Spectroelectrochemical Characterization of the Active Site of the [FeFe] Hydrogenase HydA1 from Chlamydomonas reinhardtii

Alexey Silakov,*§ Christina Kamp,§ Eduard Reijerse,§ Thomas Happe,‡ and Wolfgang Lubitz*§

§Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany, and ‡Lehrstuhl Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany

Received May 29, 2009

Abstract: Hydrogenases catalyze the reversible oxidation of molecular hydrogen. The active site of the [FeFe] hydrogenases (H-cluster) contains a catalytically active binuclear subcluster ([2Fe][H]) connected to a “cubane” [4Fe4S]H subcluster. Here we present an IR spectroelectrochemical study of the [FeFe] hydrogenase HydA1 isolated from the green alga Chlamydomonas reinhardtii. The enzyme shows IR bands similar to those observed for bacterial [FeFe] hydrogenases. They are assigned to the stretching vibrations of the CN and CO ligands on both irons of the [2Fe][H] subcluster. By following changes in frequencies of the IR bands during electrochemical titrations, two one-electron redox processes of the active enzyme could be distinguished. The reduction of the oxidized state (Hox) occurred at a midpoint potential of ~400 mV vs NHE (Hox/Hred transition) and relates to a change of the formal oxidation state of the binuclear subcluster. A subsequent reduction (Hred/Hsred transition) was determined to have a midpoint potential of ~460 mV vs NHE. On the basis of the IR spectra, it is suggested that the oxidation state of the binuclear subcluster does not change in this transition. Tentatively, a reduction of the [4Fe4S]H cluster has been proposed. In contrast to the bacterial [FeFe] hydrogenases, where the bridging CO ligand becomes terminal when going from Hox to Hred, in HydA1 the bridging CO is present in both the Hox and Hred state. The removal of the bridging CO moiety has been observed in the Hred to Hsred transition. The significance of this result for the hydrogen conversion mechanism of this class of enzymes is discussed.

Hydrogenases are enzymes that catalyze the reversible redox reaction \(2\text{H}^+ + 2e^- \rightarrow \text{H}_2\). For this process, they make use of an active site containing the abundant metals nickel and/or iron. Because of the potential application of “hydrogenase like” catalytic systems in hydrogen driven fuel cell technology and hydrogen production systems, scientific interest in the structure and function of hydrogenases has been steadily growing in the last decade (1, 2).

On the basis of the metal content of their active site, these enzymes can be divided into three classes: [NiFe], [FeFe], and [Fe] hydrogenases (1–3). [FeFe] hydrogenases are found in strict anaerobic bacteria and archa. Recently, this class of hydrogenases was also found in green algae, where they become active in energy metabolism under anaerobic conditions (4–7).

[FeFe] hydrogenases contain a total of six iron atoms in their active site, which form the so-called H-cluster (1, 8, 9). The [FeFe] hydrogenases from Clostridium pasteurianum (Cpl)1 and Desulfovibrio desulfuricans (DdH) have been intensively studied by various spectroscopic methods as well as X-ray crystallography (1, 10–12). These studies revealed that the H-cluster contains a ferredoxin-like [4Fe4S] cluster ([4Fe4S]H), connected via a S-Cys to a binuclear subcluster ([2Fe][H]). Each iron of the [2Fe][H] is coordinated by CO and CN ligands (13–15) as depicted in Scheme 1. The iron, located distal to the [4Fe4S]H (FeI), has an open coordination site, which is probably involved in binding H2 (1, 16). The two iron atoms are connected via a dithiolate bridge.

The exact motif of the dithiolate bridge could not be resolved by X-ray crystallography. Using EPR spectroscopy, it has recently been shown in DdH that this ligand is a di-(thiomethyl)-amine (17).

Up to now, two active redox states of the H-cluster could be identified. In the EPR “oxidized” state (Hox), the irons of the [2Fe][H] are in a FeFe2 mixed valence state (1, 18), the open coordination site is either vacant (12) or carries a water molecule (11). In the EPR silent “reduced” state (Hred), both irons are in the Fe3 state (1). Mössbauer data suggested that the formal oxidation state of the [4Fe4S]H cluster remains at +2 in both active states (19, 20).

