1. "Sur les caractères des groupes de Suzuki", C.R Acad. Sci. Paris,. Ser I. 339 (2004), 95-98.
  2. "The Shintani descents of Suzuki Groups and their consequences", Journal of Algebra, 303 Issue 2 (2006), 869-890..
  3. "On the extension of G2(q) by the exceptional graph automorphism", Osaka J. Math, 44 (2007), 973-1023.
  4. "On Lusztig's conjecture for connected and disconnected exceptional groups", Journal of Algebra, 306 (2007), 303-325.
  5. "Basic sets in defining characteristic for general linear groups of small rank", J. Pure Appl. Algebra, Volume 213, Issue 5, May 2009, 698-710.
  6. "On the inductive McKay condition in the defining characteristic", à paraître dans Math. Z., (2009) 263, 411-424.
  7. "On the unipotent characters of the Ree groups of type G2", Manuscripta Mathematica, Volume 129, Number 4, August 2009, 483-497. arXiv.
  8. "A basic set for the alternating group" (with Jean-Baptiste Gramain), to appear in journal für die reine und angewandte Mathematik (Crelle's Journal), doi:10.1515, arXiv.
  9. "A 2-basic set of the alternating group" (with Jean-Baptiste Gramain), to appear in Archiv der Mathematik, arXiv.
  10. "Counting p'-characters in finite reductive groups", à to appear in Journal of the London Mathematical Society, arXiv.
  11. "A new construction of the asymptotic algebra associated to the q-Schur algebra" (with Max Neunhoeffer), to appear in Representation Theory, arXiv.


  1. "On equivariant bijections relative to the defining characteristic" (with Frank Himstedt), arXiv.
  2. "On semisimple classes and semisimple characters in finite reductive groups", arXiv.

Other texts

  • Appendix of "The product of the Weil character and the Steinberg character in finite classical groups" from G. Hiss et A. Zalesski. To appear in Represent. Theory, pdf
  • PhD: "Les descentes de Shintani des groupes de Suzuki et de Ree" [pdf] [ps] (supervised by Meinolf Geck).

Research topics

  • Representations and characters of finite reductive groups;
  • Inductive McKay condition in defining characteristic;
  • Basic sets for the finite reductive groups in defining characteristic.