. However, many perceptive properties such as dynamic level-dependent 
processes or the fine structure of the hearing threshold have their origin in the peripheral ear (Epp et al., 2010). 
Therefore auditory models claiming true reproduction of the perception of arbitrary signals cannot satisfactorily 
work without a detailed model of the peripheral ear. Such models have to be based on the physiology of the periph-
eral ear, particularly on that of the cochlea. 
A literally physiology-based model would have to be able to reproduce at least all the acoustic, mechanic and elec-
tric vibrations occurring in all parts of the peripheral hearing organ. A typical model of that kind would be formulat-
ed using finite elements. However, regarding the enormous number, the complex structure, and the diminutiveness 
of involved elements it is obvious that a numerical model taking into account all these details is unfeasible. Conse-
quently, it is necessary to reduce the effort to a reasonable extent. Only such details should be reproduced that have 
significant impact on the resulting signal processing taking place in the ear. PhyBAM, our physiology-based audito-
ry model has been developed according to this concept. However, a priori it is in no way obvious which details are 
really important and which are not. This is a severe problem when designing an appropriate model structure. 
As the peripheral ear is essentially nonlinear the model has to work in the time domain. A direct way leading to a 
true time-domain model (in contrast to models approximating the signals using frame-wise inverse Fourier trans-
formation) is a formulation as circuit model. The main drawback of usual circuit models is the restriction to one-
dimensional systems. In such systems the shape of vibrations at each location is predefined and unchangeable. 
Three-dimensional vibrations as definitely occurring in the middle ear and the cochlea cannot be correctly repro-
duced by such systems. Only if one believes that all relevant effects of 3D vibrations can be approximated by simple 
1D systems, the decision to use an ordinary circuit is reasonable. The validity of this assumption is by no means 
certain. The relevance of 3D vibrations for the cochlear function has been stressed by Kolston (2000) and Frosch 
(2010). The only justification for a 1D model is sufficiently good agreement between simulated and measured data. 
It is fairly easy to reproduce only a single type of data, for instance, cochlear tuning curves. But this alone cannot 
"prove" the general applicability of a model. Only if many diverse types of data can be reproduced using a fixed set 
of parameters, the model can be supposed to work close to physiology and to produce realistic results for arbitrary 
input signals. 
The human auditory perception can be measured using psychoacoustic methods. The results obtained this way are 
determined by the complete hearing organ from the ear canal up to the auditory cortex. All signals pass the peripher-
al stages. Therefore the function of the peripheral ear has to be known in advance if the central ear is to be exam-
ined. However, the functioning of the peripheral ear is still unclear in several details. This typically leads to discus-
sions whether a certain psychoacoustic effect has its origin in the peripheral ear or in the central pathways. For this 
reason, in the first development phase PhyBAM exclusively covers the peripheral ear, i.e., ear canal, middle ear, and 
cochlea. From the view point of auditory signal processing the ear canal and the middle are fairly simple, almost 
linear systems. Therefore PhyBAM is first of all a cochlea model. The ear canal and the middle ear are two-ports 
which describe filter properties in both directions from the ear canal to the cochlea and back. 
To avoid any intermixture with central functions no psychoacoustic data is utilized for the model adjustment. With 
respect to the cochlear function the only meaningful physical data measurable in living humans can be recorded by 
microphones placed in the ear canal (auditory electric potentials give little insight into the cochlear mechanics). All 
kinds of otoacoustic emissions (OAE) are ideally suited to study details of interference and reflection of traveling 
waves. The most characterizing features of the cochlea, however, are the tuning curves as they immediately refer to 
the main function of the cochlea being a frequency analyzer. Unfortunately, tuning curves cannot be measured by 
non-invasive methods. Therefore the only available measurements of tuning curves are obtained from animals. Ne-
vertheless these results have to be utilized as OAE measurements alone do not suffice to derive all relevant parame-
ters of the cochlea. From measurements of psychoacoustical tuning curves one can conclude that physical tuning 
curves of humans should be at least structurally similar to animal tuning curves. In conclusion, data of tuning curves 
and different types of OAE is considered as fundament on which the model can be built. 