Scheme 1: Representation of the Structure of the H-cluster in the Active Oxidized State

[Image 374x315 to 494x377]
The H-cluster in its active form can be inhibited by CO, forming an oxidized mixed valence Fe²⁺Feᴵᵀ state of the [2Fe]ᴵ屣 subcluster, which is abbreviated as Hox-CO. In this case the open coordination site at the distal iron is blocked by CO, resulting in an inhibition of the enzyme (1, 10, 13). In general, the active [FeFe] hydrogenase is quite sensitive to various factors and can be easily damaged, for example, by oxygen or illumination (15, 21). This leads to a disintegration of the H-cluster. The released CO ligands can then inhibit intact H-clusters, thereby generating the Hox-CO state (so-called “cannibalization”).

Another state of the H-cluster can be detected during IR spectroelectrochemical reduction. At potentials below −500 mV vs the normal hydrogen electrode (NHE) the Hred state converts into the so-called “super” reduced state (Hsred). However, this transition was found to be largely irreversible for DdH (15). Moreover, it was found that the H₂-production activity of the Cpl enzyme decreases dramatically at reduction potentials below −425 mV (22). Tentatively, the reduction of the H-cluster to the Hsred state has been assigned to the reduction of the [4Fe4S]ᴵ屣 cluster, while the oxidation state of the iron in the [2Fe]ᴵ屣 subcluster remains unchanged. At pH 8.0 the measured midpoint redox potential of the Hox/Hred transition was −395 mV vs NHE (15). The midpoint potential for the Hox/Hred reduction was estimated to be about −540 mV. Both transitions were fitted to a Nernstian curve for a one-electron redox reaction (n = 1). The pH dependence of these redox processes showed that both Hox/Hred and Hred/Hsred involve one H⁺.

In the case of DdH, the Hox state could not be further oxidized in the spectroelectrochemical cell (15). On the other hand, a report of successful overoxidation of the [FeFe] hydrogenase from D. vulgaris has been presented by van Dijk et al. (23). The overoxidized protein was found to be inactive and oxygen insensitive. The activity was restored under reducing conditions. An anaerobic inactivation has also been observed for DdH immobilized on a rotating graphite electrode by Vincent et al. (24, 25).

So far IR spectra from four [FeFe] hydrogenases have been obtained: D. desulfuricans (15) (DdH), D. vulgaris (13, 26), Megasperma (M.) elsdenii (26), and C. pasteurianum (27). The IR spectra show that the structure of the H-cluster is similar in all [FeFe] hydrogenases investigated. However, only DdH has been intensively studied by spectroelectrochemistry. Therefore, it is not clear whether all species have the same redox behavior.

In this report we present a spectroelectrochemical characterization of the smallest [FeFe] hydrogenase, isolated from the unicellular green alga C. reinhardtii. The enzyme is nuclear encoded, localized in the chloroplast and only expressed under anaerobic conditions (4). The HydA1 protein shows distinct differences to known bacterial [FeFe] hydrogenases (5) for example, the absence of binding motifs for auxiliary FeS clusters. On the other hand, the binding site of the H-cluster was found to be rather similar to bacterial [FeFe] hydrogenases. Comparison of the amino acid sequence of HydA1 with other [FeFe] hydrogenases shows that not only is the binding site of the H-cluster conserved but also part of the second coordination sphere (5). Advances in the purification procedure (28) allowed the first spectroscopic characterization of this type of [FeFe] hydrogenase. An EPR study of HydA1 confirmed the presence of the H-cluster (28). The obtained EPR spectra and also the reaction with CO were found to be similar to DdH and Cpl. However, deviations in the g-values of the EPR spectra, especially in the CO-inhibited form, indicate slight differences in the electronic structure of the H-cluster between the [FeFe] hydrogenase from C. reinhardtii and that from D. desulfuricans (28). A recent XAS study of HydA1 heterologously synthesized in Clostridium acetobutylicum showed that in terms of Fe–Fe distances the H-cluster of HydA1 is quite similar to the other [FeFe] hydrogenases studied so far (29).

Here we present a further characterization of the HydA1 protein from C. reinhardtii by FTIR spectroelectrochemistry. Several redox states of the active HydA1 protein could be obtained during spectroelectrochemical reduction. The midpoint potentials of the redox transitions in HydA1 are determined with high accuracy revealing distinct differences to those of DdH [FeFe] hydrogenase.

