MOLECULAR IMMUNOLOGY – Manipulation of immune response

Autoimmune diseases & the pathogenic mechanism

SCHMAIEL SHIRDEL
CONTENT
Introduction

- Autoimmune diseases
- Classification
- Involved components

Autoimmune diseases & pathogenic mechanisms

- Systemic lupus erythematosus
- Type 1 diabetes
- Multiple sclerosis
- Rheumatoid arthritis

Summary
INTRODUCTION
Autoimmune diseases (AD)

- Autoimmunity adaptive immunity specific for self antigens
 → potential antigen on tissues, against immune response usually not made, except in autoimmunity

- AD in which pathology caused by adaptive immune response to self antigen

- In the west ~5% have an AD

- Cause is generally unknown

- Some are hereditary, some may be triggered by infections or other environmental factors
Classification

- Autoimmune diseases can be classified into clusters

- Organ-specific
 → expression of autoimmunity restricted to specific organs of body

- Systemic
 → many tissues of body affected

- Both chronic because autoantigens never cleared from the body

- Some AD's dominated by pathogenic effects of particular immune effector pathway
 → either autoantibodies or activated T cells

Organ specific autoimmune diseases

- Type 1 diabetes mellitus
- Goodpasture’s syndrome
- Multiple sclerosis
- Psoriasis
- Crohn’s disease
- Graves’ disease
- Hashimoto thyroiditis
- Autoimmune hemolytic anemia
- Autoimmune Addison’s disease
- Vitiligo
- Myasthenia gravis

Systemic autoimmune diseases

- Rheumatoid arthritis
- Scleroderma
- Systemic lupus erythematosus
- Primary Sjögren’s syndrome
- Polymyositis
Involved components

- **Autoantibodies:**
 - antibody specific for self antigens
 - recognize: acetylcholine receptors

- **Antibodies as immune complexes**
 - complement activation and ligation of Fc receptors
 - damage: inflammation of tissue

- **Effector T cells**
 - recognize: self peptides of self-MHC
 - damage: local inflammation or direct tissue damage
Involved components

<table>
<thead>
<tr>
<th>Disease</th>
<th>T cells</th>
<th>B cells</th>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic lupus erythematosus</td>
<td>Pathogenic</td>
<td>Present antigen to T cells</td>
<td>Pathogenic</td>
</tr>
<tr>
<td></td>
<td>Help for antibody</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>Pathogenic</td>
<td>Present antigen to T cells</td>
<td>Present, but role unclear</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>Help for antibody</td>
<td>Antibody secretion</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>Pathogenic</td>
<td>Present antigen to T cells</td>
<td>Present, but role unclear</td>
</tr>
</tbody>
</table>

- T cell can have multiple roles:
 - helping B cells make antibody & directly promoting tissue damage

Janeway’s Immunobiology, 2017
Autoimmune diseases & pathogenic mechanisms
Systemic Lupus Erythematosus
Pathology of systemic lupus erythematosus (SLE)

- Lupus is a rare chronic disease that causes systemic inflammation affecting multiple organs: skin, joints, kidneys
- Symptoms: fatigue, weight loss, fever
- Usual on set: 15-45 year old
- Frequency: 2-7 per 10.000 (2006)
- Woman affected nine times more than men (2014)

Malar rash after sun exposure, source: wikipedia
Deposition of immune complexes in renal glomerulus causes renal failure in SLE

- Deposition of immune complex → thickening of glomerular basement membrane (a)

- Electron microscope: immune complex as dense deposits between glomerular basement membrane and renal epithelial cells (c)

- Polymorphonuclear neutrophilic leukocytes present, attracted by deposit immune complex

Janeway’s Immunobiology, 2017
Pathogenesis of systemic lupus erythematosus (SLE)

- Immune system attacks tissue they normally protect
- Dead and dying cells release nuclear parts from injured tissues
- Because of defect → immune cells recognize nuclear parts as foreign
- If not cleared B cells produce antibodies, which bind antigens
 → continuously immune complex
 → deposited in walls of small blood vessels (joints, other organs) causing inflammation
Defective clearance of nucleic acid-containing immune complexes activates overproduction of BAFF and type I interferons that can cause SLE

- Nucleus → apoptosis, release of nucleic acid immune complexes containing ssRNA / dsDNA from dead cells bound by FcγRIIa on plasmacytoid dc’s

- The Fc receptor-bound ssRNA & dsRNA delivered to endosomes
 → activate TLR-7 and TLR-9, release of cytokines
 → induce IFN-α production

- In addition nucleosomes (DNA/histone) also recognized by TLR receptor

Janeway’s Immunobiology, 2017
Defective clearance of nucleic acid-containing immune complexes activates overproduction of BAFF and type I interferons that can cause SLE

- IFN-α increases BAFF production by monocytes & dendritic cells

- BAFF interacts with receptors on B cells

- Excess BAFF can increase autoreactive B-cell survival
 → increased autoantibody production
Type I Diabetes
Pathology of type 1 diabetes

