Publikationen Dr. Jörg Härterich

Publikationen Jörg Härterich



Bücher

Vorlesungsskripte

  • J.Härterich: Einführung in die Dynamischen Systeme
    Freie Universität Berlin, 2002
  • J.Härterich: Dynamische Systeme II
    Freie Universität Berlin, 2005
  • J.Härterich: Mathematik für Physiker 1-4
    Ruhr-Universität Bochum, 2008-2016

Artikel

  • J. Härterich & A. Wolff: Alternativen zur „Mini-Vorlesung“ – Vier Vorschläge für einen lernförderlichen Einstieg in die Übungsstunde
    in: Paravicini, W., & Schnieder, J. (Hrsg.): Hanse-Kolloquium zur Hochschuldidaktik der Mathematik 2014, S.41-54, WTM-Verlag Münster (2016).

  • A. Rooch, P. Junker, J. Härterich & K. Hackl: Linking mathematics with engineering applications at an early stage – implementation, experimental set-up and evaluation of a pilot project
    European Journal of Engineering Education 41 (2) (2016), pp. 172-191, DOI: 10.1080/03043797.2015.1056095.

  • H. Dehling, E. Glasmachers, B. Griese, J. Härterich & M. Kallweit: MP2 - Mathe/Plus/Praxis - Strategien zur Vorbeugung gegen Studienabbruch
    Zeitschrift für Hochschulentwicklung 9 (2014), pp. 39-55.

  • A. Rooch, C. Kiss, J.Härterich: Brauchen Ingenieure Mathematik? – Wie Praxisbezug die Ansichten über das Pflichtfach Mathematik verändert
    in Bausch, Biehler et al. (Eds.): Mathematische Vor- und Brückenkurse Konzepte, Probleme und Perspektiven, Springer Spektrum, 2013

  • J.Härterich, C. Kiss, A. Rooch, M. Mönnigmann, M. Schulze Darup, R. Span: MathePraxis – connecting first-year mathematics with engineering applications
    European Journal of Engineering Education 37 (3) (2012), pp. 255-266.

  • S.Liebscher, J.Härterich, K.Webster, M.Georgi: Ancient dynamics in Bianchi models: Approach to Periodic Cycles.
    Communications in Mathematial Physics 305 (2011), pp. 59-83.

  • B. Griese, E. Glasmachers, J. Härterich, M. Kallweit, & B. Roesken: Engineering students and their learning of mathematics. In B. Roesken & M. Casper (Eds.), Proceedings of the 17th MAVI-Conference (pp. 85-96). Bochum, Germany: Professional School of Education, RUB (2011).

  • J.Härterich, K.Sakamoto: Interfaces driven by reaction, diffusion and convection
    Recent advances in nonlinear analysis, World Sci. Publ. (2008), p.225–236

  • J. Ehrt, J.Härterich: Convergence to Stationary States in Spatially Inhomogeneous Balance Laws
    Hyperbolic Problems: Theory, Numerics and applications (2006), Yokohama Publishers, p.367-374. (PDF)

  • J.Härterich, K.Sakamoto: Front Motion in Viscous Conservation Laws with Stiff Source Terms
    Advances in Differential Equations (2006), Vol.11, No.7, p.721-750 (PDF)

  • J. Ehrt, J.Härterich: Asymptotic Behavior of Spatially Inhomogeneous Balance Laws
    J. Hyperbolic Diff. Equ. (2005), Vol.2, No.3, p.645-672 (PDF)

  • J.Härterich, S.Liebscher: Travelling Waves in Systems of Hyperbolic Balance Laws
    in: Analysis and Numerics for Conservation Laws (G.Warnecke, Ed.), Springer 2005, p.281-300 (PDF)

  • J.Härterich: Existence of rollwaves in a viscous shallow water equation
    Proceedings Equadiff 2003, World Scientific 2005, p.511-516 (PDF)

  • J.Härterich, C.Mascia: Front Formation and Motion in Quasilinear Parabolic Equations
    J. Math. Analysis Appl. (2005), Vol.307, No.2, p.395-414 (PDF)

  • J.Härterich, M.Wolfrum: Describing a class of global attractors via symbol sequences
    Discr. Cont. Dynam. Systems A (2005), Vol.12, No.3, p.531-554 (PDF)

  • J.Härterich: Viscous profiles for traveling waves of scalar balance laws: The canard case
    Methods and Applications of Analysis (2003), Vol.10, No.1, p.97-118 (PDF)

  • J.Härterich, B.Sandstede and A.Scheel: Exponential Dichotomies for linear non-autonomous functional differential equations of mixed type
    Indiana Univ. Math. J. (2002), Vol.51, No.5, p.1081-1109 (PDF)

  • J.Härterich: Viscous and relaxation approximations to heteroclinic traveling waves of conservation laws with source terms
    Proceedings of Hyp 2000 (Eds.: G.Warnecke and H.Freistühler), Birkhäuser (2001) (PDF)

  • H. Fan, J.Härterich: Scalar conservation laws with a degenerate source: Traveling waves, large-time behavior and zero relaxation limit
    Nonlinear Analysis, Vol.63, No.8 (2005), p.1042-1069 (PDF)

  • J.Härterich: Admissibility of traveling waves for scalar balance laws
    Proc. Equadiff 99, B.Fiedler, K.Gröger, J.Sprekels (eds.), World Scientific, Singapore (2000), p.295-297 (PDF)

  • J.Härterich: Viscous profiles for traveling waves of scalar balance laws: The uniformly hyperbolic case
    Electr. J. Diff. Eq., 2000, No.30, p.1-22 (PDF)

  • A.R.Champneys, J.Härterich: Cascades of homoclinic orbits to a saddle-center for reversible and perturbed Hamiltonian systems
    Dyn.Stab.Syst. (now: Dynamical Systems) (2000), Vol.15, No.3, p.231-252 (PDF)

  • J.Härterich: Heteroclinic orbits between rotating waves for hyperbolic balance laws
    Proc. Royal Soc. Edinburgh (1999), Vol.129A, p.519-538 (PDF)

  • J. Härterich: Equilibrium solutions of viscous scalar balance laws with a convex flux
    NoDEA (1999), Vol.6, p.413-436 (PDF)

  • J. Härterich: Attractors of viscous balance laws: Uniform estimates for the dimension
    J.Diff.Equ. (1998), Vol.142, p.188-211 (PDF)

  • J. Härterich Attractors of viscous balance laws
    Dissertation, FU Berlin 1997 (PDF)

  • A.R.Champneys, J.Härterich, B.Sandstede: A non-transverse homoclinic orbit to a saddle-node equilibrium
    Ergod. Th. and Dynam. Sys. (1996), Vol.16, p.431-450 (PDF)

  • J.Härterich: Cascades of homoclinic orbits in reversible dynamical systems
    Physica D (1998), Vol.112, p.187-200 (PDF)

  • J.Härterich: Kaskaden homokliner Orbits in reversiblen dynamischen Systemen
    Diplomarbeit, Universität Stuttgart, 1993

nach oben

Preprints