MATERIALS AND METHODS

IR Measurements. Fourier transform IR (FTIR) measurements were performed on a Bruker IFS 66 v/s FTIR spectrometer equipped with a Bruker MCT (mercury cadmium telluride) detector. The spectrometer was controlled by Bruker Opus software on a Windows PC. A constant flow of N₂ was led through the sample chamber to expel CO₂ gas and water vapor. The spectra were accumulated in the double-sided, forward—backward mode with either 1000 scans or 2000 scans. All measurements were performed with a resolution of 2 cm⁻¹. The total time of a single measurement was 14 min (1000 scans) or 27 min (2000 scans). The aperture was set to 2.0 mm. The obtained interferograms were automatically processed by the Opus software utilizing a 32-points phase correction and a Blackman-Harris 3-term apodization window. The baselines of difference IR spectra were corrected using a cubic spline data interpolation procedure applied to manually selected points of the experimental spectra. Data processing was facilitated by home-written routines in the MATLAB programming environment. Overlapping IR bands were resolved via simulation of the experimentally obtained data with a function, which is a linear combination of a Lorentzian and a Gaussian function (so-called pseudo-Voigt function). The ratio between Lorentzian and Gaussian contributions was fitted manually for each component of the IR spectrum.

Spectroelectrochemistry. All experiments were performed using an electrochemical IR cell, originally designed by Moss et al. (30). It contains a 6 μm gold mesh (70% transparent) as a working electrode, a Pt counter electrode, and an Ag/AgCl reference electrode. The construction of the Moss cell was identical to that used by Fichtner et al. (31). The potential of the Ag/AgCl reference electrode was measured before and after each experiment with cyclic voltammetry, using methyl viologen (redox potential −440 mV vs NHE) as a standard. A mean value was taken for the calibration. In this work all potentials are listed versus the normal hydrogen electrode (NHE). The potential was controlled by a potentiostat from EG&G instruments (model 283). The uncertainty range of the determination of the midpoint redox potentials was estimated to be 10 mV. The temperature was controlled by a thermostat (RML 6, Lauda) and all experiments were performed at 4°C. Prior to a series of measurements, the IR cell was electrochemically cycled several times with KCl solution during one day in order to remove oxygen molecules from the gold mesh.

Sample Preparation. HydA1 was isolated and purified as described before (28). All steps were carried out under strict anaerobic conditions in a glovebox (Coy Laboratories, Detroit, USA) in an atmosphere of 99% N₂ and 1% H₂. The usage of a
conventional set of mediators such as those used by Albracht et al. (15) resulted in a gradual damage of the sample, making titration data unreliable. The best results were obtained using no mediators at all. The sample solution was prepared by mixing 15 μL of 300 μM sample with 15 μL of 50 mM Tris-HCl pH 7.5, 100 mM KCl. The equilibration time of this solution in the Moss cell was determined to be around 10 min (depending on the potential step) by observing changes in the IR spectra and the measured current after changing the potential. The pH of the Tris buffer was adjusted to 7.5 at 25 °C. Because of the known dependence of the pH value of Tris buffer on temperature (32), we estimate that the actual pH of the sample solution during the measurements at 4 °C was 8.0.

RESULTS

In the first step, an IR spectrum of the as-isolated sample was recorded with the potentiostat switched off. The spectrum obtained shows a set of five bands at 2088 cm⁻¹, 2072 cm⁻¹, 1964 cm⁻¹, 1940 cm⁻¹, and 1800 cm⁻¹ (see Figure 1, negative bands). This set of bands is very similar to the typical IR spectrum of the H₁ox state, obtained from DdH and Cpl (15, 27) and was thus assigned to this state. Additionally, a set of minor bands (2092 cm⁻¹, 2084 cm⁻¹, 2013 cm⁻¹, 1970 cm⁻¹, 1810 cm⁻¹) was identified and assigned to a small admixture of the H₁ox-CO state (see Figure S1 in Supporting Information).

This admixture can be attributed to the so-called “cannibalization” effect, described in the introduction. It seems that a similar effect is also present in HydA1. As described for DdH (15), the H-cluster is rather unstable at temperatures above 0 °C, especially under light. The presence of the CO-inhibited state in the as-isolated sample of HydA1 was also observed by EPR spectroscopy (28). Applying an initial potential of −260 mV (vs NHE) resulted in a lowering of the intensities of IR bands corresponding to the H₁ox state, and a moderate increase of IR bands of the H₁ox-CO state, indicating an additional damage of the sample (see Figure 1 A). However, repeated measurements at the same potential did not show any further damage. Thus, this effect is attributed to a slight degradation of the sample during equilibration of the solution while applying the initial potential.