2. MODEL STRUCTURE 
The model includes subsystems representing the ear canal, the middle ear, and the cochlea. The cochlear subsystem 
follows the frequently used approximation as box which contains two fluid-filled canals and the BM in between 
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(Peterson and Bogart, 1950). All the three subsystems are formulated as acoustic circuits. This means that the varia-
bles primarily used are sound pressures p and volume velocities q. The interfaces between subsystems are surfaces A 
of constant pressure and velocity. They are referred to as "ports" and denoted by the characters E, D, BU, BL, AU, 
and AL. The meaning of all ports is given in Fig. 1. A one-port like the helicotrema is often represented by an im-
pedance Z. Usually an impedance is used in the frequency domain. In this paper the term "impedance" is utilized in 
a generalized manner. It can also mean the equivalent system formulation in the time domain. 
 

         
 
FIGURE 1. Basic model structure covering ear canal, mid-
dle ear and cochlea. The ports denote the entrance of the ear 
canal (E), the end of the ear canal at the eardrum (D), the 
base of the cochlea in the upper and lower canal (BU, BL), 
and the apex in the upper and lower canal (AU, AL). At the 
apex both canals are coupled via the impedance ZH of the 
helicotrema. 

FIGURE 2. Four-port representing the n-th slice of the coch-
lear system. Indices: U, L: upper, lower canal, BM: basilar 
membrane, M: mass, S: stiffness. The circuit includes a 
source pBM0 (circle symbol) which represents the additional 
excitation of the BM generated by the cochlear amplifier. The 
control of the source, indicated by the arrow at the source 
symbol, is discussed below. 

Mostly the model is excited by a Thévenin equivalent source (pEC, ZEC) acting in the ear canal. This way any kind of 
acoustic excitation, e.g., an external sound source or an OAE measuring probe, can be modeled. The source at the 
round window (pRW, ZRW) allows examining the effect of excitation at both cochlear windows. Usually the source 
pRW is made inactive. Then only the impedance ZRW of the round window membrane is present. In addition further 
sources inside the cochlea can be activated to study backward traveling waves in the cochlea and the reverse trans-
mission from the cochlea to the ear canal. 
For the ear canal the simplest approximation as a tube of constant cross-section is used. To allow for calculations in 
the time domain the tube is modeled using an appropriate number of chained slices. Regarding the middle ear we 
went back to an own model (Hudde and Engel, 1998). As this model was formulated for usage in the frequency 
domain including frequency depending circuit elements, some reformulation was necessary. The circuit is fitted to 
reproduce the input impedances from both ends and the pressure transfer functions in both directions. In contrast to 
the reference model, all the circuit elements have frequency-independent real values, which is a necessary precondi-
tion for calculations in the time domain. 
For a realistic simulation of the transmission of otoacoustic emissions to the ear canal a two-canal model of the 
cochlea is indispensable. Also the cochlea has to be spatially discretized into a number of slices. As the upper and 
the lower cochlear canals are treated separately each slice corresponds to a four-port. The structure of one slice is 
shown in Fig. 2. The combination of the acoustic mass impedance ZUM(n) and stiffness admittance YUS(n) corre-
sponds to the usual equivalent circuit of an acoustic transmission line. Both immitances can be supplemented by 
frictional elements if losses are to be taken into account. The upper and lower canals are coupled by the basilar 
membrane (BM). If it was completely stiff, the four-port would represent two water-filled transmission lines work-
ing independently. Coupling is expressed by the BM impedance ZBM(n) and an additional pressure source pBM0(n). In 
the frequency domain the BM impedance describes damped mass-spring vibrators according to 

( ) ( ) j ( ) ( ) / ( j )BM BM BM BMZ n w n m n s n� �� � �  (1) 

This impedance includes the effect of the organ of Corti resting on the BM. In the normal travelling wave mode the 
BM and organ of Corti almost vibrate as a whole. Thus the organ of Corti mainly contributes to the mass mBM(n). 
For simplicity in this paper the compound system of BM and organ of Corti is addressed when the term "basilar 
membrane" is used. As already mentioned the model is formulated exclusively using acoustic elements. The original 
mechanic elements are transformed into acoustical ones by the relationship 
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, ,( ) ( ) ( ) / ( )BM BM ac BM mech BMZ n Z n Z n A n� �  (2) 

