Molecular and Neural Correlates of Memory and Cognition

April 9 - 10, 2019 Veranstaltungszentrum, Ruhr University Bochum

Tuesday April 9, 13:40 – 16:20

Session 2 Neural mechanisms underlying memory and cognition

TATIANA KOROTKOVA
Neuronal Circuits and Behavior, Max Planck Institute for Metabolism Research, Cologne, Germany

To eat? To sleep? To run? Neural dynamics of innate behaviors

Lateral hypothalamus (LH) is crucial for the regulation of innate behaviors, including food intake, locomotion and sleep-wake cycle. Combining optogenetics with electrophysiological recordings in behaving mice, we characterized state- and behavior-dependent activity of neuronal subpopulations in the LH, including GABA cells (Carus-Cadavieco et al., Nature 2017, Herrera et al., Nat. Neurosci, 2016, Bender et al., Nat. Comm, 2015). We have identified a novel top-down pathway from medial prefrontal cortex via lateral septum to lateral hypothalamus, which utilizes gamma synchronization (30-90 Hz) to regulate food-seeking by dynamic reorganization of functional cell groups in the LH. This gamma-rhythmic input enables fine-time scale separation of LH cells according to their feeding-related activity. We have found that neuronal populations in the lateral hypothalamus, as well as top-down gamma-rhythmic signaling, differentially code food-seeking and food intake. Currently we investigate functions of further neurochemically defined cell groups in the LH, using calcium imaging in behaving mice, and map a sub-second structure of behavioral patterns upon manipulations of activity of these cells.