Lowering of the potential resulted in a decrease of the H₁ox IR bands and the appearance of another set of bands at 2083 cm⁻¹, 1935 cm⁻¹, 1891 cm⁻¹, 1793 cm⁻¹, which attain a maximum intensity around −430 mV vs NHE (see Figure 1B). All these IR bands show a similar dependence on the potential and were therefore assigned to a specific state of the H-cluster which we call “H₁red”. In addition, difference spectra revealed only a slight decrease in the intensities of the IR bands of the H₁ox-CO state. The obtained H₁red state is characterized by the presence of the bridging CO ligand as clearly indicated by a band at 1793 cm⁻¹. Note that in the case of DdH the spectroelectrochemical reduction indicated a shift of the bridging CO ligand to a terminal position; that is, no bands in the region around 1800 cm⁻¹ have been observed for this enzyme (15). In the case of HydA1 the stretching vibration of the bridging CO ligand just shifts to a lower frequency, apparently, due to a reduction of one of the irons as will be discussed below.

Further reduction leads to a decrease of the H₁red signals. At a potential of −510 mV the IR spectrum becomes rather simple, containing another set of prominent bands at 2026 cm⁻¹, 2010 cm⁻¹, 1954 cm⁻¹, 1919 cm⁻¹, and 1882 cm⁻¹ (see Figure 1C and Figure S1 of Supporting Information). The intensities of all bands show a similar behavior versus the potential, and therefore these bands can be assigned to a new state. No bands around 1800 cm⁻¹ could be detected for this state. This suggests that in the new state the bridging CO ligand is absent (i.e., it is most probably shifted to a terminal position as will be discussed later). In analogy to the study of DdH, this second reduced state of HydA1 will be termed “H₂red” (“super reduced” state of the enzyme).

The difference spectra obtained at low potentials did not show any bands at higher frequencies (2100–2060 cm⁻¹) for the H₂red state. However, an analysis of the original IR spectra showed a band at 2072 cm⁻¹, which is also present at higher potentials and does not change with the H₁red/H₂red transition (see Figure S1 in Supporting Information). Since it is overlapping with the band at 2072 cm⁻¹ at higher potentials (a CN⁻ band of the H₁ox state), its behavior with reduction is not clear, making the assignment uncertain. On the other hand, our low temperature study of HydA1 reduced with hydrogen (unpublished data) showed a clear band at 2070 cm⁻¹. Therefore, we are inclined to assign this band to a CN⁻ ligand in both the H₁red and the H₂red states.

Interestingly, the signals of the contaminating CO-inhibited state also decreased during reduction. This, apparently, indicates a conversion of the H₁ox-CO state to a reduced form. Since no other bands have been observed to appear, we can conclude that the sample completely converts to a single state.

In a second set of experiments, the potential has been gradually increased, starting from −510 mV. The appearance and disappearance of IR bands were observed in the reverse manner (see Figure 2B), and the oxidation of H₂red to H₁red was followed by the
oxidation of H$_{\text{red}}$ to H$_{\text{ox}}$. The H$_{\text{ox}}$-CO state appears at potentials similar to H$_{\text{red}}$ and then increases somewhat with the appearance of the H$_{\text{ox}}$ state. During the oxidation process, the intensities of the H$_{\text{red}}$ signals followed a rather similar profile as in the case of reduction. Signals for the H$_{\text{red}}$ and H$_{\text{ox}}$ states were somewhat smaller, while the amount of the H$_{\text{ox}}$-CO state increased (see Supporting Information, Figure S1). This might indicate that the completely reduced form of the H-cluster is rather stable, while the H$_{\text{red}}$ and the H$_{\text{ox}}$ states tend to decay over time even at low temperatures (4°C). It is worth mentioning that in the study of DdH the reduction of the H$_{\text{red}}$ state to H$_{\text{sred}}$ was largely irreversible (15).