ABM(n) means the part of the BM area falling in the n-th slice. If no pressure source pBM0(n) is active, the BM is only 
driven by the pressure difference �p(n) = pU(n) - pL(n) between upper and lower canal. This is the passive case. 
The most crucial part of the model is the reproduction of the active cochlear system, the cochlear amplifier. The 
cochlear amplifier actually increases the BM vibrations, not only the excitation of the inner hair cells. Thus some-
how spatially distributed forces along the BM must be generated which additionally act on the BM. In the model the 
additional force sources are represented by the equivalent acoustic pressure sources pBM0(n) shown in Fig. 2. So far 
this approach is fairly general as no particular assumptions about the system controlling the source are made. The 
core of the cochlear amplifier is given by the OHC. According to the simplest notion of the OHC operation, the 
OHC bodies perform lengthwise vibrations controlled by shearing motions of the cilia. However, the mechanism 
which transforms these vibrations into forces on the BM is still controversially discussed. 
A possible solution of this problem is the concept of "Corti resonators" published by the first author (Hudde, 2011). 
Using a finite element model of a cochlear section it was found that lengthwise vibrations of the OHC induce char-
acteristic motions of the organ of Corti which are well suited to drive the BM. The Corti mode - the special kind of 
vibration generated by the OHC - is fundamentally different from the simple motion which appears if the BM is 
driven by the pressure difference between the upper and lower side (usual travelling wave mode). The Corti mode is 
significantly governed by the phalanges which divert the lengthwise OHC motion into lateral directions. This leads 
to strong deformations of the organ of Corti. Two features mostly characterize the Corti mode: the bending of the 
units formed by the OHC and the supporting Deiter cells and a rotatory motion of the the Hensen cells. This way the 
mass of the organ of Corti pushes the BM and thereby increases the up-and down motion of the travelling wave 
mode. 
In ordinary circuit models two interacting modes of of vibration cannot be described. It would be possible to use 
generalized circuit models to cope with three-dimensional vibrations (Hudde and Weistenhöfer, 1997). However, 
PhyBAM is formulated avoiding such complicated systems. More sophisticated circuits will only be introduced if 
they turn out to be absolutely necessary. 
Like the travelling wave mode also the Corti mode shows a resonance. The resonating system contains the same 
structural elements as the travelling wave mode, but due to the different types of vibration its resonant frequency 
differs from that of the passive system. As both resonances are caused by the same elements it is ensured that both 
systems are similarly tuned along the BM, a precondition necessary to obtain a uniform function of the cochlear 
amplifier at all places. It turned out that the Corti mode resonators have to work at somewhat lower resonant fre-
quencies compared to that of the BM at the same place. In this case the passive travelling wave is amplified in a 
certain range of the BM just before the travelling wave reaches the passive characteristic place (Becker and Hudde, 
2013). 
The circuits representing the OHC and the Corti resonators are depicted in Fig. 3 (next page). For convenience the 
explicit indication of the slice number (n) is omitted. The OHC circuit is taken from Shamma et al. (1986). Although 
the original model is set up for inner hair cells, it can be also used for the OHC as the fundamental structures are the 
same. More recent models like the piezoelectric model proposed by Liu and Neely (2009) include the reaction of the 
mechanic load to the electric system. For simplicity this is not taken into account in PhyBAM. According to 
Shamma's model the receptor potential U is varied by a variable conductance G(�Ci) which is controlled by the 
shearing displacement �Ci of the Cilia. This yields a voltage u fluctuating about the resting potential U0. 
The voltage u(n) in the slice n produces a proportional change �OHC(n) = KOHC,� u(n) of the OHC length which 
evokes the motions of the Corti mode. As already discussed, the coupling between the Corti mode and the travelling 
wave mode cannot be accurately treated using a circuit model. To approximate the conditions it is assumed that the 
force produced by an OHC is transmitted from the OHC to the BM via a coupling impedance, which covers the 
phalanges and other elements of the organ of Corti. This means that the OHC displacement source �OHC(n) acts on 
the coupling impedance and the BM impedance connected in series. According to the rules of mechanic circuits this 
means adding of admittances. Therefore the smaller impedance determines the resulting force. Due to the phalanges 
the coupling impedance is fairly stiff. Therefore the force generated is mainly determined by the smaller BM impe-
dance which in the relevant range of the Corti resonator activity is mainly governed by its stiffness sBM,mech(n). Thus 
we can estimate the generated force as 
 2

, , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) ( ) ( )OHC BM mech OHC BM mech OHC OHC OHC BM BM OHCF n s n n s n K u n K n u n K n s n A n K� ��� � � �  (3) 

This force is assumed to excite the Corti resonator in the Corti mode just described. Whereas KOHC,� is a constant 
characterizing the piezoelectric effect of the OHC, KOHC(n) considerably depends on the place as its stiffness de-
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creases from the base to the apex. The stiffness sBM(n) appearing in Eq. (3) is the acoustic equivalent of the mechan-
ic stiffness sBM,mech(n).

 
 

       
 

FIGURE 3. Model of outer hair cells (OHC) and 
Corti resonators. The receptor potential U is generat-
ed by variations of the conductance G(�Ci). The 
alternating component u of the receptor potential 
induces a force acting on the Corti resonators. The 
impedance ZCR,mech of the parallel resonator includes 
mass mCR,mech, stiffness sCR,mech, and friction wCR,mech. 

FIGURE 4. Superposition of the motions of the basilar membrane 
and the Corti resonator. The transformation between mechanic and 
acoustic systems is formally described by a gyrator with a gyration 
constant being the surface area ABM relating both systems (panel A). 
In the acoustic system the source introduced by the Corti resonators 
is a volume velocity source (panel B) which can also be expressed by 
a pressure source (panel C). 

A further part of the cochlear amplifier is the system relating the cilia shearing displacement �Ci(n) to the vibration 
of the BM. Shearing is induced by relative motions of the tectorial membrane and the cuticular plates on the tops of 
the OHC. Thus the transfer function from the BM displacement to the cilia displacement is influenced by several 
elastic and inertial elements in the cochlea. However, if the transmission takes place below any resonant frequency 
of the involved system the cilia shearing displacement simply follows the BM displacement. The simplest assump-
tion, which is currently used in PhyBAM, is a fixed proportional relationship between the BM and cilia displace-
ment at the same place: �Ci(n)=K(n) �BM(n). 
Finally, the calculated vibration of the Corti resonator has to be superimposed to the vibration of the BM. This clo-
ses the feed-back loop of the active cochlear system. As the superposition occurs in the mechanic system of the BM 
the original mechanic conditions underlying the acoustic impedance ZBM(n) have to be considered. The element 
formally describing the transformation between mechanic and acoustic systems is a gyrator (Fig. 4). It relates forces 
F and velocities v to acoustic pressures p and volume velocities q according to p = F/A, q = vA. Thus the gyrator 
constant is the area A involved, here the area ABM(n) of the BM within the cochlear slice considered. 
In panel A of Fig. 4 the superposition of the Corti resonator velocity vCR is represented by a corresponding velocity 
source adding to the BM velocity. The mid circuit (panel B) is the same as the left one, but completely transformed 
to the acoustic side. Here the Corti resonator velocity is represented as equivalent acoustic volume velocity source 
qCR which means a Norton equivalent source. If no Corti resonator velocity vCR is superimposed the acoustic imped-
ance BM impedance reduces to the passive impedance ZBM(n) = ZBM,mech(n)/A2

BM(n) as already used above. In the 
final step the circuit has to be transformed to the form of the BM branch appearing in Fig. 2, i.e., to a series connec-
tion of the impedance ZBM and a pressure source representing the input generated by the cochlear amplifier. This is 
achieved using well-known source transformations. The result depicted in panel C of Fig. 4 is identical to the corre-
sponding BM branch in Fig. 2 if the volume velocity qBM(n) in Fig. 2 means the total volume velocity qBM,tot(n) as in 
Fig. 4. 