- Form of diabetes mellitus, not enough insulin produced → high blood sugar

- Symptoms: frequent urination, increased hunger, weight loss
 Long term: kidney failure, heart disease, stroke

- Treatment: insulin, diabetic diet for survival

Source: Diabetes.co.uk
T cell specific for self antigen can cause direct tissue injury and sustain autoantibody responses

- In diabetes glucose not in cells, stays in blood → high glucose level

- Insulin → decrease blood glucose

- Glucagon → increase blood glucose

- Insulin-producing β-cells of pancreatic islet of Langerhans in disease selectively destroyed by specific cytotoxic T cells (CD8 T cells) → loss of self tolerance

- Rare cases: patients with diabetes were transplanted with half a pancreas from identical twin donor → β-cells in grafted tissue were rapidly and selectivly destroyed by recipients T cells → can be prevented by immunosuppresive drug cyclosporin A, which inhibits T cell activation
Selective destruction of pancreatic β-cells in type 1 diabetes indicates that autoantigen is produced in β-cells and recognized on their surface

- Destruction of insulin producing β-cells in pancreatic islet of Langerhans

- Other islet cell types (α and δ) spared

The islets of Langerhans contain several cell types secreting distinct hormones. Each cell expresses different tissue-specific proteins.

In type 1 diabetes an effector T cell recognizes peptides from a β-cell specific protein and kills the β cell.

Glucagon and somatostatin are still produced by the α and δ cells, but no insulin can be made.

Janeway's Immunobiology, 2017
Selective destruction of pancreatic β-cells in type 1 diabetes indicates that autoantigen is produced in β-cells and recognized on their surface

- Islets from normal & diabetic mice stained
 - insulin (brown) → β-cells
 - glucagon (black) → α-cells.

- Lymphocytes infiltrating islet in diabetic mouse & selective loss of β-cells, α-cells spared

- Characteristic morphology of islet disrupted with loss of β-cells

Janeway's Immunobiology, 2017
Multiple Sclerosis
Pathology of multiple sclerosis (MS)

- Demyelinating disease, myelin is damaged
- Patients develop neurological symptoms: muscle weakness, ataxia, blindness, paralysis of limbs
- Usual on set: 20-50 years old
- 5-10 year shorter life expectancy
- Frequency: 2 Million (2015)
Pathogenesis of multiple sclerosis (MS)

Videosource:
https://www.youtube.com/watch?v=yzH8ul5PSZ8
Pathogenesis of multiple sclerosis

- T cell-mediated chronic neurological disease

- Caused by destructive immune response against brain antigens:
 Myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG)

Images:
- MBP: Jawahar Swaminathan et al., EMBL-EBI
- MOG: McMahon et al., (2011)
- PLP: Craig S. Clements et al. PNAS 2003
Pathogenesis of multiple sclerosis

- Name derived from hard (sclerotic) lesions/plaques
 → develop in white matter of central nervous system (CNS)

- Lesions show dissolution of myelin
 → sheathes nerve cell axons, inflammatory infiltrates of lymphocytes & macrophages along blood vessels

- Normally blood cells do not cross blood brain barrier (BBB)

- If brain & blood vessels become inflamed
 → BBB breaks down
Pathogenesis of multiple sclerosis

- Activated CD4 T cells bind VCAM* on activated venule endothelium surface → T cells migrate to blood vessel

- Reencounter specific autoantigen presented by MHC class II molecules on microglia cells → macrophage like cells of innate system in CNS

- Inflammation causes increased vascular permeability → sites infiltrated by T_{H17} & T_{H1} cells → produce of IL-17 & IFN-γ

* vascular cell adhesion molecules
Pathogenesis of multiple sclerosis

- Cyto- & chemokines produced by infiltrating effector T cells recruit & activate myeloid cells ↑ inflammation
 → further recruitment of B cells, T cells, innate immune cells

- Autoreactive B cells produce autoantibodies against myelin AG with help from T cells

- Combined activity
 → demyelination & interference with neuronal function
Pathogenesis of multiple sclerosis

1. **Unknown trigger sets up initial focus of inflammation in brain, and blood–brain barrier becomes locally permeable to leukocytes and blood proteins**

2. **T cells specific for CNS antigen and activated in peripheral lymphoid tissues reencounter antigen presented on microglia or dendritic cells in brain**

3. **Inflammatory reaction occurs in the brain due to mast-cell activation, complement activation, antibodies, and cytokines**

4. **Demyelination of neurons occurs**

Janeway's Immunobiology, 2017
Pathogenesis of multiple sclerosis

Unknown trigger sets up initial focus of inflammation in brain, and blood–brain barrier becomes locally permeable to leukocytes and blood proteins.

T cells specific for CNS antigen and activated in peripheral lymphoid tissues reencounter antigen presented on microglia or dendritic cells in brain.

Inflammatory reaction occurs in the brain due to mast-cell activation, complement activation, antibodies, and cytokines.