At potentials between -300 mV and -100 mV the measured IR spectra show almost no change. Above -100 mV a dramatic decrease of the H$_{\text{ox}}$ bands with an increase of the H$_{\text{ox}}$-CO bands is observed, indicating a fast decay of the sample. An additional set of bands has been observed at higher potentials (see Supporting Information, Figure S1) and tentatively attributed to (partially) damaged H-clusters. One could argue that these signals are due to a so-called overoxidized state. However, the titration of the H$_{\text{ox}}$ bands at potentials above -300 mV was best fit to a Nernstian curve with an unrealistic number of participating electrons (n) below 0.5 (data not shown). Moreover, this oxidation process is largely irreversible.

On the other hand, a successful anaerobic inactivation at high potentials has been recently observed for HydA1 immobilized on a graphite electrode (personal communication, S. Stripp and T. Happe, Ruhr Universität Bochum, Germany). However, in those experiments the time scale of the measurement is much shorter (seconds versus hours in our case). Thus, we are inclined to assume that the enzyme is stable at high potentials for a short time, but then decays over longer periods of time.

Figure 3 shows the titration of the H-cluster as monitored via the IR bands at 1940 cm$^{-1}$, 1935 cm$^{-1}$, and 1883 cm$^{-1}$, which corresponds to one of the CO stretching vibrations in the H$_{\text{ox}}$, H$_{\text{red}}$, and H$_{\text{sred}}$ state, respectively. Changes in the intensities of the IR bands by reduction/oxidation were fitted using the Nernst equation for an one-electron transition ($n = 1$). The midpoint potential for the H$_{\text{ox}}$/H$_{\text{red}}$ transition is -400 mV (vs NHE) and for the H$_{\text{red}}$/H$_{\text{sred}}$ transition -460 mV (vs NHE). The experimental conditions are identical to those in Figure 2B.

At potentials between -200 mV and $+200$ mV the measured IR spectra show almost no change. Above -200 mV a dramatic decrease of the H$_{\text{ox}}$ bands with an increase of the H$_{\text{ox}}$-CO bands is observed, indicating a fast decay of the sample. An additional set of bands has been observed at higher potentials (see Supporting Information, Figure S1) and tentatively attributed to (partially) damaged H-clusters. One could argue that these signals are due to a so-called overoxidized state. However, the titration of the H$_{\text{ox}}$ bands at potentials above -200 mV was best fit to a Nernstian curve with an unrealistic number of participating electrons (n) below 0.5 (data not shown). Moreover, this oxidation process is largely irreversible.

DISCUSSION

Analysis of the IR Bands. The observed frequencies of the IR bands of the CO and CN$^-$ stretching vibrations for the various states of the H-cluster are presented in Scheme 2. These vibrations are very sensitive to changes in the charge distribution at the Fe, to which the corresponding ligands are bound. Reduction of the iron makes it more electron rich, increases the Fe-CO/CN$^-$ π-backbonding, and leads to a decrease of the corresponding CO/CN$^-$ stretching vibration frequencies (33).

Figure 3: Spectroelectrochemical titration of the [FeFe] hydrogenase from C. reinhardtii (HydA1) at pH 8.0 and $T = 4.0$ °C as monitored by changes in the apparent intensities of the IR bands at 1883 cm$^{-1}$ (), 1935 cm$^{-1}$ (), and 1940 cm$^{-1}$ (), corresponding to one of the terminal CO stretching vibrations of the H$_{\text{ox}}$, H$_{\text{red}}$, and H$_{\text{sred}}$ state, respectively. The solid lines represent a fit to a Nernstian curve for an one-electron transition ($n = 1$). The midpoint potential for the H$_{\text{ox}}$/H$_{\text{red}}$ transition is -400 mV (vs NHE) and for the H$_{\text{red}}$/H$_{\text{sred}}$ transition -460 mV (vs NHE). The experimental conditions are identical to those in Figure 2B.
In the case of the $H_{\text{ox}}/H_{\text{red}}$ transition, there is a shift in frequencies of both CO and CN$^-$ bands. Since this transition corresponds to an one-electron process, we suggest that it relates to a reduction/oxidation of one of the iron atoms in the binuclear subcluster (Fe$^\text{I}$Fe$^\text{II}$ \Rightarrow Fe$^\text{II}$Fe$^\text{II}$). On the other hand, since all CO and CN$^-$ bands shift, no specific assignment of the reduction of any iron is possible based on this data. We can speculate that a shift of both stretching vibrations of the terminal CN$^-$ ligands (which are normally decoupled) indicates that the valences of the irons in the [2FeIII] subcluster are mixed to some extent so that a one-electron reduction of the H-cluster may cause a change in the charge distribution of both irons.