3. PASSIVE COCHLEA ANALYSIS 
To derive the basic equations relating the port variables of all cochlear slices, two chained slices have to be consid-
ered. A minimum number of equations is obtained when a loop volume-velocity analysis is performed in analogy to 
the loop current analysis in electrical circuits. This analysis usually carried out in the frequency domain can be used 
in the time domain as well. In the following the temporal derivative of a volume velocity ( )q n  is denoted by ( )q n� , 
and the temporal integral by ( )q n� . The volume velocities at three adjacent ports n-1, n, n+1 (see Fig. 2) are coupled 
by three equations: 
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( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( )

( 1) ( ) ( ) ( ) ( ) ( ) ( 1) 0
US U US BM UM U UM U

US US U US BM US U

s n q n s n q n m n q n w n q n
s n s n q n s n q n s n q n

	 	 	 � 	 	 � 	 � 	 �
� 	 � 	 	 � �

� � �
� � �  (4) 

 � �
( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( )

( 1) ( ) ( ) ( ) ( ) ( ) ( 1) 0
LS L LS BM LM L LM L

LS LS L LS BM LS L

s n q n s n q n m n q n w n q n
s n s n q n s n q n s n q n

	 	 	 	 	 	 � 	 � 	 �
� 	 � � 	 � �

� � �
� � �  (5) 

 � � 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( 1) ( )

US U LS L BM BM BM BM

BM US LS BM US U LS L BM

s n q n s n q n m n q n w n q n
s n s n s n q n s n q n s n q n p n

	 � � � �
� � � � � 	 � �

� � �
� � �  (6) 

 
The acoustic circuit elements of the BM, stiffness sBM(n), resistance wBM(n), and mass mBM(n), have already been 
introduced in Eq. (1). The fluid masses mUM(n) and mLM(n) and resistances wUM(n) and wLM(n) belong to the imped-
ances ZUM(n) and ZLM(n) of Fig. 2. The fluid stiffnesses sUS(n) and sLS(n) form the admittances YUS(n) and YLS(n). 
Here for simplicity no losses are taken into account. 
The equations at all ports together constitute a system of differential equations which can be formulated using three 
vectors ( ), ( ), ( )k k kq q q��  composed of loop volume velocities, their temporal derivatives, and their temporal inte-
grals at all ports at the discrete time k. The volume velocity vector is q(k)=[..., qU(n,k), qL(n,k), qBM(n,k),...]T. Here 
the time dependence is explicitly indicated (k). The vectors of the temporal derivative ( )kq�  and integral ( )kq�  are 
composed correspondingly. According to Eqs. (4-6) the system of differential equations has the form  
 ( ) ( ) ( ) ( )k k k k
 � 
 � 
 � 0M q W q S q p��  (7) 

The matrices M, W, S are band matrices. In the passive case they only contain constant elements. The first equations 
are modified as they include the excitation at the input port. Also the last equations are irregular. Here the helico-
trema impedance has to be taken into account. In this way the band matrices become ordinary square matrices. The 
right-hand side p0(k) is a vector of the same length as the loop volume velocity vectors. For each of the N ports three 
variables qU(n,k), qL(n,k), qBM(n,k) occur. The actual length is 3N+1 including the additional volume velocity 
qU(N+1) through the helicotrema. When the cochlea is excited by a source at the entrance of the upper canal, only 
the first element of the vector p0(k) is nonzero at the first point of time. 
If the cochlea is excited somewhere in the ear canal, the system of equations has to be extended by the equations for 
the ear canal and middle ear. Only five equations are necessary to include the middle ear. The ear canal is modeled 
by M two ports representing slices of the ear canal. Up to M = 20 slices are used for the ear canal depending on its 
length. By far the most equations belong to the cochlea. Usually N = 280 slices are used along the BM having a 
length of 35 mm. 
To calculate the response at all locations for a given excitation, the differential equations have to be integrated. A 
very effective algorithm to do this is the Newmark method which is often applied for systems formulated using 
finite elements. Then the solution of the differential equations is reduced to the solution of a system of linear equa-
tions at each time step. The matrix formulation reads as follows 
 ( ) ( )k k
 �A q R�  (8) 
Herein the system matrix A is calculated from the original matrices as  