Demyelination of neurons occurs.
Pathogenesis of multiple sclerosis

Unknown trigger sets up initial focus of inflammation in brain, and blood–brain barrier becomes locally permeable to leukocytes and blood proteins

T cells specific for CNS antigen and activated in peripheral lymphoid tissues reencounter antigen presented on microglia or dendritic cells in brain

Inflammatory reaction occurs in the brain due to mast-cell activation, complement activation, antibodies, and cytokines

Demyelination of neurons occurs

Janeway’s Immunobiology, 2017
Pathogenesis of multiple sclerosis

Unknown trigger sets up initial focus of inflammation in brain, and blood–brain barrier becomes locally permeable to leukocytes and blood proteins

T cells specific for CNS antigen and activated in peripheral lymphoid tissues reencounter antigen presented on microglia or dendritic cells in brain

Inflammatory reaction occurs in the brain due to mast-cell activation, complement activation, antibodies, and cytokines

Demyelination of neurons occurs

Janeway's Immunobiology, 2017
Rheumatoid arthritis
Rheumatoid arthritis (RA)

- RA is a systemic disease → affect the whole body
- 0.8% of adult population, woman 3 times more affected than men
- Characterized by inflammation of synovium around the joints
- As disease progresses → inflamed synovium invades & damages cartilage → followed by erosion of bone
- Chronic pain, loss of function, disability

Rheumatoid arthritis (RA)

- RA is a systemic disease
 → affects the whole body

- 0.8% of adult population, woman 3 times more affected than men

- Characterized by inflammation of synovium around the joints

- As disease progresses
 → inflamed synovium invades & damages cartilage
 → followed by erosion of bone

- Chronic pain, loss of function, disability
Pathogenesis of rheumatoid arthritis

- First considered an AD driven mainly by B cells producing anti-IgG autoantibodies
 → **rheumatoid factor**

- Factor in some healthy patients, absent in some affected
 → more complex mechanism

- Discovery: RA associated with particular class II HLA-DR genes of MHC
 → T cells involved in pathogenesis

- Autoreactive CD4 T cells activated by dc’s & by inflammatory cytokines
 → T cells help B cells to differentiate into plasma cells producing arthrogogenic ABs
Pathogenesis of rheumatoid arthritis

- Type II collagen, proteoglycans, aggregan proposed as potential antigens
 → induce arthritis in mice, in human ascertain

- Activated T cells produce cytokines, stimulate monocytes/macrophages, endothelial cells, fibroblasts to produce more pro inflammatory cytokines: TNF-α, IL-1, IFN-γ or chemokines (CXCL8, CCL2) and finally MMps*
 → responsible for tissue destruction

*matrix metalloproteinases
Pathogenesis of rheumatoid arthritis

Unknown trigger sets up initial focus of inflammation in synovial membrane, attracting leukocytes into the tissue.

Autoreactive CD4 T cells activate macrophages, resulting in production of pro-inflammatory cytokines and sustained inflammation.

Cytokines induce production of MMP and RANK ligand by fibroblasts.

MMPs attack tissues. Activation of bone-destroying osteoclasts by RANK ligand results in joint destruction.

Janeway's Immunobiology, 2017
Pathogenesis of rheumatoid arthritis

Unknown trigger sets up initial focus of inflammation in synovial membrane, attracting leukocytes into the tissue.

Autoreactive CD4 T cells activate macrophages, resulting in production of pro-inflammatory cytokines and sustained inflammation.

Cytokines induce production of MMP and RANK ligand by fibroblasts.

MMPs attack tissues. Activation of bone-destroying osteoclasts by RANK ligand results in joint destruction.

Janeway's Immunobiology, 2017
Pathogenesis of rheumatoid arthritis

Unknown trigger sets up initial focus of inflammation in synovial membrane, attracting leukocytes into the tissue.

Autoreactive CD4 T cells activate macrophages, resulting in production of pro-inflammatory cytokines and sustained inflammation.

Cytokines induce production of MMP and RANK ligand by fibroblasts.

MMPs attack tissues. Activation of bone-destroying osteoclasts by RANK ligand results in joint destruction.

Janeway's Immunobiology, 2017
Pathogenesis of rheumatoid arthritis

Unknown trigger sets up initial focus of inflammation in synovial membrane, attracting leukocytes into the tissue.

Autoreactive CD4 T cells activate macrophages, resulting in production of pro-inflammatory cytokines and sustained inflammation.

Cytokines induce production of MMP and RANK ligand by fibroblasts.

MMPs attack tissues. Activation of bone-destroying osteoclasts by RANK ligand results in joint destruction.

Janeway's Immunobiology, 2017
Summary

- Autoimmunity adaptive immune system against self antigens
- Autoimmune diseases classified into two clusters:
 - Organ-specific
 - Systemic
- Induce of autoimmune diseases unknown
- Involved components:
 - autoantibodies, antibodies as immune complexes, effector Tcells
References

THANK YOU FOR YOUR ATTENTION!