In the case of H_{red}, there are three bands in the frequency region between 1960 cm$^{-1}$ and 1880 cm$^{-1}$, which is typical for terminal CO ligands. There are no bands in the region of the bridging CO (around 1800 cm$^{-1}$). Therefore, we conclude that the bridging CO ligand moves to a terminal position at one of the iron atoms during the $H_{\text{red}}/H_{\text{red}}$ transition. In the case of DdH, X-ray crystallography showed that the former bridging CO ligand moves toward the distal iron leading to a 5-fold coordination for both iron in the binuclear subcluster. Thus, it is likely that a similar situation occurs in the case of H_{red} in HydA1.

One CN$^-$ band (2070 cm$^{-1}$) remains at the same position during reduction of the H_{red} state. The other one apparently moves to a rather low frequency, either to 2028 cm$^{-1}$ or 2010 cm$^{-1}$. Since the usual stretching vibration frequencies of the CN$^-$ ligands generally lie in a higher frequency region, we tentatively assign the 2028 cm$^{-1}$ band to CN$^-$.

The large shift of the CN$^-$ band to a lower frequency could be a result of a redistribution of charge at the irons. Since our results show that the bridging CO ligand is shifting to a terminal position concomitantly with the reduction of the H_{red} state, it could explain the shifts of the CN$^-$ band to a lower frequency and some changes in the position of the CO bands.

The large shift of the CN$^-$ stretching vibration due to the presence of a bound hydride H$^-$ has been discussed by Albracht et al. for the case of the H_{red} state of DdH (15). This proposal was based on the assumption of a large shift of the CO stretching frequencies of a CN$^-$ ligand bound to the Ni site of the [NiFe] hydrogenase from *Ralstonia eutropha* upon reduction with H$_2$ (37). Adopting this proposal for the current case, one could speculate that the observed shift of one of the CN$^-$ bands to 2028 cm$^{-1}$ could also be due to binding of a hydride. On the other hand, we expect that the binding of H$^-$ should cause a large shift of the CO bands as well, which has not been observed. Moreover, in this scenario the H_{red} state should have no bound H$^-$, which is in disagreement with current knowledge about this state (1). However, we cannot exclude that the catalytic mechanism in HydA1 differs from that of nonagal [FeFe] hydrogenases. Therefore, based solely on our data we cannot completely exclude nor confirm this hypothesis.

Comparison with DdH. We can compare the obtained data with those obtained by Albracht et al. (15, 21) for DdH. The first rather distinct difference is that the obtained midpoint potential for the $H_{\text{red}}/H_{\text{red}}$ transition (± 460 mV) is much higher than the one obtained for DdH (± 540 mV), although the $H_{\text{ox}}/H_{\text{red}}$
transition takes place at a very similar potential (~400 mV). A
general reason for this could be the absence of additional FeS
clusters in HydA1 and possible deviations in the structural
interaction with the surrounding. There are a large number of
studies of the redox properties of various ferredoxin and ferre-
doxin-like [4Fe4S] clusters in the literature (38). The redox
potentials of [4Fe4S] clusters are rather sensitive to many
different factors, such as the local surrounding and the polarity
of the protein (39). For instance, a strong influence of H-bonding
to the sulfurs of [4Fe4S] clusters on the redox potentials has been
elicited by Noodleman and co-workers (40).

Thus, any deviation in the surrounding of the [4Fe4S]$_{II}$
subcluster would cause a deviation in its redox potential. How-
ever, the redox potential of the connected binuclear subcluster is
expected to change much less. Therefore, the fact that only the
observed midpoint potential of the H$_{red}$/H$_{sred}$ transition is
considerably different from that of DdH might additionally
support the idea that this redox transition involves oxidation/
reduction of the [4Fe4S]$_{II}$ subcluster.