 � �2t t �� � � � �A M W S  (9) 

�t denotes the sampling interval. The constants �,  can be optimized for best numerical results. We use the stan-
dard choice � = 1/6,  = 1/2. Also the matrix A has band structure. Therefore the linear system of equations can be 
solved very effectively. The right-hand side vector, which is identical to p0(k) in the first moment, is changed ac-
cording to 
 ( ) ( ) ( ) ( )k k k k� 	 
 	 
0 p pR p W q S q�  (10) 

Herein both volume velocity vectors mean predicted values which are derived from the previous values 

 � �2( ) ( 1) (1 ) ( 1), ( ) ( 1) ( 1) (1 2 ) / 2 ( 1)k k t k k k t k t k �� 	 � 	 � 
 	 � 	 � � 	 � 	 � 	� �� �p pq q q q q q q� �� �  (11) 

After solving the system of linear equations the predicted values are corrected according to 
 � �2( ) ( ) ( ), ( ) ( ) ( )k k t k k k t k �� � � � � �p pq q q q q q� �� �  (12) 

This completes the calculation of the vectors ( ), ( ), ( )k k kq q q�� . If harmonic excitation is considered, the solution can 
be achieved much faster using complex amplitudes. Then Eq. (8) reduces to  
 � �j (1 / j ) ( ) ( )� � � �� � � 0M W S q p  (13) 
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4. ACTIVE COCHLEA ANALYSIS 
The cochlear amplifier includes the OHC and the Corti resonators according to Fig. 3 and the feedback to the basic 
model via the controlled source as depicted in Fig. 4. The cochlear amplifier is expressed by two additional equa-
tions per cochlear slice supplementing Eqs. (4-6). To obtain these equations, the basic equations of the elements 
involved have to be rewritten in a form that suits to the equations of the passive system. According to Shamma et al. 
(1986) the alternating component of the receptor potential u(t) is governed by the cilia displacement �Ci(t) as a result 
of the corresponding alteration of a conductance G{�Ci(t)}. This can be written as 
 � �� � � � � �� �0 0( ) ( ) ( ) ( )m k Ci k k Ci tC u t G G t u t G U U G t U U� �� � � 	 � 	�  (14) 

The nonlinear equation includes a capacitance Cm, a constant conductance Gk, and several voltages (see the original 
paper). These parameters and even more the parameters occurring in the function G{�Ci(t)} can be used to form the 
OHC characteristic. Eq. (14) has to be transformed into a linear equation for each time step. To achieve a linear 
equation small changes of the conductance G{�Ci(t)} within the sampling interval �t have to be considered. The 
unknown conductance at the "current" time k can be estimated from known previous values. The conductance of 
slice n is estimated from the previous value G(n,k-1), the slope S(n,k-1) of the conductance characteristic at the pre-
vious time k-1 and the estimated change of the cilia displacements during the sampling interval 
 � �ˆ ˆ( , ) ( , 1) ( , 1) ( , ) ( , 1)Ci CiG n k G n k S n k n k n k� �� 	 � 	 	 	  (15) 

Using the mean of the temporal slopes of the cilia displacements the estimated change of the cilia displacement can 
be expressed as 
 � �ˆ ( , ) ( , 1) 0.5 ( , 1) ( , )Ci Ci Ci Cin k n k n k n k t� � � �	 	 � 	 � �� �  (16) 

This way the estimate of the current conductance can be calculated from the volume velocities of the BM 

 

� �
� �
� �

ˆ ( , ) ( , 1) 0.5 ( , 1) ( , 1) ( , )
( , 1) 0.5 ( ) ( , 1) ( , 1) ( , )
( , 1) 0.5 ( ) ( , 1) ( , 1) ( , ) / ( )

Ci Ci

BM BM

BM BM BM

G n k G n k t S n k v n k v n k
G n k t K n S n k v n k v n k
G n k t K n S n k q n k q n k A n

� 	 � � 	 	 � �
� 	 � � 	 	 � �
� 	 � � 	 	 �

 (17) 

Herein a place-depending constant K(n) relating the cilia and the BM displacements is used. If the estimated con-
ductance is utilized to rewrite Eq. (14) one obtains a linear equation of the form 
 ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )BM el elA n k q n k B n q n k C n k q n k R n k� � ��  (18) 

To adopt the new equation to the form of Eqs. (4-6) all variables appearing in the solution vector are expressed as 
equivalent volume velocities. The volume velocity qel(n,k) is defined proportional to the receptor potential u(n,k). 
The right-hand side contains several constants and previous values of the conductance, of its slope, and of BM vol-
ume velocities. Note that the matrix elements A(n,k) and C(n,k), and the right-hand term R(n,k) change with each 
time step. They contain previous values which are known before the matrix inversion at time step k. 
The second additional equation expresses that the alternating component of the receptor potential controls the pres-
sure source pBM0(n). Written in the frequency domain the relationship reads 
 � �0 ( ) ( ) ( ) ( ) ( ) ( ) / ( ) ( )BM BM BM CR OHC BM BM CRp n Z n A n v n K A n Z n Z n u n� �  (19) 

which means 

 � �
0 0 0( ) ( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) 0
CR BM CR BM BM BM

OHC BM BM BM BM

m n p n k w n p n k s n p n k
K n A n m n u n k w n u n k s n u n k

� � 	
	 � � �

��
��

 (20) 

in the time domain. If the pressure source pBM0(n,k) is expressed by an equivalent volume velocity q0(n,k), also this 
equation suits to the system of linear equations. It takes the form 
 

0 0 0( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) 0BM el BM el BM el BMm n q n k w n q n k s n q n k D n q n k w n q n k E n q n k� � � � � �� �� �  (21) 

wherein D(n) and E(n) have constant values. Note that the equivalent volume velocity sources do not appear on the 
right-hand side which would mean independent sources. Instead, they are part of the solution vector. The extended 
solution vector contains the volume velocities 0..., ( , ), ( , ), ( , ), ( , ), ( , ), ...U L BM elq n k q n k q n k q n k q n k and their temporal 
derivatives and integrals for all slices. 
For very small cilia displacements the conductance can be linearized according to G{�Ci(t)} = G0[1+��Ci(t)]. Thus at 
very low levels the active cochlear system works linearly. In this case the slope of the OHC characteristic appearing 
in Eq. (18) is a time-invariant constant 
 0( ) ( , 1) ( , )S n S n k S n k G�� 	 � �  (22) 
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and Eq. (18) takes the form 
 ( ) ( , ) ( ) ( , ) ( ) ( , ) 0BM el elA n q n k B n q n k C n q n k� � � �� �  (23) 

In contrast to Eq. (18) the right-hand side vanishes in the low-level case and the coefficients A'(n) and C(n) become 
time-invariant. Note that the coefficient A'(n) belongs to the temporal integral ( , )BMq n k� , not to the BM volume 
velocity qBM(n,k) as in the nonlinear case. 
For the linear active case the resulting impedance of the BM can be calculated as 

 
� �, 0 0

,

,

( ) ( )( )
( ) ( ) 1

( ) j ( ) j
OHC BM t

BM act BM

BM tot CR tot m

K n K s n G U Up n
Z n Z n

q n Z n G C
� �

� �

	�
� � 	

�

� �
� �
� �

 (24) 

Thus the passive impedance ZBM(n) is altered by a complex factor. On the stiffness-controlled increasing slope of the 
tuning curve the phase of ZBM(n) is close to -90°. Hence a phase smaller than -90° results if the factor has a negative 
phase. This means a negative resistance or negative damping and therefore active gain. In other models the active 
BM impedance is the difference of the passive impedance and another impedance term which can also explain nega-
tive resistances. However, the form of Eq. (24) allows more flexible positioning of the region where the resistance 
becomes negative. Varying the active region and forming the spatial resistance curve allows "designing" of tuning 
curves in a wide range. 