A comparison of the frequencies of the IR bands with those,
obtained by Albracht et al. (15) for DdH showed that the H$_{ox}$ and
the H$_{ox}$/CO states are quite similar in both HydA1 and DdH (see
Table S1 in Supporting Information). This indicates that the
general structure of the active centers of these hydrogenases is
very similar. However, the IR spectra corresponding to the H$_{red}$
and H$_{sred}$ states are rather different. The main observed differ-
ence is that the bridging CO ligand is still present in the H$_{red}$ state
of HydA1, while it is absent in the H$_{sred}$ state of DdH. Since it is
believed that both H$_{ox}$ and H$_{red}$ states are involved in the catalytic
cycle (1, 16), the fact that the H$_{ox}$/H$_{red}$ transition does not require
an opening of the bridging CO might be an indication that heterolytic
 cleavage occurs at the distal iron without involving the
formation of a hydride bridge between the two iron atoms of the
dinuclear cluster. This coincides with a conclusion from our
recent EPR study of the DdH species, in which a nitrogen atom
has been identified in the dithiol bridge, hence, supporting the
hypothesis of heterolytic H$_{2}$ cleavage at the distal iron via
protonation of the di(thiomethyl)-amine (17). However, since
we do not know if the H$_{sred}$ state is involved in the catalytic cycle
of HydA1 it cannot be completely ruled out that an opening of
the CO bridge plays a role in the mechanism of hydrogen
conversion at the H-cluster.

SUMMARY AND CONCLUSION

For the first time, a spectroelectrochemical IR study has been
performed for an algal [FeFe] hydrogenase. The results obtained
show that the active center of the [FeFe] hydrogenase from
C. reinhardtii is in general similar to other [FeFe] hydro-
genases investigated so far. A clear indication of that is the fact
that the obtained IR spectra of the H$_{ox}$ and H$_{ox}$/CO states are
very similar to those observed for DdH and CpI. This also
coincides with our EPR characterization of this type of enzyme.
On the other hand, distinct differences were found. Although the
reduction of the H$_{ox}$ state to the H$_{red}$ state takes place at the same
redox potential as in the case of DdH, it does not result in
dissociation of the bridging CO ligand in the case of HydA1 from
C. reinhardtii. A move of the bridging CO ligand to a terminal
position has been found at much lower potentials, coinciding
with a further reduction step. It is proposed that the redox state of
the binuclear subcluster does not change during this second
reduction; a reduction of the [4Fe4S]$_{II}$ cluster was tentatively

![Figure 4: Schematic overview of the observed redox states of the H-
cluster of HydA1. The midpoint potential of the redox transition vs
NHE, measured at pH 8.0 and a temperature of 4.0 °C, is given. The
assignment of the oxidation states of the iron ions in the binuclear
subcluster is based on the EPR study for DdH (18). Note that the
valences could be delocalized in the binuclear subcluster to some
extent.](image)

suggested. A scheme summarizing the discussion is presented in
Figure 4.

Another distinct difference between HydA1 and DdH is that
the H$_{red}$/H$_{sred}$ redox transition takes place at a much higher
potential in the algal hydrogenase. It is speculated that this
deviation relates to differences in the surrounding of the [4Fe4S]
subcluster in these species.

We have shown that although the structure of the H-cluster of
HydA1 is rather similar to that of other [FeFe] hydrogenases
there is a difference in its redox reactions, which might also relate
to differences in certain properties such as the catalytic activity.

The fact that the reduction of the H$_{ox}$ state does not result in an
opening of the bridging CO ligand indicates that the heterolytic
splitting might not require formation of a hydride bridge in the
[FeFe] hydrogenase. Thus our data support the hypothesis that
the heterolytic cleavage of hydrogen takes place at the external
site of the distal iron.

ACKNOWLEDGMENT

We are very grateful to L. Currell for his technical assistance.

SUPPORTING INFORMATION AVAILABLE

Absorbance FTIR spectra of HydA1 measured at several
potentials, a figure of the titration of different IR bands during
reduction and oxidation, and a table with comparison of the IR
bands observed for HydA1 and DdH. This material is available
free of charge via the Internet at http://pubs.acs.org

REFERENCES

1. Lubitz, W., Reijerse, E., and van Gastel, M. (2007) [NiFe] and [FeFe]
hydrogenases studied by advanced magnetic resonance techniques.
Chem. Rev. 107, 4331–4365.
2. Vignais, P. M., and Billoud, B. (2007) Occurrence, classification, and
biological function of hydrogenases: An overview. Chem. Rev. 107,
4206–4272.
 evolution of the active site of hydrogenases. Seikagaku 80, 846–849.
4. Happe, T., and Naber, J. D. (1993) Isolation, characterization and N-
terminal amino-acid-sequence of hydrogenase from the green-alga