5. SUMMARY AND CONCLUSIONS 
An auditory model which can simulate responses to arbitrary acoustical input has been presented. At present, the 
model is restricted to the peripheral ear. The most prominent feature of the model is its close connection to the phys-
iological basis, which is expressed in the name PhyBAM (physiology-based auditory model). This does not mean 
that the model aims at maximum fidelity. The ear as a biological system is such complex that a comprehensive 
simulation of all the vibrations occurring in the peripheral ear is impossible anyway. Therefore considerable simpli-
fications are necessary if system responses are to be calculated in feasible computer running times. Nevertheless all 
the variables occurring in the model have a clear physical meaning. The model is formulated as circuit model as this 
facilitates refinements and extensions if necessary for certain reasons.  
The heart of the model is the system describing the cochlea. Here a comparably high effort has been made taking 
into account two fluid-filled canals in contrast to mostly used symmetrized one-canal models. Only in this way the 
asymmetry of the cochlea at the oval and the round window can be taken into account. For quantitative investiga-
tions of OAE a two-canal model is mandatory anyway. 
The implementation of active processes is the most ambitious part of the model, and that for several reasons:  
a) There is no general agreement about the exact mechanism behind the cochlear amplifier. Most researchers assume 
that the OHC act as motors, but many details are unclear. 
b) Active processes excited by BM motions in combination with feedback to the BM yield instability if the effect of 
the OHC vibrations is not controlled in a proper way. 
c) The implementation of active processes must reproduce the shape of tuning curves at low levels which differs 
from that of simple undamped resonators. Of course, also the level dependence of the tuning curves must follow 
measured data. 
d) Tuning curves and all types of OAE have to be simulated using the same model and parameters. 
 
The requirement of reproducing many diverse types of measurement data with a single model adjustment is simulta-
neously a challenge and a chance. If a model can actually meet all the requirements it is most likely to work close to 
reality. The best strategy to achieve such a model is starting with simple structures and extending these structures 
only if necessary. 
Actually the model of the cochlear amplifier presented in this paper is fairly simple. The most important assump-
tions and features are shortly summarized in the following (for more details see the companion paper: Becker, 
Hudde 2013). 
1) PhyBAM follows the notion of Corti resonators. These resonators are tuned to lower frequencies compared to the 
basilar-membrane resonant frequencies at the same locations. This means that the active excitation takes place in a 
region before the travelling wave reaches the characteristic place. Only this condition turned out to be consistent 
with the shape of active tuning curves. Stability problems are considerably reduced by this choice. 
2) The only nonlinear part of the OHC model is the characteristic of a conductance controlled by the cilia displace-
ment. The model includes neither a nonlinear capacitor nor a nonlinear spring. Actually even the constant capaci-
tance implemented in the model is not used as it yields an unrealistic decrease of sensitivity at higher frequencies. 
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This is justified following the arguments found in Lu et al. (2006). Nevertheless, the OHC model will be probably 
extended in future to become able to reproduce all types of OAE. 
3) Unlike most models the feedback to the BM is modeled as superposition of the Corti resonator motions to the BM 
motions, not by using forces sources driving the BM. Of course, also the superposition leads to forces on the BM, 
but the forces are proportional to the BM impedance in this case. As a result the actively altered BM impedance can 
be better adopted to reproduce the shape of tuning curves. 
4) Shearing of the OHC cilia is simply assumed to be proportional to BM displacement. A further circuit introducing 
a more elaborate transfer function seems unnecessary so far. 
 
In conclusion, PhyBAM can accomplish more than pure reproduction of measured results. As all the model varia-
bles and parameters have a specified physical meaning, the model helps understanding the operation of cochlear 
elements. For instance, the question in which region the active processes must drive the BM could be uniquely ans-
wered. This is a good example showing that the model can actually help deciding scientific questions. Other prob-
lems, e.g., finding the kind of waves which transmit OAE to the cochlear base, or examining the impact of parame-
ter roughness on cochlear features can be directly assessed without need for any specific modeling. Thus PhyBAM 
can be used as a tool of cochlea research, not only for auditory signal processing. 
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